skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of Factors Affecting Cesium Extraction Performance by Calix[4]Arene Derivatives

Journal Article · · Journal of Undergraduate Research
OSTI ID:1051673

Novel aza-crown derivatives of dioctyloxy-calix[4]arene crown-6 were examined for their cesium extraction performance at different pH levels. These studies are of interest in addressing high-level waste tank remediation and the removal of 137Cs, a major contributor to heat and radiation generation. Preliminary studies were done to assess the performance of these calixarene compounds under varying conditions. Results showed an increase of cesium extraction with pH as well as expected trends in diluent effects and anion selectivity. Poor extraction performance of some aza-crown derivatives raised questions regarding the possibility of intramolecular hydrogen-bonding. A novel methylated derivative was used to address these questions. Additional experiments were conducted to determine the extraction effect on pH. Results indicate an increase in cesium extraction with pH, as shown in preliminary studies. Mono-aza derivatives were shown to exhibit better cesium extraction performance than their di-aza counterparts. The methylated derivative showed poorer extraction performance than the non-methylated derivative, indicating that completely removing the possibility of intramolecular hydrogen-bonding has negative effects on extraction performance. This suggests that the hydrogen-bonding facilitates anion co-extraction, which would lead to better overall extraction. Mono-aza derivatives were shown to cause unexpected changes in pH. This could possibly be attributed to protonation of the calix crown.

Research Organization:
DOESC (USDOE Office of Science (SC) (United States))
Sponsoring Organization:
USDOE Office of Science (SC)
OSTI ID:
1051673
Journal Information:
Journal of Undergraduate Research, Vol. 4
Country of Publication:
United States
Language:
English

Related Subjects