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Electronic Structure Calculations for the Interpretation of
Neutron Scattering Results
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Layout of talk

@ Electronic structure calculations: what can they do, what is
available, why are they relevant to neutrons
@ Case studies:

@ Using electronic structure directly

@ Using electronic structure to fit a potential energy surface

@ Using calculated energetics to determine structure, and as a

calibration aid for coarse grained simulations
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Tools for atomistic simulation

Computational hardware resources
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What can electronic structure provide....

..... for neutron scattering interpretation and assignment :
@ an atomic level perspective on the results
@ atomic positions, bond lengths — structural information
@ an idealised picture

@ information on vibrations, normal modes
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It's all about the model
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Accuracy of various electronic structure methods

bond lengths  bond angles Vibrational Relative energies
(A) ) frequencies (cm™) (kcal mol™)
semi-empirical 0.002-0.012 11.6 AH,
(PM3)
Hartree Fock +0.02 +2 +11 +25-40
dissociation
coupled cluster +0.004 +0.03 +2% +1.5 dissociation

@ density functional theory almost always better than
Hartree-Fock for only slight increase in calculation time
@ hybrid functionals can sometimes reach the accuracy of

eoupled cluster, but always benchmark
) . .
s Los Alamos Source: Sherrill web site
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The right tool for the job

accuracy system size
(atoms)

semi-empirical low 2000
(PM3)
Hartree medium 500
Fock/density
functional theory
perturbation high 50
methods
coupled cluster very high 20

A
» Los Alamos Source: Sherrill web site
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Three case studies

» Water solvation around lanthanide and actinide cations
(diffraction, reflectivity)
* electronic structure to produce an empirical forcetfield for

molecular dynamics

» Vibrational spectroscopy for molecules in porous solids
(inelastic scattering)

» electronic structure on cluster and periodic representations
» Structure of amorphous geopolymers (pair distribution function)

* electronic structure energetics for coarse grain Monte Carlo
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Case Study (1) : Inelastic neutron scattering (INS) of
small molecules in zeolites

» Advantages
» compared to infra-red and Raman spectroscopies, high
sensitivity to vibrational modes involved hydrogen containing
adsorbed molecules
» framework vibrations give much weaker scattering
* deuterium subsitution can allow focus on particular functional

groups

Neil Henson (LANL), Juergen Eckert (USF)
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Aim of study

» study model zeolite system with two molecules with differing
sorption properties

» measure and calculate INS spectra

» use calculated spectra to help fit and assign experimental data

» examine low frequency librational modes of molecules in

zeolites
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Choice of system
» sorption of ethane and ethane in Na-Y

zeolite
» binding sites well determined for ot
sorbates e.g. benzene
* two molecules should have differen **
binding characteristics

» ethene : m-electrons strongly

interacting with Na" cation, as for

benzene
/s ethane : dispersive contributions
5 Los AIamos Yy
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Theoretical details

» Calculations performed on
clusters at the Hartree Fock
level with MP2 corrections
(dispersion)

* 6-31G™ basis set

cation sites in faujasite

L aasY) : (Si, AL Na, O)
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Building a model : cluster from periodic structure

» Los Alamos
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Cluster model for quantum mechanical calculations

-

* based on an all silica six-ring
with hydride termination

* hydrogens and non SII
sodium cations fixed.

» optimise and calculate
vibrations

8° o
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Results: ethane in Na-Y zeolite

T T » broad lines in the low

we | frequency region, unable to
resolve peaks

_ _ » calculation predicts a large

- number of similar binding sites
' | spanning a 5 kJmol-1 range

* no specific binding location

intens iy

02 e

'l I 1 I 1 | L I 'l
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frequency (om™'}

experimental INS spectrum
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Experimental (---) and calculated (-:-) INS spectra for ethene in Na-Y
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Vibrations

experiment 101 cm™ 120 cm™ 188 cm™

calculated 125 cm™ 160 cm™ 229 cm’™

» Los Alamos
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Case study (2) — Solvation of metal cations

» Can we use electronic structure calculations to understand the
interactions between lanthanides and actinide cations in solution to
rationalise the separations process and scattering data?

» What is the effect of using a polarisable versus non-polarisable
forcefield to study the molecular dynamics behaviour of cations in
solution?

*» How can we describe the perturbations of the hydrogen bonded
network in water with cations present?

Prof. Aurora Clark, Washington State University
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Typical Neutron Diffraction Data for Lanthanide

Solvation
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Separations at the molecular level via simulation

PN -4
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TBP at the water/n-dodecane interface

Important interactions occur
on the molecular level at the
liquid-liquid interface
s Los Alamos MD simulation of water/n—dgdecane interface

NATIONAL LABORATORY UNCLASSIFIED
EST.1943

7.\
/

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

P
L ]
’4



Water network description — topological analysis from
graph theory

e Largest modern impact — application to the WWW
@ PageRank algorithm (Google internet search engine)
@ Assigns numerical weight to each element of a hyperlinked set of documents

Web pages p.... py

Outgoing links from page L(p)
Set of pages that link to p;is M(p)
d is probability that surfer will follows a
link on the page they are on
* (1-d)/N is probability surfer will start a new
session on page p;

Brin, S.; Page, L., In Proceedings of the 7th International Conference on the World Wide Web (WWW). Enslow, P. H.;

/\ Ellis, A., Eds. (Elsevier: Amsterdam, 1998), p107.
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Relating the PageRank (PR) to a water network

» Fundamentally PR is a measure of connectivity of a website

» Damping fator adjusts importance of adjacent/connected websites
» Does the PR of water indicate its organization?

» To adopt PR convention to a system of atoms:
P1 Do -, py becomes the list of atoms oo e 5 PR(;)
PR(p;) becomes the page rank of atom i N & Yo
L(p;) becomes the number of connections from atom j

Connection is modulated by phenomena of interest (e.g., H-bond

distance)
d = probability that connection contributes to the graph
(weighting factor
s @Alwooney, L. R. Corrales, A. E. Clark J. Comp. Chem. 2012, 33, 853. ’
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PageRank as a fingerprint for the water network
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Sensitivity to conformations of a solute?

» calmodulin kinase in 35,208 H,O
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Implications and future uses

» How do solutes — metal ions, proteins, surfaces — disrupt the water
H-bonded network?
» Metal ions (dissolution, coordination with ligands)
» Surfaces (variation in network structure close to, and far from
surface) - reflectometry
» Can we usefully describe this with graph theory?
*» Implications for entropy — informational vs. thermodynamic
*» Freezing and melting
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DFT Results for Ln-OH,

RSC28, aug-cc-pvdz

La(H,0)," Gd(H,0),*  Gd(H,0),* Lu(H,0),*

® B3LYP, SVWNS5, TPSS, PBE functionals R agree within 0.07A
* Addition of 2" solvation shell improves geometric accuracy (<0.05 A

deviation) AG,, (kcal/mol)
La(H,0),* -765.9 (-763.1 expt)
Gd(H,0),* -825.5 (-817.6 expt)
Gd(H,0),** -823.9
Lu(H,0),* -857.6 (-862.6 expt)

Clafk, A. E. J. Comp. Theor. Chem. 4, 708 (2008).; Dinescu, A.; Clark, A. E. J. Phys. Chem. A. 2008 12, 11198-11206 .; Kuta,
@m%%g’rep Rizkalla, E. N.; Choppin, G. R. Handbook on the Physics and Chemistry of Rare Earths, 15, (1991)
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The starting point for a new forcefield

» a high quality quantum chemically determined potential energy
surface including forces

[La(H,0),J**

» calculations as a function of
La-O separation

» produce a potential energy
curve for fitting to forces only
* B3BLYP or MP2?

s all the curve, or subset
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Next step : fitting

* ForceFit : a new modular GUI-based fitting tool for lanthanide and
actinides written in C++
* reads potential energy surface data for multiple quantum
chemistry codes: Gaussian, NWChem, CRYSTAL
* interfaces to multiple molecular mechanics codes : DL._POLY,
AMBER, LAMMPS, TINKER for iterative fitting procedure
» reads energies, forces, eigenvectors from normal mode analysis
» LGPL licence

ref: Clark et al, J. Comput. Chem, 2010, 31, 2307-2316
http://aclark.chem.wsu.edu/software
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AMOEBA forcefield — polarisable water potential

* AMOEBA potential after Ray and Ponder (2003)

*» we know water is a polarisable molecule (dipole moment 78
Debye)

» does this make a difference to the potential fitting MD results
» implemented in two codes : TINKER, AMBER (pmemd)
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AMOEBA potential

» electrostatics
» permanent atomic monopole, dipole and quadrupole on each

atomic centre, M=[q,u .1 ,1,Q,,Q, ,.....0,.]

* explicit polarisation via mutual induction of dipoles at atomic
centres (needs atomic dipole polarisabities) damped at short range
by smearing

p= 2 exp(—au®)
47
U = Rij ind __ o E
(i) M = B
/w"" E. is sum of field components generated by permanent multipoles
’ Lommuced dlpOIeS UNCLASSIFIED O
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AMOEBA potential (2)

» valence terms
Upond = Kp(b — bg)?[1 — 2.55(b — by) — 3.79(b — bg)*]

Uangle = Ko(0 — 00)*[1 — 0.014(6 — ) + 5.6x107°(0 — 6)*
—~7.0x1077(0 — 0p)® + 2.2x1075(0 — 6p)*]
Uvp = Ki(I —1p)?

b,=0.95724, 0, =108.5°, | =1.5326.4
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AMOEBA potential (3)

» van der Waals repulsion-dispersion term

Ui = e 1+9 )(n=m) L+ _9)
[ Y . m
pij + 0 P T
Pij = 70 n=14m=7,0=0.07,v=0.12
]
density self-diffusion coeff  static dielectric ~ heat capacity, C_
(g cm™) (10°cm s) constant (cal mol K)
(D)
AMOEBA 1.0004 2.02 82 28.4
expt 0.9970 2.3 78.3 17.8
A

AN
» Los Alamos
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Several fitted AMOEBA parameters

DFT whole curve

DFT 1A to DFT 1A to DFT whole
every 0.05A (113)

either side of either side of curve every
) minimum  minimum  0.20A (32)
every 0.20A  every 0.05A
(11) (42)
T MP21Ato MP21Ato MP2whole MP2 whole curve
e either side of either side of curve every  every 0.05A (113)
. minimum  minimum  0.20A (32)
________ A every 0.20A  every 0.05A
(11) (42)

() number of geometries in fit
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The model
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Diffusion
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Do waters change coordination shells?

r(La-0) (A)

257 -
— O@)
_ —0Q)
20 —00) i
| / — 0@
O©)
- — 0(6)
151 o) I
— 0@
— 00
fw
101 -
.* :
5 | :
) hadh D ‘ f " b h s | et Qe RRIRLS IRV, L N7 RRCAT
0-+ ' ' ' T ' ' ' T ' ' ' T T T
0 20 40 60 80 100
Time (ps)
/
> Los Alamos Y
NATIONAL LABORATORY UNCLASSIFIED
EST.1943 Physi istry
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA @? ////’A v'" S .;;




La-water radial distribution function

arbitrary units
1
T

6 8
/ r(La-Water) (A)
/
> Los Alamos y
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Coordination number
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Changes in La-O radial distribution function with fit

— fit #1
10 4 — fit #2
. — fit #3
T — fit #4
fit #5
i — fit #06
1 fir #7

density (arbitrary units)
(=
|

0
r(La-0) (A)
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Case Study (3) : Determination of the structure of
amorphous metakaolin by neutron pair distribution
analysis methods

* to determine the atomic structure of metakaolin, an amorphous
geopolymer precursor
* To understand the evolution of metakaolin-based geopolymeric

gel at the atomic level

ﬂDr. Claire White, Los Alamos National Laboratory

— )
» Los Alamos
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Making a geopolymer

® paste = aluminosilicate solid + alkaline solution

( fly ash
slag

A

metakaolin

\ synthetic powder

* paste mixed with sand and aggregate — concrete

» Los Alamos
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The need for geopolymers
* Low-CQ, alternative to Portland cement
— Cement is: ~5-8% of global CO,,

— Geopolymers offer ~80-90% reduction
® on a per cubic metre of concrete basis

® not yet optimised!

- Genuinely “green” concrete!
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Geopolymer structure
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A complex process: in detail

M: Metakaolin or fly ash

y

S: Silicate monomer

A: Aluminate monomer

D: Polymerised / |

silicate species

A 4

O: Aluminosilicate oligomers

y

v N: Aluminosilicate ‘nuclei’ (quasi-
P: Aluminosilicate polymer or nano-crystalline)
(amorphous)
A4 A 4
G: Aluminosilicate gel Z: Zeolitic phases
(amorphous) (crystalline)
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A complex process: in detail

Metakaolin formation

M: Metakaolin or fly ash

A A 4

D: Polymerised
silicate species

/ S: Silicate monomer A: Aluminate monomer

A 4
O: Aluminosilicate oligomers

A 4
N: Aluminosilicate ‘nuclei’ (quasi-
or nano-crystalline)

y
P: Aluminosilicate polymer

(amorphous)
A4 A4
G: Aluminosilicate gel Z: Zeolitic phases
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Formation of metakaolin

» Formed by the
calcination of crystalline
kaolinite,
dehydroxylation

» product is amorphous

J Kaolinite
__/‘Ah\_; I N ’ Metakaolin
A | Aty | Tt
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Metakaolin neutron pair distribution function data
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Method

*  Metakaolin structure analysed using DFT

* Parameters for DFT selected by validation using

kaolinite
® Energy minimization using DMol3 software
® Dynamics calculations using VASP software
® BLYP, “Double-Numerical with polarisation” basis set

® Metakaolin structure obtained by energy minimization from
supercell with correct stoichiometry
@ Supercell required — 282 atoms

® Metastable structure — more than one configuration satisfies the lowest
energy state

/Jj * C.E. White, ].L. Provis, D.P. Riley, GJ. Kearley, J.S.J. van Deventer, . Phys.
B, 2009, 113, 6756-6765
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Initial Structural Model

kaolinite
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Methodology

1N A

Starting
. configuration
modelling 282 atom
supercell
Full atom
relaxation |
! —
DF modelling
Least-squares .
refinement experiment
4
Full atom
relaxation
DF modelling
Least-squares
o .
Full atom
relaxation
DF modelling
, Final
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NATIONAL LABORATORY O
EST.1943 | Physi istry
Operated by Los Alamos National Security, EECTOT e U-S. DEPATTIIEIT OT TICIEY S NINS 3 % s /| 'D V<)



Illustrating the iterative process
High E
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Final Structural Model

Silicon
Aluminum

Hydrogen

ﬂ C.E. White, J.L. Provis, T. Proffen, D.P. Riley, J.S.J. van

° I_;?s Ala?ffﬁger Phys. Chem. Chem. Phys., 2010
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A complex process: in detai

silicate species

D: Polymerised /

M: Metakaolin or fly ash

Geopolymerization,
including species
A A 4 . .
S: Silicate monomer A: Aluminate monomer | lnter aCtlons
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Monte Carlo simulation: geopolymerization

Events being modeled
» Dissolution of metakaolin
* Polymerization of silica and alumina species

Method

> Coarse-grained model
@ Cubic lattice, 10x10x10 100x100x100 1000x1000x1000

@ Lattice points can be occupied by monomeric species

@ Species can bond to neighboring sites, swap processes

* Metropolis algorithm

— Effects of temperature, provides probability of unfavorable event occurring

~ * Each species and bonding of species have associated Gibbs
al
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Energies of species from density functional theory

Monomeric species

a
)
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Evolution of structure

Step 2000

Step 10000

a
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Evolution of structure

Number of unbonded monomers
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Monte Carlo simulation: discussion

*Metakaolin dissolution and polymerization of aluminosilicate

gel can be modeled using coarse-grained Monte Carlo
simulations

°Large clusters evolve, mostly Si-O-Si and Si-O-Al linkages

°Al-O-Al linkages present (small percentage)

A
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A complex process: in detail

Metakaolin structure and formation

Metakaolin dissolution and
monomeric species in solution

M: Metakaolin or fly ash

A Y
S: Silicate monomer | A: Aluminate monomer /

D: Polymerised
silicate species

~—

A 4 \ ) |

O: Aluminosilicate oligomers € O_r 0] Yl'.rl‘ﬂf.lza tion,
including species
A 4 :
ORISR SR | TR
N: Aluminosilicate ‘nuclei’ (quasi- INleraclions, | Dir d@f

y
P: Aluminosilicate polymer

or nano-crystalline)

(amorphous)
walcr
A4 A4
G: Aluminosilicate gel Z: Zeolitic phases
(amorphous) (crystalline)
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Conclusions

@ electronic structure calculations can be
useful to interpret a wide variety of
neutron scattering data

@ but, use the correct tool for job, and be
aware of accuracy and limitations of
models

@ we can use them to perform calculations
on small models

@ to develop forcefields for running larger
scale calculations, such as molecular
dynamics

@ and to obtain relative energetics for input
into longer length scale, coarse grained
simulations
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Thanks for
listening!

Questions?
Comments?
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