

1 Fractional Calculus in Hydrologic Modeling: 2 A Numerical Perspective

3 David A. Benson

6 Mark M. Meerschaert

9 Jordan Revielle

10 *Hydrological Science and Engineering, Colorado School of Mines, Golden, CO, 80401, USA.*
11 *(Now at Ward Petroleum Corporation, Fort Collins, CO 80521) (jkreville@gmail.com)*

12 Abstract

13 Fractional derivatives can be viewed either as a handy extension of classical
 14 calculus or, more deeply, as mathematical operators defined by natural phe-
 15 nomena. This follows the view that the diffusion equation is defined as the
 16 governing equation of a Brownian motion. In this paper, we emphasize that
 17 fractional derivatives come from the governing equations of stable Lévy motion,
 18 and that fractional integration is the corresponding inverse operator. Fractional
 19 integration, and its multi-dimensional extensions derived in this way, are inti-
 20 mately tied to fractional Brownian (and Lévy) motions and noises. By following
 21 these general principles, we discuss the Eulerian and Lagrangian numerical sol-
 22 utions to fractional partial differential equations, and Eulerian methods for
 23 stochastic integrals. These numerical approximations illuminate the essential
 24 nature of the fractional calculus.

25 **Keywords:** Fractional Calculus, fractional Brownian motion,
26 Mobile/Immobile, Subordination

²⁷ PACS: 02.50.Ey, 02.50.Ga, 02.70.Ns, 05.10.Gg

28 1. Introduction

The term “fractional calculus” refers to the generalization of integer-order derivatives and integrals to rational order. This topic was first broached by L’Hopital and Leibniz after the latter’s co-invention of calculus in the 1700s (see the excellent history by [1]). In fact, the operators can be extended to

33 complex as well as real order, so the “fractional” label is a minor historical
34 misnomer.

35 Fractional calculus was primarily a mathematical curiosity for centuries (see
36 examples in [1] and [2]). For example, when Heaviside would take the “square
37 root” of both sides of a diffusion equation, he was generating a 1/2-order time
38 derivative. Some of the first physical applications were by geophysicists de-
39 scribing material somewhere between elastic (Hooke’s linear relationship be-
40 tween stress and strain) and viscous (described by Newton’s stress proportional
41 to strain rate). In his work on this area starting in the 1960’s, geophysicist
42 Michele Caputo derived the fractional derivative that carries his name. Benoit
43 Mandelbrot’s work on fractional Brownian motion and geophysical time series
44 starting in the 1960’s implicitly used fractional-order integration.

45 In the 1990’s, a resurgence of interest surrounded the application of fractional
46 derivatives in the model equations of anomalous diffusion (see [3] for an exten-
47 sive review). At the same time, an understanding of the importance of general
48 non-locality in upscaled transport in heterogeneous aquifer material emerged
49 [4, 5]. The non-locality is defined by operators that account for (integrate) the
50 concentrations at previous times and/or large regions of space. These studies
51 were based on the simple idea that the concentration change at some collec-
52 tion point (a plane or well) depended on contributions from potentially large
53 distances upstream and/or the concentration loading history for some time in
54 the past. Formally, the non-locality arises when the underlying velocity field is
55 uncertain and correlation scales are significantly large compared to the scale of
56 observation [6]. Upscaled descriptions of transport lose detailed velocity infor-
57 mation that is transferred to the non-local operators.

58 One attempt to incorporate spatial non-locality in a tractable form assumed
59 a set of weights that decayed as a power-law [7, 8, 9], which forms the definition
60 of a fractional-order dispersion term. This formulation assumed that the con-
61 centration change at some point depended on upstream concentrations, and the
62 dependence decayed like a power law of the distance. Temporal non-locality,
63 in which concentration change at a point depends on the prior concentration
64 “loading” is the basis for hydrologic applications of continuous time random
65 walks (CTRW). The CTRW were shown to define temporal fractional deriva-
66 tives when the weighting of prior concentration decayed like a power-law (see the
67 extensive review by *Metzler and Klafter* [3]). A few years later, the formal link
68 between two-state (mobile/immobile) multi-rate mass transfer equations [10, 11]
69 and temporally fractional-order models was made [12, 13]. This accounts for so-
70 lute loading into relatively impermeable material that slowly releases the solute
71 after the bulk of a plume has passed.

72 Forays into fractional calculus in multiple dimensions showed that the frac-
73 tional derivatives could be extended in ways significantly different than classical
74 cases. The derivative operators were defined by the underlying diffusion pro-
75 cess of Lévy motion, which could have different scaling rates and skewness in
76 different directions. The derivative operators inherit the different orders and
77 descriptions of skewness in all directions. Because of the link between deriva-
78 tives and integrals, these extensions can be transferred to any system that uses

79 fractional integrals. The most common hydrologic application of fractional integration
80 is the generation of fractional Brownian motion as a representation of
81 aquifer material with long-range correlation structure. Using the inverses of the
82 newly defined fractional derivatives gave new tools to extend the classical fractional
83 Brownian motion to more closely represent anisotropic aquifer structure
84 [68].

85 Because the fractional derivative and integrals are defined as convolution
86 operators, they are easy to implement using standard numerical techniques. In
87 addition, because the fractional diffusion equations that generate the derivative
88 operators are based on the motion of a single particle, the classical random
89 walk particle tracking (RWPT) techniques are well-suited to solve the fractional
90 advection-dispersion transport equations. We exploit the numerical implemen-
91 tations as a vehicle to define and solve to fractional-order differential and integral
92 equations.

93 The paper is organized in three main sections dealing with fractional space
94 derivatives (section 2), fractional time derivatives (section 3), and fractional in-
95 tegrals (section 5). Within the two derivative sections, we outline how the diffu-
96 sion equation, and its fractional-order counterparts, are defined by the stochastic
97 processes that they describe. We show how the equations naturally induce both
98 their Eulerian (section 2.5) and Lagrangian (section 2.6) numerical approxima-
99 tions. In section 4 we briefly summarize how the fractional transport equations
100 have been applied to contaminant transport problems in surface and subsur-
101 face hydrology. We then show in section 5 how the inverse of the fractional
102 derivative operators define the fractional integrals in multiple dimensions, and
103 how these integrals can be used to generate conditioned, multi-scaling, random
104 aquifer facsimilies. We close with conclusions and recommendations for future
105 work in section 6.

106 2. Markovian Diffusions and Fractional Space Derivatives

107 There are several forms of fractional derivatives that are distinguished by
108 the domain over which they operate. Because they are non-local operators,
109 they “look” for values from a certain distance ahead or behind for information.
110 For spatial processes it may be correct to look ahead and/or behind (or at any
111 angle) over all space. Temporal information is only used after some starting
112 time, so the domain of interest is positive time only. We use these distinctions
113 to explain the association of the different operators to different behaviors in
114 diffusions based on random walks.

115 The starting point for all of the generalizations is classical Brownian motion.
116 It is well known that Brownian motion $B(t)$ is the limit Markov (memoryless)
117 process of finite-variance random walks with short-range correlation [14, 15].
118 This makes Brownian motion an attractive model for transport of passive tracers
119 in surface and ground water: the exact nature of the individual motions is not
120 particularly important in the long-term. The central limit theorem dictates that
121 all finite-variance motions converge toward the Gaussian limit distribution. It
122 is precisely this property that has made Brownian motion an attractive and

123 useful model of macrodispersion in aquifers. Even with non-Gaussian particle
 124 motions, the long term transport tends toward the Gaussian limit distribution
 125 (for perhaps the earliest experimental example see Taylor [16]).

126 If $B(t)$ denotes the location of a particle in one-dimensional space x at time
 127 t then the density of the location $p(x, t)$ is given by

$$p(x, t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left(\frac{-x^2}{4Dt}\right) \quad (1)$$

128 where D is half the variance of each motion size divided by the mean motion
 129 time. Throughout this paper, we will use Fourier $f(k) \equiv \int e^{-ikx} f(x) dx$ and
 130 Laplace $f(s) \equiv \int e^{-st} f(t) dt$ transforms, where it is understood for notational
 131 simplicity that $f(x) \Leftrightarrow f(k)$ and $f(t) \Leftrightarrow f(s)$ are transform pairs, not the same
 132 functions.

133 To connect the diffusion equation with Brownian motion, note that the
 134 Fourier transform (FT) of (1) is $p(k, t) = \exp(tD(ik)^2)$, with time derivative

$$\frac{dp(k, t)}{dt} = D(ik)^2 \exp(tD(ik)^2) = D(ik)^2 p(k, t) \quad (2)$$

135 A property of Fourier transforms of integer-order derivatives is that $(ik)^n f(k) \Leftrightarrow$
 136 $d^n f(x)/dx^n$, so that the inverse transform of the previous equation becomes

$$\frac{\partial p(x, t)}{\partial t} = D \frac{\partial^2}{\partial x^2} p(k, t) \quad (3)$$

137 In a more general way that will be useful shortly, we can write the FT of the
 138 Brownian motion density as $p(k, t) = \exp(tA(k))$, where the function of the
 139 wavenumber $A(k) = D(ik)^2$, then following the same procedure the “inverse
 140 FT” of $A(k)$ defines the linear space operator in the Cauchy equations

$$\frac{dp(k, t)}{dt} = A(k)p(k, t), \quad (4)$$

141 with inverse FT

$$\begin{aligned} \frac{dp(x, t)}{dt} &= \int A(x)p(x - \xi, t)d\xi \\ &\equiv A_x p(x, t) \end{aligned} \quad (5)$$

142 where the $A_x()$ denotes the linear space operator defined by convolution with
 143 $A(x)$, the inverse FT of $A(k)$. Here we use the fact that the product of two
 144 functions $A(k)p(k, t)$ in Fourier space is a convolution in real space. This convo-
 145 lution, in turn, specifies an operation on the function $p(x, t)$ in real space. For
 146 example $(ik)^2 \Leftrightarrow d^2/dx^2$ represent the pair $A(k) \Leftrightarrow A_x$ for Brownian motion.
 147 This convolution machinery can be used to explain the diffusion equation for
 148 Brownian motion, because the function $(ik)^2$ is the (distributional) FT of the
 149 second derivative of the Dirac delta function. The Dirac delta function $\delta(x - a)$

150 for some constant shift a is a “generalized function” (also called a distribution)
151 defined by

$$\int \delta(x - a)f(x)dx = f(a). \quad (6)$$

152 Its derivatives are defined via integration by parts:

$$\int \delta^{(n)}(\xi)f(x - \xi)d\xi = \int \delta(\xi)f^{(n)}(x - \xi)d\xi. \quad (7)$$

153 Because the values of $f(x)$ for $x \neq a$ do not affect the integral (6), we might say
154 that

$$\delta(x - a) = \begin{cases} \infty & \text{if } x = a \\ 0 & \text{otherwise} \end{cases} \quad (8)$$

155 where $\int \delta(x)dx = 1$, so that the infinity at $x = a$ is tamed by integration.
156 Another intuitive definition of the Dirac function is that it is the limit of a
157 Gaussian density function with mean a as the variance tends toward zero, i.e.,
158 the Dirac delta is like the probability density “function” of the constant number
159 a .

160 Taking $f(x) = e^{-ikx}$ in equation (6) shows that the FT of $\delta(x - 0)$ equals
161 1. Then the FT of $\delta''(x)$ is $(ik)^2 \times 1$, so that multiplying the FT by $(ik)^2$ is
162 equivalent to convolution with $\delta''(x)$. Therefore, Brownian motion, by virtue of
163 the FT of its density function, defines the diffusion equation. This is the sole
164 connection between the diffusion equation and Brownian motion. The notion
165 that a concentration gradient “drives” a diffusion by physical means was dis-
166 pelled by Einstein [17] and Crank [18] in their seminal work. The extension of
167 the probability distribution for a single particle, $p(x, t)$ to concentration for a
168 large number of particles, requires independence of their motion and eliminates
169 particles of one species acting upon each other as a driving force. This is also
170 called the infinitely dilute approximation. The concept that the random motion
171 of a single particle defines the diffusion equation, in which the flux happens to be
172 proportional to concentration gradient, rather than the picture that a molecule
173 moves *in response* to that gradient, is central to our further development, and
174 is eloquently described by Crank [18]:

175 If it were possible to watch individual molecules of iodine, and
176 this can be done effectively by replacing them by particles small
177 enough to share the molecular motions but just large enough
178 to be visible under that microscope, it would be found that the
179 motion of each molecule is a random one. In a dilute solution
180 each molecule of iodine behaves independently of the others,
181 which it seldom meets, and each is constantly undergoing col-
182 lision with solvent molecules, as a result of which collisions it
183 moves sometimes toward a region of higher, sometimes of lower,
184 concentration, having no preferred motion towards one or the
185 other. The motion of a single molecule can be described in
186 terms of the familiar ‘random walk’ picture, and whilst it is

187 possible to calculate the mean-square distance travelled in a
 188 given interval of time it is not possible to say in what direction
 189 a given molecule will move in that time.

190 This picture of random molecular motions, in which no molecule
 191 has a preferred direction of motion, has to be reconciled with
 192 the fact that a transfer of iodine molecules from the region of
 193 higher to that of lower concentration is nevertheless observed.
 194 Consider a horizontal section in the solution and two thin, equal
 195 elements of volume one just below and one just above the sec-
 196 tion. Though it is not possible to say which way any particular
 197 iodine molecule will move in a given interval of time, it can
 198 be said that on the average a definite fraction of molecules in
 199 the lower element of volume will cross the section from below,
 200 and the same fraction of molecules in the upper element will
 201 cross the section from above, in a given time. Thus, simply
 202 because there are more iodine molecules in the lower element
 203 than in the upper one, there is a net transfer from the lower to
 204 the upper side of the section as a result of random molecular
 205 motions.

206 In the 1920s, Paul Lévy discovered the class of processes that correspond
 207 to the limits of all random walks (in 1-*d*) by easing the requirement of finite
 208 variance in the classical central limit theorem. When the probability of the
 209 individual motions have power-law tails $P(|W| > x) \sim Cx^{-\alpha}$ for some constant
 210 C and $0 < \alpha < 2$, the rescaled sum of these walks converges to a Lévy motion
 211 with FT

$$p(k, t) = \exp[-tD(a(ik)^\alpha + (1-a)(-ik)^\alpha)] \quad (9)$$

212 so that (9) admits the same form as (4) but with $A(k) = Da(ik)^\alpha + D(1 -$
 213 $a)(-ik)^\alpha$. The (distributional) inverse transform of $(ik)^\alpha$ is the power law
 214 $x^{-1-\alpha}/\Gamma(-\alpha)$ for $x > 0$, and the inverse transform of $(-ik)^\alpha$ is $(-x)^{-1-\alpha}/\Gamma(-\alpha)$
 215 for $x < 0$. The skewness parameter has a range $0 \leq a \leq 1$. The probability
 216 increase/decrease rate equation

$$\frac{dp(k, t)}{dt} = p(k, t)[-tD(a(ik)^\alpha + (1-a)(-ik)^\alpha)]$$

217 implies that particles may jump long distances. This can be seen in a long form
 218 of the real-space equation

$$\begin{aligned} \frac{dp(x, t)}{dt} &= \frac{Da}{\Gamma(-\alpha)} \int_{-\infty}^x (x - \xi)^{-1-\alpha} p(\xi, t) d\xi \\ &+ \frac{D(1-a)}{\Gamma(-\alpha)} \int_x^\infty (-x + \xi)^{-1-\alpha} p(\xi, t) d\xi. \end{aligned} \quad (10)$$

219 Strictly speaking, these are convolutions of generalized functions like the Dirac
 220 delta function, because the power law $x^{-1-\alpha}$ is not integrable at $x = 0$. As-
 221 suming a well-behaved function p that goes to zero at $\pm\infty$, the intergrals can

222 be regularized (tamed) into convergent forms using the integration by parts for-
 223 mula n times, where $n - 1 < \alpha < n$, to obtain converging convolution integrals
 224 involving $x^{-1-\alpha+n}$.

225 These convolutions with forward and backward power laws define two specific
 226 types of fractional-order derivatives, denoted in the diffusion equation

$$\frac{\partial p(x, t)}{\partial t} = Da \frac{\partial^\alpha p(x, t)}{\partial x^\alpha} + D(1 - a) \frac{\partial^\alpha p(x, t)}{\partial (-x)^\alpha}. \quad (11)$$

227 The forward direction fractional derivative (as well as a fractional time derivative
 228 defined later) is “causal” in that the derivative at some point depends on values
 229 to the left on the real line. The backward fractional derivative generally only
 230 pertains to space functions, because it is not causal; it depends on values to
 231 the right. While this sounds counterintuitive, the backward derivative models
 232 backward jumps; therefore, the probability change at some point depends on
 233 probability that a particle starts a jump *from* a forward location.

234 The transition from integer to fractional derivatives is most easily understood
 235 in terms of Fourier transforms: Recall the FT pair $d^n f(x)/dx^n \Leftrightarrow (ik)^n f(k)$, and
 236 substitute a real-valued α for n . Some variations on this definition (described
 237 later) recognize the fact that for time derivatives, $t = 0$ defines a boundary
 238 that has some influence on the convolution, and must be treated properly. The
 239 main point we wish to emphasize here is that the same Fourier symbol $A(k) =$
 240 $Da(ik)^\alpha + D(1 - a)(-ik)^\alpha$ determines both the fractional derivative, and the
 241 corresponding stable Lévy motion.

242 2.1. 1-D Fractional Derivative: Numerics

243 Before venturing into the territory of multiple dimensions, it is instructive
 244 at this point to examine the convolution operator (4) in relation to the clas-
 245 sical integer derivatives and their numerical approximations. The convolution
 246 specifies that the change in probability (and concentration) is due to the sum
 247 of concentrations everywhere weighted by the function in the convolution. The
 248 Dirac delta $\delta(x)$ and its derivatives are zero everywhere except where $x = 0$.
 249 This property defines a “local” operator. In a numerical implementation of
 250 convolution, one takes a finite domain Ω and discretizes it into N partitions of
 251 size Δx . Convolution with a delta function $\delta(x)$ is represented by a weighted
 252 sum with zero weights everywhere, except for a value of 1 at $x = 0$. Call the
 253 weights w_i , then $w_0 = 1, w_{i \neq 0} = 0$. The derivative of $\delta(x)$ is represented by the
 254 numerical “slope” on either side of the impulse: the immediate rise $1/\Delta x$ and
 255 fall $-1/\Delta x$. A second derivative is the slope of that function: $1/\Delta x^2, -2/\Delta x^2$,
 256 and $1/\Delta x^2$. The second derivative at some grid location is a convolution of
 257 these weights with some function $f(x)$ discretized at the same points:

$$\frac{d^2 f(x)}{dx^2} \approx \sum_{l=0}^{\infty} w_l f(x - l\Delta x) = \frac{f(x) - 2f(x - \Delta x) + f(x - 2\Delta x)}{\Delta x^2} \quad (12)$$

²⁵⁸ Any integer derivative can be represented by a discrete convolution, using
²⁵⁹ weights from the binomial coefficients:

$$\frac{d^n f(x)}{dx^n} = (\Delta x)^{-n} \sum_{l=0}^N (-1)^l \binom{n}{l} f(x - l\Delta x). \quad (13)$$

²⁶⁰ The n^{th} derivative has $n + 1$ terms, and for stability, the weights are typically
²⁶¹ shifted to the right by the greatest integer less than $n/2$, denoted $[n/2]$, so that
²⁶² the formula for all integer-order derivatives becomes

$$\frac{d^n f(x)}{dx^n} = (\Delta x)^{-n} \sum_{l=0}^N (-1)^l \binom{n}{l} f(x - (l - [n/2])\Delta x). \quad (14)$$

²⁶³ Grünwald recognized in the 1800's that the formula for integer finite differences
²⁶⁴ was easily extended to the fractional-order case. The binomial coefficients of
²⁶⁵ any order α can be defined using the formula

$$\binom{\alpha}{l} = \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha - l + 1)l!}, \quad (15)$$

²⁶⁶ so the finite difference approximation formula for a fractional derivative of a
²⁶⁷ function at point x (or approximate fractional integral for $\alpha < 0$) can be written

$$\begin{aligned} \Delta_+^\alpha f(x) &= \Delta x^{-\alpha} \sum_{l=0}^N (-1)^l \binom{\alpha}{l} f(x - l\Delta x) \\ &= \Delta x^{-\alpha} \sum_{l=0}^N w_l f(x - l\Delta x), \end{aligned} \quad (16)$$

²⁶⁸ where the Grünwald weights

$$w_l = (-1)^l \binom{\alpha}{l} = \frac{(-1)^l \Gamma(\alpha + 1)}{\Gamma(\alpha - l + 1)l!} \quad (17)$$

²⁶⁹ are illustrated in Figure 1. Only a few orders are shown, but the weight functions
²⁷⁰ smoothly interpolate between all orders, including when the derivative order is
²⁷¹ negative (indicating fractional integration). Note that for direct comparison, the
²⁷² derivative weights for positive α are not shifted to the left in Figure 1. While
²⁷³ at their core, the fractional derivatives are defined by convolution with a power
²⁷⁴ law, the discrete weights are not monotonic because the derivatives have a rise
²⁷⁵ at the origin and subsequent fall. The same non-monotonic behavior is seen in
²⁷⁶ the discrete version of any integer-order derivative as well.

²⁷⁷ Equation (16) corresponds to the positive fractional derivative, so the weights
²⁷⁸ apply to points to the left of x . The negative fractional derivative defined by
²⁷⁹ the FT multiplier $(-ik)^\alpha$ has a Grünwald approximation

$$\Delta_-^\alpha f(x) = \Delta x^{-\alpha} \sum_{l=0}^N (-1)^l \binom{\alpha}{l} f(x + l\Delta x) \quad (18)$$

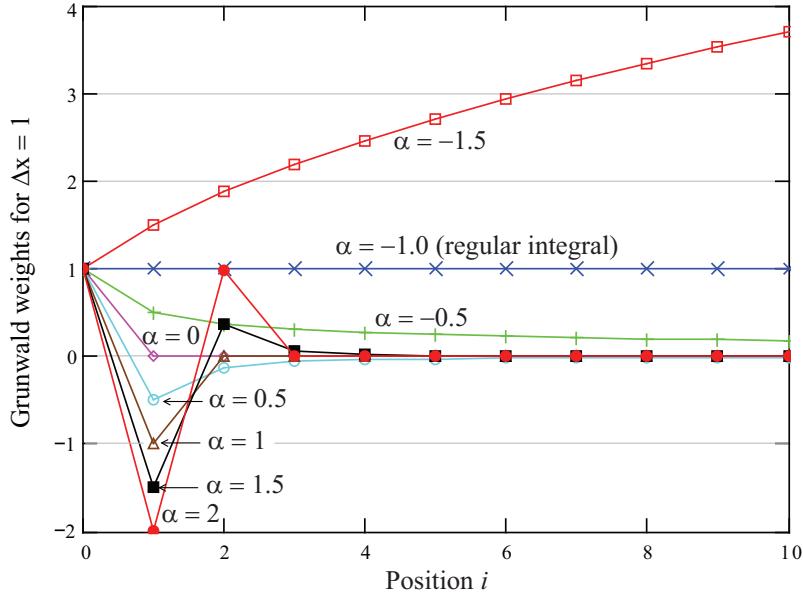


Figure 1: Grunwald (convolution) weights for finite differences of orders 2 through -1.5 in 0.5 intervals. Connecting lines are used to guide the eye. Δx is set to 1.

which depends on points to the right of x . It is called the negative, or backward, fractional derivative because it corresponds to particle jumps in the negative direction. Similar to the integer order case, for stability the weights shift by one position to the right for the positive direction derivative for $1 < \alpha < 2$, and shift one to the left for the negative direction derivative [19, 20]. It can be shown [?, Proposition 2.1] that these discrete Grünwald approximations converge to the integral convolutions in (10) as $\Delta x \rightarrow 0$ just as in the integer-order case.

Questions are often asked about what the fractional derivatives “mean” in terms of continuous functions, and answers are hard to deliver. But at this point it becomes apparent what the integer and fractional derivatives “mean” when related back to the random walks that generate the equations. The derivatives are accounting for mass transfer due to moving particles. Brownian motion is composed, by construction, of vanishingly small jumps, so one must look immediately to the left and right to see which particles might arrive at some point in a fixed time interval and change the concentration. Looking farther than Δx , which goes to zero, is pointless because those particles cannot make it to the current location. The second derivative, a local operator, is well-suited to describe this process. Heavy-tailed random walks embody a significant probability that particles from some distance can, in the rescaled random walk, make it to the current location, and the Grünwald weights account for mass accumulation at any point due to distant random walkers. Which derivative pertains, traditional or fractional, depends on the specifics of the random walk.

302 Adding a constant-in-time drift to the random walk changes the probability
 303 density of the random walker $p(k, t) = \exp(A(k)t)$ by adding a term $-v(ik)$ to
 304 $A(k)$. Bearing in mind the FT relation $d^n f(x)/dx^n \Leftrightarrow (ik)^n f(k)$ with $n = 1$, it
 305 is evident that this adds the advection term $-v \partial/\partial x$ to the space operator in the
 306 diffusion equation. Again we wish to emphasize that the same Fourier symbol
 307 $A(k) = -v(ik) + Da(ik)^\alpha + D(1-a)(-ik)^\alpha$ determines both the fractional
 308 advection/dispersion operator, and the corresponding Lévy process, including
 309 the case when $\alpha = 2$.

310 *2.2. Lévy motion and Fractional Derivatives in Several Dimensions*

311 The extension to multiple dimensions follows the same general approach.
 312 The limits of Markovian random walks define the derivative operators in multi-
 313 ple dimensions [? 22]. There are several scenarios. First, define the random walk
 314 jump magnitudes independent of direction by $P(R > r) \sim r^{-\alpha}$, and the proba-
 315 bility of moving in any direction in d -dimensions by the random direction vector
 316 θ with probability measure $M(d\theta)$ on the unit sphere. If the random direction
 317 has a probability density $m(\theta)$, then the notation $M(d\theta) = m(\theta)d\theta$; otherwise,
 318 the discrete measure can be constructed by a sum of Dirac delta function terms
 319 (analogous to the probability mass function of a discrete random variable). The
 320 direction measure $M(d\theta)$ is often called the mixing measure. The random walk
 321 with these jumps converges [? , Theorem 6.21] to a Lévy motion with FT

$$p(\mathbf{k}, t) = \exp \left[-t \langle i\mathbf{k}, \mathbf{v} \rangle + Dt \int_{\|\theta\|=1} (\langle i\mathbf{k}, \theta \rangle)^\alpha M(d\theta) \right], \quad (19)$$

322 where $\langle \mathbf{x}, \mathbf{y} \rangle$ denotes the inner product of vectors \mathbf{x} and \mathbf{y} . This model recovers
 323 the one dimensional case because the unit vectors would be $\theta = \pm 1$, the mixing
 324 measure $M(d\theta) = a\delta(\theta-1)d\theta + (1-a)\delta(\theta+1)d\theta$, the distribution of the forward
 325 and backward jumps is $M(+1) = a$ and $M(-1) = 1-a$, and the integral reduces
 326 to two terms: $a(ik)^\alpha + (1-a)(-ik)^\alpha$. The measure $M(d\theta)$ in multiple dimensions
 327 can be made as simple as a few Dirac delta functions on the coordinate axes or
 328 more elaborate to depict the superposition of flow directions [23].

329 Take time derivatives and invert the FT to get

$$\frac{\partial}{\partial t} p(\mathbf{x}, t) = -\mathbf{v} \cdot \nabla p(\mathbf{x}, t) + D \nabla_M^\alpha p(\mathbf{x}, t). \quad (20)$$

330 The rightmost operator is an extended form of the original fractional Laplacian
 331 by Riesz [21], because it is a completely general mixture of fractional directional
 332 derivatives (explained in detail below). The point source solution $p(\mathbf{x}, t)$ has
 333 Fourier transform $p(\mathbf{k}, t) = \exp(tA(\mathbf{k}))$, where

$$A(\mathbf{k}) = -\mathbf{v} \cdot i\mathbf{k} + D \int_{\|\theta\|=1} (\langle i\mathbf{k}, \theta \rangle)^\alpha M(d\theta).$$

334 Recall that the directional derivative is the inner product

$$\langle \theta, \nabla f(\mathbf{x}) \rangle = \sum \theta_j \frac{\partial}{\partial x_j} f(\mathbf{x}) = \frac{d}{ds} g(s)$$

335 at $s = 0$ where $g(s) = f(\mathbf{x} + s\theta)$. Its FT is $\langle i\mathbf{k}, \theta \rangle f(\mathbf{k})$. Using the definition of
 336 a scalar positive fractional derivative (now in the radial coordinate r):

$$\frac{d^\alpha}{dr^\alpha} g(s) = \frac{1}{\Gamma(-\alpha)} \int_0^\infty r^{-1-\alpha} g(s-r) dr \quad (21)$$

337 The fractional directional derivative is this derivative evaluated at $s = 0$, and
 338 each directional derivative is weighted by its probability in every direction to
 339 get

$$\nabla_M^\alpha f(\mathbf{x}) = \frac{1}{\Gamma(-\alpha)} \int_{\|\theta\|=1} \int_0^\infty r^{-1-\alpha} f(\mathbf{x} - r\theta) dr M(d\theta). \quad (22)$$

340 The inner integral has FT $\langle i\mathbf{k}, \theta \rangle^\alpha$. So the fractional Laplacian is a mixture of
 341 directional fractional derivatives, i.e., a mixture of convolutions with a power
 342 law, the mixture defined by a directional probability measure (i.e., a density for
 343 continuous random variables). By virtue of (19), the fractional derivative once
 344 again is defined by the underlying Markovian Lévy motion.

345 The Grünwald finite difference formula can be directly applied to approximate
 346 certain cases of the mixing measure. For example, if there is only weight
 347 along the coordinate axes, the shifted Grünwald weights (17) can be used di-
 348 rectly. The outer integral of (22) reduces to a sum along the components of \mathbf{x} .
 349 For a numerical solution using this idea, see [24]. If there is weight in-between
 350 the axes, the integer node locations no longer exist for all directions (i.e., nodes
 351 lying along the 45° direction are at a distance of $\sqrt{2}$ times the number of nodes
 352 away from the origin), hence the Grünwald weights have to be interpolated. For
 353 distances r larger than about 4 nodes in the range $1 < \alpha < 2$, the Grünwald
 354 weights closely follow the power law $r^{-1-\alpha}/\Gamma(-\alpha)$ (Fig. 2). A mathemati-
 355 cal procedure for approximating the general fractional Laplacian $\nabla_M^\alpha f(\mathbf{x})$ with
 356 weight off the coordinate axes was detailed in [25], but numerical codes have
 357 yet to be implemented.

358 *2.3. Operator Scaling and the Anisotropic Laplacian*

359 There is no reason to expect that the power law index dictating the mag-
 360 nitude of large jumps must be the same in different directions. Using methods
 361 similar to the central limit theorem in multiple dimensions shows that up to d
 362 different power laws can persist in d -dimensions. One can construct a suitable
 363 random walk using matrix powers. Suppose the random variable R is character-
 364 ized by $P(R > r) \sim r^{-1}$. One could transform this into an isotropic heavy-tailed
 365 random magnitude by taking its scalar power $R^{1/\alpha}$, which has a tail that now
 366 decays with $r^{-\alpha}$, or one can generate a jump with different tail parameters in
 367 different directions by taking the matrix power $R^{\mathbf{H}}$, where \mathbf{H} is a $d \times d$ matrix.
 368 Taking the power of a matrix (besides the obvious integer cases) is calculated
 369 analogous to the scalar power formulas $x^p = e^{p \log x}$ for real powers of positive
 370 real numbers. For matrix powers we have $R^{\mathbf{H}} = \exp(\mathbf{H} \log R)$ which expands
 371 using the matrix exponential $\exp(\mathbf{H}) = \mathbf{I} + \mathbf{H} + \mathbf{H}^2/2! + \dots$ where \mathbf{I} is the
 372 identity matrix. For reference, we use the symbol \mathbf{H} because of the relation-
 373 ship to the classical Hurst coefficient (more on this in the next section). The

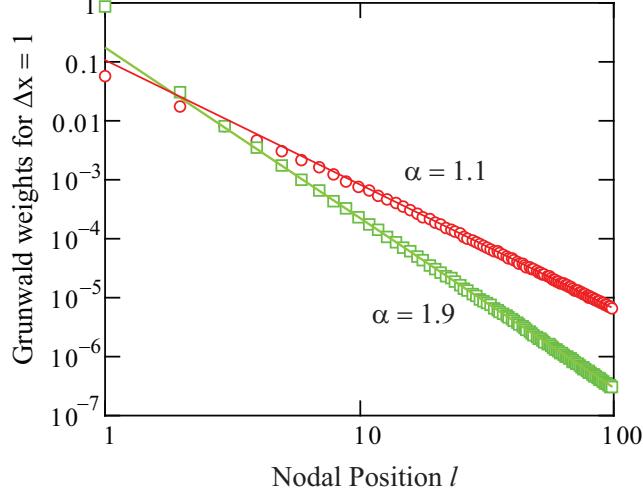


Figure 2: **Log-log plot of Grünwald (convolution) weights at integer node distances (symbols) and power law $x^{-1-\alpha}/\Gamma(-\alpha)$ interpolation (lines).** $\alpha = 1.1$ and 1.9 are shown.

374 matrix power creates larger or smaller exponents for the jump magnitudes in
 375 the eigenvector directions of \mathbf{H} . The direction of each jump is given once again
 376 by a random unit vector with distribution $M(d\theta)$. Adding up these jumps and
 377 rescaling appropriately—analogous to taking the scaling limit of a random walk
 378 to create Brownian motion—results in an operator Lévy motion [13, 26, 27]:

$$Z(t) = \sum_{i=1}^{[t/dt]} X_i = \sum_{i=1}^{[t/dt]} R_i^{\mathbf{H}} \cdot \theta_i, \quad (23)$$

379 where R_i and θ_i are independent.

380 As in the isotropic case (when $\mathbf{H} = \frac{1}{\alpha} \mathbf{I}$), the exponent of the random walk
 381 jumps is directly related to the order of the fractional derivatives that describe
 382 them. In the case of the matrix rescaled jumps, the order of the derivatives can
 383 be considered matrix-order as well. To illustrate the effect of the matrix scaling,
 384 consider a simple 2-d case where the two eigenvectors of \mathbf{H} are orthogonal (or
 385 in other words, the primary directions of growth are perpendicular). Then the
 386 operator stable exponent dictates independent jumps:

$$R^{\mathbf{H}} = \begin{bmatrix} R^{H_1} & 0 \\ 0 & R^{H_2} \end{bmatrix} = \begin{bmatrix} R^{1/\alpha_1} & 0 \\ 0 & R^{1/\alpha_2} \end{bmatrix}.$$

387 Because $P(R > r) = r^{-1}$ for large values, the jump length probabilities on
 388 the k^{th} eigenvector of \mathbf{H} fall off as $P(R^{1/\alpha_k} > r) = r^{-\alpha_k}$. The jump length
 389 probabilities for trajectories off the eigenvectors decay like a mixture of power
 390 laws. For an example, if we also restrict motion directions to the forward x - and

³⁹¹ ³⁹² *y*-directions, then the corresponding fractional dispersion equation would take the form

$$\frac{\partial p(x, y, t)}{\partial t} = D_1 \frac{\partial^{\alpha_1} p(x, y, t)}{\partial x^{\alpha_1}} + D_2 \frac{\partial^{\alpha_2} p(x, y, t)}{\partial y^{\alpha_2}}, \quad (24)$$

³⁹³ and the Fourier symbol of this process $A(\mathbf{k}) = D_1(ik_1)^{\alpha_1} + D_2(ik_2)^{\alpha_2}$ also ³⁹⁴ uniquely determines the underlying Lévy process: $p(\mathbf{k}, t) = \exp(-tA(\mathbf{k}))$.

³⁹⁵ In general, the random walk (23) converges to an operator-Lévy motion with ³⁹⁶ governing equation [? 27, 28]

$$\frac{\partial}{\partial t} p(\mathbf{x}, t) = -\mathbf{v} \cdot \nabla p(\mathbf{x}, t) + \nabla \cdot D_F \nabla p(\mathbf{x}, t) + D \nabla_M^{\mathbf{A}} p(\mathbf{x}, t), \quad (25)$$

³⁹⁷ where \mathbf{A} is the inverse of \mathbf{H} . As opposed to (20), there can be a Fickian ³⁹⁸ dispersion term in this equation, with D_F equal to 1/2 times the covariance ³⁹⁹ matrix of particle jumps per time. The multidimensional isotropic equation ⁴⁰⁰ (20) assumes that motions in all directions have the same tail parameter, so ⁴⁰¹ that infinite-variance jumps (with $\alpha < 2$) occur in all directions. When jumps ⁴⁰² have different tail probabilities in different directions, there is room for Brownian ⁴⁰³ motion in one direction and Lévy motion in another, hence the additional term ⁴⁰⁴ in the anisotropic-order equation (25). In any given direction, either the Fickian ⁴⁰⁵ dispersion term, or the fractional dispersion term, is zero, because only one of ⁴⁰⁶ two possibilities (light-tailed or heavy-tailed random walk jumps) can apply. ⁴⁰⁷ If all eigenvalues of \mathbf{H} are greater than 1/2, then jumps in all directions are ⁴⁰⁸ heavy tailed, $D_F = 0$, and the Fickian portion disappears. Physically, this ⁴⁰⁹ means that heavy-tailed jumps overwhelm thin-tailed ones. If all jumps in all ⁴¹⁰ directions are thin tailed, then the fractional dispersion term disappears. As ⁴¹¹ mentioned previously, the matrix \mathbf{H} is a scaling matrix that describes plume ⁴¹² growth rates in all directions. In this way it is related to the classical Hurst ⁴¹³ coefficient, because the point source (Green's function) solution to equation (25) ⁴¹⁴ with $\mathbf{v} = 0$ is self-similar with a rescaling of time and space according to

$$p(\mathbf{x}, ct) = \|c^{-\mathbf{H}}\| p(c^{-\mathbf{H}} \mathbf{x}, t) \quad (26)$$

⁴¹⁵ where $\|\cdot\|$ is the matrix determinant. Note that this includes the Fickian case ⁴¹⁶ where \mathbf{H} is a scalar equal to $1/\alpha = 1/2$.

⁴¹⁷ A very flexible Eulerian numerical solution to equation (25) could be achieved, ⁴¹⁸ along the lines laid out in [25]. The operator $\nabla_M^{\mathbf{A}}$ is defined by a convolution, ⁴¹⁹ see [28]. Then the finite-difference solution is a series of convolutions, each ⁴²⁰ representing a time step. A similar methodology was used in [29] to create operator ⁴²¹ scaling conductivity fields. See Subsection 2.5 for additional discussion.

⁴²² 2.4. Divergence - Integer and Otherwise

⁴²³ Up to this point, we have assumed that the mean advective drift velocity ⁴²⁴ \mathbf{v} and the strength of the dispersion D have been homogeneous in space. For ⁴²⁵ the mean drift this means that the divergence of the flux $\nabla \cdot \mathbf{v}p$ distributes ⁴²⁶ like $\mathbf{v} \cdot \nabla p + p \nabla \cdot \mathbf{v}$. For divergence-free (incompressible) flow or first-order ⁴²⁷ stationary processes, the second term is zero and there is no change to our

428 previous development. On the other hand, the traditional dispersion term in
 429 (25) can be viewed as the divergence of the particle flux. How can we view
 430 the fractional dispersion operator in (25) in terms of divergence (conservation
 431 of mass) and particle flux? In other words, what happens when the strength of
 432 dispersion varies in space? It turns out [30, 31] that the fractional dispersion
 433 may be derived in several different ways. If one starts from the microscopic
 434 expression of particle motion (i.e., the Ito or Langevin equations), the fractional
 435 Laplacian can be distributed in several ways.

436 To illustrate, in the case of scalar order α in multiple dimensions, one may
 437 take a classical integer divergence of a fractional dispersion ($\nabla \cdot D \nabla_M^{\alpha-1}$), or
 438 a fractional divergence of a classical integer-order flux ($\nabla_M^{\alpha-1} \cdot D \nabla$). Here we
 439 follow the typical abuse of notation: the generalized fractional Laplacian ∇_M^α is
 440 a scalar-valued operator that reduces to the Laplacian $\Delta = \nabla^2 = \nabla \cdot \nabla$ when
 441 $\alpha = 2$ and M is uniform, while the generalized fractional gradient $\nabla_M^{\alpha-1}$ is a
 442 vector-valued operator that reduces to the gradient ∇ when $\alpha = 2$ and M is
 443 concentrated on the positive coordinate axes. If the local dispersion coefficient
 444 is a constant, these are equivalent. The differences in the case of space-variable
 445 dispersivity $D = D(\mathbf{x})$ are subtle and small in many cases, but when the disper-
 446 sion coefficient D has strong fluctuations, the difference can be significant. For
 447 illustration of the numerical methods in Section 2.6, we will concentrate here
 448 on the equation

$$\frac{\partial}{\partial t} p(\mathbf{x}, t) = -\mathbf{v} \cdot \nabla p(\mathbf{x}, t) + \nabla \cdot D_F \nabla p(\mathbf{x}, t) + \nabla_M^{\mathbf{A}-\mathbf{I}} D(\mathbf{x}) \nabla p(\mathbf{x}, t), \quad (27)$$

449 including the simpler forms when $\mathbf{A} - \mathbf{I}$ is the scalar $\alpha - 1$ in one or more di-
 450 mensions. This formulation uses a fractional version of the conservation of mass
 451 equation: it implies that the change in probability, and by analogy concentra-
 452 tion, is due to upstream differences in local advective flux. The magnitude of
 453 the local fractional dispersion coefficient $D(\mathbf{x})$, a scalar, is a measure of the
 454 difference between local mean velocity and the fluctuations of velocity [30, 31].

455 2.5. Simulating Spatial Fractional Derivatives: Eulerian Methods

456 As mentioned above, traditional finite difference methods can be thought of
 457 as discrete convolution formulas that lead to matrix equations [32, 33]. The local
 458 operators lead to sparse and banded matrix equations. Fractional-order equa-
 459 tions are conceptually similar, except that the matrix of weights on other nodes
 460 is fuller, up to 100% full when the measure $M(d\theta)$ is non-zero everywhere. Be-
 461 cause fuller matrices are typically solved iteratively, the fuller matrices should
 462 not pose tremendous numerical challenges. Many researchers are concentrat-
 463 ing on efficient simulation of the fractional derivative operators (e.g., [34, 35]
 464 and references therein). To date, however, finite difference solutions for multi-
 465 dimensional fractional derivatives have been concentrated on the coordinate
 466 axes [33].

467 Fractional derivatives are linear operators; therefore, classical methods using
 468 finite elements can be adapted to solve fractional partial differential equations

[36, 37]. The finite element method hinges on the action of the linear operator on the chosen basis functions. That is why Dirac delta functions are commonly chosen as bases for the traditional integer order equations [38]. Roop’s method uses polynomials for the bases, which, when properly chosen, simplify the calculation and implementation of the fractional derivative on the basis polynomials. This general procedure can be accelerated substantially, to the point where the fractional methods are not much more time-consuming to solve than the integer cases [35, 39]. To date, we are unaware of this method being applied to hydrological problems.

Eulerian approximations for fractional advection dispersion equations have been proven stable (when properly implemented) with a truncation error of order $(\Delta x)^2$, so they are nearly as robust as proven methods for classical diffusion. These methods may also suffer less from the truncation error associated with the advection term. The well-known phenomenon of numerical dispersion arises from simulation of the hyperbolic portion of the advection-dispersion operator, because the first truncated term is of the form $\Delta x v d^2/dx^2$. Therefore, traditional finite difference methods must keep the grid Peclet number $\Delta x v/D$ reasonably small. The fractional dispersion has heavier tails and greater spreading rates than the pseudo-Fickian numerical dispersion, so the constraints on the grid spacing may be reduced, although this has not, to our knowledge, been explored in detail.

2.6. Lagrangian (Particle) Methods

Particle-tracking methods became popular as a way to eliminate numerical dispersion, because each particle follows a characteristic curve (i.e., is an exact solution of the hyperbolic advection term [40]). Important research followed [41, 42, 43] concerning the solution of the expanded dispersion term $\nabla \cdot (D \nabla) = (\nabla \cdot D) \cdot \nabla + D \nabla^2$, primarily because geologic material may have very large, or even infinite gradients in the dispersion coefficient at sharp interfaces. These works highlighted the process involved in establishing the link between a (nonlinear) Langevin equation of instantaneous motion, the governing equation of that motion, and the link to the advection-dispersion equation that was the pre-supposed goal of the simulation.

In a series of papers [44, 31, 45], *Zhang* and coworkers defined the Langevin equations for motions that correspond to the multi-dimensional fractional ADEs. In particular, they showed the subtle differences in the random walks that correspond to the operators $D \nabla_M^{\mathbf{A}}$, $\nabla D \nabla_M^{\mathbf{A}-\mathbf{I}}$, and $\nabla_M^{\mathbf{A}-\mathbf{I}} D \nabla$, including the cases when \mathbf{A} reduces to a scalar α and also in 1-d. The solutions are derived using the finding that $\nabla D \nabla_M^{\mathbf{A}-\mathbf{I}}$, and $-\nabla_M^{\mathbf{A}-\mathbf{I}} D \nabla$ are adjoint operators for $\bar{M}(d\theta) = M(d(-\theta))$. For practical purposes, when variations of D are small, the differences in the solutions between these formulas are reasonably small. The recognition and addition of the heavy-tailed dispersion in any case is the first-order effect.

To simulate the multi-scaling jumps, one distributes the initial condition, and subsequent sources of mass, into N particles, each of which follow a random walk approximation of (23) with finite time step Δt . A mass-weighted

histogram of particle positions gives the concentration. An Euler approximation of local advection $X(t + \Delta t) = X(t) + \mathbf{v}\Delta t$ or exact analytic methods [46] are used for the deterministic drift. For simplicity, we illustrate the case where the mixing measure $M(d\theta)$ is concentrated on the eigenvalue coordinates of the scaling matrix \mathbf{H} . For the random dispersion, as well as the effect of heterogeneous strength $D(\mathbf{x})$, one simply generates independent jumps in each eigenvector direction. This is conceptually similar to generating independent standard Gaussian longitudinal and transverse jumps to simulate classical dispersion. In the heavy-tailed case, the jump length of the particle along the eigenvector belonging to the k^{th} eigenvalue $1/\alpha_k$ of \mathbf{H} can be calculated by generating the following random number [44, 45]

$$R^{1/\alpha_k} = D(\mathbf{x})^{\frac{1}{\alpha_k}} dL_{\alpha_k}(t) + \Theta \left| \frac{\partial D}{\partial x_k} \right|^{\frac{1}{\alpha_k-1}} dL_{\alpha_k-1}(t), \quad (28)$$

where k represents the direction of the k^{th} eigenvector of \mathbf{H} , $\Theta = \text{sign}(\partial D / \partial x_k)$, and $dL_\alpha(t)$ and $dL_{\alpha-1}(t)$ denote independent random noises underlying α -order and $(\alpha - 1)$ -order Lévy motions, respectively. These are generated by taking $dt^{1/\alpha}$ times a standard, maximally-skewed α_k -stable random variables with distribution $S_{\alpha_k}(\sigma = 1, \beta = +1, \mu = 0)$. The stable random variables can be generated exactly using the modified Chambers-Mallows-Stuck (CMS) method (for details, see the Appendix). The fractional dispersivity $D(\mathbf{x})$ must be first-order differentiable, so sharp interfaces are ruled out.

Generating Lévy-stable random variables is somewhat computationally expensive, so one can generate random vectors $R^{\mathbf{H}} \cdot \theta$ in the domain of attraction of the stables. This concept is similar in principle to classical random walk codes that use a Uniform $[-\sqrt{3}, \sqrt{3}]$ random variable as a substitute for a standard Gaussian: After as few as ten motions, the random walks with these jumps are indistinguishable from Brownian motion. The Langevin equation can be approximated using more easily-generated zero-mean random variables ξ with power law tails (Appendix). Once the heavy-tailed random variables ξ are generated and scaled as substitutes for the stable dL in (28), the jump contribution R^{1/α_k} in each eigenvector is specified. As for direction, if the mixing measure has a known or assumed distribution function $F(z) = P(\theta \leq z)$ on the unit circle, then the typical method using the inverse function on a Uniform $[0,1]$ variable is used (as did [47]). Generate U , a Uniform $[0,1]$ variable, and the direction vector $\theta = F^{-1}(U)$. Otherwise, the measure $M(d\theta)$ is discretized in m classes and summed to make the cumulative measure $M(\theta)$ via $P_m = \sum_{l=1}^m M(d\theta_l)$. Then the random direction vector in each case is $\theta = \theta_m$ if $P_{m-1} < U \leq P_m$.

Now represent the vector θ in terms of the unit eigenvectors (e_k) of \mathbf{H} : $\theta = \lambda_1 e_1 + \lambda_2 e_2 + \dots$, and the final particle motion $R^{\mathbf{H}} \theta$ is given by the vector $\sum \lambda_k R^{1/\alpha_k}$. Several applications to field data are shown in Section 4.

3. Fractional Time Derivatives

Fractional time derivatives are formulated to respect causality, i.e., so that future events cannot affect the past. Therefore, the fractional time derivatives

555 are convolutions with a power law that is directional in time. The influence of
 556 events t units in the past decays with a power law. The fractional time deriva-
 557 tives take two different forms, based on the treatment of the initial condition.
 558 For clarity, we review both forms briefly here. A straightforward extension of
 559 the forward direction space derivative assumes that the function vanishes on
 560 $t < 0$:

$$\frac{d^\gamma f(t)}{dt^\gamma} = \frac{d^n}{dt^n} \frac{d^{\gamma-n} f(t)}{dt^{\gamma-n}} = \frac{d^n}{dt^n} \frac{d^{-(n-\gamma)} f(t)}{dt^{-(n-\gamma)}} = \frac{d^n}{dt^n} \int_0^t \frac{(t-y)^{n-\gamma-1}}{\Gamma(n-\gamma)} f(y) dy \quad (29)$$

561 This is called the Riemann-Liouville fractional derivative. Using the $R-L$
 562 subscript for this formula and taking Laplace transforms, one finds

$$\mathcal{L} \left[\frac{d^\alpha f(t)}{dt^\alpha} \right]_{R-L} = s^\gamma \tilde{f}(s) + \sum_{k=0}^{n-1} s^k \frac{d^{\gamma-1-k}}{dt^{\gamma-1-k}} f(t) \Big|_{t=0}. \quad (30)$$

563 For many applications, $0 < \gamma < 1$, so $n = 1$, the summation disappears and
 564 the γ^{th} derivative represents multiplication in Laplace space by the quantity s^γ ,
 565 where s is the Laplace parameter. In other cases, the terms in the sum will
 566 disappear for most well-behaved functions because the fractional derivatives
 567 involve an integral from 0 to t evaluated at $t = 0$. Recall that the traditional
 568 derivative of integer order has a Laplace transform that involves values of the
 569 function and its lower order derivatives at time $t = 0$. Generalizing on this
 570 formula, Caputo [48] defined a new kind of fractional time derivative such that:

$$\mathcal{L} \left[\frac{d^\gamma f(t)}{dt^\gamma} \right]_C = s^\gamma \tilde{f}(s) + \sum_{k=0}^{n-1} s^{\gamma-1-k} \frac{d^k}{dt^k} f(t) \Big|_{t=0} \quad (31)$$

571 where $n-1 < \gamma < n$. Factor out the term $s^{\gamma-n}$ and we see that the Caputo
 572 derivative (labelled with a subscript “C”) is a convolution of a power law with
 573 the n^{th} integer derivative of a function:

$$\begin{aligned} \mathcal{L} \left[\frac{d^\gamma f(t)}{dt^\gamma} \right]_C &= s^{\gamma-n} \left(s^n \tilde{f}(s) + \sum_{k=0}^{n-1} s^{n-1-k} \frac{d^k}{dt^k} f(t=0) \right) \\ &= s^{\gamma-n} \mathcal{L} \left[\frac{d^n f(t)}{dt^n} \right] \end{aligned} \quad (32)$$

574 An inverse Laplace transform reveals the Caputo derivative in real space:

$$\left[\frac{d^\alpha f(t)}{dt^\alpha} \right]_C = \frac{t^{n-\alpha-1}}{\Gamma(n-\alpha)} \star \frac{d^n f(y)}{dy^n} = \int_0^t \frac{(t-y)^{n-\alpha-1}}{\Gamma(n-\alpha)} \frac{d^n f(y)}{dy^n} dy \quad (33)$$

575 In the usual case, where the terms under the sum in (30) vanish, the two types
 576 of derivatives are related by:

$$\left[\frac{d^\gamma f(t)}{dt^\gamma} \right]_{R-L} = \left[\frac{d^\gamma f(t)}{dt^\gamma} \right]_C + \sum_{k=0}^{n-1} \frac{t^{k-\gamma}}{\Gamma(k+1-\gamma)} \frac{d^k}{dt^k} f(t=0) \quad (34)$$

577 If $0 < \alpha < 1$, then $n = 1$, and

$$\left[\frac{d^\alpha f(t)}{dt^\alpha} \right]_{R-L} = \left[\frac{d^\alpha f(t)}{dt^\alpha} \right]_C + \frac{t^{-\alpha} f(0)}{\Gamma(1-\alpha)} \quad (35)$$

578 *3.1. Fractional Time Derivatives and Random Walks*

579 The classical random walk is typically defined by motions that are divided
 580 by equal duration “waits,” and the passage to a continuous (Markov) motion
 581 process requires a subdivision of the motions into smaller and smaller indepen-
 582 dent jumps. *Montroll and Weiss* [49] defined a process, called a continuous time
 583 random walk (CTRW), in which the waiting times between particle jumps could
 584 have any distribution. A closely related topic called “subordination” was previ-
 585 ously explored for continuous time Markov processes by Bochner [50] and Feller
 586 [51]. Because the original motion processes we are interested in are Markovian
 587 diffusions, we follow their development. The Markov particle motion process,
 588 whether Brownian motion or the many Lévy motion extensions in the previous
 589 sections, denoted $X(t)$, has density $p(x, t)$ governed by the Cauchy equation:

$$\frac{\partial}{\partial t} p(x, t) = A_x p(x, t). \quad (36)$$

590 The point source solution of equation (36) has FT $p(k, t) = e^{tA(k)}$. If the time
 591 a particle spends in motion during the epoch $[0, t]$ is a random variable $U(t)$,
 592 the resulting random particle location becomes $A(U(t))$. We will assume for
 593 simplicity that the amount of time actually spent in motion at any time is a
 594 continuous random variable with probability density $h(u, t)$. The density that
 595 now describes a particle’s whereabouts, which we denote $q(x, t)$, is given by
 596 conditioning over all possible probabilities of the operational time u for the
 597 clock time t :

$$q(x, t) = \int_0^\infty p(x, u) h(u, t) du. \quad (37)$$

598 An explicit solution may be computed from the integral (37) if the density $h(u, t)$
 599 of the operational time $U(t)$ at any clock time t can be found. We take two
 600 tacks: one that gives the governing equation of the limits of traditional CTRW,
 601 and another that gives the solution for a two-phase system in which the particles
 602 transfer between mobile and immobile phases.

603 *3.1.1. Uncoupled CTRW*

604 A CTRW is built on the model of each motion being separated by a single
 605 random waiting time W . If the waiting time and the subsequent motion are
 606 independent, the CTRW is called uncoupled. The jump sizes are often taken
 607 to be the limit of a large number of jumps (e.g., Gaussian as reflected in a
 608 second-order space derivative), so that the same large number of waiting times
 609 can be assumed to pass to their limit as well. It is straightforward to sum the
 610 waiting times, but more difficult to figure the inverse, which is the time spent
 611 in motion. The sum of the waiting times $T(n) = \sum_{i=1}^n W_i$ gives the time of the

612 n^{th} jump, while the operational time $U(t)$ relates to the number of jumps $N(t)$
613 that have occurred by time t . These random variables are inverses related by
614 $\{N(t) \geq n\} = \{T(n) \leq t\}$. In the limit, the sum of random waiting times $T(n)$
615 converges to another Markov process $G(t)$, and this inverse relation becomes
616 $P(U(t) \geq u) = P(G(u) \leq t)$. The density functions for $U(t)$ and $G(u)$, denoted
617 $h(u, t)$ and $l(t, u)$ are then related by [52]:

$$h(u, t) = \frac{d}{du} \left(1 - \int_0^t l(\tau, u) d\tau \right). \quad (38)$$

618 If the individual waiting times W have a heavy tail, so $P(W > t) \sim Ct^{-\gamma}$ for
619 some constant C , then similar to the limit of random walks in space, the density
620 of the Lévy process $G(t)$ has Laplace transform $\mathcal{L}[l(t, u)] = l(s, u) = e^{-u\beta s^\gamma}$,
621 where β is a scale parameter depending only on γ and C (Appendix). Taking
622 Laplace transforms $t \mapsto s$ in (38) leads to

$$h(u, s) = \frac{d}{du} (-l(s, u)/s) = \beta s^{\gamma-1} e^{-u\beta s^\gamma}. \quad (39)$$

623 Take Laplace $t \mapsto s$ and Fourier $x \mapsto k$ transforms in (37) and use equation (39)
624 along with $p(k, u) = e^{uA(k)}$ to get:

$$q(k, s) = \int_0^\infty p(k, u) h(u, s) du = \int_0^\infty e^{uA(k)} \beta s^{\gamma-1} e^{-u\beta s^\gamma} du. \quad (40)$$

625 Using $1/b = \int e^{-bu} du$, we have

$$q(k, s) = \frac{\beta s^{\gamma-1}}{\beta s^\gamma - A(k)} = \frac{s^{\gamma-1}}{s^\gamma - A(k)/\beta}. \quad (41)$$

626 Now invert the FT and LT (one at a time) to get the fractional-order limit
627 equation for CTRW:

$$\frac{d^\gamma}{dt^\gamma} q(x, t) = \frac{1}{\beta} A_x q(x, t); \quad q(x, t=0) = \delta(x), \quad (42)$$

628 where we have used the Caputo fractional derivative (33). Note that the pa-
629 rameters in the space operator A_x (velocity and dispersion) are reduced by the
630 factor β .

631 We are not aware of a similar development, using subordination, for coupled
632 CTRW, i.e., the case where the size of particle jumps depends on the size of
633 the preceding waiting time. This possibility was developed for CTRW by Scher
634 and Lax [53]. The coupled CTRW have different rates of growth of moments of
635 the Green function relative to the uncoupled CTRW [53, 54, 55]. Regarding the
636 relationship of fractional calculus to coupled CTRW, certain functional forms of
637 coupling can lead to more exotic governing equations with coupled space-time
638 fractional derivatives, like $(d/dt + vd/dx)^\alpha$, see [19].

639 3.1.2. *Mobile/Immobile Particles*

640 Suppose that, between each waiting time in an immobile phase, the parti-
 641 cle participates in the motion process for exponential random times [52]. The
 642 rescaled limit of the waiting times follows the same procedure as the classical
 643 CTRW above, but while the particle is in the mobile phase, the clock time and
 644 the operational time are ticking away at the same rate [52]. This shifts the
 645 limit of the waiting time density by adding $u = t$, which multiplies the Laplace
 646 transform by e^{us} : $\mathcal{L}[l(t, u)] = l(u, s) = e^{-us}e^{-u\beta s^\gamma}$. Now the operational time
 647 density is calculated as

$$h(u, s) = \frac{d}{du} (-l(u, s)/s) = (1 + \beta s^{\gamma-1})e^{-u(s+\beta s^\gamma)}. \quad (43)$$

648 The governing equation is calculated as before, by taking the FLT of (37) and
 649 substituting densities of $p(k, u)$ and $h(u, s)$:

$$q(k, s) = \frac{1 + \beta s^{\gamma-1}}{s + \beta s^\gamma - A(k)} \quad (44)$$

650 Now invert the FLT for the real space governing equation of the limit of 2-state
 651 Mobile/Immobile processes:

$$\frac{d}{dt} q(x, t) + \beta \frac{d^\gamma f(t)}{dt^\gamma} q(x, t) = A_x q(x, t); \quad q(x, t = 0) = \delta(x), \quad (45)$$

652 where once again we have used the Caputo fractional derivative.

653 It is not quite as simple to equate probability to concentration in this case.
 654 The single particle exists alternately, in two different states: mobile, while it ac-
 655 tively participates in the motion process, and immobile between mobile epochs.
 656 The total probability of particle whereabouts is the sum of the mobile and im-
 657 mobile location probabilities. The FLT (44) has two terms in the numerator.
 658 These correspond, in a continuum sense, to the portion of the particles in the
 659 mobile and immobile phases, respectively. By combining these, equations (44)
 660 and (45) represent total resident concentration. This can be shown by con-
 661 sidering the continuum multirate mass transfer with infinite mean, power-law
 662 random waiting times, which have the following three equations for concentra-
 663 tion in 1) the “total” phase C_T , 2) the mobile phase C_M and 3) the immobile
 664 phase C_I [13, 52]:

$$\begin{aligned} \frac{\partial C_T}{\partial t} + \beta \frac{\partial^\gamma C_T}{\partial t^\gamma} &= A_x C_T \\ \frac{\partial C_M}{\partial t} + \beta \frac{\partial^\gamma C_M}{\partial t^\gamma} &= A_x C_M - \frac{C_M(x, t = 0)\beta t^{-\gamma}}{\Gamma(1 - \gamma)} \\ \frac{\partial C_I}{\partial t} + \beta \frac{\partial^\gamma C_I}{\partial t^\gamma} &= A_x C_I + \frac{C_M(x, t = 0)t^{-\gamma}}{\Gamma(1 - \gamma)} \end{aligned} \quad (46)$$

665 The total concentration $C_T = \theta_M C_M + \theta_I C_I$ where θ_M and θ_I are mobile and
 666 immobile porosities and β [$T^{\gamma-1}$] is defined here as capacity coefficient (see

[11] for a translation of the many forms of mobile and immobile porosity and sorption). Equations (46) assume that all solute begins in the mobile phase: $C_I(x, 0) = 0$. Taking the FLT of these equations and comparing to (44), it is convenient to define the two components of $q(k, t)$ by

$$\begin{aligned} q_M(k, s) &= \frac{1}{s + \beta s^\gamma - A(k)} \\ q_I(k, s) &= \frac{\beta s^{\gamma-1}}{s + \beta s^\gamma - A(k)} \end{aligned} \quad (47)$$

which partitions the particle density location function into mobile and immobile contributions because $q_M + q_I = q$. As a result, $\theta_M C_M(x, t) = q_M(x, t)$ is the mobile concentration, and $\theta_I C_I(x, t) = q_I(x, t)$ is the immobile concentration. The functions q_M and q_I are the portions of the total probabilities for a particle to occur at some point, hence these are related to the concentration in total (solid and liquid) aquifer material and must be adjusted by mobile and immobile porosities.

This gives a simple method to simulate the fractal multi-rate mass transfer process in a particle tracking routine [52, 56]: The mobile times are exponential with mean $1/(\beta\lambda)$, where in this case λ is a tuning parameter to ensure enough transitions between mobile and immobile by the time of interest. If the particles' locations are desired at some time t , choose λ so that the mean mobile step is approximately one tenth of this: $\lambda > 10/(t\beta)$. For waiting times, use either the chopped (Appendix) or shifted Pareto following $P(W > t) = S^\gamma(t + S)^{-\gamma}$, generated by $W = SU^{-1/\gamma} - S$, where S is the shift (which controls the scale of the waits) and U is a Uniform $[0,1]$ random variable. To derive the proper shift S , start by setting $\lambda = 1$, then by the Appendix in [52], we need W to be in the domain of attraction of a standard [81] stable law. By [?, Theorem 3.37, Proposition 5.8], $S = (\Gamma(1 - \gamma) \cos(\pi\gamma/2))^{-1/\gamma}$. Changing the value of λ does not change the overall solution but makes each mobile sojourn shorter, hence places more alternating mobile/immobile phase changes in any given time step. There are λ times as many mobile and immobile episodes compared to $\lambda = 1$, so to get the same overall process, each W is multiplied by $\lambda^{-1/\gamma}$ because for stable random variables $\lambda^{-1/\gamma} \sum_{i=1}^{[\lambda n]} W_i$ has the same distribution as $\sum_{i=1}^n W_i$. Therefore for any λ , the shift $S = (\lambda\Gamma(1 - \gamma) \cos(\pi\gamma/2))^{-1/\gamma}$.

4. Fractional ADEs and Field-Scale Tracer Test Data

The first field application of the spatial fractional equation to tracer test data was the Cape Cod bromide plume, motivated by the apparent power-law growth of the plume's dispersivity. This model successfully replaced the time-variable dispersivity in the traditional ADE by a constant parameter in the fractional ADE [7]. That model used a symmetric mix of forward and backward spatial fractional derivatives ($a = 0.5$ in (11)). The use of a symmetric fractional ADE was criticized by *Zhang et al.* [58]. They maintain that a more proper way to account for solute spreading behind the mean is by trapping in low permeability

705 zones, rather than long journeys upstream. *Zhang et al.* [58] modeled the
706 Cape Cod data with a forward space and time fractional ADE. The forward
707 space derivative term models the leading plume edge, and the fractional time
708 derivative term models the trailing edge. That method yielded improved fits,
709 although the relative homogeneity in the hydraulic conductivity ($\text{VAR}(\ln[K]) =$
710 0.26) at Cape Cod makes heavy tailed particle jumps less important. This is
711 reflected in the fitted value $\alpha = 1.6$ in that model: Because the space fractional
712 ADE reduces to the traditional ADE at $\alpha = 2$, the effect of setting $\alpha = 1.6$ is a
713 small increase, relative to other sites, in the heavy leading plume edge.

714 *Benson et al.* [8] then examined the bromide and tritium plumes at the
715 MADE site. Their analysis was done in 1-d using the maximum concentrations
716 along the “core” of the plume. The higher $\ln(K)$ variance, recently measured
717 to be on the order of seven [59], made the one-sided space-fractional ADE an
718 attractive model, and some simple analyses of the K statistics allowed an *a*
719 *priori* estimate of all equation parameters. The fitted value of $\alpha = 1.1$ indicates
720 a heavy leading plume edge, reflecting a highly heterogeneous K field. The
721 space-fractional ADE produced a good fit to normalized concentration snap-
722 shots (Fig. 3). *Schumer et al.* [13] applied an MRMT equation with $\gamma = 0.33$
723 and $\beta = 0.08 \text{ d}^{-0.67}$ to explain the bromide plume zeroth spatial moment (to-
724 tal mobile mass) decline. The fit of the zeroth moment was improved over
725 single-rate methods [60]. *Zhang et al.* [58] used this estimate to fit the MADE
726 plumes in 1-d, using (11) in (45), and found that both spatial and temporal
727 non-locality were important. A further analysis of the centered second moment
728 of the MADE plume showed different growth rates in the longitudinal versus
729 transverse directions [27], indicating the need for a multiscaling fractional dis-
730 perssion term. *Zhang et al.* [23] used a 3-zone model with longitudinal derivative
731 of order $\alpha = 1.1$ and transverse of order $\alpha = 1.5$ and included the fractal mo-
732 bile/immobile parameters previously reported [13]. For the mixing measure,
733 they assumed a braided stream network and derived the proportion of overlap-
734 ping sinuous channels that point in any direction [23]. Their particle-tracking
735 simulation (Fig. 4) is a reasonably faithful representation of the plume with
736 comparatively few parameters—especially, a constant mean velocity \mathbf{v} . In par-
737 ticular, the spatial discretization (of, say, K) is vastly reduced. The non-local
738 fractional derivatives are designed to replace finer-scaled velocity information
739 and allow much coarser discretization. This concept has been demonstrated on
740 an intensively studied 30.5×30.5 cm sandstone slab, where an analytic solution
741 of a fractional PDE captures the important features of a plume that over 8,000
742 measured K values fail to reproduce when used in the classical ADE [56].

743 In related research, *Harman et al.* [61] examined water transport through
744 hillslopes by assuming that, unabated, a parcel of water flows according to piston
745 (wave equation) flow. But the parcels of water may be trapped in the hetero-
746 geneous K field for random, heavy-tailed amounts of time, giving a fractional-
747 in-time wave-type equation. The solutions of the equation match numerical
748 solutions of water flow through mildly to strongly heterogeneous hillslope ma-
749 terial.

750 *Bradley et al.* [62] and *Ganti et al.* [63, 64] looked at experimental and

751 theoretical evidence for heavy-tailed transport and fractional ADEs for sand
 752 and gravel bedload transport in rivers. *Foufoula-Giorgiou et al.* [65] extended
 753 this concept to overland sediment transport and the evolution of landscapes.
 754 The transport equations take the exact forms presented herein. These processes
 755 are reviewed by *Schumer et al.* [66].

756 5. Fractional Integration: fBm Random Fields and Extensions

757 An integral is also called an antiderivative, with good reason. It is designed
 758 to be the inverse operator of a derivative. This is simply illustrated by the
 759 Fourier transform relation $\int f'(x)dx = f(x) \Leftrightarrow (ik)^{-1}(ik)f(k) = f(k)$. As
 760 we showed in previous sections, fractional derivatives in several dimensions can
 761 apply a different order of fractional differentiation in each coordinate, using
 762 the Fourier symbols of different Lévy motions. We have called this Fourier
 763 picture $A(\mathbf{k})$, and we have observed that multiplication by $A(\mathbf{k})$ in Fourier
 764 space defines the multidimensional fractional derivative. It follows that the
 765 fractional antiderivative corresponds to division in Fourier space by $A(\mathbf{k})$, in all
 766 of its forms presented above.

767 Fractional Brownian motion (fBm) in 1-D was originally defined as a weighted
 768 sum of prior values of white noise, where the weights fall off like a power law.
 769 Although the forward-direction fractional integral of white noise $B(t)$ diverges:

$$\tilde{B}_H(x) = \frac{1}{\Gamma(H+1/2)} \int_{-\infty}^x (x-y)^{H-1/2} B(dy), \quad (48)$$

770 the difference of two fractional integrals $B_H(t) = \tilde{B}_H(t) - \tilde{B}_H(0)$ is a legitimate
 771 stochastic integral that converges [67]. Define for compact notation $E = H+1/2$
 772 where the Hurst scaling index $0 < H < 1$, and equation (48) has the form of
 773 a fractional integral of order $1/2 < E < 3/2$. If the random measure $B(dy)$
 774 were replaced by $f(y)dy$ for a suitable non-random function, then the fractional
 775 integral (48) would be the inverse FT of $(ik)^{-E}f(k)$. The same kind of finite
 776 sum approximation that is used to approximate the fractional derivatives is
 777 also possible with the stochastic integral (48), and this idea can be used to
 778 efficiently simulate an unconditioned fractional Brownian motion, as outlined in
 779 [72, 68]. Briefly, the stochastic integral (48) becomes a discrete convolution of
 780 a sequence of iid normal random variables $B(\Delta y)$ with the Grünwald weights
 781 corresponding to fractional integration (Fig. 1), evaluated by taking the FT of
 782 both, multiplying, and inverting. This uses the fact that the FT of a convolution
 783 is a product.

784 For space-functions, the (causal) positive fractional integral can be sensibly
 785 extended to a symmetrically weighted sum of positive and negative fractional
 786 integrals. The first multi-dimensional fractional Brownian motions were con-
 787 structed by taking a power of the wave vector defined by a Fourier multiplier
 788 $|\mathbf{k}|^{-E}$ where $E = H + d/2$. A form of anisotropy can be implemeted by specify-
 789 ing a simple stretching in orthogonal directions by using fractional integration
 790 with Fourier symbol $|\lambda \cdot \mathbf{k}|^{-E}$ where the vector λ controls the correlation length

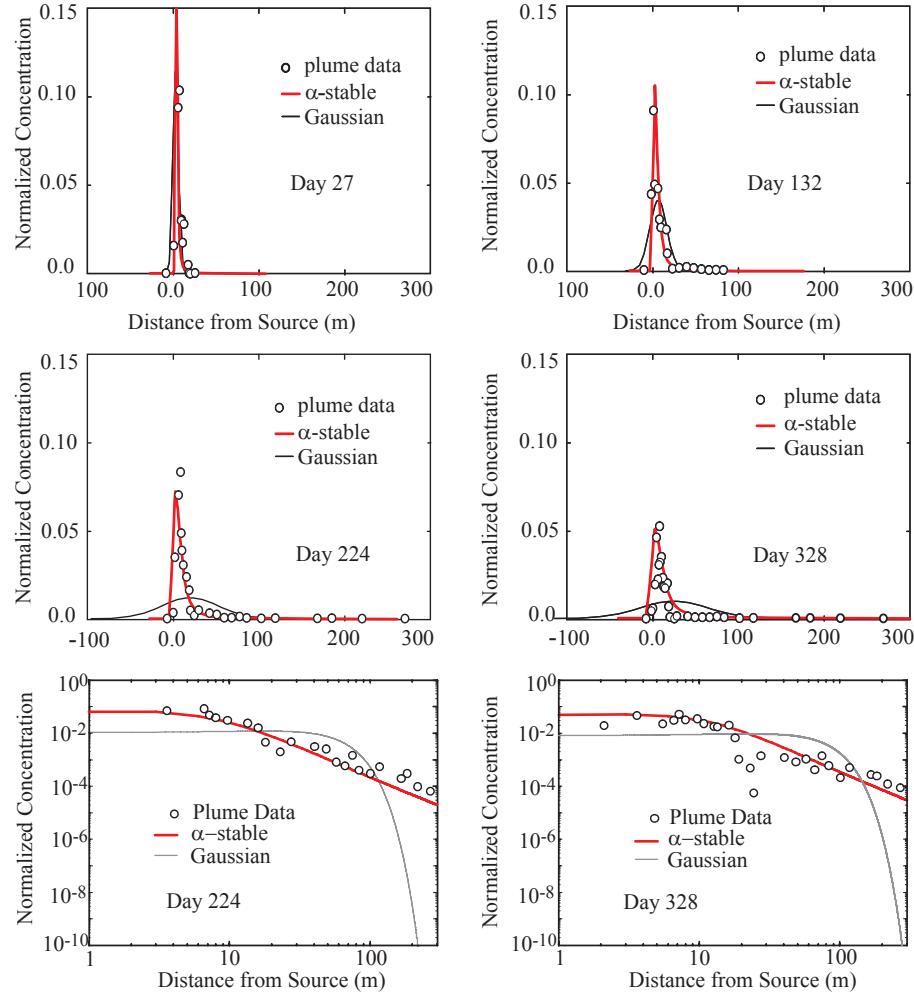


Figure 3: Two spatial snapshots of the MADE tritium plume “core.” Concentrations normalized to unit total mass. Bottom two plots are log-log scales. After [8].

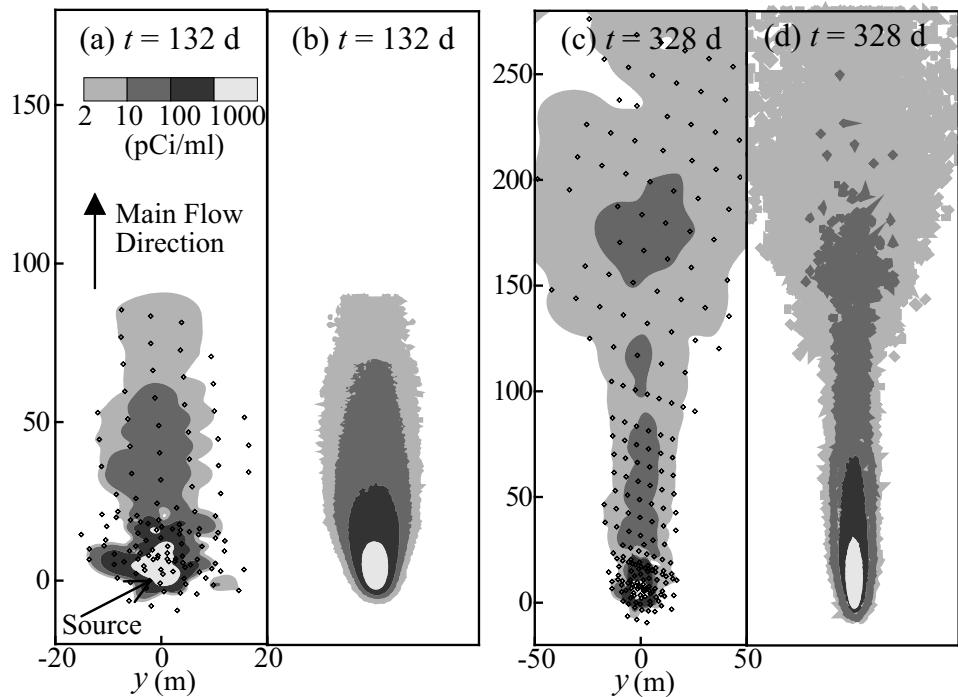


Figure 4: (a,c) 2-d map-view snapshots of the MADE tritium plume and (b,d) particle tracking simulations. The simulations use a single velocity value and three zones of different dispersion strength and mixing measure. After [23].

of the increments [69, 70, 71, 72]. Similarly, one could define a fixed distance and measure the value of the correlation. This corresponds to a radial mixing measure as defined above for the fractional derivatives. The stretching by vector λ just described represents an elliptical set of weights in the mixing measure [68]. Once again the mixing measure is a completely user-defined probability distribution on the unit sphere, so that correlation of the increments can be restricted to any set number of directions (Fig. 5). All of the fields constructed in this manner have the same Hurst index in every coordinate, but a different correlation length (or strength). A log-log plot of the correlation of increments in any direction would have the same power law slope, but different magnitudes.

However, many naturally occurring fields (e.g., K fields in alluvial aquifers) exhibit a different form of anisotropy, in which the Hurst index is different in each coordinate [68, 72, 73, 74, 75, 76, 77, 78]. These fields can be described using a multi-scaling fractional derivative, whose Fourier symbol $A(\mathbf{k})$ can be explicitly computed from the Lévy representation of the corresponding operator stable Lévy process [57, 28]. This Fourier symbol is characterized by its matrix-scaling property $c^E A(\mathbf{k}) = A(c^Q \mathbf{k})$. In other words, the function is scale invariant only when stretched different amounts in different directions. The corresponding multi-scaling fractional integration has Fourier multiplier $\psi(\mathbf{k}) = A(\mathbf{k})^{-1}$, so that $\psi(c^Q \mathbf{k}) = c^{-E} \psi(\mathbf{k})$. To make the parametrization unique, we require $\text{trace}(\mathbf{Q}) = d$, the number of dimensions. Then the matrix \mathbf{Q} codes deviations from the overall order of fractional integration, and isotropic scaling has $\mathbf{Q} = \mathbf{I}$. The multi-scaling random field $B_\psi(\mathbf{x})$ constructed using this filter can be simulated in exactly the same way as a fractional Brownian motion, using the discrete Fourier transform in d dimensions. In the isotropic case with $E = H + d/2$, this random field scales according to $B_\psi(c\mathbf{x}) = c^H B_\psi(\mathbf{x})$ [68, 29, 79], consistent with isotropic fBm. Including the possibility of anisotropic scaling by giving \mathbf{Q} different eigenvalues, we have the general scaling relationship:

$$B_\psi(c^Q \mathbf{x}) = c^H B_\psi(\mathbf{x}) \quad (49)$$

If $\mathbf{Q}\mathbf{k}_j = q_j \mathbf{k}_j$, then the coordinate process $B_\psi(x_j)$ is an fBm with Hurst index H/q_j . Larger variations in the eigenvalues of the matrix \mathbf{Q} describe more strongly anisotropic fields, with a different Hurst index in each coordinate.

5.1. Conditioned Random Fields: Numerics

Creating an unconditioned operator-scaling Gaussian random fields $B_\psi(\mathbf{x})$ is a simple matter, once the user has defined the mixing measure $M(d\theta)$ on the unit sphere (e.g., Fig. 5), and the possibly unique Hurst index H in each coordinate (Fig. 6). These unconditioned fields may be constructed several ways, each using the fact that a convolution is taking place. One may either construct the function $\psi(\mathbf{x})$ and take its fast Fourier transform (FFT) or directly construct $\psi(\mathbf{k})$. Similarly, one may either construct a same-sized white noise field of uncorrelated Gaussian random variables and take the FFT, or construct the FT of white noise directly using the spectral representation of an uncorrelated Gaussian field [80, 81]. The product of $\psi(\mathbf{k})$ and $B(\mathbf{k})$ is taken and inverse

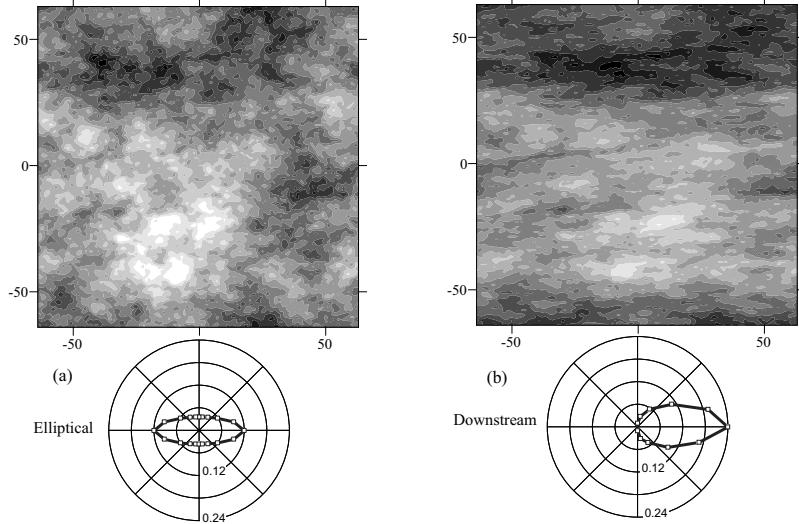


Figure 5: Isotropically scaling fBm fields generated with identical input noise $B(x)$ and a single scalar $H = 0.3$. (a) Elliptical weights, and (b) downstream weighted mixing measure estimated from braided stream photograph. After [68].

833 transformed. Only a portion of the field is retained due to periodicity of the
 834 FFT routine.

835 In real-world applications, the hydraulic conductivity (K) field is the most
 836 important control on the motion of conservative solutes. Furthermore, it is very
 837 common that some K data is collected, and any interpolation based on random
 838 field generation should honor these measurements. Creating a conditional field
 839 is more complicated (and significantly more time consuming) because the con-
 840 volution algorithm changes any points specified before the convolution. Based
 841 on the research of Reville [82], we recommend two useful conditioning methods:
 842 The first, based on the discussion in Feller [51], is called orthographic projection;
 843 the second, an adaptation of a method proposed by Journel and Huijbregts [83],
 844 is called random bridging.

845 *5.1.1. Conditioning By Orthographic Projection*

846 The orthographic projection method relies on the conditional probability
 847 distribution of any unknown point, based on a set of known points. Similar to
 848 existing sequential simulation methods [84, 85], initially the conditioning points
 849 comprise the known list, and the points to be simulated comprise the unknown
 850 list. The known list is used to sequentially create conditional probability dis-
 851 tributions for each point within the unknown list. Once an unknown point has
 852 been simulated, it is added to the known list, and can be used to simulate subse-
 853 quent unknown points. This process of simulating unknown points, and placing
 854 them on the known list, is continued until each point has been estimated and

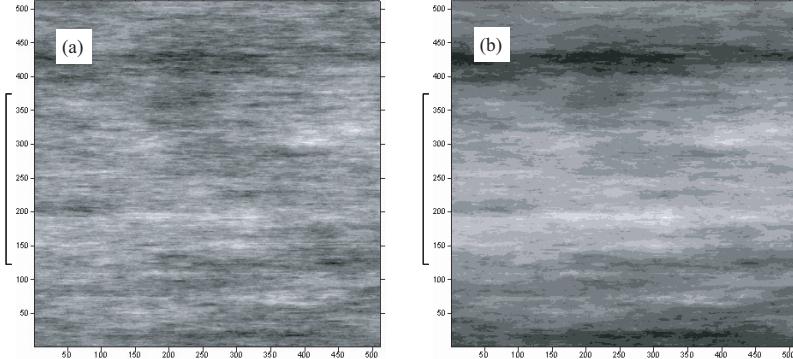


Figure 6: **Operator-scaling fBm fields generated with identical input noise $B(x)$ using the same H in the horizontal direction and different H in the vertical:** (a) H vertical = 0.4 and (b) H vertical = 0.8. After [68].

855 placed into the known list.

856 Without loss of generality we will consider the creation of a zero-mean ran-
 857 dom field. Make a discrete approximation $X_i = \sum_j \psi(j)B(i-j) \approx B_\psi(\mathbf{x}_i)$ of
 858 the stochastic integral that defines the random field, where the filter $\psi(j)$ comes
 859 from inverting the Fourier symbol $\psi(\mathbf{k})$, and $B(i)$ is an uncorrelated Gaussian
 860 sequence with mean 0 and variance σ_B^2 . Then the covariance is

$$861 E[X_j X_i] = E \left[\sum_k \psi(k)B(j-k) \sum_l \psi(l)B(i-l) \right] \quad (50)$$

862 where $E[\cdot]$ is the expectation. Because $E[B(i)B(j)] = 0$ for $i \neq j$, the only
 863 nonzero terms in the sum occur when $j-k = i-l$, i.e., when $l = i-j+k$.
 Then the covariance reduces to:

$$864 E[X_j X_i] = E \left[\sum_k \psi(k)B(j-k)\psi(i-j+k)B(j-k) \right] \quad (51)$$

$$= \sigma_B^2 \sum_k \psi(k)\psi(i-j+k)$$

865 This expression, a discrete convolution, is used to determine the covariance
 866 of two points. For larger fields, the covariance can be calculated efficiently
 867 using a discrete FFT to evaluate the convolution. Since the field has stationary
 868 increments, on a regular grid, the computation need be performed only once.
 869 These covariance values can then be used to simulate unknown points in the
 870 orthographic projection. Given known points X_1, X_2, \dots, X_{n-1} , to simulate an
 unknown point x_n , compute the covariance matrix

$$871 M_n = \begin{bmatrix} E[X_1 X_1] & \dots & E[X_1 X_n] \\ \vdots & & \vdots \\ E[X_n X_1] & \dots & E[X_n X_n] \end{bmatrix} \quad (52)$$

871 and the inverse covariance matrix $Q = [q_{ij}] = M_n^{-1}$. Then simulate the unknown
 872 point by drawing a random Gaussian variate with mean and variance

$$\mu_n = a_1 X_1 + \dots + a_{n-1} X_{n-1} \quad (53)$$

$$\sigma_n^2 = 1/q_{nn} \quad (54)$$

874 where $a_i = -q_{in}/q_{nn}$ and q_{ij} is the i, j entry of the inverse covariance matrix
 875 Q (see Feller [III.6] [51]). Once this unknown point is simulated, it is added
 876 to the known list, and can be used to simulate the remaining unknown points.
 877 As the list of known points grows, a subset of points must be selected from the
 878 known list, otherwise inverting the M_n matrix becomes inefficient. As a result,
 879 the known points included within each M_n must be carefully selected, in order
 880 to capture all important correlations present, yet remain efficient. Note also
 881 that this algorithm is very closely related to simple kriging: the mean value
 882 at a point is similar to a kriged surface, except that the “known” point list
 883 can (and almost certainly will) contain points that were not measured but were
 884 previously simulated.

885 There are several issues concerning this algorithm that influence the speed
 886 of calculation and characteristics of the output field. The first is choosing the
 887 order of points to be created. *Painter* [85] suggests moving sequentially through
 888 the field. [82] found that combining the nearest neighbor search and a random
 889 spiral search for more distant points was efficient and accurate. *Painter* [86]
 890 discusses the potential drawbacks of the various methods, and we find that the
 891 appearance of these field is very sensitive to the details of the order of simulation.

892 The procedure used to determine which known points are used to create
 893 each unknown point is also extremely important to the accuracy and efficiency
 894 of the output field. First, the number of points used to simulate each unknown
 895 point must be determined. Due to the computational inefficiency of using the
 896 entire known list to condition each unknown point, a selected portion of the
 897 known points is required. Known points must be selected which capture the
 898 correlations present at all scales, but also keep the size of the covariance matrix
 899 M_n manageable. A range of n from 20 to 50 was found to produce both accurate
 900 and efficient realizations and is consistent with previous work [85, 86, 87]. To
 901 select a representative set of X_1, X_2, \dots, X_{n-1} in 1-d, the only decision variable
 902 is the lag distance from the point of interest X_n . Therefore, to capture the
 903 correlations present at all scales in 1-d, the distance from each known point to
 904 X_n is calculated. When an isotropic kernel is used, only the absolute distance is
 905 required. When the kernel is anisotropic in multiple-dimensions, it is important
 906 to select points not only based on distance but also on orientation to the point
 907 of interest.

908 *5.1.2. Conditioning By Random Bridging*

909 The method of random bridging is similar to the conditional simulation
 910 method of Journel and Huijbregts [83]. On the surface it is more computationally
 911 demanding than orthographic projection because it requires kriging two
 912 mean surfaces — a procedure “built in” to the orthographic projection method.

913 However, when creating multiple realizations, the relative workload decreases for
 914 the random bridging method. For this reason, we typically prefer this method.
 915 We also find that it is insensitive to various numerical details such as the selec-
 916 tion of conditioning points. MATLAB implementations of both methods in 3-*d*
 917 are available from the author.

918 Initially, the method begins with a set of conditioning values Z_i at locations
 919 X_i , and an unconditional realization, $B_\psi(\mathbf{x})$. The unconditional realization
 920 is then conditioned by “molding” the noise from the unconditional surface to
 921 a “mean” surface interpolated through the conditioning points. This method
 922 requires finding an apparent mean or trend surface between conditioning points,
 923 and a similar trend surface within the unconditioned realization.

924 Determining the deviation from a trend surface in the unconditional realiza-
 925 tion can be implemented by first interpolating the trend between the points
 926 $B_\psi(X_i)$ of the unconditional realization. This interpolated surface is called $b(\mathbf{x})$,
 927 and is best created using an unbiased process similar to kriging [83]. In our case,
 928 the covariance matrix is a convolution of the function $\psi(j)$ with itself. Using
 929 the same interpolation routine, the interpolated surface (call it $z(\mathbf{x})$) between
 930 the conditioning points Z_i is created. Finally, the conditioned field is created
 931 by taking the difference between the unconditioned field and its trend surface,
 932 and adding this to the trend surface from the measured points:

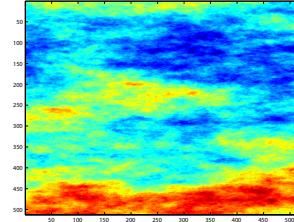
$$B_\psi(\mathbf{x})' = z(\mathbf{x}) + [B_\psi(\mathbf{x}) - b(\mathbf{x})] \quad (55)$$

933 *5.2. Conditional osfBm*

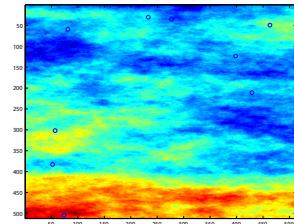
934 The orthographic projection and random bridging algorithms remain the
 935 same in multiple dimensions, as far as using an inverted covariance matrix to
 936 estimate μ_n and σ_n^2 at each unknown point. The only change occurs in how
 937 points are selected to construct M_n in each algorithm. The method of searching
 938 through a field and selecting the best points to create each M_n has significant
 939 consequence on the efficiency of creating conditional fields in both algorithms.
 940 Due to the slow power-law covariance decay, every point within the field has
 941 an effect on every other. Ideally, every previously simulated point would be
 942 used to simulate the next in order to account for the infinite correlation length.
 943 However, as the field size grows, a computational ceiling is quickly reached.
 944 Therefore, a subset of known points must be chosen to create each M_n . We
 945 have implemented a search based on sorting points based on their value of
 946 covariance with the point being simulated (or kriged). Examples of 2-*d* fields
 947 conditioned using the two algorithms are shown in Figure 7. It is clear that,
 948 with a knowledge of the correlation structure, defined by the filter $\psi(j)$, and a
 949 small number of conditioning points, faithful conditioned fields can be created
 950 that maintain the fractal structure at all scales.

951 *5.3. Fractional Differencing of fBm to determine H*

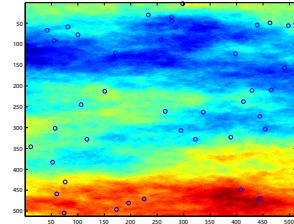
952 One of the handy features of the Grünwald weights is that it is very easy
 953 to perform fractional differences as well as fractional sums. Because fBm is
 954 a fractional integral of uncorrelated Gaussian noise, performing the “correct”



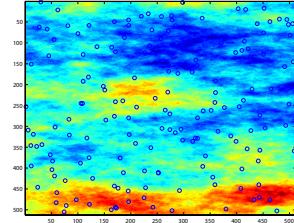
a) Training image from which conditioning data is taken



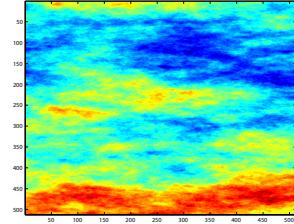
b) 10 conditioning points (circles), representing 0.0038% by volume.



c) 41 conditioning points (circles), representing 0.0156% by volume.



d) 164 conditioning points (circles), representing 0.063% by volume.



e) 655 conditioning points (not shown), representing 0.25% by volume.

Figure 7: Conditional osfBm realizations created using $H = 0.4, q_1 = 0.9, q_2 = 1.1$; therefore, $H_{horizontal} = 0.44$ and $H_{vertical} = 0.36$. The mixing measure was fixed delta functions with weights of unity on the vertical axes and 3 on the horizontal axes. The data used to condition each field is from the training field shown at the top. Each figure shows the locations of conditioning points using blue circles, except for (e), in which the 655 points are omitted for clarity.

order fractional derivative on fBm will give back an uncorrelated signal. This can aid in estimating the Hurst coefficient. In the discrete data case, following [88, 89], use (16) and (17) on a spatial series of hydraulic conductivity K_n . We took the 93×93 K values measured on a slab of Massillon sandstone (see also [90, 91, 56] and analyzed each of the 93 columns of data and separately the 93 rows of data, using a differencing distance of $N = 10$. Prior to differencing, the data in both columns and rows is highly correlated (Fig. 8, top plot). Here we show only the column data. Applying progressively higher-order fractional differences reduces correlation, until too high an order d induces statistically significant anticorrelation at lag one (Fig. 8, bottom plot). The differenced data also show more Normality (Fig. 9), although some heavier-tailed K data still exists at all levels of differencing.

6. Conclusions and Recommendations

This paper represents a survey of fractional calculus methods in hydrology with a few twists. First, we use the limit Markovian diffusions to define the full suite of fractional differential operators. This follows the logic that Brownian motion is an extremely useful model of diffusion and dispersion, in part because it represents a limit distribution, but also because it generates a solvable governing equation. When the basic tenets of Brownian motion are violated, some extended models are often similarly useful. When individual random motions follow a distribution with a power law tail, the motions converge to Lévy motion, which generates a diffusion equation with fractional space derivatives. In d -dimensions, up to d unique fractional derivative orders (including the classical second) may coexist. These orders dictate the rate of plume growth. If solute migrates into relatively immobile phase(s) and is released at a power law rate, then the diffusion equation's first derivative is either replaced, or joined, by a time-fractional derivative. This modifies the plume growth rate and simulates the power-law decay often seen in breakthrough curves of conservative tracers.

The fractional derivative operators are linear and admit Eulerian approximations similar to classical finite differences, but with fuller matrices. Lagrangian techniques may also be used in the same vein as classical random walk particle tracking codes are used to simulate classical diffusion. In all cases the simulations are more taxing, but the non-local fractional derivatives are designed to replace finer-scaled velocity information (e.g., [56]) and should require much coarser discretization—in some cases analytic solutions capture the important features of real solute plumes in aquifers.

Another approach to simulating transport in heterogeneous media is built on the creation of aquifer facsimilies. An attractive model is based on fractional Brownian motion because of the heterogeneity present at all scales and long-range correlation. Because fractional Brownian motion is built using fractional integrals of Gaussian noise, we are able to extend the classical isotropic fBm to have different Hurst coefficients in different directions. The fields are created by using the inverse operation specified by the multi-dimensional fractional derivative operators that we described previously. These fields can be conditioned

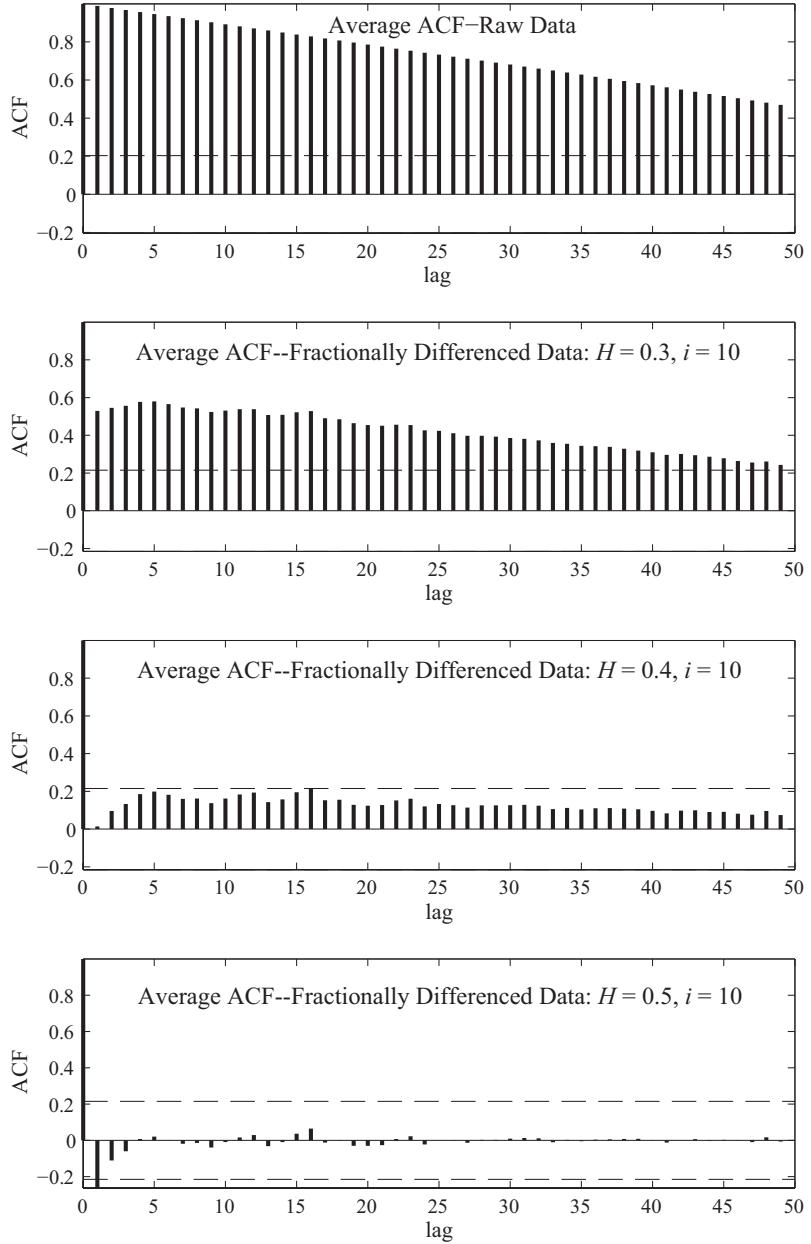


Figure 8: Autocorrelation function (ACF) for columns of $\log_{10}(K)$ data after fractional differencing. The ACF are calculated for each of the 93 columns and averaged. The 95% confidence interval is shown by the dashed lines. Differencing on the order of 0.9 to 1.0 ($H = 0.4$ to 0.5) reduces autocorrelation at all lags to non-significant levels. After [56].

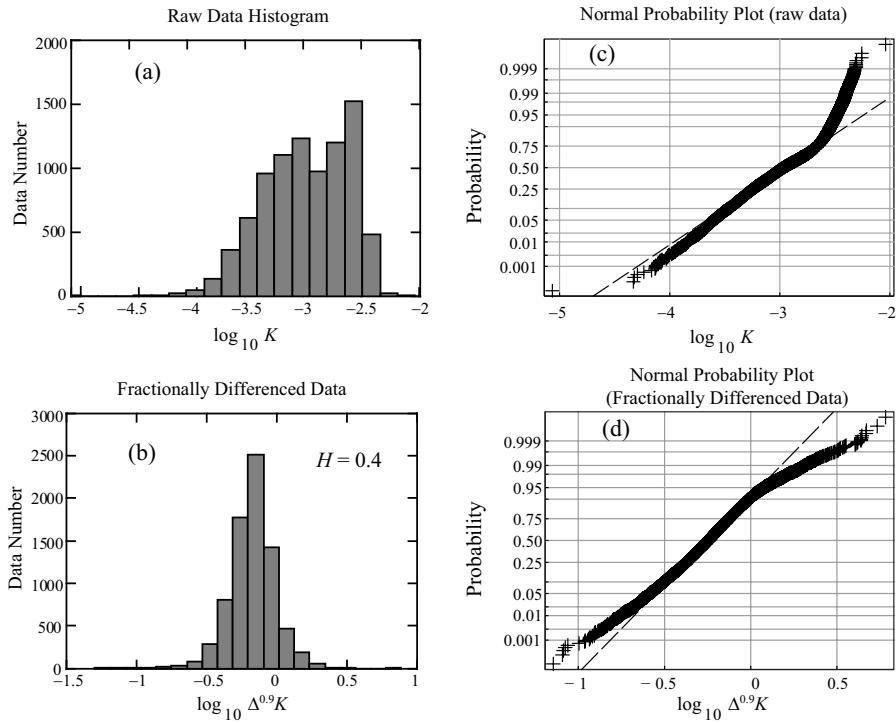


Figure 9: Histograms and Normal probability plots for original and differenced data from slab columns. (a) and (c): The raw $\log_{10}(K)$ data (K in cm/s) is significantly nonGaussian. (b) and (d): Following 0.9-order differencing ($H=0.4$), the data is more Normal, although somewhat heavy-tailed. After [56].

999 by measured data to create faithful representations of aquifer material—if it
1000 has the long-range dependence inherent in fBm—with the added flexibility of
1001 variable Hurst coefficients and user-defined weights in all directions. An open
1002 question is whether a link exists between these fractal K fields and the possible
1003 fractional PDE that describes the transport of a passive scalar within.

1004 **7. Acknowledgments**

1005 We thank T. Ginn and two anonymous reviewers for thoughtful analyses
1006 of our paper, and the editors D. A. Barry and C. Miller for inviting us to
1007 contribute to the 35th anniversary issue of *Advances in Water Resources*. DAB
1008 was supported by NSF grants EAR-9980489, DMS-0139943, DMS-0417972,
1009 DMS-0539176, EAR-0749035, and USDOE Basic Energy Sciences grant DE-
1010 FG02-07ER15841. MMM was partially supported by NSF grants DMS-1025486,
1011 DMS-0803360, EAR-0823965, and NIH grant R01-EB012079-01. Any opinions,
1012 findings, conclusions, or recommendations do not necessary reflect the views of
1013 the NSF, DOE, or NIH.

1014 **Appendix A. Generating Heavy-Tailed Random Variables**

1015 There are several methods to generate approximately stable random walk
1016 variables ξ , for example the shifted Pareto $P(\xi > r) = s^\alpha(r + s)^{-\alpha}$. However,
1017 the density is too peaked at the origin and convergence is slow [92]. One can
1018 choose the modified Chambers-Mallows-Stuck (CMS) method to generate ex-
1019 actly the stable random variables [93], but calculations are slowed by numerous
1020 sine and cosine calls. Instead we recommend jumps R from a “chopped” Pareto
1021 distribution (e.g., Fig. A.10d).

1022 Here we review the CMS method for max-skewed stable variables. Following
1023 [93], for $\alpha \neq 1$, generate V distributed uniformly on $(-\pi/2, \pi/2)$ and an inde-
1024 pendent exponential random variable W with mean 1. Then ξ is standard max
1025 skewed α -stable generated by:

$$\xi = \left(\cos\left(\frac{\pi\alpha}{2}\right) \right)^{-1/(2\alpha)} \cdot \frac{\sin[\alpha(V + \pi/2)]}{[\cos(V)]^{1/\alpha}} \cdot \left[\frac{\cos[V - \alpha(V + \pi/2)]}{W} \right]^{(1-\alpha)/\alpha} \quad (\text{A.1})$$

1026 A more computationally efficient approximation can be had. Following [45]
1027 use the distribution

$$P(\xi < r) = \begin{cases} m(r - p) & \text{if } p < r < \phi \\ 1 - cr^{-\alpha} & \text{if } r > \phi, \end{cases} \quad (\text{A.2})$$

1028 and take $c = 1/(\Gamma(1 - \alpha) \cos(\pi\alpha/2))$ to approximate standard stable jumps
1029 (with scale 1, center 0, skewness 1 in the parametrization of *Samorodnitsky and*
1030 *Taqqu* [81]) when $0 < \alpha < 2, \alpha \neq 1$, see (7.19)–(7.21) in [57]. To ensure the
1031 same slope at the cutoff $r = \phi$, set $m = \alpha c \phi^{-1-\alpha}$. To ensure continuity at the
1032 cutoff $r = \phi$, equate

$$1 - c\phi^{-\alpha} = \alpha c\phi^{(-1-\alpha)}(\phi - p). \quad (\text{A.3})$$

1033 For $1 < \alpha < 2$, *Zhang et al.* [45] recommend setting $p = -2.5$, so the cutoff
 1034 ϕ is solved by finding the root of the last equation. The chopped Pareto random
 1035 variable ξ can be generated by picking a Uniform $[0,1]$ random variable U , and
 1036 setting:

$$\xi = \begin{cases} U/m + p & \text{if } U < 1 - c\phi^{-\alpha} \\ (c/(1-U))^{1/\alpha} & \text{otherwise.} \end{cases} \quad (\text{A.4})$$

1037 For $\alpha > 1$, this random variable has mean

$$\mu = \frac{\alpha c \phi^{-1-\alpha}}{2} (\phi^2 - p^2) - \frac{\alpha c}{1-\alpha} \phi^{1-\alpha}$$

1038 so that $\xi - \mu$ gives a zero-mean random walk jump.

1039 We find that this method is approximately two to three times faster than the
 1040 modified CMS method. When the random walk simulations break a particle's
 1041 motion into at least ten jumps, then the sum of jumps converge nicely to the
 1042 exact generation method given by the modified CMS method (Fig. A.10 a,b,c).
 1043 In the infinite mean case $\alpha < 1$, we find that setting $p = 0$ and adding an
 1044 empirical constant ($\approx 0.3(1-\alpha)^{-1.2}$) speeds convergence considerably (Figure
 1045 A.10 d).

1046 References

- 1047 [1] K. B. Oldham, J. Spanier, *The Fractional Calculus*, Academic Press, 1974.
- 1048 [2] F. Mainardi, *Fractional Calculus and Waves in Linear Viscoelasticity*,
 1049 World Scientific, Singapore, 2010.
- 1050 [3] R. Metzler, J. Klafter, The restaurant at the end of the random walk:
 1051 recent developments in the description of anomalous transport by fractional
 1052 dynamics, *J. Phys. A* 37 (31) (2004) R161.
- 1053 [4] J. H. Cushman, T. R. Ginn, Nonlocal dispersion in media with continuously
 1054 evolving scales of heterogeneity, *Transp. Por. Media* 13(1) (1993) 123–138.
- 1055 [5] S. P. Neuman, Eulerian-Lagrangian theory of transport in space-time non-
 1056 stationary velocity fields: Exact nonlocal formalism by conditional mo-
 1057 ments and weak approximation, *Water Resour. Res.* 29 (3) (1993) 633–645.
- 1058 [6] E. Morales-Casique, S. P. Neuman, A. Guadagnini, Non-local and localized
 1059 analyses of non-reactive solute transport in bounded randomly heteroge-
 1060 neous porous media: Theoretical framework, *Adv. Water Resour.* 29 (8)
 1061 (2006) 1238–1255.
- 1062 [7] D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, Application of a
 1063 fractional advection-dispersion equation, *Water Resour. Res.* 36(6) (2000)
 1064 1403–1412. doi:10.1029/2000WR900031.

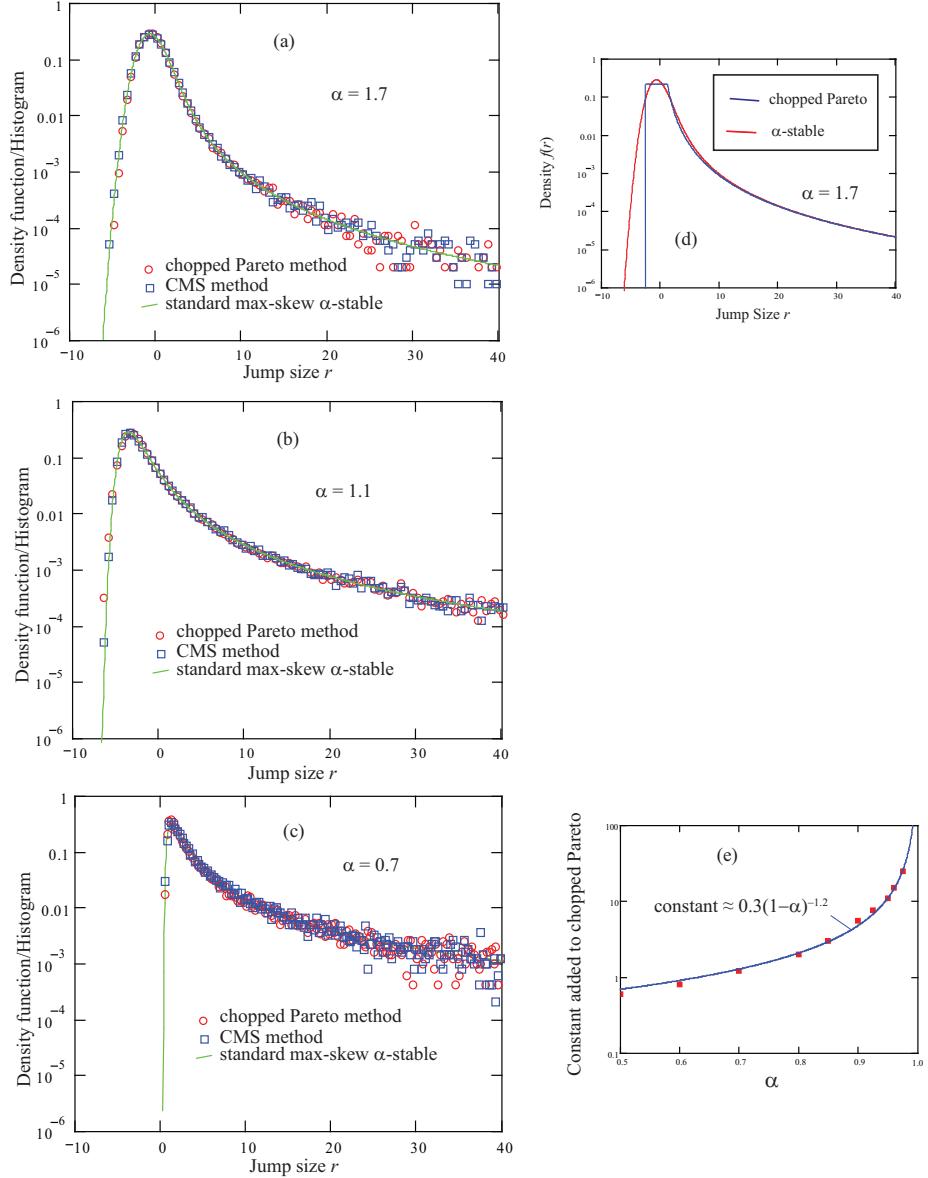


Figure A.10: (a,b,c) Histograms (symbols) versus standard, maximally-skewed α -stable density functions (curves). The histograms are for 20,000 variables generated by the modified CMS method [93] and rescaled sums of 10 jumps generated by the chopped Pareto method. (d) Plots of the standard, maximally-skewed α -stable and the chopped Pareto density functions for index $\alpha = 1.7$. (e) Plot of the empirical constant (symbols) added to chopped Pareto random variables for $\alpha < 1$ to speed convergence and a fitted function.

1065 [8] D. Benson, R. Schumer, M. Meerschaert, S. Wheatcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests, *Transp. Porous Media* 42 (1-2) (2001) 211–240. doi:10.1023/A:1006733002131.

1066

1067

1068 [9] J. H. Cushman, T. R. Ginn, Fractional advection-dispersion equation: A classical mass balance with convolution-fickian flux, *Water Resour. Res.* 36 (12) (2000) 3763–3766.

1069

1070

1071 [10] J. Carrera, X. Sánchez-Vila, I. Benet, A. Medina, G. Galarza, J. Guimer, On matrix diffusion: formulations, solution methods and qualitative effects, *Hydrogeology Journal* 6 (1998) 178–190, 10.1007/s100400050143.

1072

1073

1074 URL <http://dx.doi.org/10.1007/s100400050143>

1075 [11] R. Haggerty, S. M. Gorelick, Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity, *Water Resour. Res.* 31 (10) (1995) 2383–2400.

1076

1077

1078 [12] M. Dentz, B. Berkowitz, Transport behavior of a passive solute in continuous time random walks and multirate mass transfer, *Water Resour. Res.* 39 (5) (2003) 1111. doi:10.1029/2001WR001163.

1079

1080

1081 [13] R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, *Water Resour. Res.* 39 (2003) 1296. doi:10.1029/2003WR002141.

1082

1083

1084 [14] R. Bhattacharya, V. Gupta, A theoretical explanation of solute dispersion in saturated porous media at the Darcy scale, *Water Resour. Res.* 19 (4) (1983) 938–944. doi:10.1029/WR019i004p00938.

1085

1086

1087 [15] J. Klafter, I. M. Sokolov, *First Steps in Random Walks: From Tools to Applications*, Oxford University Press, 2011.

1088

1089 [16] G. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences* 219 (1137) (1953) 186–203. doi:10.1098/rspa.1953.0139.

1090

1091

1092

1093 [17] A. Einstein, On the theory of the Brownian movement, *Annalen der Physik* 4 (1906) 371–381.

1094

1095 [18] J. Crank, *Mathematics of Diffusion*, Oxford University Press, 1956.

1096

1097 [19] M. Meerschaert, D. Benson, H. Scheffler, P. Becker-Kern, Governing equations and solutions of anomalous random walk limits, *Phys. Rev. E* 66 (6, Part 1). doi:10.1103/PhysRevE.66.060102.

1098

1099 [20] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, *J. Comput. Appl. Math.* 172 (1) (2004) 65 – 77. doi:10.1016/j.cam.2004.01.033.

1100

1101

1102 [21] S. G. Samko, A. A. Klibas, O. I. Marichev, Fractional Integrals and Deriva-
 1103 tives: Theory and Applications, Gordon and Breach Science Publishers,
 1104 1993.

1105 [22] M. Meerschaert, D. Benson, B. Bäumer, Multidimensional advection and
 1106 fractional dispersion, *Phys. Rev. E* 59 (5, Part A) (1999) 5026–5028.

1107 [23] Y. Zhang, D. A. Benson, Lagrangian simulation of multidimensional
 1108 anomalous transport at the MADE site, *Geophys. Res. Lett.* 35 (2008)
 1109 L07403. doi:10.1029/2008GL033222.

1110 [24] C. Tadjeran, M. M. Meerschaert, A second-order accurate numerical
 1111 method for the two-dimensional fractional diffusion equation, *J. Comput.*
 1112 Phys. 220 (2) (2007) 813–823.

1113 [25] B. Baeumer, M. M. Meerschaert, J. Mortensen, Space-time fractional
 1114 derivative operators, *Proc. Amer. Math. Soc.* 133 (2005) 2273–2282.

1115 [26] W. Hudson, J. D. Mason, Operator-self-similar processes in a finite-
 1116 dimensional space, *Trans. Amer. Math. Soc.* 273 (1982) 281–297.

1117 [27] M. Meerschaert, D. Benson, B. Baeumer, Operator Lévy motion and mul-
 1118 tiscaling anomalous diffusion, *Phys. Rev. E* 63 (2, Part 1).

1119 [28] R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Multiscaling
 1120 fractional advection-dispersion equations and their solutions, *Water Re-
 1121 sour. Res.* 39 (2003) 1022. doi:10.1029/2001WR001229.

1122 [29] N. D. Monnig, D. A. Benson, M. M. Meerschaert, Ensemble solute trans-
 1123 port in two-dimensional operator-scaling random fields, *Water Resour. Res.*
 1124 44 (2) (2008) W02434–. doi:10.1029/2007WR005998.

1125 [30] M. Meerschaert, J. Mortensen, S. Wheatcraft, Fractional vector calcu-
 1126 lus for fractional advection-dispersion, *PHYSICA A* 367 (2006) 181–190.
 1127 doi:10.1016/j.physa.2005.11.015.

1128 [31] Y. Zhang, D. A. Benson, M. M. Meerschaert, E. M. LaBolle, Space-
 1129 fractional advection-dispersion equations with variable parameters: Diverse
 1130 formulas, numerical solutions, and application to the Macrodispersion Ex-
 1131 periment site data, *Water Resour. Res.* 43 (5). doi:10.1029/2006WR004912.

1132 [32] I. Podlubny, *Fractional Differential Equations. An Introduction to Frac-
 1133 tional Derivatives, Fractional Differential Equations, Some Methods of
 1134 Their Solution and Some of Their Applications*, Academic Press, 1999.

1135 [33] M. M. Meerschaert, H.-P. Scheffler, C. Tadjeran, Finite difference meth-
 1136 ods for two-dimensional fractional dispersion equation, *J. Comput. Phys.*
 1137 211 (1) (2006) 249 – 261. doi:10.1016/j.jcp.2005.05.017.

1138 [34] K. Wang, H. Wang, A fast characteristic finite difference method for frac-
 1139 tional advection-diffusion equations, *Adv. Water Resour.* 34 (7) (2011) 810–
 1140 816. doi:10.1016/j.advwatres.2010.11.003.

1141 [35] E. Hanert, A comparison of three Eulerian numerical methods for
 1142 fractional-order transport models, *Environ. Fluid Mech.* 10 (2010) 7–20.
 1143 doi:10.1007/s10652-009-9145-4.

1144 [36] G. Fix, J. Roop, Least squares finite-element solution of a fractional order
 1145 two-point boundary value problem, *Comput. & Math. Appl.* 48 (7-8) (2004)
 1146 1017–1033. doi:10.1016/j.camwa.2004.10.003.

1147 [37] J. Roop, Computational aspects of FEM approximation of fractional ad-
 1148 vection dispersion equations on bounded domains in R-2, *J. Comput. Appl.
 1149 Math.* 193 (1) (2006) 243–268. doi:10.1016/j.cam.2005.06.005.

1150 [38] M. A. Celia, W. G. Gray, *Numerical Methods for Differential Equations: Funda-
 1151 mental Concepts for Scientific and Engineering Applications*, Prentice
 1152 Hall, 1992.

1153 [39] E. Hanert, On the numerical solution of spacetime fractional diffusion mod-
 1154 els, *Computers & Fluids* 46 (2011) 33–39.

1155 [40] L. Konikow, J. Bredehoeft, Computer model of two-dimensional solute
 1156 transport and dispersion in ground water, *Tech. Rep. Techniques of Water-
 1157 Resources Investigations, book 7, chap. C2.*, U.S. Geological Survey (1978).

1158 [41] E. M. LaBolle, G. E. Fogg, A. F. B. Tompson, Random-walk simulation of
 1159 transport in heterogeneous porous media: Local mass-conservation problem
 1160 and implementation methods, *Water Resour. Res.* 32 (3) (1996) 583–593.

1161 [42] E. M. LaBolle, J. Quastel, G. E. Fogg, Diffusion theory for transport in
 1162 porous media: Transition-probability densities of diffusion processes cor-
 1163 responding to advection-dispersion equations, *Water Resour. Res.* 34(7)
 1164 (1998) 1685–1693.

1165 [43] E. M. LaBolle, J. Quastel, G. E. Fogg, , J. Gravner, Diffusion processes in
 1166 composite porous media and their numerical integration by random walks:
 1167 Generalized stochastic differential equations with discontinuous coefficients,
 1168 *Water Resour. Res.* 36(3) (2000) 651–662.

1169 [44] Y. Zhang, D. A. Benson, M. M. Meerschaert, H.-P. Scheffler, On using
 1170 random walks to solve the space-fractional advection-dispersion equations,
 1171 *J. Stat. Phys.* 123 (1) (2006) 89–110.

1172 [45] Y. Zhang, D. A. Benson, M. M. Meerschaert, E. M. LaBolle, H.-P. Scheffler,
 1173 Random walk approximation of fractional-order multiscaling anomalous
 1174 diffusion, *Phys. Rev. E* 74 (2, Part 2). doi:10.1103/PhysRevE.74.026706.

1175 [46] D. Pollock, Semianalytical computation of path lines for finite-difference
 1176 models, GROUND WATER 26 (6) (1988) 743–750. doi:10.1111/j.1745-
 1177 6584.1988.tb00425.x.

1178 [47] D. M. Reeves, D. A. Benson, M. M. Meerschaert, H.-P. Scheffler, Transport
 1179 of conservative solutes in simulated fracture networks: 2. ensemble solute
 1180 transport and the correspondence to operator-stable limit distributions,
 1181 Water Resour. Res. 44 (5) (2008) W05410. doi:10.1029/2008WR006858.

1182 [48] M. Caputo, Linear models of dissipation whose q is almost frequency inde-
 1183 pendentm part ii., Geophys. J. Royal Astr. Soc. 13 (1967) 529–539.

1184 [49] E. W. Montroll, G. H. Weiss, Random walks on lattices. ii, J. Math. Phys.
 1185 6 (2) (1965) 167–181.

1186 [50] S. Bochner, Diffusion equations and stochastic processes, Proc. Natl. Acad.
 1187 Sci. U.S.A. 85 (1949) 369–370.

1188 [51] W. Feller, An Introduction to Probability Theory and Its Applications, vol.
 1189 II Wiley Series in Probability Theory and its Applications, Wiley, 1971.

1190 [52] D. A. Benson, M. M. Meerschaert, A simple and efficient random walk solu-
 1191 tion of multi-rate mobile/immobile mass transport equations, Adv. Water
 1192 Resour. 32 (2009) 532–539. doi:10.1016/j.advwatres.2009.01.002.

1193 [53] H. Scher, M. Lax, Stochastic transport in a disordered solid. i. theory, Phys.
 1194 Rev. B 7 (10) (1973) 4491–4502. doi:10.1103/PhysRevB.7.4491.

1195 [54] M. F. Shlesinger, J. Klafter, Y. M. Wong, Random walks with infinite
 1196 spatial and temporal moments, J. of Stat. Phys. 27 (3) (1982-03-01) 499–
 1197 512. doi:10.1007/BF01011089.

1198 [55] M. Dentz, H. Scher, D. Holder, B. Berkowitz, Transport behavior of cou-
 1199 pled continuous-time random walks, Phys. Rev. E 78 (4) (2008) 041110.
 1200 doi:10.1103/PhysRevE.78.041110.

1201 [56] E. Major, D. A. Benson, J. Revielle, H. Ibrahim, A. Dean, R. M. Maxwell,
 1202 E. Poeter, Comparison of fickian and temporally non-local transport the-
 1203 ories over many scales in an exhaustively sampled sandstone slab, submitted.

1204 [57] M. M. Meerschaert, H.-P. Scheffler, Limit Distributions for Sums of Inde-
 1205 pendent Random Vectors, Wiley Interscience, 2001.

1206 [58] Y. Zhang, D. A. Benson, D. M. Reeves, Time and space nonlocalities
 1207 underlying fractional-derivative models: Distinction and literature re-
 1208 view of field applications, Adv. Water Resour. 32 (4) (2009) 561–581.
 1209 doi:10.1016/j.advwatres.2009.01.008.

1210 [59] M. Dogan, R. L. Van Dam, G. C. Bohling, J. Butler, James J., D. W. Hyn-
 1211 dman, Hydrostratigraphic analysis of the MADE site with full-resolution
 1212 GPR and direct-push hydraulic profiling, *Geophys. Res. Lett.* 38 (6) (2011)
 1213 L06405.

1214 [60] C. Harvey, S. M. Gorelick, Rate-limited mass transfer or macrodis-
 1215 perssion: Which dominates plume evolution at the macrodispersion ex-
 1216 periment (MADE) site?, *Water Resour. Res.* 36 (3) (2000) 637–650.
 1217 doi:10.1029/1999WR900247.

1218 [61] C. J. Harman, D. M. Reeves, B. Baeumer, M. Sivapalan, A subordinated
 1219 kinematic wave equation for heavy-tailed flow responses from heterogeneous
 1220 hillslopes, *J. Geophys. Res.* 115. doi:10.1029/2009JF001273.

1221 [62] D. N. Bradley, G. E. Tucker, D. A. Benson, Fractional dispersion in a sand
 1222 bed river, *J. Geophys. Res.* 115 (2010) F00A09–.

1223 [63] V. Ganti, M. M. Meerschaert, E. Foufoula-Georgiou, E. Viparelli,
 1224 G. Parker, Normal and anomalous diffusion of gravel tracer particles in
 1225 rivers, *J. Geophys. Res.* 115 (2010) F00A12–.

1226 [64] V. Ganti, K. M. Straub, E. Foufoula-Georgiou, C. Paola, Space-time
 1227 dynamics of depositional systems: Experimental evidence and theoreti-
 1228 cal modeling of heavy-tailed statistics, *J. Geophys. Res.* 116 (F2) (2011)
 1229 F02011–.

1230 [65] E. Foufoula-Georgiou, V. Ganti, W. E. Dietrich, A nonlocal theory of sed-
 1231 iment transport on hillslopes, *J. Geophys. Res.* 115 (2010) F00A16–.

1232 [66] R. Schumer, M. M. Meerschaert, B. Baeumer, Fractional advection-
 1233 dispersion equations for modeling transport at the earth surface, *J. Geo-
 1234 phys. Res.* 114 (2009) F00A07–. doi:10.1029/2008JF001246.

1235 [67] B. B. Mandelbrot, J. R. Wallis, Computer experiments with fractional gaus-
 1236 sian noises. part 3, mathematical appendix, *Water Resour. Res.* 5 (1969)
 1237 260–267.

1238 [68] D. A. Benson, M. M. Meerschaert, B. Baeumer, H.-P. Scheffler, Aquifer
 1239 operator scaling and the effect on solute mixing and dispersion, *Water
 1240 Resour. Res.* 42 (1) (2006) W01415–. doi:10.1029/2004WR003755.

1241 [69] H. Rajaram, L. Gelhar, Plume-scale dependent dispersion in aquifers with
 1242 a wide range of scales of heterogeneity, *Water Resour. Res.* 31 (10) (1995)
 1243 2469–2482.

1244 [70] H. Zhan, S. W. Wheatcraft, Macrodispersivity tensor for nonreactive solute
 1245 transport in isotropic and anisotropic fractal porous media: Analytical
 1246 solutions, *Water Resour. Res.* 32 (1996) 3461–3474.

1247 [71] V. Di Federico, S. P. Neuman, D. M. Tartakovsky, Anisotropy, lacunar-
 1248 ity, and upscaled conductivity and its autocovariance in multiscale random
 1249 fields with truncated power variograms, *Water Resour. Res.* 35 (1999) 2891–
 1250 2908.

1251 [72] F. J. Molz, H. H. Liu, J. Szulga, Fractional Brownian motion and frac-
 1252 tional Gaussian noise in subsurface hydrology: A review, presentation of
 1253 fundamental properties, and extensions, *Water Resour. Res.* 33 (10) (1997)
 1254 2273–2286.

1255 URL <http://dx.doi.org/10.1029/97WR01982>

1256 [73] T. A. Hewitt, Fractal distribution of reservoir heterogeneity and their in-
 1257 fluence on fluid transport, in: *SPE Pap.* 15386, Soc. Pet. Eng. 61st Annual
 1258 Tech. Conf., 1986, new Orleans, LA.

1259 [74] F. Molz, G. Boman, A fractal-based stochastic interpolation scheme in
 1260 subsurface hydrology, *Water Resour. Res.* 29 (1993) 3769–3774.

1261 [75] H. Liu, F. Molz, Multifractal analyses of hydraulic conductivity distribu-
 1262 tions, *Water Resour. Res.* 33 (1997) 2483–2488.

1263 [76] A. Deshpande, P. B. Flemings, J. Huang, Quantifying lateral hetero-
 1264 geneities in fluvio-deltaic sediments using three-dimensional reflection seis-
 1265 mic data: Offshore Gulf of Mexico, *J. Geophys. Res.* 102 (B7) (1997) 15385–
 1266 15401. doi:10.1029/97JB01143.

1267 [77] L. Tennekoon, M. C. Boufadel, D. Lavallee, J. Weaver, Multifractal
 1268 anisotropic scaling of the hydraulic conductivity, *Water Resour. Res.* 39 (7)
 1269 (2003) 1193–.

1270 URL <http://dx.doi.org/10.1029/2002WR001645>

1271 [78] J. W. Castle, F. J. Molz, S. Lu, C. L. Dinwiddie, Sedimentology and fractal-
 1272 based analysis of permeability data, John Henry member, Straight Cliffs
 1273 formation,(upper Cretaceous), Utah, U.S.A., *J. Sed. Res.* 74 (2004) 270–
 1274 284.

1275 [79] H. Biermé, M. M. Meerschaert, H.-P. Scheffler, Operator scaling sta-
 1276 ble random fields, *Stoch. Proc. Appl.* 117 (3) (2007) 312–332. doi:DOI:
 1277 10.1016/j.spa.2006.07.004.

1278 [80] A. M. Yaglom, *An Introduction to the Theory of Stationary Random Func-
 1279 tions*, Dover Publications, 1962.

1280 [81] G. Samorodnitsky, M. S. Taqqu, *Stable Non-Gaussian Random Processes:
 1281 Stochastic Models with Infinite Variance*, Stochastic Modeling, Chapman
 1282 Hall, London, 1994.

1283 [82] J. Revielle, *Incorporating Hydraulic Conductivity Measurements Into Frac-
 1284 tal Aquifer Realizations and its Effect on Solute Transport*, Master's thesis,
 1285 Colorado School of Mines (2009).

1286 [83] A. G. Journel, C. J. Huijbregts, *Mining Geostatistics*, Academic Press, San
1287 Diego, CA, 1978.

1288 [84] C. V. Deutsch, A. G. Journel, *GSLIB Geostatistical software library and*
1289 *user's guide*, Oxford University Press, New York, 1993.

1290 [85] S. Painter, Stochastic interpolation of aquifer properties using fractional
1291 Lévy motion, *Water Resour. Res.* 32 (5) (1996) 1323–1332.

1292 [86] S. Painter, Numerical method for conditional simulation of Lévy random
1293 fields, *Math. Geol.* 30 (2) (1998) 163–179.

1294 [87] S. Painter, Flexible scaling model for use in random field simulation of
1295 hydraulic conductivity, *Water Resour. Res.* 37 (5) (2001) 1155–1163.

1296 [88] G. L. Isaacs, An iteration formula for fractional differences, *Proc. London*
1297 *Math. Soc. s3-13* (1) (1963) 430–460.

1298 [89] J. R. M. Hosking, Fractional differencing, *Biometrika* 68 (1981) 165–176.

1299 [90] V. C. Tidwell, J. L. Wilson, Heterogeneity, permeability patterns, and per-
1300 meability upscaling: Physical characterization of a block of Massillon sand-
1301 stone exhibiting nested scales of heterogeneity, *SPE Reservoir Eval. and Eng.*
1302 3 (4) (2000) 283–291.

1303 [91] K. A. Klise, V. C. Tidwell, S. A. McKenna, Comparison of laboratory-scale
1304 solute transport visualization experiments with numerical simulation using
1305 cross-bedded sandstone, *Adv. Water Resour.* 31 (12) (2008) 1731–1741.
1306 doi:10.1016/j.advwatres.2008.08.013.

1307 [92] D. Bolster, P. de Anna, D. A. Benson, A. M. Tartakovsky, Incomplete
1308 mixing and reactions with fractional dispersion, *Adv. Water Resour.* sub-
1309 mitted.

1310 [93] R. Weron, On the Chambers-Mallows-Stuck method for simulating skewed
1311 stable random variables, *Stat. Prob. Lett.* 28 (2) (1996) 165171.