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PrebicTioN METRICS FOR CHEMICAL DETECTION IN LONG-WAVE INFRARED
HYPERSPECTRAL IMAGERY

MARIE CHILTON, STEPHEN J. WALSH AND DoN S. DALy

ABSTRACT

Natural and man-made chemical processes generate gaseous plumes that may be detected by hyperspectral
imaging, which produces a matrix of spectra affected by the chemical constituents of the plume, the atmosphere,
the bounding background surface and instrument noise. A physics-based model of observed radiance shows that
high chemical absorbance and low background emissivity result in a larger chemical signature. Using simulated
hyperspectral imagery, this study investigated two metrics which exploited this relationship. The objective was to
explore how well the chosen metrics predicted when a chemical would be more easily detected when comparing
one background type to another. The two predictor metrics correctly rank ordered the backgrounds for about 94%
of the chemicals tested as compared to the background rank orders from Whitened Matched Filtering (a detection
algorithm) of the simulated spectra. These results suggest that the metrics provide a reasonable summary of how
the background emissivity and chemical absorbance interact to produce the at-sensor chemical signal. This study
suggests that similarly effective predictors that account for more general physical conditions may be derived.

INTRODUCTION

Agricultural, manufacturing and natural chemical processes
can generate characteristic gaseous plumes. Nearly every molecular
gas has a unique long-wave infrared (LWIR) absorption spectrum.
Thus chemical constituents of gaseous plumes can be detected and
identified in LWIR hyperspectral images [1]. Chemical detectability
depends upon many nuisance factors such as the background type.
It may be possible to predict the relative detectability of a chemical
as a function of such nuisance factors.

Hyperspectral sensors collect a three-dimensional array of
radiance observations. The observed ground area accounts for
two dimensions of this image. The third dimension is defined by
a wavenumber range of the electromagnetic spectrum. A radiance
measurement is the sum of the cumulative effects of the plume gas
type, plume gas concentration, atmosphere, background surface,
temperature difference between the plume and background, and
instrument noise [1], [2].

Plume detection and characterization is a complex problem.
Real-world data that lends itself to understanding the physical

phenomenology is almost non-existent. As such, this study uses
computer simulations to explore the relationship between the
effects of background surface and gas type on the detectability
of 499 gases over six distinct backgrounds. The simulated data
is produced by a physics-based model. Chemical detections are
decided by a Whitened Matched Filter (a detection algorithm) [1].
The objective of this research is to evaluate predictors of relative
chemical detectability that are functions of laboratory chemical
absorbance and background spectra.

Introduction to the Physics of Radiative Transfer

Sensor-observed radiance can be summarized by a physics-based
model that incorporates the effects of the plume gas, background
surface, temperature difference between the plume and the ground,
and the atmosphere recorded radiance [2]. According to Kirchoff’s
law, all incident radiation is reflected, absorbed or transmitted
by the body it impacts, or 1=a +7+p, where a is the fraction of
radiation the body absorbs, 7 is the fraction of radiation the body
transmits, and p is the fraction of radiation the body reflects [3].
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Further, Kirchoff’s law states that at thermodynamic equilibrium,
an object’s absorbance is equal to its emissivity (¢) defined as the
proportion of radiation an object emits to the radiation it would
emit as a blackbody at the same temperature. Since a blackbody is
an object which absorbs and emits all incident radiation and since
no natural object is a perfect blackbody, 0<e<1 [2].

For oprically thin plumes, the transmissivity of the plume (t )
can be reasonably approximated by 1-A(®v)-¢ for small ¢ where
A() is the chemical absorbance in inverse parts-per-million-meter
denoted (ppm-m)! at wavenumber v(cm™) and ¢ s the concentration
path length of the gas measured in ppm-m [2]. The expression for
radiance recorded by the instrument with a plume present, Z , , can
be expressed as the sum of noise and the signal due to each of three
layers: plume, ground and atmosphere. Explicitly:

Lops(V) =14 ) B(T pV Lg (V)]

AWV) -c+1,4(V) g(\r +L3,{v)+e(\!}, (1)
is the physics-based model for  , as a function of wavenumber,
v, where 7 (v) is the transmissivity of the atmosphere at v; B( T V)
(W/cmz/Sr/cm 1) is Planck’s Blackbody function for radiance at
plume temperature 7 (K) and wavenumber v; L (v) is the radiance
due to the background surface; L (v) is the atmospheric up-welling
radiance; and ¢(v) represents measurement and modeling error. A
graphical representation of Eq. (1) is presented in Figure 1 [2]. The
background radiance L (v) may be expressed as

L) = €, W)B(T,v), @
where ¢ is the emissivity of the ground [2]. Note that this expression
ignores reflected down-welling radiance because its impact on L,

is negligible [3].

Sensor

\obs

AW)-c B(T v))

'\L )

\ ( 1 -AW))(Ly(v))
[ Plume ]

\Lg(v)

Figure 1. Graphical representation of the observed radiance equation.
The ground radiance Lg(v) is filtered by the plume with radiance A(v)-c
B(T,;v) which when combined with the atmospheric radiance Lu(v) is
observed as L

Ground

Plume/Ground Temperature Equality

For this paper we studied an admittedly constraining plume/
ground temperature case. The intent was to remove the effect of
the plume/ground temperature difference on the chemical signal
in order to isolate the interaction between background emissivity
and chemical absorbance. More general temperature cases may be
considered in future work. Setting 7 = 7' = T"and substituting Eq.
(2) into Eq. (1) yields a simplified expression of the physics-based
model that more clearly shows the relationship between background

emissivity and chemical absorbance:
Lops W) =1, (VI B(T:V)][1-¢, (V)]
Av)-c +’cu(v)Lg(v)+L”(v)+e(v). 3)

Note that the signal due to the chemical effluent is the first
term on the right hand side of Eq. (3), explicitly:

'c(,(v)[B(T;v}][l—ag(v)]A(v}-c.-. (4)

Expression (4) shows that a relatively larger gas absorbance,
A(v), and a background emissivity, € (v), close to 0 (or, equivalently a
background reflectance, 1 —¢ (v), close to 1) contribute to a relatively
larger chemical signal in Z , (v) and in turn to relatively higher gas
detection probability. We used this reasoning to produce summary
measures using chemical absorbance and background emissivity.

Predictors

Based on the intuition gained from the physics-based model,
two predictors were explored for their ability to summarize when a
chemical may be better detected over one background type versus
another. One predictor (M) uses each background’s reflectance
(1-¢ ) at the wavenumber Where the absolute maximum chemical
absorbance occurs to rank order backgrounds, ie.

M]:]—Eg(\f ) where V" = arg max ,A (V). (5)

Eq. (3) suggests that the background with the largest M, for
a given chemical will yield the largest L , (v*). The dominance of
the maximum gas absorbance on detection for a given background
is explored with this metric.

Though the chemical absorbance is approximately zero at most
wavenumbers, many chemicals may have multiple relative maxima
where ¢ (v) is also low and these also contribute to the radiance
spectrum recorded by the instrument. As such, a predictor that
accounts for the chemical absorbance and background emissivity
across the whole spectrum is also explored. This predictor sums
the products of the squared chemical absorbance and squared
background reflectance at each observed wavenumber in the LWIR.
It also normalizes the given chemical absorbance spectrum by
dividing by its squared magnitude. This predictor is denoted M,
and is given by

E(A)'

A7
Z( ) ©

>

Mz—

where 7 represents the number of wavenumbers (or number of
observed spectral channels). Chemical absorbances and background
emissivities that generally contribute to larger L , (v) over all
wavenumbers tend to give larger values of M,
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As an example of how M, and M, would rank order backgrounds
for a specific chemical, the chemical absorbance spectrum of carbon
tetrachloride (CCl,) using the background emissivity spectra of a
Paint representative and an Asphalt-Concrete-Soil representative
(ACS) are plotted in Figure 2. The absolute maximum of CCl,
occurs at wavenumber 794 and at that wavenumber, Paint has
a greater reflectance (1—¢ ) than ACS so M, would order the
backgrounds as Paint and then ACS for Cdl,. Slm[larly, M, for CCl,
and Paint is 7.499 x 10~ while M, for CCl, and ACSis 1. 689x 107, ;!
Thus M, would also order these backgrounds as Paintand then ACS
for CCl,. The background orderings as decided by these predictors
will be compared to the actual background orderings as decided by
a commonly applied chemical detection algorithm.

1.0
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0.005 &
el £
= =
% 08 s
- 0.004 g
w @@
] S
3 0.003
2
s 06 0.002
= PAINT
- ACS
e Chem=ccLs [0:001
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(=1 f=1 = (=1 (=1 [=1
w3 uy uy uwy uwy w3
= 2 £ = - &
Wavenumber
Figure 2. Chemical absorbance spectrum of CCl, with PAINT and ACS
background emissivity spectra. The difference befween PAINT and ACS
over the wavenumbers with highest CCl, absorbance predicts that CCI,
would be more easily detected over PAINT then ACS.

Both predictors focus on chemical absorbance and background
emissivity, assuming the other variables in the physics-based model,
Eq. (3), are held constant. In actual and simulated hyperspectral
images, the other variables and noise can also perturb gas detectability.
Future work may consider more general plume/ground temperature
cases as well as incorporating the atmospheric transmissivity in more
generalized predictors.

METHODS

It would be ideal to generate hyperspectral images in the
natural environment where all variables could be controlled and
manipulated to compare relative detectability of various chemicals
over specific backgrounds. However, since this level of control
would be extremely difficult and costly (or unattainable) in a real
experiment, analysis of computer-simulated data was conducted
instead. This allows the relationship between chemical absorbance
and background emissivity to be better understood, especially as
it relates to gas detectability. We do this by comparing detection
results on the simulated hyperspectra to the background orderings

as decided by M, and M.,

This experiment used the InfraRed Systems Analysis in General
Environments code (IR-SAGE) developed at Pacific Northwest
National Laboratory (PNNL) [4] to simulate LWIR hyperspectra
of simplified gaseous plumes over organized background pixels. IR-
SAGE uses the physics-based model in Eq. (1) to simulate a radiance
vector from the LWIR using a chemical absorbance spectrum, a
background emissivity spectrum and atmospheric conditions, while
perturbing these quantities with Gaussian noise [4]. Gas absorbance
spectra from the PNNL library [6] were used for image simulation.
Background emissivity spectra used in the IR-SAGE images were
selected from the Nonconventional Exploitation Factors Data
System (NEFDS) [7]. Six distinct background emissivities were
chosen for image simulation. These emissivities exhibit different
behavior across the LWIR spectrum.

One 36-part data cube was simulated for the 499 distinct gases
in the library. For all images, the temperature of the plume was
set equal to the temperature of the ground so that T =T =300K.
The spectral range used was 750 to 1250 cm™ in steps of four
which yielded a total of 126 spectral channels. Each 36-part
cube had dimensions of 150x120x126 (rows by columns by
spectral channels). Each set of 25 rows represented one of the six
distinct background types: Asphalt-Concrete-Soil (ACS), Brick,
Miscellaneous (MSC), Paint, Snow and Steel and Copper tubing
(STCOP). Each set of 20 columns corresponded to a different gas
concentration path-length: 16, 8, 4, 2, 1 and 0 ppm-m. Thus each
25x20x 126 part contained 500 replicate pixels for one of the 36
background/gas concentration combinations.

We used a Whitened Matched Filter (WMF) as the gas detection
tool [1]. Radiance due to background was first removed from a
plume pixel by computing the mean of all ppm-m concentration
pixels and then subtracting it from the plume radiance:

Lﬂ-’ = L{m - Lq[f’_ (7)

Here, L, L, and Loff are radiance vectors of length 126.
Therefore, L, representsa plume pixel and L represents the radiance
due to the plume and noise after removing the background radiance.
These “whitened” spectra were then processed with the WME The
expression for the scalar WMF can be written as

WMF = (4’3" a4y a7 L, (8)
where A is the chemical absorbance spectrum (vector of length
126) and £ is the covariance matrix of the off-plume pixels with
dimensions 126x126. Eq. (8) emphasizes the strength of the
chemical signal in Z  while diminishing the effects of noise through
the use of 3. In practice, large values of the WMF provide evidence
for gas detection [2]. The filter was applied to each pixel. It was
necessary to pick a threshold in order to label a pixel as a chemical
detection or non-detection. Thus a gas was “detected” in a pixel if
WMF was statistically different from zero at the 0.05 significance
level [5]. The proportion of gas detections, denoted by p, out of
the 500 replicate pixels was used as an estimate of the gas detection
probability for each background type. Backgrounds were ordered for
each chemical based on these p values. An example of a detection
proportion curve for the CCl, image is presented in Figure 3. The
detection proportions are plotted as a function of gas concentration
path-length. There is one p curve for each of the six backgrounds.
This plot indicates that CCl, was best detected over Paint and
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worst detected over Snow. The data presented in Figure 3 is used
to order the backgrounds for best-to-worst detectability of CCI,.
This plot gives the ordering as: Paint, STCOR, MSC, Brick, ACS
and Snow. Recall the previous examples of predictor metrics. For
CCl, M,and M, both ordered two of the backgrounds as Paint and
then ACS We note that these background orderings correspond
to the relative ordering of Paint and ACS for CCl, as decided by
the WMF detections.

1.01

0.8

0.61

0.44

Detection proportion

0.24

0.04

01 2 4 8 16
Concentration path length (ppm-m)

Figure 3. Example detection proportion curves from simulated image
of CCl, plume. In the simulation, CCl, was more easily detected using
WMF Sver PAINT, than STCOP, MSC BRICK, ACS and finally SNOW,
respectively.

Metrics M, and M, were calculated for all chemical/background
combinations using the chemical absorbance spectra from the
PNNL gas library and the six aforementioned background emissivity
spectra. These metrics gave a ranking of the background types for
each chemical. Recall that the physics-based model indicates that,
for a given chemical, backgrounds that yield relatively larger scores
for M, and M, will tend to yield relatively larger chemical signals
and hence relatively higher detection proportions. Thus for a given
chemical, the background orderings as indicated by p, M, and M,
were interrogated for consistency. We interpret high consistency
in these rank orderings as an indication that M, and M, provide
reasonable summaries of how gas absorbance and background
emissivity interact to produce the at-sensor observed chemical
signal and in turn provide good predictive ability to describe when
a chemical will be more easily detected over one background as
compared to another.

REesuLrs AND DiscussioN

Initial inspection of the detection results using the Whitened
Matched Filter for the 499 images revealed that 276 chemicals had
P values less than 0.2 across all backgrounds and concentrations.
For these chemicals, the detection proportion curves were not
separated enough to decide how the backgrounds should be rank
ordered. This was attributed to a relatively low and flat chemical
absorbance across the LIWIR (relative to the chemicals that gave

overall large detections). These gases would require simulations
that used larger concentration path lengths than those considered
to produce informative detection curves. As such, these gases were
removed from the study.

For the remaining 223 chemicals, the consistency in background
rank orderings among p, M, and M, is summarized in Figure 4.
Results are shown in a composite bar chart that displays the
proportion of rankings that agreed for all three measures (blue),
the proportion of rankings that agreed between p and M, only
(yellow), the proportion of rankings that agreed between p and M,
only (orange) and the proportion of rankings that did not agree
among all three measures (red). The chart in Figure 4 indicates that
M, and M, were each able to correctly rank order the backgrounds
(as compared to the rankings decided by p) for over 90% of the
chemicals. Comparison of the yellow and orange regions of the
bars indicates marginal difference in the abilities of M, and M, to
correctly rank order the backgrounds. These results indicate that
both M, and M, are competitive predictors for when a chemical
will be better detected over one background type or another. These
results hold only for these data and the assumptions we have applied
to the physics-based model.
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Figure 4. The distribution of agreement among P, M, and M, in
background rankings. The blue denotes the proportion of chemicals
for which the background rank agreed between all measures. The
yellow and orange indicate the proportion of chemicals for which the
background rank agreed between p and M, only, or between D and
M, only, respectively. The red denotes when the background ranking
dlsagreed across P, M, and M.

CONCLUSION

Based on the physics-based model, high chemical absorbance
and low background emissivity contribute to high gas detectability
assuming other variables and noise are held constant. Two predictors
were developed to investigate the implications of the physics-
based model: one predictor accounted for chemical absorbance
and background emissivity at a single wavenumber and the other
predictor accounted for these properties across the LWIR spectrum.

U.S. Department of Energy Journal of Undergraduate Research 51

http://www.scied.science.doe.gov



Backgrounds were rank ordered based on these predictors for each
chemical and compared with the background ordering for gas
detection from simulated experimental results.

Simulating and analyzing all 499 data cubes took approximately
72 cpu hours and introduced computational problems because of
the size and complexity of each file. Additional sets of data cubes
for different conditions would have required too great an amount
of cpu time to analyze. These time constraints limited our study to
the one plume/ground temperature case: 7 =7 . Plots of chemical
absorbance spectra compared to their p values suggest that the
low magnitude of absorbance spectra was a factor in preventing
the other 276 chemicals from being detected in this simulation.
This suggests that many of these chemicals would be detectable at
higher concentrations. This was not further explored due to time
constraints.

Alone, M, and M, each correctly rank ordered the backgrounds
for more than 90% of the 223 chemicals. Even though M, focuses
only on the chemical absorbance and background emissivity at a
single wavenumber, M, and M, yield similar results. However, M,
is much simpler computationally and thus it may be considered a
better summary metric for these data.

These results are encouraging and suggest that M, and M,
adequately summarize how the background emissivity and chemical
absorbance work in conjunction to produce the chemical signal and
are good predictors for when a chemical may be better detected over
one background type as to another. Future work will attempt to
generalize M, and M, with the aim of incorporating other physics-
based parameters and a wider set of conditions on the plume/ground
temperatures.
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