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Layout of talk

 Electronic structure calculations: what can they do, what is 
available, why are they relevant to neutrons
 Case studies:

Using electronic structure directly
Using electronic structure to fit a potential energy surface
Using calculated energetics to determine structure, and as a 
calibration aid for coarse grained simulations
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Tools for atomistic simulation

forcefield
development

properties
  structures,morphology

binding energies
reaction energies

activation energies
diffusion

capacitance
excited states

method
development

molecular mechanics
approximate
larger size

limited reactivity

-

quantum chemistry
accurate

limited size
reactivity

Computational hardware resources
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What can electronic structure provide....

.....for neutron scattering interpretation and assignment :
 an atomic level perspective on the results 
 atomic positions, bond lengths → structural information  
 an idealised picture
 information on vibrations, normal modes
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It's all about the model



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

bond lengths 
(Å)

bond angles 
(o)

Vibrational 
frequencies (cm-1)

Relative energies 
(kcal mol-1)

semi-empirical 
(PM3)

0.002-0.012 11.6 ΔHf

Hartree Fock ±0.02 ±2 ±11 ±25-40 
dissociation

coupled cluster ±0.004 ±0.03 ±2% ±1.5 dissociation

 density functional theory almost always better than 
Hartree-Fock for only slight increase in calculation time
 hybrid functionals can sometimes reach the accuracy of 

coupled cluster, but always benchmark

Accuracy of various electronic structure methods

Source: Sherrill web site
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The right tool for the job

accuracy system size 
(atoms)

semi-empirical 
(PM3)

low 2000

Hartree 
Fock/density 
functional theory

medium 500

perturbation 
methods

high 50

coupled cluster very high 20

Source: Sherrill web site
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Three case studies

 Water solvation around lanthanide and actinide cations 
(diffraction, reflectivity)

electronic structure to produce an empirical forcefield for 
molecular dynamics

 Vibrational spectroscopy for molecules in porous solids 
(inelastic scattering)

electronic structure on cluster and periodic representations

 Structure of amorphous geopolymers (pair distribution function)
electronic structure energetics for coarse grain Monte Carlo
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Case Study (1) : Inelastic neutron scattering (INS) of 
small molecules in zeolites

 Advantages
compared to infra-red and Raman spectroscopies, high 
sensitivity to vibrational modes involved hydrogen containing 
adsorbed molecules
framework vibrations give much weaker scattering
deuterium subsitution can allow focus on particular functional 
groups

Neil Henson (LANL), Juergen Eckert (USF)
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Aim of study
 study model zeolite system with two molecules with differing 

sorption properties
 measure and calculate INS spectra
 use calculated spectra to help fit and assign experimental data 
 examine low frequency librational modes of molecules in 

zeolites
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Choice of system
 sorption of ethane and ethane in Na-Y 

zeolite
 binding sites well determined for other 

sorbates e.g. benzene
 two molecules should have different 

binding characteristics
ethene : π-electrons strongly 

interacting with Na+ cation, as for 
benzene
ethane : dispersive contributions 
dominate
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Theoretical details

cation sites in faujasite 
(Na-Y) : (Si, Al, Na, O)

 Calculations performed on 
clusters at the Hartree Fock 
level with MP2 corrections 
(dispersion)
 6-31G* basis set
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Building a model : cluster from periodic structure
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Cluster model for quantum mechanical calculations

 based on an all silica six-ring 
with hydride termination
 hydrogens and non SII 

sodium cations fixed.
 optimise and calculate 

vibrations
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Results: ethane in Na-Y zeolite

experimental INS spectrum

 broad lines in the low 
frequency region, unable to 
resolve peaks
 calculation predicts a large 

number of similar binding sites 
spanning a 5 kJmol-1 range
 no specific binding location
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Experimental (···) and calculated (-·-) INS spectra for ethene in Na-Y



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Vibrations

experiment 101 cm-1 120 cm-1 188 cm-1

calculated 125 cm-1 160 cm-1 229 cm-1
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 Can we use electronic structure calculations to understand the 
interactions between lanthanides and actinide cations in solution to 
rationalise the separations process and scattering data?
 What is the effect of using a polarisable versus non-polarisable 

forcefield  to study the molecular dynamics behaviour of cations in 
solution?
 How can we describe the perturbations of the hydrogen bonded 

network in water with cations present?

Prof. Aurora Clark, Washington State University

Case study (2) – Solvation of metal cations
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Typical Neutron Diffraction Data for Lanthanide 
Solvation
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Separations at the molecular level via simulation
PUREX

http://www.euronuclear.org/info/encyclopedia/images/purex.jpg

MD simulation of water/n-dodecane interface

Important interactions occur 
on the molecular level at the 

liquid–liquid interface

TBP at the water/n-dodecane interface
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Water network description – topological analysis from 
graph theory

 Largest modern impact – application to the WWW
PageRank algorithm (Google internet search engine)
Assigns numerical weight to each element of a hyperlinked set of documents
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Relating the PageRank (PR) to a water network

 Fundamentally PR is a measure of connectivity of a website
 Damping fator adjusts importance of adjacent/connected websites
 Does the PR of water indicate its organization?

 To adopt PR convention to a system of atoms:
p1, p2, …, pN becomes the list of atoms
PR(pi) becomes the page rank of atom i 
L(pj) becomes the number of connections from atom j
Connection is modulated by phenomena of interest (e.g., H-bond 
distance)
d   = probability that connection contributes to the graph 
(weighting factor

B. L. Mooney, L. R. Corrales, A. E. Clark J. Comp. Chem. 2012, 33, 853.
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PageRank as a fingerprint for the water network
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Sensitivity to conformations of a solute?

 calmodulin kinase in 35,208 H2O
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Implications and future uses

 How do solutes – metal ions, proteins, surfaces – disrupt the water 
H-bonded network?

Metal ions (dissolution, coordination with ligands)
Surfaces (variation in network structure close to, and far from 
surface) - reflectometry

 Can we usefully describe this with graph theory?
 Implications for entropy – informational vs. thermodynamic
 Freezing and melting
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DFT Results for Ln-OH2

Clark, A. E. J. Comp. Theor. Chem. 4, 708 (2008).; Dinescu, A.; Clark, A. E. J. Phys. Chem. A. 2008 12, 11198-11206 .; Kuta, 
J.; Clark, A. E. In Prep.; Rizkalla, E. N.; Choppin, G. R. Handbook on the Physics and Chemistry of Rare Earths, 15, (1991), 

 B3LYP, SVWN5, TPSS, PBE functionals R agree within 0.07Å 
 Addition of 2nd solvation shell improves geometric accuracy (<0.05 Å 

deviation)

La(H2O)9
3+ Gd(H2O)9

3+ Gd(H2O)8
3+ Lu(H2O)8

3+

RSC28, aug-cc-pvdz

ΔGhyd  (kcal/mol)

La(H2O)9
3+ -765.9 (-763.1 expt)

Gd(H2O)9
3+ -825.5 (-817.6 expt)

Gd(H2O)8
3+ -823.9

Lu(H2O)8
3+ -857.6 (-862.6 expt)
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The starting point for a new forcefield

 a high quality quantum chemically determined potential energy 
surface including forces

[La(H2O)9]3+

 calculations as a function of 
La-O separation
 produce a potential energy 

curve for fitting to forces only
 B3LYP or MP2?
 all the curve, or subset
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Next step : fitting

 ForceFit : a new modular GUI-based fitting tool for lanthanide and 
actinides written in C++

reads potential energy surface data for multiple quantum 
chemistry codes: Gaussian, NWChem, CRYSTAL
interfaces to multiple molecular mechanics codes : DL_POLY, 
AMBER, LAMMPS, TINKER for iterative fitting procedure
reads energies, forces, eigenvectors from normal mode analysis
LGPL licence  

ref: Clark et al, J. Comput. Chem, 2010, 31, 2307-2316
http://aclark.chem.wsu.edu/software
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AMOEBA forcefield – polarisable water potential

 AMOEBA potential after Ray and Ponder (2003)
 we know water is a polarisable molecule (dipole moment 78 

Debye)
 does this make a difference to the potential fitting MD results
 implemented in two codes : TINKER, AMBER (pmemd)
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AMOEBA potential

 electrostatics
permanent atomic monopole, dipole and quadrupole on each 
atomic centre, M=[q,μ1,μ2,μ3,Q11,Q12,.....Q33]
explicit polarisation via mutual induction of dipoles at atomic 
centres (needs atomic dipole polarisabities) damped at short range 
by smearing 

 Ei,α is sum of field components generated by permanent multipoles 
and induced dipoles
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 valence terms

b0=0.9572Å, θ0=108.5o, l0=1.5326Å

AMOEBA potential (2)



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

 van der Waals repulsion-dispersion term

- density
(g cm-3)

self-diffusion coeff
(105 cm s-1)

static dielectric 
constant

(D)

heat capacity, Cv

(cal mol-1 K-1 )

AMOEBA 1.0004 2.02 82 28.4
expt 0.9970 2.3 78.3 17.8

AMOEBA potential (3)
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Several fitted AMOEBA parameters

DFT 1Å to 
either side of  

minimum 
every 0.20Å 

(11)

DFT 1Å to 
either side of  

minimum 
every 0.05Å 

(42)

DFT whole 
curve every 
0.20Å (32)

DFT whole curve 
every 0.05Å (113)

MP2 1Å to 
either side of  

minimum 
every 0.20Å 

(11)

MP2 1Å to 
either side of  

minimum 
every 0.05Å 

(42)

MP2 whole 
curve every 
0.20Å (32)

MP2 whole curve 
every 0.05Å (113)

() number of geometries in fit
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The model

40Å x 40Å x 40Å 
periodic cell

2040 water molecules, one 
La3+ ion (cyan)

250ps NVT equilibration
250ps NPT simulation
1ns NVE simulation
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Diffusion
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Do waters change coordination shells?
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La-water radial distribution function
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Coordination number
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Changes in La-O radial distribution function with fit
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Case Study (3) : Determination of the structure of 
amorphous metakaolin by neutron pair distribution 
analysis methods

 to determine the atomic structure of metakaolin, an amorphous 
geopolymer precursor
 To understand the evolution of metakaolin-based geopolymeric 

gel at the atomic level

Dr. Claire White, Los Alamos National Laboratory
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 paste = aluminosilicate solid + alkaline solution
          fly ash

slag       pH ~ 11-14
metakaolin
synthetic powder

 paste mixed with sand and aggregate → concrete

   K - 
silicate

Making a geopolymer
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The need for geopolymers

Low-CO2 alternative to Portland cement

– Cement is:    ~5-8% of global CO2, 

– Geopolymers offer ~80-90% reduction
on a per cubic metre of concrete basis
not yet optimised!

 Genuinely “green” concrete!



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Geopolymer structure

Cover page of Chemistry of 
Materials, 17 (12)  2005

Courtesy of John Provis, GMPG graphics expert

Precursors - 
amorphous

Binder - amorphous
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A complex process: in detail

M: Metakaolin or fly ash

S: Silicate monomer A: Aluminate monomer
D: Polymerised 
silicate species

O: Aluminosilicate oligomers

N: Aluminosilicate ‘nuclei’ (quasi- 
or nano-crystalline)P: Aluminosilicate polymer 

(amorphous)

Z: Zeolitic phases
(crystalline)

G: Aluminosilicate gel 
(amorphous)

J. Provis and van Deventer, (2007) Chem Eng Sci, 62:2318
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Metakaolin formationMetakaolin formation

M: Metakaolin or fly ash

S: Silicate monomer A: Aluminate monomer
D: Polymerised 
silicate species

O: Aluminosilicate oligomers

N: Aluminosilicate ‘nuclei’ (quasi- 
or nano-crystalline)P: Aluminosilicate polymer 

(amorphous)

Z: Zeolitic phases
(crystalline)

G: Aluminosilicate gel 
(amorphous)

J. Provis and van Deventer, (2007) Chem Eng Sci, 62:2318

A complex process: in detail
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Formation of metakaolin

* *

*

* * * * * * * ***

 Formed by the 
calcination of crystalline 
kaolinite, 
dehydroxylation
 product is amorphous
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Metakaolin neutron pair distribution function data

Fourier Fourier 
transformtransform
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Method

Metakaolin structure analysed using DFT
Parameters for DFT selected by validation using 
kaolinite

Energy minimization using DMol3 software
Dynamics calculations using VASP software
BLYP, “Double-Numerical with polarisation” basis set

Metakaolin structure obtained by energy minimization from 
supercell with correct stoichiometry

Supercell required – 282 atoms
Metastable structure – more than one configuration satisfies the lowest 
energy state

* C.E. White, J.L. Provis, D.P. Riley, G.J. Kearley, J.S.J. van Deventer, J. Phys. 
Chem. B, 2009, 113, 6756-6765
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Initial Structural Model

kaolinite

metakaolin
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Methodology

modelling

experiment
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 chemically unfeasible

Low 
E

High E
Illustrating the iterative process
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Kaolinite

Metakaolin
Silicon

Aluminum
Oxygen

Hydrogen

A

O B

C

B O

A

C.E. White, J.L. Provis, T. Proffen, D.P. Riley, J.S.J. van 
Deventer, Phys. Chem. Chem. Phys., 2010

Final Structural Model
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Geopolymerization, 
including species 

interactions

M: Metakaolin or fly ash

S: Silicate monomer A: Aluminate monomer
D: Polymerised 
silicate species

O: Aluminosilicate oligomers

N: Aluminosilicate ‘nuclei’ (quasi- 
or nano-crystalline)P: Aluminosilicate polymer 

(amorphous)

Z: Zeolitic phases
(crystalline)

G: Aluminosilicate gel 
(amorphous)

J. Provis and van Deventer, (2007) Chem Eng Sci, 62:2318

A complex process: in detai
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Monte Carlo simulation: geopolymerization

Method
Coarse-grained model 

Cubic lattice, 10×10×10    100×100×100   1000×1000×1000
Lattice points can be occupied by monomeric species 
Species can bond to neighboring sites, swap processes

• Metropolis algorithm
– Effects of temperature, provides probability of unfavorable event occurring

• Each species and bonding of species have associated Gibbs 
Free Energy

–
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Energies of species from density functional theory

Monomeric species

Dimerization reaction
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Evolution of structure
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4

Number of unbonded monomers

Evolution of structure
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Monte Carlo simulation: discussion

Metakaolin dissolution and polymerization of aluminosilicate 
gel can be modeled using coarse-grained Monte Carlo 
simulations

Large clusters evolve, mostly Si-O-Si and Si-O-Al linkages

Al-O-Al linkages present (small percentage)
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A complex process: in detail

M: Metakaolin or fly ash

S: Silicate monomer A: Aluminate monomer
D: Polymerised 
silicate species

O: Aluminosilicate oligomers

N: Aluminosilicate ‘nuclei’ (quasi- 
or nano-crystalline)P: Aluminosilicate polymer 

(amorphous)

Z: Zeolitic phases
(crystalline)

G: Aluminosilicate gel 
(amorphous)

Metakaolin structure and formationMetakaolin structure and formation
Metakaolin dissolution and Metakaolin dissolution and 

monomeric species in solutionmonomeric species in solution

Geopolymerization, Geopolymerization, 
including species including species 
interactions, binder interactions, binder 
structure and role of structure and role of 
waterwater

J. Provis and van Deventer, (2007) Chem Eng Sci, 62:2318



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Conclusions
electronic structure calculations can be 
useful to interpret a wide variety of 
neutron scattering data

but, use the correct tool for job, and be 
aware of accuracy and limitations of 
models

we can use them to perform calculations 
on small models

to develop forcefields for running larger 
scale calculations, such as molecular 
dynamics

and to obtain relative energetics for input 
into longer length scale, coarse grained 
simulations
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Questions? 
Comments?

Thanks for 
listening!
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