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Simulation is at the heart of engineering efforts

Analytical Constitutive
Mechanics/Theory Modeling
Investigation — : Verification
Sanity check \ 4 v  Consequences
Simulation
Model validation 4 4 Interpretation
Generality ; ; Internal fields
Prediction/

Design

» Los Alamos

NATIONAL LABORATORY Slide 2

Operated by Los Alamos National Security, LLC for NNSA ) V4 v
1N A u



Materials research for polymers at extremes
Research at interfaces of Analytical/Experimental/Numerical

= Analytical theory validation

Viscoplastic fracture mechanics and J(t) integral

= Experimental mechanism discovery

High-rate stable tensile failure in PE during Dynamic-Tensile-Extrusion

= Internal fields w/o explicit constitutive model

Large strain time-temperature equivalence

Infer physics of internal failure during DTE
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Coupled experimental-numerical validation of
viscoplastic fracture mechanics
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Motivation: Clinical fracture of UHMWPE
hip replacment bearings

= Four designs, all initiated a crack from a designed
notch and fractured without trauma

= No failure theory or design criteria for fracture

= Cracks can initiate long before failure




DoD Analog: Controlled fragmentation of a
UHMWPE slip-obturator in Excalibur

Failure at designed notches under tension

Fracture time and path critical to performance: Design




Crack behavior in UHMWPE is non-cyclic
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Why static mode crack behavior?

Overall crack phenomena are determined by
behavior in the fracture process zone (PZ)

Crack tip deformation is principally quasi-static
« Viscous flow
« Time-dependent fracture

Intrinsic cyclic damage mechanisms appear
absent

« Crazing, crack tip resharpening
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A “new” approach to viscous fracture

= JG Williams model of viscous crack initiation and
propagation
 Power law time dependent J-integral
« Jois applied (instantaneous) J-integral
« Exponent n (related to creep resistance, unifying factor)
« Similar to work by Schapery
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FEA: Constitutive model

= Hyperelastic-viscoplastic “Three Network Model” é
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« Power law viscoplasticity = = c%
* Yield stress distribution through parallel plastic u l " l :%:-»
4 !
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* Arruda-Boyce 8-chain hyperelastic springs

elements, variable stiffness ]

= Molecular chain stretch of hyperelastic element C
is correlated to tensile failure (decohesion)

*J Bergstrom and Veryst Inc.

pa Update for Hybrid Model, i.e.,
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TNM calibration

= FEA modeling using hyperelastic-viscoplastic TNM
« Calibrated to 65 kGy remelted 1-D behavior

« Monotonic to failure, post-yield creep at two loads
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Finite element model
= Abaqus CAE v6.8

m 2450 CPS8 quadratic quadrilateral elements

= UMAT user material subroutine for TNM

« Licensed from Veryst Engineering (Cambridge, MA, USA)

S, Max. Principal
(MPa)
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Experimental constant load crack growth

s Observed ligament reduction is initially logarithmic.

= With logarithmic contribution regression fitted and subtracted,
crack growth is seen to initiate at time f{i
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Crack initiation: FEA computation of critical quantities

= Calibrated FEA predictions of quasi-static crack initiation agree with
analytical expectations

« J-integral is power-law time dependent

« Experimental initiation times for 3 loads map to a single predicted values of J(ti),
molecular chain strain &cn(ti)

« Single-valued J(ti) and &cn(ti) implies legitimate failure criteria
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Generality: J-controlled initiation for design

=  Applied Jo is an FEA computed quantity (design/service specific)

n  Experimentally verify Jo controls initiation for arbitrary geometry

m If Jo is sufficient (general), then can use in design/ fracture control

<

R=0.5 mm R=0.25 mm R=0mm




Crack initiation and propagation both correlate to Jo
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Jo correlation holds for varying crosslink density

m  Highly crosslinked shows similar behavior, with lower initiation time and
higher velocity. Some subtle differences.
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Williams theory is sound for design

First-of-its-kind safety metric for crack inception in UHMWPE structures

Initiation and propagation theory should hold even up to dynamic case, until
kinetic effects become appreciable.

10 x RM65 Single Layer 10
x RM65 Multi Layer
© RM100 Single Layer
O RM100 Multi Layer o o
o 6 X Q 1
§ 10+ x % 10+ da/dt = 7x10”7 (1%
. x
= g R?=0.80
£ <
p 2
£ ; t, =3.67x10"(1%) %‘ )
c 10+ 2107
.o [
g c
c .2
Z ® da/dt = 5.13x10" (J“2 1)
S a4 t, =1.52x10°>%%) & 3
S 107+ 2107t N R%=0.81
© R%=0.98 2
o
A )
) 10° ‘ 10" :
» Los Alamos 4 5 6 5y 4 5 8
NATIONAL LABORATORY a Applied J ) (kd/m?) Applied J, (kJ/m®) Slide 22
EST.1943
Operated by Los Alamos National Security, LLC for NNSA ) V4 v .‘V
1N A -ﬂ



Mechanisms of failure in HDPE
during extreme tensile deformation
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Extreme deformation:
Taylor impact and Dynamic-Tensile-Extrusion

s Extreme deformation: Strain >1 with strain-rate>10,000/s
m Gradients in strain and strain-rate — rich data for validation
= Some damage may be suppressed under compression (pressure)
= » : ‘ : High-speed camera K
s LosAlamos € . e e~ e .
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Dynamic-Tensile-Extrusion

= He gas gun accelerated projectile to 300-600 m/s
= Conical extrusion — extrusion true strain 1-2
= Vary velocity and area reduction to focus on behavior of interest

m To00 severe: fragmentation

s Too moderate: no extrusion or pass-through
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Dynamic-Tensile-Extrusion: Stress/Strain Fields

m Taylor-validated constitutive model in ABAQUS/Explicit
= Simulations demonstrate extreme tensile behavior:

m Strain>1, strain-rate>10,000, axial stress>0 (pressure<0)

Strain Rate, Axial (s)
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Results: Dyn-Ten-Ext of HDPE

= At lower velocities (450 m/s), | Inc. Velocity

specimen survives and contains 1
sub-critical damage '

n Intermediate velocities (486 m/s)
fail in a sequential tensile/shear
manner

m  High velocities (550 m/s)
fragment at neck catastrophically
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Intermediate velocity: Internal failure, external rupture

= Internal tensile failure, shear failure, rupture at die exit

465 m/s

i
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Low velocity: Incomplete failure; incipient damage

Internal tensile failure, sheared damage region ‘ Is
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Low velocity: Internal failure; shear damage tube

Chevron rupture, mode-ll crack, transition to shear
damage field in tube shape

Axisymmetric shear
damage “tube”

Tensile failure and
shear pull-out of
failed core

Slide 30
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X-ray CT: Internal failure; shear damage tube

Damage tube is a crack surface bridged by ligaments

Shearing mode crack
both ahead and
behind chevron
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Low velocity FEA: Shear stress localization

= Terminal strain field does not match damage due to model limitations

m Shear stress focus region maps to shear damage zone

= A pressure-shear damage model could yield correct strain field

LE, LE12
{Avg: 75%)

5, 512
{Avg: 75%)

ﬁg Ala

NATIONAL LAB(
EST.1943

Operated by Lo



Exploratory results with pressure-shear
damage: Failure progression similar to
observed path

SHRRATIO
{Avg: 75%)
O -0.
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Conclusions

Dynamic-Tensile-Extrusion is an excellent tool for studying dynamic
damage in polymers

m Deformations not accessible by other means, yet simple BCs

= Next: map mechanisms with input KE and extrusion severity

» Los Alamos Slide 34
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Conclusions

Modeling of continuum deformation in Dyn-Ten-Ext can elucidate
mechanisms of damage and failure

= Infer damage mechanisms by matching path, field localizations
m Use to generate hypothetical damage mode and test

m Discovery tool, even with limited FEA (e.g., simple constitutive model)

s, 512 me: 0.00
(Avg: 75%)
23.89
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Large-strain time-temperature equivalence and
adiabatic heating of HDPE

‘ « = Strain, Min. Principal
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Material characterization is limited by strain and strain-rate

Load

DMA DMA

Frame

N
107
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o G
e
8 104 |
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T——
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t-SHPB
Rot. Wheel

10¢ 19t 10°

Tensile Strain

108

m Characterization with homogeneous 1-D stress/strain, if possible

m Extrapolate data with validated constitutive model (rigorous, expensive)

m Strain-rate limitations can be overcome with a rate-equivalence model

.
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Experimental time-temperature equivalence

Stress-strain curves are seen to collapse to a common state over a large

range of temperatures and rates
m Breakdowns in equivalence are important to clarify

70

—_50C, 0.1/s —O— 2600/s,20C
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Experimental time-temperature equivalence

= Extract a time-temperature equivalence relationship for onset of plasticity

70 T T L] LN 7,
m—_50C, 0.1/s —O— 2600/s, 20C 7,
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_ 50} 2
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< 40|
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0
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~ 20
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100§ I
a 7 [ Fully plastic behavior =——p
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Temperature and rate dependence of yield (onset)
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Time-temperature equivalence for nonlinear deformations

= Plasticity onset maps well to simple logarithmic relation (1 Param.)

= Note that 100 K is equivalent to ~ 9 decades of strain rate

50
Empirical time-temperature equivalence
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Equivalence locus at yield- need continuous response

= Equivalence may not hold for whole response
m Other issues: plastic work (adiabatic heating)

m Continuous response needed for engineering solutions
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Adiabatic heating results in apparent thermal softening

m Stress-strain curves are presumed isothermal

= Plastic work substantially heats sample and breaks equivalence

Isothermal

Adiabatic

True Stress, o
True Stress, o

20°C Ambient Temperature

1/
_ True Strain, &€
p 10
ﬁ) —20 JB(s)o de
= AT="———F s
+ Los Alamao< 30 c, \
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Establish equivalence including adiabatic states

= Equations are for isothermal data, insensitive to other physics
= Need a means to access higher strain-rates without heating

x Eq. stress is generally any stationary flow stress (pointwise)

£=0.01s"
£=0.001s"

‘ Decade €
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Isothermal Jump Locus

o
w

o
N

First instant of high strain-rate deformation is still isothermal, as

no plastic work has accumulated

Assemble a locus of isothermal response from multiple jumps
Uniaxial compression
&=1s, 40 401 Isothermal jump locus —
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True Stress (MPa)

Jump Locus at 20°C in HDPE and UHMWPE

= Good agreement between jump locus and isothermal equivalent
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True Stress (MPa)

Jump Locus at -50°C

= Good agreement between jump locus and isothermal equivalent
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True Stress (MPa)

Jump Locus at -70°C

= Underpredicted response in UHMWPE at -100°C & 0.001/s
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Flow stress is non-linear with temperature

s Valid linearized window: 0-130°C & 10%/s

Stress at 20% Strain, 0,0, (MPa)

N
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%
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x‘ — Linear Fit
100 200 300

Absolute Temperature (K)

Deviation from linear model assumption is at -90°C at 0.01/s

Melt transition at 130°C appears to affect HDPE but not UHMWPE
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Application: Simulation of Dyn-Ten-Ext and Taylor Impact

m Use rate-temperature equivalence to shift cold, low rate stress-
strain data up to 10,000/s 108 108
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FEA simulation using t-T equivalent set

= ABAQUS/Explicit dynamic axisymmetric model of experimental case
= Metal plasticity, no damage, adiabatic (=0.9)
= Validated scheme with Taylor impact results
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Dynamic-Tensile-Extrusion: Stress/Strain Fields

m Taylor-validated constitutive scheme in ABAQUS/Explicit
= Simulations demonstrate extreme tensile behavior:

m Strain>1, strain-rate>10,000, axial stress>0 (pressure<0)
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Taylor-validated scheme for damage mechanism inference:
Pressure-mediated shear damage
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Rate-shifted material definition is a first-order solution

= Informs analytical model development (especially damage)
= Validation
m  Short cut to interpretation of integrated dynamic tests
= Not a replacement for a true predictive model of material behavior

= Nevertheless, shows good agreement with dynamic integrated tests
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Crack initiation time

(t;-video, sec)

Analytical, experimental, and design efforts all benefit from
seamless integration through simulation
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