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Abstract

Fractional derivatives can be viewed either as a handy extension of classical
calculus or, more deeply, as mathematical operators defined by natural phe-
nomena. This follows the view that the diffusion equation is defined as the
governing equation of a Brownian motion. In this paper, we emphasize that
fractional derivatives come from the governing equations of stable Lévy motion,
and that fractional integration is the corresponding inverse operator. Fractional
integration, and its multi-dimensional extensions derived in this way, are inti-
mately tied to fractional Brownian (and Lévy) motions and noises. By following
these general principles, we discuss the Eulerian and Lagrangian numerical so-
lutions to fractional partial differential equations, and Eulerian methods for
stochastic integrals. These numerical approximations illuminate the essential
nature of the fractional calculus.

Keywords: Fractional Calculus, fractional Brownian motion,
Mobile/Immobile, Subordination
PACS: 02.50.Ey, 02.50.Ga, 02.70.Ns, 05.10.Gg

1. Introduction

The term “fractional calculus” refers to the generalization of integer-order
derivatives and integrals to rational order. This topic was first broached by
L’Hopital and Leibniz after the latter’s co-invention of calculus in the 1700s
(see the excellent history by [1]). In fact, the operators can be extended to
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complex as well as real order, so the “fractional” label is a minor historical
misnomer.

Fractional calculus was primarily a mathematical curiosity for centuries (see
examples in [1] and [2]). For example, when Heaviside would take the “square
root” of both sides of a diffusion equation, he was generating a 1/2-order time
derivative. Some of the first physical applications were by geophysicists de-
scribing material somewhere between elastic (Hooke’s linear relationship be-
tween stress and strain) and viscous (described by Newton’s stress proportional
to strain rate). In his work on this area starting in the 1960’s, geophysicist
Michele Caputo derived the fractional derivative that carries his name. Benoit
Mandelbrot’s work on fractional Brownian motion and geophysical time series
starting in the 1960’s implicitly used fractional-order integration.

In the 1990’s, a resurgence of interest surrounded the application of fractional
derivatives in the model equations of anomalous diffusion (see [3] for an exten-
sive review). At the same time, an understanding of the importance of general
non-locality in upscaled transport in heterogeneous aquifer material emerged
[4, 5]. The non-locality is defined by operators that account for (integrate) the
concentrations at previous times and/or large regions of space. These studies
were based on the simple idea that the concentration change at some collec-
tion point (a plane or well) depended on contributions from potentially large
distances upstream and/or the concentration loading history for some time in
the past. Formally, the non-locality arises when the underlying velocity field is
uncertain and correlation scales are significantly large compared to the scale of
observation [6]. Upscaled descriptions of transport lose detailed velocity infor-
mation that is transferred to the non-local operators.

One attempt to incorporate spatial non-locality in a tractable form assumed
a set of weights that decayed as a power-law [7, 8, 9], which forms the definition
of a fractional-order dispersion term. This formulation assumed that the con-
centration change at some point depended on upstream concentrations, and the
dependence decayed like a power law of the distance. Temporal non-locality,
in which concentration change at a point depends on the prior concentration
“loading” is the basis for hydrologic applications of continuous time random
walks (CTRW). The CTRW were shown to define temporal fractional deriva-
tives when the weighting of prior concentration decayed like a power-law (see the
extensive review by Metzler and Klafter [3]). A few years later, the formal link
between two-state (mobile/immobile) multi-rate mass transfer equations [10, 11]
and temporally fractional-order models was made [12, 13]. This accounts for so-
lute loading into relatively impermeable material that slowly releases the solute
after the bulk of a plume has passed.

Forays into fractional calculus in multiple dimensions showed that the frac-
tional derivatives could be extended in ways significantly different than classical
cases. The derivative operators were defined by the underlying diffusion pro-
cess of Lévy motion, which could have different scaling rates and skewness in
different directions. The derivative operators inherit the different orders and
descriptions of skewness in all directions. Because of the link between deriva-
tives and integrals, these extensions can be transferred to any system that uses
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fractional integrals. The most common hydrologic application of fractional in-
tegration is the generation of fractional Brownian motion as a representation of
aquifer material with long-range correlation structure. Using the inverses of the
newly defined fractional derivatives gave new tools to extend the classical frac-
tional Brownian motion to more closely represent anisotropic aquifer structure
[68].

Because the fractional derivative and integrals are defined as convolution
operators, they are easy to implement using standard numerical techniques. In
addition, because the fractional diffusion equations that generate the deriva-
tive operators are based on the motion of a single particle, the classical random
walk particle tracking (RWPT) techniques are well-suited to solve the fractional
advection-dispersion transport equations. We exploit the numerical implemen-
tations as a vehicle to define and solve to fractional-order differential and integral
equations.

The paper is organized in three main sections dealing with fractional space
derivatives (section 2), fractional time derivatives (section 3), and fractional in-
tegrals (section 5). Within the two derivative sections, we outline how the diffu-
sion equation, and its fractional-order counterparts, are defined by the stochastic
processes that they describe. We show how the equations naturally induce both
their Eulerian (section 2.5) and Lagrangian (section 2.6) numerical approxima-
tions. In section 4 we briefly summarize how the fractional transport equations
have been applied to contaminant transport problems in surface and subsur-
face hydrology. We then show in section 5 how the inverse of the fractional
derivative operators define the fractional integrals in multiple dimensions, and
how these integrals can be used to generate conditioned, multi-scaling, random
aquifer facsimilies. We close with conclusions and recommendations for future
work in section 6.

2. Markovian Diffusions and Fractional Space Derivatives

There are several forms of fractional derivatives that are distinguished by
the domain over which they operate. Because they are non-local operators,
they “look” for values from a certain distance ahead or behind for information.
For spatial processes it may be correct to look ahead and/or behind (or at any
angle) over all space. Temporal information is only used after some starting
time, so the domain of interest is positive time only. We use these distinctions
to explain the association of the different operators to different behaviors in
diffusions based on random walks.

The starting point for all of the generalizations is classical Brownian motion.
It is well known that Brownian motion B(t) is the limit Markov (memoryless)
process of finite-variance random walks with short-range correlation [14, 15].
This makes Brownian motion an attractive model for transport of passive tracers
in surface and ground water: the exact nature of the individual motions is not
particularly important in the long-term. The central limit theorem dictates that
all finite-variance motions converge toward the Gaussian limit distribution. It
is precisely this property that has made Brownian motion an attractive and
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useful model of macrodispersion in aquifers. Even with non-Gaussian particle
motions, the long term transport tends toward the Gaussian limit distribution
(for perhaps the earliest experimental example see Taylor [16]).

If B(t) denotes the location of a particle in one-dimensional space z at time
t then the density of the location p(x,t) is given by

o) =~ (15 )

where D is half the variance of each motion size divided by the mean motion
time. Throughout this paper, we will use Fourier f(k) = [~ f(2)dz and
Laplace f(s) = [e 5" f(t) transforms, where it is understood for notational
simplicity that f(z) < f(k) and f(t) < f(s) are transform pairs, not the same
functions.

To connect the diffusion equation with Brownian motion, note that the
Fourier transform (FT) of (1) is p(k,t) = exp(tD(ik)?), with time derivative

dp(k,t)

L2 = D(ik)? exp(tD(ik)?) = D(ik)p(k, 1) (2)

A property of Fourier transforms of integer-order derivatives is that (ik)" f(k) <
d™f(x)/dx™, so that the inverse transform of the previous equation becomes

op(z,1) 02

o = Dk t) 3)

In a more general way that will be useful shortly, we can write the FT of the
Brownian motion density as p(k,t) = exp(tA(k)), where the function of the
wavenumber A(k) = D(ik)?, then following the same procedure the “inverse
FT” of A(k) defines the linear space operator in the Cauchy equations

dp(d]? t) = A(k)p(k,t), )
with inverse FT
DD _ [ srpta e o)

where the A, () denotes the linear space operator defined by convolution with
A(x), the inverse FT of A(k). Here we use the fact that the product of two
functions A(k)p(k,t) in Fourier space is a convolution in real space. This convo-
lution, in turn, specifies an operation on the function p(z,t) in real space. For
example (ik)? < d?/dz? represent the pair A(k) < A, for Brownian motion.
This convolution machinery can be used to explain the diffusion equation for
Brownian motion, because the function (ik)? is the (distributional) FT of the
second derivative of the Dirac delta function. The Dirac delta function §(z — a)
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for some constant shift a is a “generalized function” (also called a distribution)
defined by

/ 5z — a) f(z)dz = f(a). (6)

Its derivatives are defined via integration by parts:

/ 5 (&) f(x — €)d = / 5(€) ™ (x — €)de. (7)

Because the values of f(z) for z # a do not affect the integral (6), we might say

that "
oo ifr=a
Oz —a) = { 0 otherwise (8)

where [d(z)dx = 1, so that the infinity at z = a is tamed by integration.
Another intuitive definition of the Dirac function is that it is the limit of a
Gaussian density function with mean a as the variance tends toward zero, i.e.,
the Dirac delta is like the probability density “function” of the constant number
a.

Taking f(z) = e~*** in equation (6) shows that the FT of §(x — 0) equals
1. Then the FT of §”(x) is (ik)? x 1, so that multiplying the FT by (ik)? is
equivalent to convolution with ¢§”(x). Therefore, Brownian motion, by virtue of
the FT of its density function, defines the diffusion equation. This is the sole
connection between the diffusion equation and Brownian motion. The notion
that a concentration gradient “drives” a diffusion by physical means was dis-
pelled by Einstein [17] and Crank [18] in their seminal work. The extension of
the probability distribution for a single particle, p(z,t) to concentration for a
large number of particles, requires independence of their motion and eliminates
particles of one species acting upon each other as a driving force. This is also
called the infinitely dilute approximation. The concept that the random motion
of a single particle defines the diffusion equation, in which the flux happens to be
proportional to concentration gradient, rather than the picture that a molecule
moves in response to that gradient, is central to our further development, and
is eloquently described by Crank [18]:

If it were possible to watch individual molecules of iodine, and
this can be done effectively by replacing them by particles small
enough to share the molecular motions but just large enough
to be visible under that microscope, it would be found that the
motion of each molecule is a random one. In a dilute solution
each molecule of iodine behaves independently of the others,
which it seldom meets, and each is constantly undergoing col-
lision with solvent molecules, as a result of which collisions it
moves sometimes toward a region of higher, sometimes of lower,
concentration, having no preferred motion towards one or the
other. The motion of a single molecule can be described in
terms of the familiar ‘random walk’ picture, and whilst it is
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possible to calculate the mean-square distance travelled in a
given interval of time it is not possible to say in what direction
a given molecule will move in that time.

This picture of random molecular motions, in which no molecule
has a preferred direction of motion, has to be reconciled with
the fact that a transfer of iodine molecules from the region of
higher to that of lower concentration is nevertheless observed.
Consider a horizontal section in the solution and two thin, equal
elements of volume one just below and one just above the sec-
tion. Though it is not possible to say which way any particular
iodine molecule will move in a given interval of time, it can
be said that on the average a definite fraction of molecules in
the lower element of volume will cross the section from below,
and the same fraction of molecules in the upper element will
cross the section from above, in a given time. Thus, simply
because there are more iodine molecules in the lower element
than in the upper one, there is a net transfer from the lower to
the upper side of the section as a result of random molecular
motions.

In the 1920s, Paul Lévy discovered the class of processes that correspond
to the limits of all random walks (in 1-d) by easing the requirement of finite
variance in the classical central limit theorem. When the probability of the
individual motions have power-law tails P(|W| > x) ~ Cz~® for some constant
C and 0 < o < 2, the rescaled sum of these walks converges to a Lévy motion
with FT

p(k,t) = exp[=tD(a(ik)® + (1 — a)(—ik)®)] (9)

so that (9) admits the same form as (4) but with A(k) = Da(ik)* + D(1 —
a)(—tk)®. The (distributional) inverse transform of (ik)* is the power law
x717%/T(—a) for z > 0, and the inverse transform of (—ik)® is (—z)~17%/T'(—a)
for x < 0. The skewness parameter has a range 0 < a < 1. The probability
increase/decrease rate equation

dp(k,t N N

WU e, ) -tD(aik) + (1~ a) (~ik)")]
implies that particles may jump long distances. This can be seen in a long form
of the real-space equation

dp(z,t)  Da /

& Teay ) @8 rpE D "

D —a) / = 1
[ (=& p(E t)de.

F(_a) T
Strictly speaking, these are convolutions of generalized functions like the Dirac
delta function, because the power law x~'~“ is not integrable at x = 0. As-
suming a well-behaved function p that goes to zero at +oo, the intergrals can
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be regularized (tamed) into convergent forms using the integration by parts for-
mula n times, where n — 1 < a < n, to obtain converging convolution integrals
involving x—1-a+",

These convolutions with forward and backward power laws define two specific
types of fractional-order derivatives, denoted in the diffusion equation

0%p(x,t)

op(at) _ et
A(—x)>

+D(1—a) (11)

ot Oz

The forward direction fractional derivative (as well as a fractional time derivative
defined later) is “causal” in that the derivative at some point depends on values
to the left on the real line. The backward fractional derivative generally only
pertains to space functions, because it is not causal; it depends on values to
the right. While this sounds counterintuitive, the backward derivative models
backward jumps; therefore, the probability change at some point depends on
probability that a particle starts a jump from a forward location.

The transition from integer to fractional derivatives is most easily understood
in terms of Fourier transforms: Recall the FT pair d" f(z)/dz™ < (ik)" f(k), and
substitute a real-valued « for n. Some variations on this definition (described
later) recognize the fact that for time derivatives, ¢ = 0 defines a boundary
that has some influence on the convolution, and must be treated properly. The
main point we wish to emphasize here is that the same Fourier symbol A(k) =
Da(ik)* + D(1 — a)(—ik)® determines both the fractional derivative, and the
corresponding stable Lévy motion.

2.1. 1-D Fractional Derivative: Numerics

Before venturing into the territory of multiple dimensions, it is instructive
at this point to examine the convolution operator (4) in relation to the clas-
sical integer derivatives and their numerical approximations. The convolution
specifies that the change in probability (and concentration) is due to the sum
of concentrations everywhere weighted by the function in the convolution. The
Dirac delta 6(x) and its derivatives are zero everywhere except where x = 0.
This property defines a “local” operator. In a numerical implementation of
convolution, one takes a finite domain €2 and discretizes it into N partitions of
size Az. Convolution with a delta function d(x) is represented by a weighted
sum with zero weights everywhere, except for a value of 1 at x = 0. Call the
weights w;, then wo = 1, w;20 = 0. The derivative of §(x) is represented by the
numerical “slope” on either side of the impulse: the immediate rise 1/Axz and
fall —1/Axz. A second derivative is the slope of that function: 1/Az?, —2/Ax?,
and 1/Az?. The second derivative at some grid location is a convolution of
these weights with some function f(x) discretized at the same points:

Pfa) & f(2) = 2f( — Ax) + f(z — 2Aa)
— Az?

= %l w f(z — lAz) = (12)
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Any integer derivative can be represented by a discrete convolution, using
weights from the binomial coefficients:

N

d" f(z) = (Az)™" Z(_l)l <7) f(z —1Ax). (13)

dz™
1=0

The n'" derivative has n + 1 terms, and for stability, the weights are typically
shifted to the right by the greatest integer less than n/2, denoted [n/2], so that
the formula for all integer-order derivatives becomes

d"f(z) _ (Aa)™ 3 (1) (7)f(x — (1 —[n/2])Ax). (14)

dx™
1=0

Griinwald recognized in the 1800’s that the formula for integer finite differences
was easily extended to the fractional-order case. The binomial coefficients of
any order « can be defined using the formula

a\  Tla+1)
(l>_F(a—l+1)l!’ (15)

so the finite difference approximation formula for a fractional derivative of a
function at point 2 (or approximate fractional integral for v < 0) can be written

al «
AY f(z) = Az~ (—1) (l)f(x —IAz)
Y (16)
= Az~ ¢ Z wy f(z — lAz),

=0

where the Griinwald weights

o )T (a+1
w0 (3) - "

are illustrated in Figure 1. Only a few orders are shown, but the weight functions
smoothly interpolate between all orders, including when the derivative order is
negative (indicating fractional integration). Note that for direct comparison, the
derivative weights for positive « are not shifted to the left in Figure 1. While
at their core, the fractional derivatives are defined by convolution with a power
law, the discrete weights are not monotonic because the derivatives have a rise
at the origin and subsequent fall. The same non-monotonic behavior is seen in
the discrete version of any integer-order derivative as well.

Equation (16) corresponds to the positive fractional derivative, so the weights
apply to points to the left of x. The negative fractional derivative defined by
the FT multiplier (—ik)® has a Griinwald approximation

N

A% f(z) = Ax™® Z(fl)l (?) fz+1Az) (18)

=0
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Figure 1: Grunwald (convolution) weights for finite differences of orders 2 through
-1.5 in 0.5 intervals. Connecting lines are used to guide the eye. Ax is set to 1.

which depends on points to the right of x. It is called the negative, or backward,
fractional derivative because it corresponds to particle jumps in the negative
direction. Similar to the integer order case, for stability the weights shift by one
position to the right for the positive direction derivative for 1 < a < 2, and shift
one to the left for the negative direction derivative [19, 20]. It can be shown [?
, Proposition 2.1] that these discrete Griinwald approximations converge to the
integral convolutions in (10) as Az — 0 just as in the integer-order case.
Questions are often asked about what the fractional derivatives “mean” in
terms of continuous functions, and answers are hard to deliver. But at this point
it becomes apparent what the integer and fractional derivatives “mean” when
related back to the random walks that generate the equations. The derivatives
are accounting for mass transfer due to moving particles. Brownian motion
is composed, by construction, of vanishingly small jumps, so one must look
immediately to the left and right to see which particles might arrive at some
point in a fixed time interval and change the concentration. Looking farther
than Az, which goes to zero, is pointless because those particles cannot make
it to the current location. The second derivative, a local operator, is well-
suited to describe this process. Heavy-tailed random walks embody a significant
probability that particles from some distance can, in the rescaled random walk,
make it to the current location, and the Griinwald weights account for mass
accumulation at any point due to distant random walkers. Which derivative
pertains, traditional or fractional, depends on the specifics of the random walk.
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Adding a constant-in-time drift to the random walk changes the probability
density of the random walker p(k,t) = exp(A(k)t) by adding a term —uv(ik) to
A(k). Bearing in mind the FT relation d" f(x)/dz™ < (ik)™ f(k) with n =1, it
is evident that this adds the advection term —v 9/9x to the space operator in the
diffusion equation. Again we wish to emphasize that the same Fourier symbol
A(k) = —wv(ik) + Da(ik)® + D(1 — a)(—ik)* determines both the fractional
advection/dispersion operator, and the corresponding Lévy process, including
the case when a = 2.

2.2. Lévy motion and Fractional Derivatives in Several Dimensions

The extension to multiple dimensions follows the same general approach.
The limits of Markovian random walks define the derivative operators in multi-
ple dimensions [? 22]. There are several scenarios. First, define the random walk
jump magnitudes independent of direction by P(R > r) ~ r~%, and the proba-
bility of moving in any direction in d-dimensions by the random direction vector
0 with probability measure M (df) on the unit sphere. If the random direction
has a probability density m(6), then the notation M (df) = m(0)d6; otherwise,
the discrete measure can be constructed by a sum of Dirac delta function terms
(analogous to the probability mass function of a discrete random variable). The
direction measure M (df) is often called the mixing measure. The random walk
with these jumps converges [? , Theorem 6.21] to a Lévy motion with FT

p(k,t) = exp l—t(ik,v) + Dt/| ((ik,0))*M (d0) | , (19)

oll=1

where (x,y) denotes the inner product of vectors « and y. This model recovers
the one dimensional case because the unit vectors would be § = +1, the mixing
measure M (df) = ad(0—1)d0+ (1 —a)d(0+1)d6, the distribution of the forward
and backward jumps is M (+1) = a and M(—1) = 1—a, and the integral reduces
to two terms: a(ik)*+(1—a)(—ik)®. The measure M (df) in multiple dimensions
can be made as simple as a few Dirac delta functions on the coordinate axes or
more elaborate to depict the superposition of flow directions [23].
Take time derivatives and invert the F'T to get

Ep(wvt) = —’va(iﬂ,t) —‘y—DV%p((L’,t) (20)
The rightmost operator is an extended form of the original fractional Laplacian
by Riesz [21], because it is a completely general mixture of fractional directional

derivatives (explained in detail below). The point source solution p(x,t) has
Fourier transform p(k,t) = exp(tA(k)), where

A(k) = —v ik + D/lel_l(@'k,ewM(de).

Recall that the directional derivative is the inner product

0.94(@)) = Y052 f(@) = Tol)

10
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at s = 0 where g(s) = f(z + s6). Its FT is (ik, 0) f(k). Using the definition of
a scalar positive fractional derivative (now in the radial coordinate r):

%g(s) = ﬁ /000 r1 % (s — r)dr (21)

The fractional directional derivative is this derivative evaluated at s = 0, and
each directional derivative is weighted by its probability in every direction to
get

& f(x) /9| 1/ o f(x — rf)drM(df). (22)

The inner integral has FT <zk: 0)*. So the fractional Laplacian is a mixture of
directional fractional demvatlves7 i.e., a mixture of convolutions with a power
law, the mixture defined by a directional probability measure (i.e., a density for
continuous random variables). By virtue of (19), the fractional derivative once
again is defined by the underlying Markovian Lévy motion.

The Griinwald finite difference formula can be directly applied to approxi-
mate certain cases of the mixing measure. For example, if there is only weight
along the coordinate axes, the shifted Griinwald weights (17) can be used di-
rectly. The outer integral of (22) reduces to a sum along the components of x.
For a numerical solution using this idea, see [24]. If there is weight in-between
the axes, the integer node locations no longer exist for all directions (i.e., nodes
lying along the 45° direction are at a distance of /2 times the number of nodes
away from the origin), hence the Griinwald weights have to be interpolated. For
distances r larger than about 4 nodes in the range 1 < a < 2, the Griinwald
weights closely follow the power law r~17%/T'(—a) (Fig. 2). A mathemati-
cal procedure for approximating the general fractional Laplacian V¢, f(x) with
weight off the coordinate axes was detailed in [25], but numerical codes have
yet to be implemented.

2.8. Operator Scaling and the Anisotropic Laplacian

There is no reason to expect that the power law index dictating the mag-
nitude of large jumps must be the same in different directions. Using methods
similar to the central limit theorem in multiple dimensions shows that up to d
different power laws can persist in d-dimensions. One can construct a suitable
random walk using matrix powers. Suppose the random variable R is character-
ized by P(R > r) ~ r~!. One could transform this into an isotropic heavy-tailed
random magnitude by taking its scalar power R/, which has a tail that now
decays with 7~ or one can generate a jump with different tail parameters in
different directions by taking the matrix power RH, where H is a d x d matrix.
Taking the power of a martix (besides the obvious integer cases) is calculated
analogous to the scalar power formulas z? = eP!°8% for real powers of positive
real numbers. For matrix powers we have R¥ = exp(H log R) which expands
using the matrix exponential exp(H) = I + H + H?/2! + --- where I is the
identity matrix. For reference, we use the symbol H because of the relation-
ship to the classical Hurst coefficient (more on this in the next section). The
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Figure 2: Log-log plot of Griinwald (convolution) weights at integer node distances
(symbols) and power law 2717 /T'(—a) interpolation (lines). o = 1.1 and 1.9 are
shown.

matrix power creates larger or smaller exponents for the jump magnitudes in
the eigenvector directions of H. The direction of each jump is given once again
by a random unit vector with distribution M (df). Adding up these jumps and
rescaling appropriately—analogous to taking the scaling limit of a random walk
to create Brownian motion—results in an operator Lévy motion [13, 26, 27]:

[t/dt] [t/dt]
2= Xi=Y R0, (23)
i=1 i=1

where R; and 6; are independent.

As in the isotropic case (when H = éI ), the exponent of the random walk
jumps is directly related to the order of the fractional derivatives that describe
them. In the case of the matrix rescaled jumps, the order of the derivatives can
be considered matrix-order as well. To illustrate the effect of the matrix scaling,
consider a simple 2-d case where the two eigenvectors of H are orthogonal (or
in other words, the primary directions of growth are perpendicular). Then the
operator stable exponent dictates independent jumps:

pH_[R™ 0 ] _[RVS 0
L0 R™ T | 0 RYe: |”

Because P(R > r) = r~! for large values, the jump length probabilities on
the k" eigenvector of H fall off as P(RY® > r) = r=®. The jump length
probabilities for trajectories off the eigenvectors decay like a mixture of power
laws. For an example, if we also restrict motion directions to the forward z- and
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y-directions, then the corresponding fractional dispersion equation would take

the form 5 5 5
[e5% 2
p(x,y,t) D, p(x,y,1) Dy p(z,y,t)

ot Oz Oy
and the Fourier symbol of this process A(k) = Di(ik1)® + Dy(ike)*? also
uniquely determines the underlying Lévy process: p(k,t) = exp(—tA(k)).
In general, the random walk (23) converges to an operator-Lévy motion with
governing equation [? 27, 28]

(24)

O pl.t) = —v- Vp(a 1) + V- DpVpla, 1) + DVEip(a, 1), (25
where A is the inverse of H. As opposed to (20), there can be a Fickian
dispersion term in this equation, with Dp equal to 1/2 times the covariance
matrix of particle jumps per time. The multidimensional isotropic equation
(20) assumes that motions in all directions have the same tail parameter, so
that infinite-variance jumps (with a < 2) occur in all directions. When jumps
have different tail probabilities in different directions, there is room for Brownian
motion in one direction and Lévy motion in another, hence the additional term
in the anisotropic-order equation (25). In any given direction, either the Fickian
dispersion term, or the fractional dispersion term, is zero, because only one of
two possibilities (light-tailed or heavy-tailed random walk jumps) can apply.
If all eigenvalues of H are greater than 1/2, then jumps in all directions are
heavy tailed, Dr = 0, and the Fickian portion disappears. Physically, this
means that heavy-tailed jumps overwhelm thin-tailed ones. If all jumps in all
directions are thin tailed, then the fractional dispersion term disappears. As
mentioned previously, the matrix H is a scaling matrix that describes plume
growth rates in all directions. In this way it is related to the classical Hurst
coefficient, because the point source (Green’s function) solution to equation (25)
with v = 0 is self-similar with a rescaling of time and space according to

p(a:’Ct) = ||C_HHp(C_H£L‘,t) (26)

where || - || is the matrix determinant. Note that this includes the Fickian case
where H is a scalar equal to 1/a = 1/2.

A very flexible Eulerian numerical solution to equation (25) could be achieved,
along the lines laid out in [25]. The operator V‘z@; is defined by a convolution,
see [28]. Then the finite-difference solution is a series of convolutions, each rep-
resenting a time step. A similar methodology was used in [29] to create operator
scaling conductivity fields. See Subsection 2.5 for additional discussion.

2.4. Divergence - Integer and Otherwise

Up to this point, we have assumed that the mean advective drift velocity
v and the strength of the dispersion D have been homogeneous in space. For
the mean drift this means that the divergence of the flux V - vp distributes
like v - Vp + pV - v. For divergence-free (incompressible) flow or first-order
stationary processses, the second term is zero and there is no change to our
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previous development. On the other hand, the traditional dispersion term in
(25) can be viewed as the divergence of the particle flux. How can we view
the fractional dispersion operator in (25) in terms of divergence (conservation
of mass) and particle flux? In other words, what happens when the strength of
dispersion varies in space? It turns out [30, 31] that the fractional dispersion
may be derived in several different ways. If one starts from the microscopic
expression of particle motion (i.e., the Ito or Langevin equations), the fractional
Laplacian can be distributed in several ways.

To illustrate, in the case of scalar order « in multiple dimensions, one may
take a classical integer divergence of a fractional dispersion (V - DV%‘/I_l), or
a fractional divergence of a classical integer-order flux (V; ' - DV). Here we
follow the typical abuse of notation: the generalized fractional Laplacian V¢ is
a scalar-valued operator that reduces to the Laplacian A = V2 = V - V when
a = 2 and M is uniform, while the generalized fractional gradient V%[l is a
vector-valued operator that reduces to the gradient V when a = 2 and M is
concentrated on the positive coordinate axes. If the local dispersion coefficient
is a constant, these are equivalent. The differences in the case of space-variable
dispersivity D = D(z) are subtle and small in many cases, but when the disper-
sion coeflicient D has strong fluctuations, the difference can be significant. For
illustration of the numerical methods in Section 2.6, we will concentrate here
on the equation

%p(ac7 t) = —v-Vp(x,t) + V- DpVp(x,t) + Vi 1D (x)Vp(x,t), (27)
including the simpler forms when A — I is the scalar & — 1 in one or more di-
mensions. This formulation uses a fractional version of the conservation of mass
equation: it implies that the change in probability, and by analogy concentra-
tion, is due to upstream differences in local advective flux. The magnitude of
the local fractional dispersion coefficient D(x), a scalar, is a measure of the
difference between local mean velocity and the fluctuations of velocity [30, 31].

2.5. Simulating Spatial Fractional Derivatives: Fulerian Methods

As mentioned above, traditional finite difference methods can be thought of
as discrete convolution formulas that lead to matrix equations [32, 33]. The local
operators lead to sparse and banded matrix equations. Fractional-order equa-
tions are conceptually similar, except that the matrix of weights on other nodes
is fuller, up to 100% full when the measure M (df) is non-zero everywhere. Be-
cause fuller matrices are typically solved iteratively, the fuller matrices should
not pose tremendous numerical challenges. Many researchers are concentrat-
ing on efficient simulation of the fractional derivative operators (e.g., [34, 35]
and references therein). To date, however, finite difference solutions for multi-
dimensional fractional derivatives have been concentrated on the coordinate
axes [33].

Fractional derivatives are linear operators; therefore, classical methods using
finite elements can be adapted to solve fractional partial differential equations
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[36, 37]. The finite element method hinges on the action of the linear operator
on the chosen basis functions. That is why Dirac delta functions are commonly
chosen as bases for the traditional integer order equations [38]. Roop’s method
uses polynomials for the bases, which, when properly chosen, simplify the calcu-
lation and implementation of the fractional derivative on the basis polynomials.
This general procedure can be accelerated substantially, to the point where the
fractional methods are not much more time-consuming to solve than the inte-
ger cases [35, 39]. To date, we are unaware of this method being applied to
hydrological problems.

Eulerian approximations for fractional advection dispersion equations have
been proven stable (when properly implemented) with a truncation error of or-
der (Ar)?, so they are nearly as robust as proven methods for classical diffusion.
These methods may also suffer less from the truncation error associated with
the advection term. The well-known phenomenon of numerical dispersion arises
from simulation of the hyperbolic portion of the advection-dispersion opera-
tor, because the first truncated term is of the form Az v d?/dz?. Therefore,
traditional finite difference methods must keep the grid Peclet number Az v/D
reasonably small. The fractional dispersion has heavier tails and greater spread-
ing rates than the pseudo-Fickian numerical dispersion, so the constraints on
the grid spacing may be reduced, although this has not, to our knowledge, been
explored in detail.

2.6. Lagrangian (Particle) Methods

Particle-tracking methods became popular as a way to eliminate numeri-
cal dispersion, because each particle follows a characteristic curve (i.e., is an
exact solution of the hyperbolic advection term [40]). Important research fol-
lowed [41, 42, 43] concerning the solution of the expanded dispersion term
V-(DV) = (V-D)-V+DV?, primarily because geologic material may have very
large, or even infinite gradients in the dispersion coefficient at sharp interfaces.
These works highlighted the process involved in establishing the link between a
(nonlinear) Langevin equation of instantaneous motion, the governing equation
of that motion, and the link to the advection-dispersion equation that was the
pre-supposed goal of the simulation.

In a series of papers [44, 31, 45], Zhang and coworkers defined the Langevin
equations for motions that correspond to the multi-dimensional fractional ADEs.
In particular, they showed the subtle differences in the random walks that
correspond to the operators DVf/[, VDVJ\A[I , and VAA[I DV, including the
cases when A reduces to a scalar a and also in 1-d. The solutions are de-
rived using the finding that VDV?[I, and —V‘;{IDV are adjoint operators
for M(df) = M(d(—0)). For practical purposes, when variations of D are small,
the differences in the solutions between these fomulas are reasonably small.
The recognition and addition of the heavy-tailed dispersion in any case is the
first-order effect.

To simulate the multi-scaling jumps, one distributes the initial condition,
and subsequent sources of mass, into IV particles, each of which follow a ran-
dom walk approximation of (23) with finite time step At. A mass-weighted
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histogram of particle positions gives the concentration. An Euler approxima-
tion of local advection X (¢t + At) = X (t) + vAt or exact analytic methods
[46] are used for the deterministic drift. For simplicity, we illustrate the case
where the mixing measure M (df) is concentrated on the eigenvalue coordinates
of the scaling matrix H. For the random dispersion, as well as the effect of
heterogeneous strength D(x), one simply generates independent jumps in each
eigenvector direction. This is conceptually similar to generating independent
standard Gaussian longitudinal and transverse jumps to simulate classical dis-
persion. In the heavy-tailed case, the jump length of the particle along the
eigenvector belonging to the k" eigenvalue 1/ay of H can be calculated by
generating the following random number [44, 45]

1

a1

oD dLak—l(t)a (28)

Oz,

where k represents the direction of the k*® eigenvector of H, © = sign(0D/dx},),
and dL, (t) and dL,—1(t) denote independent random noises underlying a-order
and (a — 1)-order Lévy motions, respectively. These are generated by taking
dt'/“ times a standard, maximally-skewed aj-stable random variables with dis-
tribution Sy, (¢ = 1,5 = +1,u = 0). The stable random variables can be
generated exactly using the modified Chambers-Mallows-Stuck (CMS) method
(for details, see the Appendix). The fractional dispersivity D(x) must be first-
order differentiable, so sharp interfaces are ruled out.

Generating Lévy-stable random variables is somewhat computationally ex-
pensive, so one can generate random vectors R¥ -6 in the domain of attraction
of the stables. This concept is similar in principle to classical random walk codes
that use a Uniform [—+/3, /3] random variable as a substitute for a standard
Gaussian: After as few as ten motions, the random walks with these jumps are
indistinguishable from Brownian motion. The Langevin equation can be approx-
imated using more easily-generated zero-mean random variables & with power
law tails (Appendix). Once the heavy-tailed random variables & are generated
and scaled as substitutes for the stable dL in (28), the jump contribution R'/*
in each eigenvector is specified. As for direction, if the mixing measure has a
known or assumed distribution function F(z) = P(f < z) on the unit circle,
then the typical method using the inverse function on a Uniform [0,1] variable
is used (as did [47]). Generate U, a Uniform [0,1] variable, and the direction
vector § = F~1(U). Otherwise, the measure M (df) is discretized in m classes
and summed to make the cumulative measure M () via P,, = >_,", M(db;).
Then the random direction vector in each case is 8 = 0,, if P,,,_1 < U < Pyy.

Now represent the vector 6 in terms of the unit eigenvectors (ey) of H:
0 = Aie1 + Agea + ..., and the final particle motion R¥ @ is given by the vector
ST AR Several applications to field data are shown in Section 4.

RY* = D(z)ar dL,, () + ©

3. Fractional Time Derivatives

Fractional time derivatives are formulated to respect causality, i.e., so that
future events cannot affect the past. Therefore, the fractional time derivatives
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are convolutions with a power law that is directional in time. The influence of
events t units in the past decays with a power law. The fractional time deriva-
tives take two different forms, based on the treatment of the initial condition.
For clarity, we review both forms briefly here. A straightforward extension of
the forward direction space derivative assumes that the function vanishes on
t<0:

df(t) _dm df() dr dmVF() d"/t (t—y" !
dty  dtn dtv-r o dtn dt—(-) din I'(n—7)

f(y)dy

(29)
This is called the Riemann-Liouville fractional derivative. Using the R — L
subscript for this formula and taking Laplace transforms, one finds

o ~ n—1 dry—l—k
. [ d{it)} Rn s7f(s) + kzz()Ska(t)’tzo'

(30)

For many applications, 0 < v < 1, so n = 1, the summation disappears and
the " derivative represents multiplication in Laplace space by the quantity s,
where s is the Laplace parameter. In other cases, the terms in the sum will
disappear for most well-behaved functions because the fractional derivatives
involve an integral from 0 to ¢ evaluated at ¢ = 0. Recall that the traditional
derivative of integer order has a Laplace transform that involves values of the
function and its lower order derivatives at time ¢ = 0. Generalizing on this
formula, Caputo [48] defined a new kind of fractional time derivative such that:

dVf(t o n-l i dk
ﬁ[ dt‘g)}czs f(S)—l-];)s ' kﬁf(mt:o (31)

where n — 1 < 7 < n. Factor out the term s7~" and we see that the Caputo
derivative (labelled with a subscript “C”) is a convolution of a power law with
the nt® integer derivative of a function:

ﬁ{dlfii“]c (g Gt i)

e[

(32)

An inverse Laplace transform reveals the Caputo derivative in real space:

d*f(t) gn—a—1 d"f(y) t (t— y)n—afl " f(y)
|: dt* :|C - F(n - Oé) * dy™ B [) F(n — a) dyn dy (33)

In the usual case, where the terms under the sum in (30) vanish, the two types
of derivatives are related by:

{dzzfgt)L_L[% L ZrkH d;f@:m (34)
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3.1. Fractional Time Derivatives and Random Walks

The classical random walk is typically defined by motions that are divided
by equal duration “waits,” and the passage to a continuous (Markov) motion
process requires a subdivision of the motions into smaller and smaller indepen-
dent jumps. Montroll and Weiss [49] defined a process, called a continuous time
random walk (CTRW), in which the waiting times between particle jumps could
have any distribution. A closely related topic called “subordination” was previ-
ously explored for continuous time Markov processes by Bochner [50] and Feller
[51]. Because the original motion processes we are interested in are Markovian
diffusions, we follow their development. The Markov particle motion process,
whether Brownian motion or the many Lévy motion extensions in the previous
sections, denoted X (¢), has density p(x,t) governed by the Cauchy equation:

&bl t) = Aol ). (30)
The point source solution of equation (36) has FT p(k,t) = (), If the time
a particle spends in motion during the epoch [0,¢] is a random variable U (t),
the resulting random particle location becomes A(U(t)). We will assume for
simplicity that the amount of time actually spent in motion at any time is a
continuous random variable with probability density h(u,t). The density that
now describes a particle’s whereabouts, which we denote ¢(z,t), is given by
conditioning over all possible probabilities of the operational time u for the
clock time ¢:

o, t) = /O " (s W, t)du, (37)

An explicit solution may be computed from the integral (37) if the density h(u,t)
of the operational time U(t) at any clock time ¢ can be found. We take two
tacks: one that gives the governing equation of the limits of traditional CTRW,
and another that gives the solution for a two-phase system in which the particles
transfer between mobile and immobile phases.

3.1.1. Uncoupled CTRW

A CTRW is built on the model of each motion being separated by a single
random waiting time W. If the waiting time and the subsequent motion are
independent, the CTRW is called uncoupled. The jump sizes are often taken
to be the limit of a large number of jumps (e.g., Gaussian as reflected in a
second-order space derivative), so that the same large number of waiting times
can be assumed to pass to their limit as well. It is straightforward to sum the
waiting times, but more difficult to figure the inverse, which is the time spent
in motion. The sum of the waiting times 7'(n) = Y ., W, gives the time of the
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nt" jump, while the operational time U () relates to the number of jumps N (t)
that have occurred by time ¢. These random variables are inverses related by
{N(t) > n} = {T(n) <t}. In the limit, the sum of random waiting times T'(n)
converges to another Markov process G(t), and this inverse relation becomes
P(U(t) > u) = P(G(u) <t). The density functions for U(t) and G(u), denoted
h(u,t) and I(t,u) are then related by [52]:

h(u, 1) = % <1 _ /0 i, u)dT> . (38)

If the individual waiting times W have a heavy tail, so P(W > t) ~ Ct~" for
some constant C, then similar to the limit of random walks in space, the density
of the Lévy process G(t) has Laplace transform L[I(t,u)] = I(s,u) = e~ *F5",
where 3 is a scale parameter depending only on v and C' (Appendix). Taking
Laplace transforms ¢ — s in (38) leads to

h(u,s) = %(—l(s,u)/s) = BV LU, (39)

Take Laplace ¢t — s and Fourier 2 — k transforms in (37) and use equation (39)
along with p(k,u) = e“4*) to get:

q(k:,s):/ p(k,u)h(u,s)du:/ euAR) gr=te—ubsT gy (40)
0 0

Using 1/b = [ e~"du, we have

Bs¥1 71
1) = G A ~ 5 A)/B “

Now invert the FT and LT (one at a time) to get the fractional-order limit
equation for CTRW:

dv 1 A ' 5

dtﬁ‘](mvt) - E wQ(Ivt)a Q(Ivt - O) - (CE), (42)
where we have used the Caputo fractional derivative (33). Note that the pa-
rameters in the space operator A, (velocity and dispersion) are reduced by the
factor f.

We are not aware of a similar development, using subordination, for coupled
CTRW, i.e., the case where the size of particle jumps depends on the size of
the preceding waiting time. This possibility was developed for CTRW by Scher
and Lax [53]. The coupled CTRW have different rates of growth of moments of
the Green function relative to the uncoupled CTRW [53, 54, 55]. Regarding the
relationship of fractional calculus to coupled CTRW, certain functional forms of
coupling can lead to more exotic governing equations with coupled space-time
fractional derivatives, like (d/dt 4+ vd/dx)*, see [19].
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3.1.2. Mobile/Immobile Particles

Suppose that, between each waiting time in an immobile phase, the parti-
cle participates in the motion process for exponential random times [52]. The
rescaled limit of the waiting times follows the same procedure as the classical
CTRW above, but while the particle is in the mobile phase, the clock time and
the operational time are ticking away at the same rate [52]. This shifts the
limit of the waiting time density by adding u = ¢, which multiplies the Laplace
transform by e**: L[I(t,u)] = l(u,s) = eS¢’ Now the operational time
density is calculated as

h(u,s) = % (=l(u,5)/s) = (1 + BT L)e usHAsT), (43)

The governing equation is calculated as before, by taking the FLT of (37) and
substituting densities of p(k, ) and h(u, s):

1+ Bs771
s+ BsY — A(k)

Now invert the FLT for the real space governing equation of the limit of 2-state
Mobile/Immobile processes:

q(k,s) = (44)

d 10,
%q(x7t> +ﬁ dt,y

Q(xvt) = Awq(.%‘,t); q(x’t = O) = 6(1:)’ (45)

where once again we have used the Caputo fractional derivative.

It is not quite as simple to equate probability to concentration in this case.
The single particle exists alternately, in two different states: mobile, while it ac-
tively participates in the motion process, and immobile between mobile epochs.
The total probability of particle whereabouts is the sum of the mobile and im-
mobile location probabilities. The FLT (44) has two terms in the numerator.
These correspond, in a continuum sense, to the portion of the particles in the
mobile and immobile phases, respectively. By combining these, equations (44)
and (45) represent total resident concentration. This can be shown by con-
sidering the continuum multirate mass transfer with infinite mean, power-law
random waiting times, which have the following three equations for concentra-
tion in 1) the “total” phase Cr, 2) the mobile phase Cjps and 3) the immobile
phase C [13, 52]:

aCr 0
o e T AT
OC v OCy . B CM(x,t = O)ﬂti7
g TP~ ACu T(1—7) (46)
oCy oCy . C]y[(l‘, t= O)t—"/
o P — ATt TR )

The total concentration Cr = 03;,Cy + 0;Cr where 05, and 6; are mobile and
immobile porosities and 8 [T7~!] is defined here as capacity coefficient (see
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[11] for a translation of the many forms of mobile and immobile porosity and
sorption). Equations (46) assume that all solute begins in the mobile phase:
Cr(x,0) = 0. Taking the FLT of these equations and comparing to (44), it is
convenient to define the two components of ¢(k,t) by

1
w8 = e A
S (47)
_ b
alh ) = e —Am)

which partitions the particle density location function into mobile and immobile
contributions because qar + g5 = q. As a result, 0,,Cr(x,t) = qrr(x,t) is the
mobile concentration, and 0;Cr(x,t) = ¢r(z,t) is the immobile concentration.
The functions gy and gy are the portions of the total probabilities for a particle
to occur at some point, hence these are related to the concentration in total
(solid and liquid) aquifer material and must be adjusted by mobile and immobile
porosities.

This gives a simple method to simulate the fractal multi-rate mass transfer
process in a particle tracking routine [52, 56]: The mobile times are exponential
with mean 1/(S\), where in this case A is a tuning parameter to ensure enough
transitions between mobile and immobile by the time of interest. If the particles’
locations are desired at some time ¢, choose A so that the mean mobile step is
approximately one tenth of this: A > 10/(¢3). For waiting times, use either
the chopped (Appendix) or shifted Pareto following P(W > t) = S7(t 4+ S) ™7,
generated by W = SU~Y/7 — S, where S is the shift (which controls the scale of
the waits) and U is a Uniform [0,1] random variable. To derive the proper shift
S, start by setting A = 1, then by the Appendix in [52], we need W to be in
the domain of attraction of a standard [81] stable law. By [? , Theorem 3.37,
Proposition 5.8], S = (I'(1 — 7) cos(my/2))~'/7. Changing the value of A does
not change the overall solution but makes each mobile sojourn shorter, hence
places more alternating mobile/immobile phase changes in any given time step.
There are )\ times as many mobile and immobile episodes compared to A = 1,
so to get the same overall process, each W is multiplied by A\~/7 because for
stable random variables \~'/7 Zginl} W; has the same distribution as Y ., W;.
Therefore for any A, the shift S = (AI'(1 — ) cos(77y/2)) /7.

4. Fractional ADEs and Field-Scale Tracer Test Data

The first field application of the spatial fractional equation to tracer test data
was the Cape Cod bromide plume, motivated by the apparent power-law growth
of the plume’s dispersivity. This model successfully replaced the time-variable
dispersivity in the traditional ADE by a constant parameter in the fractional
ADE [7]. That model used a symmetric mix of forward and backward spatial
fractional derivatives (¢ = 0.5 in (11)). The use of a symmetric fractional ADE
was criticized by Zhang et al. [58]. They maintain that a more proper way to
account for solute spreading behind the mean is by trapping in low permeability

21



705

706

707

708

709

710

711

712

713

714

715

716

77

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

zones, rather than long journeys upstream. Zhang et al. [58] modeled the
Cape Cod data with a forward space and time fractional ADE. The forward
space derivative term models the leading plume edge, and the fractional time
derivative term models the trailing edge. That method yielded improved fits,
although the relative homogeneity in the hydraulic conductivity (VAR(In[K]) =
0.26) at Cape Cod makes heavy tailed particle jumps less important. This is
reflected in the fitted value o = 1.6 in that model: Because the space fractional
ADE reduces to the traditional ADE at o = 2, the effect of setting o = 1.6 is a
small increase, relative to other sites, in the heavy leading plume edge.

Benson et al. [8] then examined the bromide and tritium plumes at the
MADE site. Their analysis was done in 1-d using the maximum concentrations
along the “core” of the plume. The higher In(K) variance, recently measured
to be on the order of seven [59], made the one-sided space-fractional ADE an
attractive model, and some simple analyses of the K statistics allowed an «a
priori estimate of all equation parameters. The fitted value of o = 1.1 indicates
a heavy leading plume edge, reflecting a highly heterogeneous K field. The
space-fractional ADE produced a good fit to normalized concentration snap-
shots (Fig. 3). Schumer et al. [13] applied an MRMT equation with v = 0.33
and 8 = 0.08 d7°5 to explain the bromide plume zeroth spatial moment (to-
tal mobile mass) decline. The fit of the zeroth moment was improved over
single-rate methods [60]. Zhang et al. [58] used this estimate to fit the MADE
plumes in 1-d, using (11) in (45), and found that both spatial and temporal
non-locality were important. A further analysis of the centered second moment
of the MADE plume showed different growth rates in the longitudinal versus
transverse directions [27], indicating the need for a multiscaling fractional dis-
persion term. Zhang et al. [23] used a 3-zone model with longitudinal derivative
of order « = 1.1 and transverse of order a = 1.5 and included the fractal mo-
bile/immobile parameters previously reported [13]. For the mixing measure,
they assumed a braided stream network and derived the proportion of overlap-
ping sinuous channels that point in any direction [23]. Their particle-tracking
simulation (Fig. 4) is a reasonably faithful representation of the plume with
comparatively few parameters—especially, a constant mean velocity v. In par-
ticular, the spatial discretization (of, say, K) is vastly reduced. The non-local
fractional derivatives are designed to replace finer-scaled velocity information
and allow much coarser discretization. This concept has been demonstrated on
an intensively studied 30.5 x 30.5 cm sandstone slab, where an analytic solution
of a fractional PDE captures the important features of a plume that over 8,000
measured K values fail to reproduce when used in the classical ADE [56].

In related research, Harman et al. [61] examined water transport through
hillslopes by assuming that, unabated, a parcel of water flows according to piston
(wave equation) flow. But the parcels of water may be trapped in the hetero-
geneous K field for random, heavy-tailed amounts of time, giving a fractional-
in-time wave-type equation. The solutions of the equation match numerical
solutions of water flow through mildly to strongly heterogeneous hillslope ma-
terial.

Bradley et al. [62] and Ganti et al. [63, 64] looked at experimental and
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theoretical evidence for heavy-tailed transport and fractional ADEs for sand
and gravel bedload transport in rivers. Foufoula-Giorgiou et al. [65] extended
this concept to overland sediment transport and the evolution of landscapes.
The transport equations take the exact forms presented herein. These processes
are reviewed by Schumer et al. [66].

5. Fractional Integration: fBm Random Fields and Extensions

An integral is also called an antiderivative, with good reason. It is designed
to be the inverse operator of a derivative. This is simply illustrated by the
Fourier transform relation [ f'(z)dz = f(z) < (ik)~'(ik)f(k) = f(k). As
we showed in previous sections, fractional derivatives in several dimensions can
apply a different order of fractional differentiation in each coordinate, using
the Fourier symbols of different Lévy motions. We have called this Fourier
picture A(k), and we have observed that multiplication by A(k) in Fourier
space defines the multidimensional fractional derivative. It follows that the
fractional antiderivative corresponds to division in Fourier space by A(k), in all
of its forms presented above.

Fractional Brownian motion (fBm) in 1-D was originally defined as a weighted
sum of prior values of white noise, where the weights fall off like a power law.
Although the forward-direction fractional integral of white noise B(t) diverges:

x

Bp(z) = ﬁ [m (x—y)"~'/?B(dy), (48)

the difference of two fractional integrals By (t) = By (t) — By (0) is a legitimate
stochastic integral that converges [67]. Define for compact notation E = H+1/2
where the Hurst scaling index 0 < H < 1, and equation (48) has the form of
a fractional integral of order 1/2 < E < 3/2. If the random measure B(dy)
were replaced by f(y)dy for a suitable non-random function, then the fractional
integral (48) would be the inverse FT of (ik)~¥ f(k). The same kind of finite
sum approximation that is used to approximate the fractional derivatives is
also possible with the stochastic integral (48), and this idea can be used to
efficiently simulate an unconditioned fractional Brownian motion, as outlined in
[72, 68]. Briefly, the stochastic integral (48) becomes a discrete convolution of
a sequence of iid normal random variables B(Ay) with the Griinwald weights
corresponding to fractional integration (Fig. 1), evaluated by taking the FT of
both, multiplying, and inverting. This uses the fact that the FT of a convolution
is a product.

For space-functions, the (causal) positive fractional integral can be sensibly
extended to a symmetrically weighted sum of positive and negative fractional
integrals. The first multi-dimensional fractional Brownian motions were con-
structed by taking a power of the wave vector defined by a Fourier multiplier
|k|=F where E = H +d/2. A form of anisotropy can be implemeted by specify-
ing a simple stretching in orthogonal directions by using fractional integration
with Fourier symbol |- k|~F where the vector A controls the correlation length
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Figure 4: (a,c) 2-d map-view snapshots of the MADE tritium plume and (b,d)
particle tracking simulations. The simulations use a single velocity value and
three zones of different dispersion strength and mixing measure. After [23].
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of the increments [69, 70, 71, 72]. Similarly, one could define a fixed distance
and measure the value of the correlation. This corresponds to a radial mixing
measure as defined above for the fractional derivatives. The stretching by vec-
tor A just described represents an elliptical set of weights in the mixing measure
[68]. Once again the mixing measure is a completely user-defined probability
distribution on the unit sphere, so that correlation of the increments can be
restricted to any set number of directions (Fig. 5). All of the fields constructed
in this manner have the same Hurst index in every coordinate, but a different
correlation length (or strength). A log-log plot of the correlation of increments
in any direction would have the same power law slope, but different magnitudes.

However, many naturally occurring fields (e.g., K fields in alluvial aquifers)
exhibit a different form of anisotropy, in which the Hurst index is different in each
coordinate [68, 72, 73, 74, 75, 76, 77, 78]. These fields can be described using a
multi-scaling fractional derivative, whose Fourier symbol A(k) can be explicitly
computed from the Lévy representation of the corresponding operator stable
Lévy process [57, 28]. This Fourier symbol is characterized by its matrix-scaling
property ¢ A(k) = A(cQk). In other words, the function is scale invariant only
when stretched different amounts in different directions. The corresponding
multi-scaling fractional integration has Fourier multiplier (k) = A(k)™!, so
that (cQk) = ¢ Fy(k). To make the parametrization unique, we require
trace(Q) = d, the number of dimensions. Then the matrix Q codes deviations
from the overall order of fractional integration, and isotropic scaling has Q =
I. The multi-scaling random field By (x) constructed using this filter can be
simulated in exactly the same way as a fractional Brownian motion, using the
discrete Fourier transform in d dimensions. In the isotropic case with F =
H + d/2, this random field scales according to By (cx) = ¢! By (x) [68, 29, 79],
consistent with isotropic fBm. Including the possibility of anisotropic scaling
by giving Q different eigenvalues, we have the general scaling relationship:

By(c9x) = " By(x) (49)

If Qk; = g;k;, then the coordinate process By(z;) is an fBm with Hurst
index H/q;. Larger variations in the eigenvalues of the matrix @ describe more
strongly anisotropic fields, with a different Hurst index in each coordinate.

5.1. Conditioned Random Fields: Numerics

Creating an unconditioned operator-scaling Gaussian random fields By, (x) is
a simple matter, once the user has defined the mixing measure M (df) on the unit
sphere (e.g., Fig. 5), and the possibly unique Hurst index H in each coordinate
(Fig. 6). These unconditioned fields may be constructed several ways, each
using the fact that a convolution is taking place. One may either construct the
function ¢ (x) and take its fast Fourier transform (FFT) or directly construct
(k). Similarly, one may either construct a same-sized white noise field of
uncorrelated Gaussian random variables and take the FFT, or construct the
FT of white noise directly using the spectral representation of an uncorrelated
Gaussian field [80, 81]. The product of ¥ (k) and B(k) is taken and inverse
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Figure 5: Isotropically scaling fBm fields generated with identical input noise B(x)
and an single scalar H = 0.3. (a) Elliptical weights, and (b) downstream weighted
mixing measure estimated from braided stream photograph. After [68].

transformed. Only a portion of the field is retained due to periodicity of the
FFT routine.

In real-world applications, the hydraulic conductivity (K) field is the most
important control on the motion of conservative solutes. Furthermore, it is very
common that some K data is collected, and any interpolation based on random
field generation should honor these measurements. Creating a conditional field
is more complicated (and significantly more time consuming) because the con-
volution algorithm changes any points specified before the convolution. Based
on the research of Revielle [82], we recommend two useful conditioning methods:
The first, based on the discussion in Feller [51], is called orthographic projection;
the second, an adaptation of a method proposed by Journel and Huijbregts [83],
is called random bridging.

5.1.1. Conditioning By Orthographic Projection

The orthographic projection method relies on the conditional probability
distribution of any unknown point, based on a set of known points. Similar to
existing sequential simulation methods [84, 85], initially the conditioning points
comprise the known list, and the points to be simulated comprise the unknown
list. The known list is used to sequentially create conditional probability dis-
tributions for each point within the unknown list. Once an unknown point has
been simulated, it is added to the known list, and can be used to simulate subse-
quent unknown points. This process of simulating unknown points, and placing
them on the known list, is continued until each point has been estimated and
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placed into the known list.

Without loss of generality we will consider the creation of a zero-mean ran-
dom field. Make a discrete approximation X; = > . ¢(j)B(i — j) =~ By(x;) of
the stochastic integral that defines the random field, where the filter ¥(j) comes
from inverting the Fourier symbol ¢(k), and B(¢) is an uncorrelated Gaussian
sequence with mean 0 and variance 0%. Then the covariance is

EIX;X,|=E

> w(k)B(G —k) Y ¢(1)B(i - 0] (50)
k l

where E[-] is the expectation. Because E[B(i)B(j)] = 0 for ¢ # j, the only
nonzero terms in the sum occur when j — k = ¢ — [, i.e., when [ =i — 5 + k.
Then the covariance reduces to:

E[X;X;]=E lZ $(k)B(j — k)y(i — j + k)B(j — k)]
k (51)
=op > Yk —j+k)
k

This expression, a discrete convolution, is used to determine the covariance
of two points. For larger fields, the covariance can be calculated efficiently
using a discrete FFT to evaluate the convolution. Since the field has stationary
increments, on a regular grid, the computation need be performed only once.
These covariance values can then be used to simulate unknown points in the
orthographic projection. Given known points X;, Xo, ..., X;,_1, to simulate an
unknown point z,,, compute the covariance matrix

EX:X1] ... E[X:1X.]
M, = : : (52)
E[X,X1] ... E[X,X,]
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and the inverse covariance matrix @ = [g;;] = M,,; . Then simulate the unknown
point by drawing a random Gaussian variate with mean and variance

fn = a1 X1+ ..+ ap_1Xn 1 (53)
where a; = —¢in/qnn and g¢;; is the 7, j entry of the inverse covariance matrix

Q (see Feller [I11.6] [51]). Once this unknown point is simulated, it is added
to the known list, and can be used to simulate the remaining unknown points.
As the list of known points grows, a subset of points must be selected from the
known list, otherwise inverting the M, matrix becomes inefficient. As a result,
the known points included within each M,, must be carefully selected, in order
to capture all important correlations present, yet remain efficient. Note also
that this algorithm is very closely related to simple kriging: the mean value
at a point is similar to a kriged surface, except that the “kmown” point list
can (and almost certainly will) contain points that were not measured but were
previously simulated.

There are several issues concerning this algorithm that influence the speed
of calculation and characteristics of the output field. The first is choosing the
order of points to be created. Painter [85] suggests moving sequentially through
the field. [82] found that combining the nearest neighbor search and a random
spiral search for more distant points was efficient and accurate. Painter [86]
discusses the potential drawbacks of the various methods, and we find that the
appearence of these field is very sensitive to the details of the order of simulation.

The procedure used to determine which known points are used to create
each unknown point is also extremely important to the accuracy and efficiency
of the output field. First, the number of points used to simulate each unknown
point must be determined. Due to the computational inefficiency of using the
entire known list to condition each unknown point, a selected portion of the
known points is required. Known points must be selected which capture the
correlations present at all scales, but also keep the size of the covariance matrix
M, manageable. A range of n from 20 to 50 was found to produce both accurate
and efficient realizations and is consistent with previous work [85, 86, 87]. To
select a representative set of X1, Xo,..., X;,_1 in 1-d, the only decision variable
is the lag distance from the point of interest X,,. Therefore, to capture the
correlations present at all scales in 1-d, the distance from each known point to
X, is calculated. When an isotropic kernel is used, only the absolute distance is
required. When the kernel is anisotropic in multiple-dimensions, it is important
to select points not only based on distance but also on orientation to the point
of interest.

5.1.2. Conditioning By Random Bridging

The method of random bridging is similar to the conditional simulation
method of Journel and Huijbregts [83]. On the surface it is more computation-
ally demanding than orthographic projection because it requires kriging two
mean surfaces — a procedure “built in” to the orthographic projection method.

29



913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

However, when creating multiple realizations, the relative workload decreases for
the random bridging method. For this reason, we typically prefer this method.
We also find that it is insensitive to various numerical details such as the selec-
tion of conditioning points. MATLAB implementations of both methods in 3-d
are available from the author.

Initially, the method begins with a set of conditioning values Z; at locations
X;, and an unconditional realization, By(x). The unconditional realization
is then conditioned by “molding” the noise from the unconditional surface to
a “mean” surface interpolated through the conditioning points. This method
requires finding an apparent mean or trend surface between conditioning points,
and a similar trend surface within the unconditioned realization.

Determining the deviation from a trend surface in the unconditional real-
ization can be implemented by first interpolating the trend between the points
By (X;) of the unconditional realization. This interpolated surface is called b(x),
and is best created using an unbiased process similar to kriging [83]. In our case,
the covariance matrix is a convolution of the function ¥(j) with itself. Using
the same interpolation routine, the interpolated surface (call it z(x)) between
the conditioning points Z; is created. Finally, the conditioned field is created
by taking the difference between the unconditioned field and its trend surface,
and adding this to the trend surface from the measured points:

By ()" = z(x) + [By(z) — b(z)] (55)

5.2. Conditional osfBm

The orthographic projection and random bridging algorithms remain the
same in multiple dimensions, as far as using an inverted covariance matrix to
estimate p,, and o2 at each unknown point. The only change occurs in how
points are selected to construct M, in each algorithm. The method of searching
through a field and selecting the best points to create each M, has significant
consequence on the efficiency of creating conditional fields in both algorithms.
Due to the slow power-law covariance decay, every point within the field has
an effect on every other. Ideally, every previously simulated point would be
used to simulate the next in order to account for the infinite correlation length.
However, as the field size grows, a computational ceiling is quickly reached.
Therefore, a subset of known points must be chosen to create each M,,. We
have implemented a search based on sorting points based on their value of
covariance with the point being simulated (or kriged). Examples of 2-d fields
conditioned using the two algorithms are shown in Figure 7. It is clear that,
with a knowledge of the correlation structure, defined by the filter ¥(j), and a
small number of conditioning points, faithful conditioned fields can be created
that maintain the fractal structure at all scales.

5.8. Fractional Differencing of fBm to determine H

One of the handy features of the Griinwald weights is that it is very easy
to perform fractional differences as well as fractional sums. Because fBm is
a fractional integral of uncorrelated Gaussian noise, performing the “correct”
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a) Training image from which
conditioning data is taken

b) 10 conditioning points (circles),
representing 0.0038% by volume.

¢) 41 conditioning points (circles),
representing 0.0156% by volume.

d) 164 conditioning points (circles),
representing 0.063% by volume.

e) 655 conditioning points (not shown),
representing 0.25% by volume.

Figure 7: Conditional osfBm realizations created using H = 0.4,¢q1 = 0.9,¢q2 = 1.1;
therefore, Hporizontai = 0.44 and Hyerticqr = 0.36. The mixing measure was fixed
delta functions with weights of unity on the vertical axes and 3 on the horizontal
axes. The data used to condition each field is from the training field shown at
the top. Each figure shows the locations of conditioning points using blue circles,
except for (e), in which the 655 points are omitted for clarity.
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order fractional derivative on fBm will give back an uncorrelated signal. This
can aid in estimating the Hurst coefficient. In the discrete data case, following
[88, 89], use (16) and (17) on a spatial series of hydraulic conductivity K,. We
took the 93 x 93 K values measured on a slab of Massillon sandstone (see also
[90, 91, 56] and analyzed each of the 93 columns of data and separately the 93
rows of data, using a differencing distance of N = 10. Prior to differencing, the
data in both columns and rows is highly correlated (Fig. 8, top plot). Here
we show only the column data. Applying progressively higher-order fractional
differences reduces correlation, until too high an order d induces statistically
significant anticorrelation at lag one (Fig. 8, bottom plot). The differenced
data also show more Normality (Fig. 9), although some heavier-tailed K data
still exists at all levels of differencing.

6. Conclusions and Recommendations

This paper represents a survey of fractional calculus methods in hydrology
with a few twists. First, we use the limit Markovian diffusions to define the full
suite of fractional differential operators. This follows the logic that Brownian
motion is an extremely useful model of diffusion and dispersion, in part because
it represents a limit distribution, but also because it generates a solvable gov-
erning equation. When the basic tenets of Brownian motion are violated, some
extended models are often similarly useful. When individual random motions
follow a distribution with a power law tail, the motions converge to Lévy mo-
tion, which generates a diffusion equation with fractional space derivatives. In
d-dimensions, up to d unique fractional derivative orders (including the classical
second) may coexist. These orders dictate the rate of plume growth. If solute
migrates into relatively immobile phase(s) and is released at a power law rate,
then the diffusion equation’s first derivative is either replaced, or joined, by a
time-fractional derivative. This modifies the plume growth rate and simulates
the power-law decay often seen in breakthrough curves of conservative tracers.

The fractional derivative operators are linear and admit Eulerian approxima-
tions similar to classical finite differences, but with fuller matrices. Lagrangian
techniques may also be used in the same vein as classical random walk particle
tracking codes are used to simulate classical diffusion. In all cases the simu-
lations are more taxing, but the non-local fractional derivatives are designed
to replace finer-scaled velocity information (e.g., [56]) and should require much
coarser discretization—in some cases analytic solutions capture the important
features of real solute plumes in aquifers.

Another approach to simulating transport in heterogeneous media is built
on the creation of aquifer facsimilies. An attractive model is based on fractional
Brownian motion because of the heterogeneity present at all scales and long-
range correlation. Because fractional Brownian motion is built using fractional
integrals of Gaussian noise, we are able to extend the classical isotropic fBm to
have different Hurst coefficients in different directions. The fields are created by
using the inverse operation specified by the multi-dimensional fractional deriva-
tive operators that we described previously. These fields can be conditioned
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Figure 8: Autocorrelation function (ACF) for columns of log;y(K) data after fractional differ-
encing. The ACF are calculated for each of the 93 columns and averaged. The 95% confidence
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reduces autocorrelation at all lags to non-significant levels. After [56].
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Figure 9: Histograms and Normal probability plots for original and differenced data from
slab columns. (a) and (c): The raw log;¢(K) data (K in cm/s) is significantly nonGaussian.
(b) and (d): Following 0.9-order differencing (H=0.4), the data is more Normal, although
somewhat heavy-tailed. After [56].
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by measured data to create faithful representations of aquifer material—if it
has the long-range dependence inherent in fBm—with the added flexibility of
variable Hurst coefficients and user-defined weights in all directions. An open
question is whether a link exists between these fractal K fields and the possible
fractional PDE that describes the transport of a passive scalar within.
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Appendix A. Generating Heavy-Tailed Random Variables

There are several methods to generate approximately stable random walk
variables £, for example the shifted Pareto P(§ > r) = s*(r + s)~“. However,
the density is too peaked at the origin and convergence is slow [92]. One can
choose the modified Chambers-Mallows-Stuck (CMS) method to generate ex-
actly the stable random variables [93], but calculations are slowed by numerous
sine and cosine calls. Instead we recommend jumps R from a “chopped” Pareto
distribution (e.g., Fig. A.10d).

Here we review the CMS method for max-skewed stable variables. Following
[93], for o # 1, generate V distributed uniformly on (—7/2,7/2) and an inde-
pendent exponential random variable W with mean 1. Then £ is standard max
skewed a-stable generated by:

—-1/(2) . (1-a)/«a
| cos (T sinfa(V +7/2)] [cos[V — a(V + 7/2)]
= (o 5)) T o -

A more computationally efficient approximation can be had. Following [45]
use the distribution

P(¢ <r) = { mr—z) Hp PR (A.2)

and take ¢ = 1/(I'(1 — «a) cos(wa/2)) to approximate standard stable jumps
(with scale 1, center 0, skewness 1 in the parametrization of Samorodnitsky and
Taqqu [81]) when 0 < a < 2,0 # 1, see (7.19)—(7.21) in [57]. To ensure the
same slope at the cutoff r = ¢, set m = acp™'~“. To ensure continuity at the
cutoff r = ¢, equate
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1—cg™® = ac"' " (¢ —p). (A.3)

For 1 < a < 2, Zhang et al. [45] recommend setting p = —2.5, so the cutoff
¢ is solved by finding the root of the last equation. The chopped Pareto random
variable £ can be generated by picking a Uniform [0,1] random variable U, and
setting:

[ U/m+p ifU<1—cp@
&= { (¢/(1 =U))Y*  otherwise. (A4)
For v > 1, this random variable has mean
— M 2 2 C  1-a
e Y (At 2

so that & — p gives a zero-mean random walk jump.

We find that this method is approximately two to three times faster than the
modified CMS method. When the random walk simulations break a particle’s
motion into at least ten jumps, then the sum of jumps converge nicely to the
exact generation method given by the modified CMS method (Fig. A.10 a,b,c).
In the infinite mean case a < 1, we find that setting p = 0 and adding an
empirical constant (= 0.3(1 — «)~1-2) speeds convergence considerably (Figure
A.10 d).
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