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Workshop Title: Strong Interactions: From Methods to Structures
Place: Bad Honnef, Germany, Feb 12-16, 2011

Title: Recent Monte Carlo Results for Cold Atoms
Abstract:

I discuss recent Diffusion Monte Carlo and Auxiliary-Field (lattice ) Monte Carlo
results for cold atoms. I focus on the equation-of-state and the contact parameter for equal
masses, and then discuss the unequal mass case for both polarized and unpolarized systems.



Recent Monte Carlo Results for Cold Atoms

Introduction
Equal Mass at Unitarity
Improved DMC results
Initial lattice results
Unequal Masses
Superfluid state
Normal (Polarized) state
Few-Particle states
Future possibilities
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Cold Atoms near Unitarity
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Control: phase diagram, “exotic’ superfluids, high-energy RF response,...




Improved DMC calculations

Forbes, Gezerlis, Gandolfi (2010)
Upper Bound to th'e Energy Gandolfi, Schmidt, Carlson (2010)
Applicable to polarized, unequal mass,...
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EOS near unitarity ~ Gandolf Schmidt, Carlson (2010)
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Pair Distribution Function
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« VMC
= DMC
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Radial one-body density matrix
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Lattice Approaches (in progress)

Equivalent to attractive Hubbard model in dilute limit

No sign problem, but dilute limit non-trivial

Canonical approach (more efficient for T=0)

Freedom in operators to more quickly approach continuum

Example: Kinetic Energy

Hubbard model (nearest neighbor hopping)
k?/ (2m) (easily evaluated via FFT)
DR match 2-body spectra (effective range)
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BCS on the lattice

xi from BCS
Hubbard disper, U=-7.9135: k*2 disper. U=-10.2887
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Unitarity
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Binding of One Heavy or One Light
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°® @  B(H)=036Ex()
® ?@ ® effective mass ~1.0

® % B(L) = 2.3 Ex(H)
Y

@  effective mass ~ .3

Agreement w/ previous calculations
R. Combescot et al., Phys. Rev. Lett. 98, 180402 (2007)










Non-Universal Behavior N-heavy |-light
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