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ABSTRACT

Natural and man-made chemical processes generate gaseous plumes that may be detected by hyperspectral 
imaging, which produces a matrix of spectra affected by the chemical constituents of the plume, the atmosphere, 
the bounding background surface and instrument noise.  A physics-based model of observed radiance shows that 
high chemical absorbance and low background emissivity result in a larger chemical signature.  Using simulated 
hyperspectral imagery, this study investigated two metrics which exploited this relationship.  The objective was to 
explore how well the chosen metrics predicted when a chemical would be more easily detected when comparing 
one background type to another.  The two predictor metrics correctly rank ordered the backgrounds for about 94% 
of the chemicals tested as compared to the background rank orders from Whitened Matched Filtering (a detection 
algorithm) of the simulated spectra.  These results suggest that the metrics provide a reasonable summary of how 
the background emissivity and chemical absorbance interact to produce the at-sensor chemical signal.  This study 
suggests that similarly effective predictors that account for more general physical conditions may be derived.

INTRODUCTION

Agricultural, manufacturing and natural chemical processes 
can generate characteristic gaseous plumes.  Nearly every molecular 
gas has a unique long-wave infrared (LWIR) absorption spectrum.  
Thus chemical constituents of gaseous plumes can be detected and 
identifi ed in LWIR hyperspectral images [1].  Chemical detectability 
depends upon many nuisance factors such as the background type.  
It may be possible to predict the relative detectability of a chemical 
as a function of such nuisance factors.

Hyperspectral sensors collect a three-dimensional array of 
radiance observations.  The observed ground area accounts for 
two dimensions of this image.  The third dimension is defi ned by 
a wavenumber range of the electromagnetic spectrum.  A radiance 
measurement is the sum of the cumulative effects of the plume gas 
type, plume gas concentration, atmosphere, background surface, 
temperature difference between the plume and background, and 
instrument noise [1], [2].

Plume detection and characterization is a complex problem.  
Real-world data that lends itself to understanding the physical 

phenomenology is almost non-existent.  As such, this study uses 
computer simulations to explore the relationship between the 
effects of background surface and gas type on the detectability 
of 499 gases over six distinct backgrounds.  The simulated data 
is produced by a physics-based model.  Chemical detections are 
decided by a Whitened Matched Filter (a detection algorithm) [1].  
The objective of this research is to evaluate predictors of relative 
chemical detectability that are functions of laboratory chemical 
absorbance and background spectra.

Introduction to the Physics of Radiative Transfer

Sensor-observed radiance can be summarized by a physics-based 
model that incorporates the effects of the plume gas, background 
surface, temperature difference between the plume and the ground, 
and the atmosphere recorded radiance [2].  According to Kirchoff ’s 
law, all incident radiation is refl ected, absorbed or transmitted 
by the body it impacts, or 1 = α + τ + ρ, where α is the fraction of 
radiation the body absorbs, τ is the fraction of radiation the body 
transmits, and ρ is the fraction of radiation the body refl ects [3].  
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Further, Kirchoff ’s law states that at thermodynamic equilibrium, 
an object’s absorbance is equal to its emissivity (ε) defi ned as the 
proportion of radiation an object emits to the radiation it would 
emit as a blackbody at the same temperature.  Since a blackbody is 
an object which absorbs and emits all incident radiation and since 
no natural object is a perfect blackbody, 0 < ε < 1 [2]. 

For optically thin plumes, the transmissivity of the plume (τp) 
can be reasonably approximated by 1 – A(ν) · c for small c where 
A(ν) is the chemical absorbance in inverse parts-per-million-meter 
denoted (ppm-m)-1 at wavenumber ν(cm-1) and c is the concentration 
path length of the gas measured in ppm-m [2].  The expression for 
radiance recorded by the instrument with a plume present, Lobs, can 
be expressed as the sum of noise and the signal due to each of three 
layers: plume, ground and atmosphere.  Explicitly: 

 (1)
is the physics-based model for Lobs as a function of wavenumber, 
ν, where τa(ν) is the transmissivity of the atmosphere at ν; B(Tp;ν) 
(W/cm2/Sr/cm-1) is Planck’s Blackbody function for radiance at 
plume temperature Tp(K) and wavenumber ν; Lg(ν) is the radiance 
due to the background surface; Lu(ν) is the atmospheric up-welling 
radiance; and e(ν) represents measurement and modeling error.  A 
graphical representation of Eq. (1) is presented in Figure 1 [2].  The 
background radiance Lg(ν) may be expressed as 

 (2)
where εg is the emissivity of the ground [2].  Note that this expression 
ignores refl ected down-welling radiance because its impact on Lobs 
is negligible [3]. 

Plume/Ground Temperature Equality

For this paper we studied an admittedly constraining plume/
ground temperature case.  The intent was to remove the effect of 
the plume/ground temperature difference on the chemical signal 
in order to isolate the interaction between background emissivity 
and chemical absorbance.  More general temperature cases may be 
considered in future work.  Setting Tp = Tg = T and substituting Eq. 
(2) into Eq. (1) yields a simplifi ed expression of the physics-based 
model that more clearly shows the relationship between background 
emissivity and chemical absorbance:

 (3)
Note that the signal due to the chemical effl uent is the fi rst 

term on the right hand side of Eq. (3), explicitly:

 (4)
Expression (4) shows that a relatively larger gas absorbance, 

A(ν), and a background emissivity, εg(ν), close to 0 (or, equivalently a 
background refl ectance, 1 – εg(ν), close to 1) contribute to a relatively 
larger chemical signal in Lobs(ν) and in turn to relatively higher gas 
detection probability.  We used this reasoning to produce summary 
measures using chemical absorbance and background emissivity.

Predictors

Based on the intuition gained from the physics-based model, 
two predictors were explored for their ability to summarize when a 
chemical may be better detected over one background type versus 
another.  One predictor (M1) uses each background’s refl ectance 
(1 – εg ) at the wavenumber where the absolute maximum chemical 
absorbance occurs to rank order backgrounds, i.e.

 (5)
Eq. (3) suggests that the background with the largest M1 for 

a given chemical will yield the largest Lobs(ν*).  The dominance of 
the maximum gas absorbance on detection for a given background 
is explored with this metric.

Though the chemical absorbance is approximately zero at most 
wavenumbers, many chemicals may have multiple relative maxima 
where εg(ν) is also low and these also contribute to the radiance 
spectrum recorded by the instrument.  As such, a predictor that 
accounts for the chemical absorbance and background emissivity 
across the whole spectrum is also explored.  This predictor sums 
the products of the squared chemical absorbance and squared 
background refl ectance at each observed wavenumber in the LWIR.  
It also normalizes the given chemical absorbance spectrum by 
dividing by its squared magnitude.  This predictor is denoted M2 
and is given by:

, (6)
where n represents the number of wavenumbers (or number of 
observed spectral channels).  Chemical absorbances and background 
emissivities that generally contribute to larger Lobs(ν) over all 
wavenumbers tend to give larger values of M2. 
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Figure 1.  Graphical representation of the observed radiance equation.  
The ground radiance Lg(ν) is fi ltered by the plume with radiance A(ν)·c 
B(Tp;ν) which when combined with the atmospheric radiance Lu(ν) is 
observed as Lobs.
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As an example of how M1 and M2 would rank order backgrounds 
for a specifi c chemical, the chemical absorbance spectrum of carbon 
tetrachloride (CCl4) using the background emissivity spectra of a 
Paint representative and an Asphalt-Concrete-Soil representative 
(ACS) are plotted in Figure 2.  The absolute maximum of CCl4  
occurs at wavenumber 794 and at that wavenumber, Paint has 
a greater refl ectance (1 – εg ) than ACS so M1 would order the 
backgrounds as Paint and then ACS for CCl4.  Similarly, M2 for CCl4 
and Paint is 7.499 x 10-3 while M2 for CCl4 and ACS is 1.689 x 10-3.  
Thus M2 would also order these backgrounds as Paint and then ACS 
for CCl4.  The background orderings as decided by these predictors 
will be compared to the actual background orderings as decided by 
a commonly applied chemical detection algorithm.

Both predictors focus on chemical absorbance and background 
emissivity, assuming the other variables in the physics-based model, 
Eq. (3), are held constant.  In actual and simulated hyperspectral 
images, the other variables and noise can also perturb gas detectability.  
Future work may consider more general plume/ground temperature 
cases as well as incorporating the atmospheric transmissivity in more 
generalized predictors. 

METHODS

It would be ideal to generate hyperspectral images in the 
natural environment where all variables could be controlled and 
manipulated to compare relative detectability of various chemicals 
over specifi c backgrounds.  However, since this level of control 
would be extremely diffi cult and costly (or unattainable) in a real 
experiment, analysis of computer-simulated data was conducted 
instead.  This allows the relationship between chemical absorbance 
and background emissivity to be better understood, especially as 
it relates to gas detectability.  We do this by comparing detection 
results on the simulated hyperspectra to the background orderings 
as decided by M1 and M2.

This experiment used the InfraRed Systems Analysis in General 
Environments code (IR-SAGE) developed at Pacifi c Northwest 
National Laboratory (PNNL) [4] to simulate LWIR hyperspectra 
of simplifi ed gaseous plumes over organized background pixels.  IR-
SAGE uses the physics-based model in Eq. (1) to simulate a radiance 
vector from the LWIR using a chemical absorbance spectrum, a 
background emissivity spectrum and atmospheric conditions, while 
perturbing these quantities with Gaussian noise [4].  Gas absorbance 
spectra from the PNNL library [6] were used for image simulation.  
Background emissivity spectra used in the IR-SAGE images were 
selected from the Nonconventional Exploitation Factors Data 
System (NEFDS) [7].  Six distinct background emissivities were 
chosen for image simulation.  These emissivities exhibit different 
behavior across the LWIR spectrum.

One 36-part data cube was simulated for the 499 distinct gases 
in the library.  For all images, the temperature of the plume was 
set equal to the temperature of the ground so that Tp = Tg = 300K.  
The spectral range used was 750 to 1 250 cm-1 in steps of four 
which yielded a total of 126 spectral channels.  Each 36-part 
cube had dimensions of 150 x 120 x 126 (rows by columns by 
spectral channels).  Each set of 25 rows represented one of the six 
distinct background types:  Asphalt-Concrete-Soil (ACS), Brick, 
Miscellaneous (MSC), Paint, Snow and Steel and Copper tubing 
(STCOP).  Each set of 20 columns corresponded to a different gas 
concentration path-length: 16, 8, 4, 2, 1 and 0 ppm-m.  Thus each 
25 x 20 x 126 part contained 500 replicate pixels for one of the 36 
background/gas concentration combinations.

We used a Whitened Matched Filter (WMF) as the gas detection 
tool [1].  Radiance due to background was fi rst removed from a 
plume pixel by computing the mean of all ppm-m concentration 
pixels and then subtracting it from the plume radiance:

 (7)
Here, LW, Lon and Loff are radiance vectors of length 126.  

Therefore, Lon represents a plume pixel and Lw represents the radiance 
due to the plume and noise after removing the background radiance.  
These “whitened” spectra were then processed with the WMF.  The 
expression for the scalar WMF can be written as

 (8)
where A is the chemical absorbance spectrum (vector of length 
126) and Σ̂ is the covariance matrix of the off-plume pixels with 
dimensions 126 x 126.  Eq. (8) emphasizes the strength of the 
chemical signal in Lw while diminishing the effects of noise through 
the use of Σ̂-1.  In practice, large values of the WMF provide evidence 
for gas detection [2].  The fi lter was applied to each pixel.  It was 
necessary to pick a threshold in order to label a pixel as a chemical 
detection or non-detection.  Thus a gas was “detected” in a pixel if 
WMF was statistically different from zero at the 0.05 signifi cance 
level [5].  The proportion of gas detections, denoted by p̂, out of 
the 500 replicate pixels was used as an estimate of the gas detection 
probability for each background type.  Backgrounds were ordered for 
each chemical based on these p̂ values.  An example of a detection 
proportion curve for the CCl4 image is presented in Figure 3.  The 
detection proportions are plotted as a function of gas concentration 
path-length.  There is one p̂ curve for each of the six backgrounds.  
This plot indicates that CCl4 was best detected over Paint and 

Figure 2.  Chemical absorbance spectrum of CCl4 with PAINT and ACS 
background emissivity spectra.  The difference between PAINT and ACS 
over the wavenumbers with highest CCl4 absorbance predicts that CCl4 
would be more easily detected over PAINT then ACS.
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worst detected over Snow.  The data presented in Figure 3 is used 
to order the backgrounds for best-to-worst detectability of CCl4.  
This plot gives the ordering as: Paint, STCOP, MSC, Brick, ACS 
and Snow.  Recall the previous examples of predictor metrics.  For 
CCl4, M1 and M2 both ordered two of the backgrounds as Paint and 
then ACS.  We note that these background orderings correspond 
to the relative ordering of Paint and ACS for CCl4 as decided by 
the WMF detections.

Metrics M1 and M2 were calculated for all chemical/background 
combinations using the chemical absorbance spectra from the 
PNNL gas library and the six aforementioned background emissivity 
spectra.  These metrics gave a ranking of the background types for 
each chemical.  Recall that the physics-based model indicates that, 
for a given chemical, backgrounds that yield relatively larger scores 
for M1 and M2 will tend to yield relatively larger chemical signals 
and hence relatively higher detection proportions.  Thus for a given 
chemical, the background orderings as indicated by p̂, M1 and M2 
were interrogated for consistency.  We interpret high consistency 
in these rank orderings as an indication that M1 and M2 provide 
reasonable summaries of how gas absorbance and background 
emissivity interact to produce the at-sensor observed chemical 
signal and in turn provide good predictive ability to describe when 
a chemical will be more easily detected over one background as 
compared to another.

RESULTS AND DISCUSSION

Initial inspection of the detection results using the Whitened 
Matched Filter for the 499 images revealed that 276 chemicals had 
p̂ values less than 0.2 across all backgrounds and concentrations.  
For these chemicals, the detection proportion curves were not 
separated enough to decide how the backgrounds should be rank 
ordered.  This was attributed to a relatively low and fl at chemical 
absorbance across the LWIR (relative to the chemicals that gave 

overall large detections).  These gases would require simulations 
that used larger concentration path lengths than those considered 
to produce informative detection curves.  As such, these gases were 
removed from the study. 

For the remaining 223 chemicals, the consistency in background 
rank orderings among p̂, M1 and M2 is summarized in Figure 4.  
Results are shown in a composite bar chart that displays the 
proportion of rankings that agreed for all three measures (blue), 
the proportion of rankings that agreed between p̂ and M1 only 
(yellow), the proportion of rankings that agreed between p̂ and M2 
only (orange) and the proportion of rankings that did not agree 
among all three measures (red).  The chart in Figure 4 indicates that 
M1 and M2 were each able to correctly rank order the backgrounds 
(as compared to the rankings decided by p̂) for over 90% of the 
chemicals.  Comparison of the yellow and orange regions of the 
bars indicates marginal difference in the abilities of M1 and M2 to 
correctly rank order the backgrounds.  These results indicate that 
both M1 and M2 are competitive predictors for when a chemical 
will be better detected over one background type or another.  These 
results hold only for these data and the assumptions we have applied 
to the physics-based model.

CONCLUSION

Based on the physics-based model, high chemical absorbance 
and low background emissivity contribute to high gas detectability 
assuming other variables and noise are held constant.  Two predictors 
were developed to investigate the implications of the physics-
based model:  one predictor accounted for chemical absorbance 
and background emissivity at a single wavenumber and the other 
predictor accounted for these properties across the LWIR spectrum.  

Figure 3.  Example detection proportion curves from simulated image 
of CCl4 plume.  In the simulation, CCl4 was more easily detected using 
WMF over PAINT, than STCOP, MSC, BRICK, ACS and fi nally SNOW, 
respectively.

Figure 4.  The distribution of agreement among p̂, M1 and M2 in 
background rankings.  The blue denotes the proportion of chemicals 
for which the background rank agreed between all measures.  The 
yellow and orange indicate the proportion of chemicals for which the 
background rank agreed between p̂ and M1 only, or between p̂ and 
M2 only, respectively.  The red denotes when the background ranking 
disagreed across p̂, M1 and M.
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Backgrounds were rank ordered based on these predictors for each 
chemical and compared with the background ordering for gas 
detection from simulated experimental results. 

Simulating and analyzing all 499 data cubes took approximately 
72 cpu hours and introduced computational problems because of 
the size and complexity of each fi le.  Additional sets of data cubes 
for different conditions would have required too great an amount 
of cpu time to analyze.  These time constraints limited our study to 
the one plume/ground temperature case:  Tp = Tg.  Plots of chemical 
absorbance spectra compared to their p̂ values suggest that the 
low magnitude of absorbance spectra was a factor in preventing 
the other 276 chemicals from being detected in this simulation.  
This suggests that many of these chemicals would be detectable at 
higher concentrations.  This was not further explored due to time 
constraints. 

Alone, M1 and M2 each correctly rank ordered the backgrounds 
for more than 90% of the 223 chemicals.  Even though M1 focuses 
only on the chemical absorbance and background emissivity at a 
single wavenumber, M1 and M2 yield similar results.  However, M1 
is much simpler computationally and thus it may be considered a 
better summary metric for these data.

These results are encouraging and suggest that M1 and M2 
adequately summarize how the background emissivity and chemical 
absorbance work in conjunction to produce the chemical signal and 
are good predictors for when a chemical may be better detected over 
one background type as to another.  Future work will attempt to 
generalize M1 and M2 with the aim of incorporating other physics-
based parameters and a wider set of conditions on the plume/ground 
temperatures.
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