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Simulation is at the heart of engineering efforts
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Materials research for polymers at extremes
Research at interfaces of Analytical/Experimental/Numerical
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 Analytical theory validation

Viscoplastic fracture mechanics and J(t) integral

 Experimental mechanism discovery

High-rate stable tensile failure in PE during Dynamic-Tensile-Extrusion

 Internal fields w/o explicit constitutive model

Large strain time-temperature equivalence

Infer physics of internal failure during DTE
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Coupled experimental-numerical validation of 
viscoplastic fracture mechanics
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Motivation: Clinical fracture of UHMWPE
hip replacment bearings

 Four designs, all initiated a crack from a designed 
notch and fractured without trauma

 No failure theory or design criteria for fracture

 Cracks can initiate long before failure

Furmanski et al. Biomat 30



Operated by Los Alamos National Security, LLC for NNSA

DoD Analog: Controlled fragmentation of a 
UHMWPE slip-obturator in Excalibur

 Failure at designed notches under tension

 Fracture time and path critical to performance: Design
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Crack behavior in UHMWPE is non-cyclic

3x

2.9x

da/dt=C Kmax
n

 Crack propagation is stable, quasi-static

 Growth is predictable from simple time-integral
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Why static mode crack behavior?

 Overall crack phenomena are determined by 
behavior in the fracture process zone (PZ)

 Crack tip deformation is principally quasi-static
• Viscous flow
• Time-dependent fracture

 Intrinsic cyclic damage mechanisms appear 
absent
• Crazing, crack tip resharpening

PZ
Crack 
tip

Schapery, Int J Fract 25
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A “new” approach to viscous fracture

 JG Williams model of viscous crack initiation and 
propagation
• Power law time dependent J-integral
• J0 is applied (instantaneous) J-integral
• Exponent n (related to creep resistance, unifying factor)
• Similar to work by Schapery

*Williams, Fract Mech 
Polym, 1984
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FEA: Constitutive model

 Hyperelastic-viscoplastic “Three Network Model” 
• Arruda-Boyce 8-chain hyperelastic springs

• Power law viscoplasticity

• Yield stress distribution through parallel plastic 
elements, variable stiffness

 Molecular chain stretch of hyperelastic element C 
is correlated to tensile failure (decohesion)

*J Bergstrom and Veryst Inc. 
Update for Hybrid Model, i.e.,
Bergstrom et al., Biomat 25
Bergstrom et al., J Ortho Res 23
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TNM calibration

 FEA modeling using hyperelastic-viscoplastic TNM
• Calibrated to 65 kGy remelted 1-D behavior

• Monotonic to failure, post-yield creep at two loads
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Finite element model

 Abaqus CAE v6.8

 2450 CPS8 quadratic quadrilateral elements

 UMAT user material subroutine for TNM
• Licensed from Veryst Engineering (Cambridge, MA, USA)
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Experimental constant load crack growth

 Observed ligament reduction is initially logarithmic.

 With logarithmic contribution regression fitted and subtracted, 
crack growth is seen to initiate at time ti
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Crack initiation: FEA computation of critical quantities
 Calibrated FEA predictions of quasi-static crack initiation agree with 

analytical expectations
• J-integral is power-law time dependent

• Experimental initiation times for 3 loads map to a single predicted values of J(ti), 
molecular chain strain εch(ti)

• Single-valued J(ti) and εch(ti) implies legitimate failure criteria
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Generality: J-controlled initiation for design

 Applied J0 is an FEA computed quantity (design/service specific)

 Experimentally verify J0 controls initiation for arbitrary geometry

 If J0 is sufficient (general), then can use in design/ fracture control
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Crack initiation and propagation both correlate to J0

 Moderately crosslinked UHMWPE
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J0 correlation holds for varying crosslink density
 Highly crosslinked shows similar behavior, with lower initiation time and 

higher velocity.  Some subtle differences.
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Williams theory is sound for design

 First-of-its-kind safety metric for crack inception in UHMWPE structures

 Initiation and propagation theory should hold even up to dynamic case, until 
kinetic effects become appreciable.
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Mechanisms of failure in HDPE 
during extreme tensile deformation
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Extreme deformation: 
Taylor impact and Dynamic-Tensile-Extrusion
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 Extreme deformation: Strain >1 with strain-rate>10,000/s

 Gradients in strain and strain-rate – rich data for validation

 Some damage may be suppressed under compression (pressure)
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Dynamic-Tensile-Extrusion
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 He gas gun accelerated projectile to 300-600 m/s

 Conical extrusion – extrusion true strain 1-2

 Vary velocity and area reduction to focus on behavior of interest

 Too severe: fragmentation

 Too moderate: no extrusion or pass-through
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Dynamic-Tensile-Extrusion: Stress/Strain Fields
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 Taylor-validated constitutive model in ABAQUS/Explicit

 Simulations demonstrate extreme tensile behavior:

 Strain>1, strain-rate>10,000, axial stress>0 (pressure<0)
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Results: Dyn-Ten-Ext of HDPE
 At lower velocities (450 m/s), 

specimen survives and contains 
sub-critical damage

 Intermediate velocities (486 m/s) 
fail in a sequential tensile/shear 
manner

 High velocities (550 m/s) 
fragment at neck catastrophically Ti

m
e

Inc. Velocity
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Intermediate velocity: Internal failure, external rupture

 Internal tensile failure, shear failure, rupture at die exit 465 m/s

External view

Internal view
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Low velocity: Incomplete failure; incipient damage

 Internal tensile failure, sheared damage region 450 m/s
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Low velocity: Internal failure; shear damage tube

Chevron rupture, mode-II crack, transition to shear 
damage field in tube shape

Tensile failure and 
shear pull‐out of 
failed core

Axisymmetric shear 
damage “tube”

Slide 30



Operated by Los Alamos National Security, LLC for NNSA

X-ray CT: Internal failure; shear damage tube

Damage tube is a crack surface bridged by ligaments

Shearing mode crack 
both ahead and 
behind chevron
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Low velocity FEA: Shear stress localization

 Terminal strain field does not match damage due to model limitations

 Shear stress focus region maps to shear damage zone

 A pressure-shear damage model could yield correct strain field
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Exploratory results with pressure-shear 
damage: Failure progression similar to 
observed path 

Time
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Conclusions
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Dynamic-Tensile-Extrusion is an excellent tool for studying dynamic 
damage in polymers

 Deformations not accessible by other means, yet simple BCs

 Next: map mechanisms with input KE and extrusion severity

Internal view
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Conclusions
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Modeling of continuum deformation in Dyn-Ten-Ext can elucidate 
mechanisms of damage and failure

 Infer damage mechanisms by matching path, field localizations

 Use to generate hypothetical damage mode and test

 Discovery tool, even with limited FEA (e.g., simple constitutive model)
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Large-strain time-temperature equivalence and 
adiabatic heating of HDPE
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Material characterization is limited by strain and strain-rate
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 Characterization with homogeneous 1-D stress/strain, if possible

 Extrapolate data with validated constitutive model (rigorous, expensive)

 Strain-rate limitations can be overcome with a rate-equivalence model
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Experimental time-temperature equivalence
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Stress-strain curves are seen to collapse to a common state over a large 
range of temperatures and rates

 Breakdowns in equivalence are important to clarify
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Experimental time-temperature equivalence
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 Extract a time-temperature equivalence relationship for onset of plasticity

Fully plastic behavior

Breakdown in 
equivalence
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Temperature and rate dependence of yield (onset)
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Time-temperature equivalence for nonlinear deformations
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 Plasticity onset maps well to simple logarithmic relation (1 Param.)

 Note that 100 K is equivalent to ~ 9 decades of strain rate 

Empirical time-temperature equivalence
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Equivalence locus at yield- need continuous response
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 Equivalence may not hold for whole response

 Other issues: plastic work (adiabatic heating)

 Continuous response needed for engineering solutions
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Adiabatic heating results in apparent thermal softening

 Stress-strain curves are presumed isothermal

 Plastic work substantially heats sample and breaks equivalence
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Establish equivalence including adiabatic states

 Equations are for isothermal data, insensitive to other physics

 Need a means to access higher strain-rates without heating

 Eq. stress is generally any stationary flow stress (pointwise)
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Isothermal Jump Locus

 First instant of high strain-rate deformation is still isothermal, as 
no plastic work has accumulated

 Assemble a locus of isothermal response from multiple jumps

 Uniaxial compression
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Jump Locus at 20ºC in HDPE and UHMWPE

 Good agreement between jump locus and isothermal equivalent
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Jump Locus at -50ºC

 Good agreement between jump locus and isothermal equivalent
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Jump Locus at -70ºC

 Underpredicted response in UHMWPE at -100ºC & 0.001/s
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Flow stress is non-linear with temperature

 Deviation from linear model assumption is at -90ºC at 0.01/s

 Valid linearized window: 0-130ºC & 106/s

 Melt transition at 130ºC appears to affect HDPE but not UHMWPE
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Application: Simulation of Dyn-Ten-Ext and Taylor Impact

 Use rate-temperature equivalence to shift cold, low rate stress-
strain data up to 10,000/s

 Temp: RT up to melt

Work by: Clive Siviour, Jennifer Jordan, Eric Brown
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FEA simulation using t-T equivalent set
 ABAQUS/Explicit dynamic axisymmetric model of experimental case

 Metal plasticity, no damage, adiabatic (β=0.9)

 Validated scheme with Taylor impact results

You are here

Work by: Clive Siviour, Jennifer Jordan, Eric Brown
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Dynamic-Tensile-Extrusion: Stress/Strain Fields
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 Taylor-validated constitutive scheme in ABAQUS/Explicit

 Simulations demonstrate extreme tensile behavior:

 Strain>1, strain-rate>10,000, axial stress>0 (pressure<0)
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Taylor-validated scheme for damage mechanism inference:
Pressure-mediated shear damage
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Rate-shifted material definition is a first-order solution
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 Informs analytical model development (especially damage)

 Validation

 Short cut to interpretation of integrated dynamic tests

 Not a replacement for a true predictive model of material behavior

 Nevertheless, shows good agreement with dynamic integrated tests
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Analytical, experimental, and design efforts all benefit from 
seamless integration through simulation
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