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Abstract 

This paper addresses the problem of finding the mllllmum 
time rendezvous point for a geographically distributed group 
of heterogeneous mobile agents. This would be useful in any 
situation where agents must regroup quickly to achieve some 
objective. In contrast to the traditional treatment of the 
multi-agent rendezvous problem, focus is given mainly to the 
identification of the globally optimal solution rather than the 
behavior of the system based on a given control policy. Level 
sets are introduced as a tool to solve this problem by first 
computing an arrival time map for each agent, subject to 
speed, terrain, and dynamic constraints. The computation 
is parallelizable by requiring each agent to generate its own 
arrival time map. The arrival time maps can be easily com­
bined to give the overall minimum time rendezvous point. De­
spite the apparent simplicity of this approach, it is capable of 
accommodating numerous complicating factors with minimal 
modification while simultaneously generating a target path 
trajectory for each agent through the state-space. Examples 
involving ground, sea, and air robots are used to illustrate the 
power of this technique. 

1 Introduction 

The need for a group of autonomous vehicles to come to­
gether at some location may arise from a broad range of 
practical mission requirements. In a military context, this 
may be for protection or fuel dispersement; in a scientific 
survey, it could be to return samples to a cargo robot; in ser­
vice robots it may permit smaller robots to dock with larger 
robots for transportation. This so called rendezvous prob­
lem is a classic problem in the field of distributed control[l]. 
Distributed control generally deals with decision making and 
consensus within groups of autonomous agents given restric­
tions on global information and communication bandwidth, 
reliability, and latency. For the rendezvous problem, the ex­
istence and stability of a consensus-based rendezvous point 
are typically examined[5][4], but little attention is given to 
the actual location of the rendezvous point. This is consis­
tent with the control of UAV's for which the environment 
is simple and obstacles are rare. Furthermore, communica-
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tions restrictions are consistent with small air vehicles that 
must be -light , thus limiting on-board computation and com­
munication equipment. These assumptions do not hold when 
applied to ground vehicles. In the complicated practical en­
vironments in which ground robots operate, the location of 
the rendezvous point becomes significant, and the availability 
of global information and high bandwidth communication is 
more likely. The existence of rough terrain and fixed obstacles 
like buildings and walls may impose serious restrictions on the 
movement of ground robots that must be addressed in any de­
cision making process. Furthermore, the slow speed of most 
ground robots requires that attention be paid to optimizing 
the path of each robot and the path of the group as it moves 
on toward the next objective. Thus, traditional approaches to 
rendezvous are, in some sense, ill-suited for practical vehicles 
operating in more complex conditions. 

2 Level Set Methods 

With access to global environment data and adequate com­
munications, finding the optimal rendezvous point becomes a 
question of path planning. Using path planning techniques, 
the feasibility of every possible rendezvous point may be eval­
uated by each robot and the optimal meeting point may be 
found. The problem of robot path planning has been well 
studied from both theoretical and practical perspectives[8] . 
Common techniques include grid-based graph search algo­
rithms, sampled graph search (e.g. Probabilistic Roadmap), 
and gradient or potential field approaches. Level set methods 
are somewhat analogous to a breadth first search over a rect­
angular grid. For the simplest static point-to-point navigation 
problems, level set methods are at a computational disadvan­
tage relative to many other techniques, but have the advan­
tage of providing solutions that are both correct and complete 
under resolution. This means that given a fine enough grid, 
these technique will find all possible paths and correctly pre­
dict the actual cost of each one. Thus, while point-to-point 
algorithms must be repeated for each possible destination at 
great computational cost, level set methods require practically 
no modification. Thus, level set methods are intrinsically well 
suited to problems that, like the rendezvous problem, take ad-



vantage of their complete nature. 

Level set methods have recently become prevalent in sev­
eral fields. Their most common application is in high fidelity 
simulators for fluid flows , and thermodynamics systems, how­
ever they have also found application in computer vision and 
robotic path planning. Hassouna et. al.[6] use the flexibil­
ity of level set methods to make 2D path planning more ro­
bust. Kimmel[2] et al use level sets to find shortest paths 
over 3D surfaces. A full treatment of the subject is given by 
Osher[7].The basic principle underlying the level set method 
is that many problems can be framed in terms of an interface 
function that satisfies a hyperbolic PDEj fast PDE solvers can 
then be used to yield solutions to these problems. To adapt 
this to robot path planning, a propagation PDE that correctly 
moves the reachable frontier of the robot must be created. 
For robots with negligible dynamics, this corresponds to nor­
mal wave propagation emanating from the starting point. By 
careful choice of the governing PDE, the dynamics of a given 
robot can be embedded into the problem. Despite the poten­
tial benefits of this approach it has yet to be adopted as a 
mainstream path planning technique. 

The main method to find rendezvous points discussed in 
this paper is the min-max method. In this method the ar­
rival time for each agent is computed and the maximum of 
all the arrival time maps is computed at each point. This 
parallelism makes these techniques more suitable to multi­
agent problems, assuming these agents can be fitted with rea­
sonably powerful processing equipment. The location with 
the smallest maximum is the optimal rendezvous point. A 
more detailed discussion of the method is provided in the 
next section. To illustrate the flexibility and applicability of 
this technique, three example problems are discussed. The 
first problem deals with navigation in complex terrain, the 
second deals with the integration of dynamic effects into the 
level set method, and the third deals with applying level set 
in dynamic and non-rectangular environments. 

3 Ground Terrain Navigation 

This problem gives an example of the level set technique ap­
plied to a simple 2D environment with static obstacles and 
non-uniform terrain. The assumption taken here is that the 
time scales of the dynamics of the agent are negligible com­
pared to the time scales involved with traversing the envi­
ronment. This would be valid for most ground robots since 
they are typically designed to move slow enough to ignore 
dynamic effects. This would break down for faster moving 
robotic vehicles like those seen in the DARPA Grand Chal­
lenge. If applied to human ground units this restriction is 
also of minimal consequence since humans have no trouble 
navigating within local dynamic environments. 
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3 .1 P roblem D escription 

A simple rendezvous problem that is stated as follows . Two 
agents start at locations A and B respectively, find the ren­
dezvous point that minimizes the rendezvous time and thus 
allows them to meet in the shortest possible time. Route each 
must take to achieve this optimal rendezvous time should also 
be determined. In this case, the agent at location A is de­
fined to be a legged robot and the agent at location B will 
be a wheeled robot. It is assumed that the wheeled vehicle is 
faster on defined paths but is slowed considerably when devi­
ating from defined paths. For added complexity, the walking 
robot and the wheeled robot must proceeding to the final des­
tination at C, limited by the speed of the slowest robot. 

Figure 1: Starting and Ending Locations on Campus 

It is easy to see that the rendezvous constraint will increase 
the time it takes for the agents to arrive at the final destina­
tion. This is because the agents will be forced to deviate from 
the optimal path in order to first proceed to the intermediate 
destination. By moving the rendezvous point closer to the 
final destination this effect can be reduced but at the cost 
of increasing the rendezvous time. It will be shown that the 
level set method lends itself to a convenient way of balancing 
these two competing goals of minimizing the rendezvous time 
and minimizing the overall transit time. 

3.2 Method 

In the level set approach requires the existence of 'Ij; (x , y , t) , 
where the 'Ij; = 0 level set defines the time dependent interface 
between reachable and unreachable regions of the map for a 
given agent. 'Ij; < 0 represents points that are reachable and 
'Ij; > 0 represents points that are unreachable at a given time 
step. The 'lj; function then evolves subject to a hyperbolic par­
tial differential equation that describes the movement abilities 
of the agent. The main computational cost of the level set ap­
proach is the construction of the numerical solution of the psi 
function over space and time. The PDE for this example is 

8'1j; 8'1j; 8'1j; 
- +u-+v-=O 
8t 8x 8y 

(1) 



where u and v define the speeds in the x and y directions 
respectively. For the purposes of this example it is assumed 
that both the walking robot and the wheeled robot can move 
in any direction at anytime with speed subject to a naviga­
bility constraint that limits the maximum speed based on a 
given terrain. 

Ju2 + v2 <= Smax * c(x, y) (2) 

The navigability of the grid is represented at all points by 
a navigability index c ranging from 0 to 1. High navigabil­
ity indexes represent locations at which an agent can move 
at or near it 's maximum speed. Low indexes represent ter­
rain which severely impedes an agent's progress. An index of 
zero represents a completely impassible terrain. In practice 
different agents may have different navigability maps, for ex­
ample wheeled vehicles are impeded by rough terrain much 
more than a person on foot so the navigability index for a 
vehicle in these areas would be comparatively lower. In this 
example a subset of the Notre Dame campus map (Figure 7) 
is taken to be the operating region of interest. The naviga­
bility indices are taken from a published map of campus that 
represents buildings, grass, and sidewalks as dark, light, and 
white respectively. Taking the grayscale values of this map at 
each point provides a basis for generating navigability maps 
for this area. For the walking robot, thresholding is used to 
provide a map that is zero for buildings and 1 for everything 
else. In the wheeled case, this map could be used directly in 
its current form but to make the problem more interesting the 
navigability values have been modified to increase the penalty 
of non-sidewalk paths. 

To minimize the 'I/J function and thus include the largest 
amount of terrain inside the reachable region u and v are 
chosen such that the total velocity is normal to the level set. 
This causes the largest increase in the reachable region and 
thus defines the maximal reachable set at a given time as 
desired. This can be accomplished by choosing 

(3) 

The initial conditions for 'I/J are given by the signed distance 
function with a small radius r around the starting point. 

'l/Jo(X, y) = J(x - xo)2 + (x - xo)2 - r (4) 

The solution of (1) can be found using various numerical in­
tegration techniques which are beyond the scope of this work. 
For this example a first order upwind scheme with Euler time 
integration was used. At each iteration in time a check is per­
formed to see if 'I/J has become negative for a given grid point 
and the first such time is recorded in a separate grid. This 
yields a first crossing time function which is the quantity of 
interest. The gradient of the crossing time map can be fol­
lowed back to the starting location to determine the optimal 
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route. At this point it is important to stress the power of this 
technique. Not only does it yield the transit times from the 
start location to any point on the map, but it also provides 
an easy method for calculating the optimal route necessary to 
achieve those transit times. The solution is complete in that 
it covers every point in the domain. 

Figures 2 and 3 show contour plots for the walking and 
wheeled robot crossing times at 10 second intervals with the 
calculated optimal path shown in red . For the case of the 
wheeled robot, the method for penalizing non-sidewalk move­
ment has led to a path that predominantly favors the side­
walks as desired. 

Figure 2: Legged Robot (A) crossing time map 

Figure 3: Wheeled Robot (B) crossing time map 

Once the level set solution has been generated, many useful 
properties of the system may be calculated with practically no 
computational cost. The minimum time rendezvous point is 
one such property. The first step is to generate the rendezvous 
time map for the two robots as given by 

tr(X,y) = max(tA(x ,y) , tB(X ,y)) , (5) 

where tA(X,y) and tB(X ,y) are the arrival times of the two 
robots are a given location. The minimum rendezvous point 
is the values of x and y that minimizes tr . The overall transit 
time to any destination is given by the sum of the rendezvous 
time and the transit time from that rendezvous point to the 



destination. 

ttransit(X, y) = tr(X, y) + tc(X, y) (6) 

As stated earlier it may be desirable to relax the rendezvous 
constraint in favor of minimizing the overall transit time. This 
can be accomplished simply by finding the x and y that min­
imize a weighted transit t ime as given by 

ttransit(X, y) = max(tr(x, y), t~) + Etc(X, y), (7) 

where t~ E [tr' t(xc, yc)] is a new specified rendezvous time 
and epsilon is a very small value. The max operation results in 
a flat floor in the rendezvous time map which is then slightly 
weighted toward the destination by the E term. For values of 
t~ close to tr , the rendezvous time map is the dominant factor 
but as t~ approaches t(XC,yc), the rendezvous map becomes 
flatter and the small effect of t(xc, YC) becomes significant. 
Thus the level of rendezvous relaxation can be controlled by 
specifying a less ideal rendezvous time. 

3.3 Results 

The following figure shows the rendezvous time map as cal­
culated using equation 5. From the figure it can be seen that 
there are 2 minimum areas in two geographically separated 
locations. The lower location has a slightly lower rendezvous 
time so it is chosen as the optimal solution. By applying the 
rendezvous relaxation discussed above the rendezvous points 
can be moved to the upper location. It can be seen that the 
rendezvous points do not always vary continuously with t~ 
but will occasionally jump from one optimal area to another 
as necessary. 

Figure 4: Rendezvous time map 

Figures 6 and 7 illustrate the dramatic difference in the final 
solution that the rendezvous relaxation method provides. In 
the pure min-max method the path is fairly complicated and 
seems unnecessarily long. With the relaxation method, the 
path is straight forward and intuitive. 

Figure 5: Rendezvous Locations with relaxation 

Figure 6: Optimal paths with min-max 

Figure 7: Optimal paths with relaxation 
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4 Ocean Navigation with Dynamics cial considerations. The PDE for this problem is 

The previous example showed a problem for which many so­
lution techniques could be adapted. In the following problem, 
the dynamics of the system cannot be ignored. In this case, 
the algorithmic choices are much more restricted, and it is 
here that the advantages of level set methods are apparent. 
It is very difficult to modify most graph search techniques to 
account for the dynamics of the system, but such modifica­
tions are trivial for level set methods. The only disadvantage 
arises from the necessary exponential increase in time and 
space complexity incurred by adding an additional dimension. 

4.1 Problem Descriptions 

The example problems that will be addressed in this section 
concern a large robot carrier ship that moves through the 
ocean at speed s on a heading of O. Heading and speed can be 
adjusted by setting the rudder 'r ' and speed's' . A reasonable 
approximation for the dynamics of the ship might be 

dx 
S* cos(O) (8) -

dt 
dy 

S* sin(O) (9) 
dt 
dO 

(10) = T*S 
dt 

where S E [-smax , smax] and T E [-Tmax, Tmax]. The ship is 
initially located at (xo , Yo) = (5,5) moving on a heading of 
0= 7r/ 4. Additionally, there is a small unmanned underwater 
vehicle (UUV) off the starboard side of the ship that can move 
in any direction at a maximum speed of 2. The goal is to 
maneuver both the ship and the UUV in order to minimize 
the rendezvous time. A rendezvous in this case is taken to 
be a coincidence in x and y since the scout does not have a 
heading. It is also assumed that the ship can drop anchor at 
any point and wait for the UUV to catch up . 

The solut ion of a second similar problem is also shown in 
this section. It consists of the robot carrier and a robotic 
escort craft that follows the same dynamics equations as 
the carrier but starts at a different set of initial conditions, 
(xo , Yo) = (7, 2) on a heading of 0 = 37r /4. The escort must 
maneuver along side the ship by matching its location and 
heading. The problem is to minimize the amount of time it 
takes to get into formation with the ship and identify the path 
that both vessels should follow. This is a rendezvous problem 
in 3 dimensions. Here again it is assumed that either ship can 
drop anchor and wait for the other ship to catch up. 

4.2 Method 

The solution of this problem will use the same level set method 
used in the campus rendezvous problem, but with some· spe-
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a'lj.; a'lj.; a'lj.; a'lj.; 
-+s* cos(O)-+s* cos(O)-a +S*T

ao 
=0 

at ax y 
(ll) 

With the assumption of constant speed, the only way of 
affecting 'Ij.; is through control of the rudder. To maximize 
the propagation of the 'Ij.; = 0 level curve, s * Ti* must be 
maximized. Thus, the control becomes 

. a'lj.; 
T = Tmax * stgn( ao) ' (12) 

Before proceeding, note that the equations specify the 
change in 0 as a funct ion of sand r. Consider the case of 
a ship moving in a circular path centered at a point. 

V 
Tadius 
VI\: 

(13) 

(14) 

where I\: is the curvature of the circle. This matches the dy­
namic equation for O. The rudder angle is therefore equivalent 
to the instantaneous curvature of the path on which the ship 
will move. 

The 'Ij.; function for the UUV is governed by a PDE that is 
identical to that discussed in the campus navigation problem. 
The control for the UUV is therefore chosen to be equal to 
equations 3. 

In the case of rendezvous with a second ship, max maps at 
each heading level are computed to find intersection points 
for all three dimensions 

4.3 Results 

For this problem values of s = 10 and Tmax = .5 were chosen. 
Figure 8 shows a composite crossing time map for the carrier 
at a resolution of Nx = 200, Ny = 200 , NO = 200. This map 
was created by taking the minimum values of the crossing 
time for a given value of x and y over all headings. It is 
essentially a 2D projection of the 3D crossing time array. A 
visual inspection confirms that the maximal circular paths 
have a radius approximately equal to 2, which is consistent 
with our choice of Tmax. 

Solut ions for this problem were computed with a variety 
of solvers. The best results were obtained using a 1st order 
Lax-Friedrichs scheme, but 2nd order RK with WEN05 and 
3rd order RK with WENO 5 were performed. Figures 9 and 
10 show the results of the 1st order LLF scheme and the 3rd 
order RK with WEN05 for N=50 

To test the accuracy and convergence properties of the 1st 
order LLF scheme, solutions were generated at different lev­
els of resolution. Figure 11 shows a table L1 error norms 
computed against the N = 200 resolution level. Convergence 
rates are better than first order which is surprising for a first 
order scheme. 



Figure 8: Composite crossing time map for ship starting at 
(5,5, pi/4) 

Figure 9: Composite crossing time map generated with RKI 
and LLF 
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Figure 10: Composite crossing time map gep.erated with RK3 
and WEN05 

Nx Ny Nh Nt L 1 Error rc 
25 25 25 100 0.8255 1.141459 
50 50 50 200 0.3742 1.381754 

100 100 100 400 0.1436 
200 200 200 800 

Figure 11: Table of Ll errors of crossing time map 



Figure 12 shows the crossing time map for the UUV and the 
robot carrier overlaid to see the intersection of the two maps. 
From these maps, the technique used for the campus map can 
be followed to determine the minimum time rendezvous point. 

This problem also demonstrates the algorithm's ability to op­
erate in spaces defined by non-rectangular grids. Both of these 
abilities make level set methods unique if not superior to other 
path planning methods in terms of flexibility. 

5.1 Problem Description 

Consider the task of aircraft navigation over large distances. 
At these distances the curvature of the earth becomes a sig­
nificant effect on the path planning problem. For this prob­
lem, it is assumed that there are two aircraft , a UAV, and 
a refueling robot. The fighter moves at a maximum speed of 
mach 2 while the tanker moves well under the speed of sound. 
Now also assume the existence of a large volcanic ash cloud 
through which neither aircraft may pass. The ash cloud is 
subject to advection forces and thus moves with time. The 
fighter and the tanker must rendezvous in the minimum time 
possible while avoiding the ash cloud. This is a rendezvous 
problem in a dynamic environment defined over a spherical 
geometry. Here again the flexibility of the level set method 
makes solving this problem relatively easy. 

Figure 12: Crossing time paths for the UUV and the robot 5.2 Methods 
carrier 

Figure 13 shows the composite crossing time map for the 
two ship case. To generate a path through state space, the 
gradient climbing approach can be extended to 3D and ap­
plied to find the path to any intersection point . 

( ( 
\ 1 , 

Figure 13: 2D projection of the optimal paths 

5 Global Flight Navigation 

The following problem shows that level set methods easily 
handle path planning in environments with moving obstacles. 
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The two main differences for this problem are the geometry 
and the dynamic environment. The method can be adapted 
to spherical geometry with minimal effort as described below. 

The space must first be discretized into a grid of angles that 
uniquely describes every point on the sphere. The angles that 
will be used are a and fJ, where alpha defines the longitude, 
and beta defines the latitude. These angles will replace x and 
y as state space variables. The PDE for this configuration is 

a1/; A a1/; E o1/; = 0 
at + oa + ofJ 

(15) 

where A and B are the alpha and beta speeds of the aircraft . 
We would like to replicate the expansion of 1/; in the normal 
direction that was used in the past two examples, but the form 
needed to accomplish this is not immediately clear. To solve 
this problem, we introduce a linear Cartesian approximation 
at every grid point. 

x 

y 

rcos(fJ)(a - aD) 

r(fJ - fJo) 

(16) 

(17) 

A Jacobian matrix can be found that allows transfer of 
information into and out of Cartesian space. 

Since the linear approximation is always centered on the 
grid point of interest the upper right term can be ignored, 



leaving 

J = [rco~(jJ) ~] (19) 

The spatial derivatives can be transformed through the 
transpose of the Jacobian. 

[ ~; ] = [ r co~(f3) ~][ ~:] (20) 

[ ~:] [r CO~(~ ) ~] [ ~; ] (21) 

The transformed spatial derivatives can be used to generate 
u and v values that ensure normal propagation of the 'IjJ func­
tion. The u and v values can then be transformed back into 
spherical space through the inverse Jacobian, yielding correct 
A and B values. If there are advection terms, they can be in­
troduced in Cartesian space or spherical space. Because level 
set methods work by solving linear approximations to prob­
lems at very small length and time scales, the local linear 
transformation is a natural choice. 

The second challenge with this problem is the simulation 
of moving objects in the environment. Level set methods can 
easily handle this by defining another function to describe the 
boundary of the ash cloud. For this problem the cloud will 
be described by the X function. 

(22) 

The governing PDE can then be configured to evolve the 
boundary of the ash cloud according to any given flow field. 
When calculating the evolution of the 'IjJ function for the 
fighter and the tanker, the value of X may be checked to de­
termine whether or not the aircraft should be allowed to move 
at that point. For example the equation for u would be 

{ 

'I/J% 

U = v''I/J~+'I/J~ 
x>O 

X <=0 
(23) 

This provides a simple method for dealing with objects in 
the environment. This method is not restricted to clouds 
and other advecting objects. Coquerelle[3] et al show that 
very complicated environments, including colliding solid bod­
ies, may be simulated with level set methods. 

5.3 Results 

As a first step the accuracy of this new method in approxi­
mating a non-rectangular grid must be verified. To do this, 
the system is made to simulate a system that is simple enough 
to be verified by hand. This is the case of normal propaga­
tion. The level sets of 'IjJ should proceed away from the initial 
conditions in a circular fashion when plotted on a sphere. The 
propagation speed can be verified by measuring the location 
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Figure 14: The 'IjJ function correctly propagates in a radial 
direction 

of the boundary at a fixed time. Figure 14 shows the circular 
simulation used to validate this approach. 

The following figures show examples of different initial con­
ditions and different storm advection velocities. Here again 
the min-max technique can be applied to find the shortest 
time rendezvous point. This step is identical to previous ap­
plications of the min max principle and is omitted here for 
brevity. 

<l.S 

. , -+--r--r--r---r--r---;r--r--r---r-+ 
. , -d8 -de ·0.4 <l .. 2 0 .. 2 0.4 o.e O.S 

Figure 15: Here the optimal rendezvous in front of the cloud 

6 Discussion 

Level set methods represent an important class of powerful 
path finding methods. The global data provided by these 
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Figure 16: Here the rendezvous point lies in the wake of the 
cloud 

methods make it relatively easy to apply post processing tech­
niques to solve other problems with low computational cost. 
This paper mainly focused on the rendezvous problem but the 
underlying level set methods are flexible and general enough 
to do many other path finding tasks. To show some of this 
flexibility, 3 example problems were introduced. The first 
problem showed the ability of level set methods to deal with 
complex terrain. The ship navigation problem showed the 
ability of level set methods to deal with the dynamics of the 
agent. The final problem showed that level sets readily deal 
with moving obstacles and non-rectangular grids. 
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