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Objective: The objective of this project was to characterize the influence that naturally
complex geologic media has on anomalous dispersion and to determine if the nature of
dispersion can be estimated from the underlying heterogeneous media.

Project Description: This project combines outcrop-scale heterogeneity characterization,
laboratory experiments, and numerical simulations. The study is designed to test whether
established dispersion theory accurately predicts the behavior of solute transport through
heterogeneous media and to investigate the relationship between heterogeneity and the pa-
rameters that populate these models. The dispersion theory tested by this work is based
upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion
studies that develop a solute transport model by fitting the solute transport breakthrough
curve, this project will explore the nature of the heterogeneous media to better understand
the connection between the model parameters and the aquifer heterogeneity.
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1. RESULTS

Background: Our work at the Colorado School of Mines was focused on the following
questions: 1) What are the effects of multi-scale geologic variability on transport of con-
servative and reactive solutes? 2) Can those transport effects be accounted for by classical
methods, and if not, can the nonlocal fractional-order equations provide better predictions?
3) Can the fractional-order equations be parameterized through a link to some simple ob-
servable geologic features? 4) Are the classical equations of transport and reaction sufficient?
5) What is the effect of anomalous transport on chemical reaction in groundwater systems?

The work is predicated on the observation that upscaled transport is defined by loss of
information, or spatio-temporal averaging. This averaging tends to make the transport laws
such as Fick’s 2nd-order diffusion equation similar to central limit theory (e.g., Einstein
[9]). The fractional-order advection-dispersion equations rely on limit theory for heavy-
tailed random motion that has some diverging moments. The equations predict larger tails
of a plume in space and/or time than those predicted by the classical 2nd-order advection-
dispersion equation. The heavy tails are often seen in plumes at field sites.

1) Multi-scale variability: A long-standing result from classical stochastic transport
theory [19] held that an aquifer with continuous (fractal) variability as a function of scale
would engender “super-stratified” growth of a conservative plume. Super-stratified in this
context means growth of the centered second moment (commonly called the variance) of a
plume according to ⟨(X−µ)2⟩ ∼ tε with ε > 2. Adopting Fick’s law to describe dispersion of a
plume has ε = 1. To investigate this, we first had to define and develop [3, 18] the numerical
generation of multi-scaling fractal fields to match measured aquifer material as closely as
possible. To match observed data sets, the Hurst scaling coefficient must be different in
each coordinate, and the means to produce these fields had yet to be proven or codified. We
investigated the transport of solutes through these multi-scaling fractal fields and found that
plume variance growth is always between perfectly Fickian (t1) and purely stratified [17] (t2)
rates, with highly non-Gaussian shape, refuting the analytic results postulated over a decade
ago. We also found a simple explanation for the apparent super-stratified anomalous growth
of dispersivity without a need for universal structure of aquifers [18].

Our next challenge was to generalize the multi-scaling fractal field generators to allow
conditioning by K measurements. This was used to analyze the data collected by Klise [15].
The details of the conditioning have only recently appeared [4], but allowed us to rigor-
ously test the sufficiency of the classical, Fickian advection dispersion equation [16]. In that
paper, we challenged the notion that, based solely on a better fit to solute breakthrough
data, a temporally non-local model is necessary for transport in an advection-dominated
system. One may counter that the classical advection-dispersion equation (ADE) is a valid
model at some small scale and that the detailed hydraulic conductivity (K) data must be
well represented: Then the nonlocality is only a result of upscaling and loss of informa-
tion. But is the non-local model demonstrably necessary at all scales? We examined the
experiment conducted by [15] in which a 30.5 × 30.5 cm slab of relatively homogeneous,
cross-bedded sandstone was exhaustively sampled for K. The slab was sealed, saturated
with potassium iodide, and x-rayed ten times while being flushed with fresh water. The
8,649 air-permeameter measurements were down- and up-scaled to make finer and coarser
grids on which the velocity field was solved and the ADE applied. The optimized parameters
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Figure 1. Linear plot of optimized values of longitudinal dispersivity αL (ver-
sus scale)in both the classical ADE and the t-FADE applied to the Massillon
sandstone slab. Error bars represent ± UCODE-reported parameter standard
deviation. In addition to providing better fits, the t-FADE removed the scale
dependence of parameters.

in the ADE were found to suffer from the scaling commonly noted in field plumes—most
notably the longitudinal dispersivity (αL), which grew linearly with up-scaling (Fig. 1). But
at all levels of up- and down-scaling, the ADE did not adequately represent the late-time
tails of the breakthrough curve. The temporally non-local, time-fractional, ADE (t-FADE)
was applied and the optimized parameters (αL and the immobile capacity β) did not depend
on scale. The better fit provided by the t-FADE in the late BTC tails did not bring about a
sacrificed fit elsewhere in the BTC. Furthermore, the optimized ADE and t-FADE solutions
do not converge at the smallest scale, directly implying that the temporal non-locality is a
necessary model component.

2) Multi-Rate Mobile/Immobile (Mass Transfer) Physics: We developed the one-
to-one relationship between single particle dynamics and the upscaled continuum multi-rate
mass transfer equations. This was done in such a way that the numerical implantation is
extremely efficient and accurate [2]. The method can be incorporated in any existing particle
tracking model (and was placed into the popular codes RWHet and Livermore National Lab’s
SLIM-FAST). Our findings also show that the effects of an immobile phase can be added
to a mobile-only solution by subordinating to the inverse of the immobile waiting time
distribution (related directly to the multiple rates). The subordination integral is similar to
a convolution. The agreement between analytical and particle tracking solutions for several
immobilization types is quite good and user-specified through the particle number.

3) Large-scale transport and fractional ADEs: Our investigations into field-scale
transport followed two tacks. The first looked at the influence of sparse fracture networks
on large-scale, ensemble transport. The second returned to the MADE site in Columbus,
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Figure 2. Theoretical M(dθ) for sinuous braided stream networks. Heavy
circles in polar plot show average of fitted MADE site M(dθ).

Mississippi to look at highly heterogeneous granular material. Regarding this second line of
research, we computed the growth of the first five integer moments predicted by several the-
ories (continuous time random walks [CTRW], fractional mobile/immobile, and space-time
fractional equations). We found that the space-fractional component is key to predicting
fast-moving solute, and that a fractional mobile/immobile (fractal time) component is re-
quired to predict the decay of mobile mass [29]. Therefore, a governing equation that makes
accurate predictions at the MADE site is:

(1)
∂C

∂t
+ β

∂γC

∂tγ
= −∇ · vC −D∇A

MC,

where C(x, t) is total resident concentration, β(x) is the immobile capacity coefficient,
0 < γ < 1 is the fractal mobile/immobile coefficient, t is time, v(x, t) is mean velocity
vector, A is the direction-dependent fractional derivative matrix, and M(θ, v) is the mixing
measure, which is essentially a three-dimensional dispersion coefficient. We followed classical
techniques used to determine dispersivity for granular material based on simple geometric
analogs and found that a model of superimposed braided stream networks could develop an
accurate estimate of the mixing measure (Fig. 2). We could then apply [28] a very simple
model (based on only three zones of heterogeneity) that closely resembles the real tritium
plume at the MADE site (Fig. 3).

Regarding transport through fractured rock, we investigated whether the parameters for
the fractional equation could be discerned from fracture data. It appears that fractures with
power-law length distribution P (L > l) ∼ l−a with a < 2 engender fractional-order transport
[23, 24] that follows (1). Discerning the important parameters of fractional derivative order
and mixing measure (the dispersivity in all directions) was closely related to fracture set
statistics (see, for example, Fig. 4). The link allowed us to make generalizations about the
suitability of geologic repositories based on fracture statistics [22].

4) Parameters from Geologic Information: The predictions at the MADE site re-
quired the estimation of a number of parameters. Some were gained from an observation of
the plume itself (particularly those in the time operator on the left-hand side of eq. (1)),
which amounts to fitting instead of prediction. The parameters for the space operator (order
of derivative and mixing measure) were gleaned from the K distribution, with an assump-
tion the the high-K deposits originated from a braided stream environment. To investigate
the ability to estimate the time parameters from geologic information, we simulated a large
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Figure 3. The concentration profiles at day 132 and 328, with the measure-
ments ((a) and (c)) versus the simulations ((b) and (d)). The dots in (a) and
(c) denote the locations of observation wells used for the measured concentra-
tion interpolation and model calibration (121 and 215 wells for day 132 and
328, respectively). The simulations use measured average velocities and the
mixing measure shown in Fig. 2. It is important to note that the simulations
of Eq. (1) use only three zones (i.e., nodes) yet reproduce very complex be-
havior.

number of aquifers using Markov-Chain facies simulators and compared these to an ana-
lytic expression for the late-time tailing of an ensemble plume. Our results show that the
fractal parameters β and γ, which dictate sequestration in low-K (diffusion-limited) facies,
can be very accurately estimated from boring logs by simply looking at the distribution of
low-K unit thicknesses [27]. If the solute sequestered in these units is released primarily by
diffusion, then the predictions of late-time tailing and remediation are very accurate.

5) Validation in Surface Water Systems: It is expensive and time-consuming to
conduct studies in aquifers. The same type of heavy-tailed dynamics could be expected in
rivers and streams, because solutes may partition into the sub-stream hyporheic zone in
much the same way that solute may diffuse from a high-K aquifer unit into a low-K unit.
This analogy allows us to gather lots of data quickly and cheaply to test the veracity of the
fractional-order equations [21, 10]. Furthermore, there have been tests of sediment transport
that show the hallmarks of space-fractional dispersion due to large particle jumps [7].

5) Mixing-Limited Reactions: It is a logical extension to think that highly heteroge-
neous material will lead to unmixed plumes. Therefore, reactive solutes will be sequestered
in undermixed domains, and classical Eulerian codes that assume perfect mixing in any
“block” will vastly overestimate reaction rates. We started from basic physics and formu-
lated a reaction code for particle-tracking routines that explicitly determines the probability
of mixing along with the thermodynamic probability of reaction upon meeting [1]. Our code
calculates reactions without ever using concentrations, yet perfectly reproduces the transi-
tion from thermodynamic to diffusion-limited reaction rates first predicted in the theoretical
physics literature (Fig. 5). Here we simulate a precipitation reaction A + B → C, which
would classically follow an equation:
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Figure 4. (a) Ensemble particle displacement plume for an example fracture
network at a transport time of 21 years along with (b) best-fit operator-stable
density and Mandlebrot plots of largest ranked particle displacements (circles)
along (c) Z1 and (d) Z2 with best-fit truncated power-law (TPL) and exponen-
tial (exp(−z)) models. Networks containing a combination of infinite variance
and finite variance distributions of fracture length (a1 = 1.9, a2=2.2) produce
solute plumes with super-Fickian growth rates and leading plume edges that
appear to show a transition between power-law and exponential decay of the
largest particle jumps.

(2)
∂[A]

∂t
=

∂[B]

∂t
= −Kf [A][B],

where [·] denotes concentration and Kf is a thermodynamic reaction rate coefficient. A
fascinating aspect to this is the self-organization of reactants into “islands” of separate
reactants (Figure 1a inset). These self-organized poorly-mixed reactions follow a different
functional form that does not correspond to (2). In other words, for less-than-perfect mixing,
(2) is not the correct equation. We proved as much through a continuum-based approach
[6], and work is ongoing to show the exact parameterization of the particle model [8, 20].

2. SUMMARY OF SUPPORT FROM THIS PROJECT

In addition to PI Benson, this project funded a post-doctoral researcher (Yong Zhang, now
an Assistant Professor at the Desert Research Institute), and five successful Hydrologic Sci-
ence and Engineering (HSE) Master’s students (Nathan Monnig, Elizabeth Conover, Joanne
Huie, Elizabeth Major, and Jordan Revielle). The grant led to publication of 18 articles
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(plus 2 in review) by PI Benson in Hydrology and Physics journals, as well as dozens of
conference presentations. In this study, PI Benson and co-workers:
• Showed that particle transport through fracture networks appears to have many of the
characteristics of multi-dimensional space-nonlocal transport [22, 23, 24].

• Derived the exact particle dynamical formulation for the time-nonlocal form [2], which is
equivalent to the Eulerian multi-rate mass transfer formulation of Haggerty et al. [11, 12].
The time-nonlocal aspect of mass transfer is a key feature because it accounts for the
apparent loss of mobile mass that is often noted in field tests [25, 13]. Also applied
the nonlocal models to more easily verifiable solute and sediment transport in streams
[7, 21, 10].
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• Described novel multi-scaling random field models and used the models to simulate flow
and transport through realistic aquifer material [3, 18]. Developed a number of algorithms
to allow for any degree of conditioning of these fields [4, 16].

• Used our particle-tracking codes from a previous BES grant to simulate plumes in synthetic
and real aquifers [27, 28].

• Developed the particle-tracking algorithm for chemical reactions that reproduce diffusion-
limited and/or thermodynamics rate-limited reactions under Brownian motion [1] or super-
diffusive [5] regimes. Proved correspondence to upscaled PDEs [20] and applied to column
studies [8].

• Performed a quantitative analysis of the veracity and information requirements of several
nonlocal versus local transport theories [27, 28, 29, 30, 16].
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