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Abstract12

Fractional derivatives can be viewed either as a handy extension of classical13

calculus or, more deeply, as mathematical operators defined by natural phe-14

nomena. This follows the view that the diffusion equation is defined as the15

governing equation of a Brownian motion. In this paper, we emphasize that16

fractional derivatives come from the governing equations of stable Lévy motion,17

and that fractional integration is the corresponding inverse operator. Fractional18

integration, and its multi-dimensional extensions derived in this way, are inti-19

mately tied to fractional Brownian (and Lévy) motions and noises. By following20

these general principles, we discuss the Eulerian and Lagrangian numerical so-21

lutions to fractional partial differential equations, and Eulerian methods for22

stochastic integrals. These numerical approximations illuminate the essential23

nature of the fractional calculus.24
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1. Introduction28

The term “fractional calculus” refers to the generalization of integer-order29

derivatives and integrals to rational order. This topic was first broached by30

L’Hopital and Leibniz after the latter’s co-invention of calculus in the 1700s31

(see the excellent history by [1]). In fact, the operators can be extended to32
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complex as well as real order, so the “fractional” label is a minor historical33

misnomer.34

Fractional calculus was primarily a mathematical curiosity for centuries (see35

examples in [1] and [2]). For example, when Heaviside would take the “square36

root” of both sides of a diffusion equation, he was generating a 1/2-order time37

derivative. Some of the first physical applications were by geophysicists de-38

scribing material somewhere between elastic (Hooke’s linear relationship be-39

tween stress and strain) and viscous (described by Newton’s stress proportional40

to strain rate). In his work on this area starting in the 1960’s, geophysicist41

Michele Caputo derived the fractional derivative that carries his name. Benoit42

Mandelbrot’s work on fractional Brownian motion and geophysical time series43

starting in the 1960’s implicitly used fractional-order integration.44

In the 1990’s, a resurgence of interest surrounded the application of fractional45

derivatives in the model equations of anomalous diffusion (see [3] for an exten-46

sive review). At the same time, an understanding of the importance of general47

non-locality in upscaled transport in heterogeneous aquifer material emerged48

[4, 5]. The non-locality is defined by operators that account for (integrate) the49

concentrations at previous times and/or large regions of space. These studies50

were based on the simple idea that the concentration change at some collec-51

tion point (a plane or well) depended on contributions from potentially large52

distances upstream and/or the concentration loading history for some time in53

the past. Formally, the non-locality arises when the underlying velocity field is54

uncertain and correlation scales are significantly large compared to the scale of55

observation [6]. Upscaled descriptions of transport lose detailed velocity infor-56

mation that is transferred to the non-local operators.57

One attempt to incorporate spatial non-locality in a tractable form assumed58

a set of weights that decayed as a power-law [7, 8, 9], which forms the definition59

of a fractional-order dispersion term. This formulation assumed that the con-60

centration change at some point depended on upstream concentrations, and the61

dependence decayed like a power law of the distance. Temporal non-locality,62

in which concentration change at a point depends on the prior concentration63

“loading” is the basis for hydrologic applications of continuous time random64

walks (CTRW). The CTRW were shown to define temporal fractional deriva-65

tives when the weighting of prior concentration decayed like a power-law (see the66

extensive review by Metzler and Klafter [3]). A few years later, the formal link67

between two-state (mobile/immobile) multi-rate mass transfer equations [10, 11]68

and temporally fractional-order models was made [12, 13]. This accounts for so-69

lute loading into relatively impermeable material that slowly releases the solute70

after the bulk of a plume has passed.71

Forays into fractional calculus in multiple dimensions showed that the frac-72

tional derivatives could be extended in ways significantly different than classical73

cases. The derivative operators were defined by the underlying diffusion pro-74

cess of Lévy motion, which could have different scaling rates and skewness in75

different directions. The derivative operators inherit the different orders and76

descriptions of skewness in all directions. Because of the link between deriva-77

tives and integrals, these extensions can be transferred to any system that uses78
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fractional integrals. The most common hydrologic application of fractional in-79

tegration is the generation of fractional Brownian motion as a representation of80

aquifer material with long-range correlation structure. Using the inverses of the81

newly defined fractional derivatives gave new tools to extend the classical frac-82

tional Brownian motion to more closely represent anisotropic aquifer structure83

[68].84

Because the fractional derivative and integrals are defined as convolution85

operators, they are easy to implement using standard numerical techniques. In86

addition, because the fractional diffusion equations that generate the deriva-87

tive operators are based on the motion of a single particle, the classical random88

walk particle tracking (RWPT) techniques are well-suited to solve the fractional89

advection-dispersion transport equations. We exploit the numerical implemen-90

tations as a vehicle to define and solve to fractional-order differential and integral91

equations.92

The paper is organized in three main sections dealing with fractional space93

derivatives (section 2), fractional time derivatives (section 3), and fractional in-94

tegrals (section 5). Within the two derivative sections, we outline how the diffu-95

sion equation, and its fractional-order counterparts, are defined by the stochastic96

processes that they describe. We show how the equations naturally induce both97

their Eulerian (section 2.5) and Lagrangian (section 2.6) numerical approxima-98

tions. In section 4 we briefly summarize how the fractional transport equations99

have been applied to contaminant transport problems in surface and subsur-100

face hydrology. We then show in section 5 how the inverse of the fractional101

derivative operators define the fractional integrals in multiple dimensions, and102

how these integrals can be used to generate conditioned, multi-scaling, random103

aquifer facsimilies. We close with conclusions and recommendations for future104

work in section 6.105

2. Markovian Diffusions and Fractional Space Derivatives106

There are several forms of fractional derivatives that are distinguished by107

the domain over which they operate. Because they are non-local operators,108

they “look” for values from a certain distance ahead or behind for information.109

For spatial processes it may be correct to look ahead and/or behind (or at any110

angle) over all space. Temporal information is only used after some starting111

time, so the domain of interest is positive time only. We use these distinctions112

to explain the association of the different operators to different behaviors in113

diffusions based on random walks.114

The starting point for all of the generalizations is classical Brownian motion.115

It is well known that Brownian motion B(t) is the limit Markov (memoryless)116

process of finite-variance random walks with short-range correlation [14, 15].117

This makes Brownian motion an attractive model for transport of passive tracers118

in surface and ground water: the exact nature of the individual motions is not119

particularly important in the long-term. The central limit theorem dictates that120

all finite-variance motions converge toward the Gaussian limit distribution. It121

is precisely this property that has made Brownian motion an attractive and122
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useful model of macrodispersion in aquifers. Even with non-Gaussian particle123

motions, the long term transport tends toward the Gaussian limit distribution124

(for perhaps the earliest experimental example see Taylor [16]).125

If B(t) denotes the location of a particle in one-dimensional space x at time126

t then the density of the location p(x, t) is given by127

p(x, t) =
1√

4πDt
exp

(
−x2

4Dt

)
(1)

where D is half the variance of each motion size divided by the mean motion128

time. Throughout this paper, we will use Fourier f(k) ≡
∫
e−ikxf(x)dx and129

Laplace f(s) ≡
∫
e−stf(t) transforms, where it is understood for notational130

simplicity that f(x)⇔ f(k) and f(t)⇔ f(s) are transform pairs, not the same131

functions.132

To connect the diffusion equation with Brownian motion, note that the133

Fourier transform (FT) of (1) is p(k, t) = exp(tD(ik)2), with time derivative134

dp(k, t)

dt
= D(ik)2 exp(tD(ik)2) = D(ik)2p(k, t) (2)

A property of Fourier transforms of integer-order derivatives is that (ik)nf(k)⇔135

dnf(x)/dxn, so that the inverse transform of the previous equation becomes136

∂p(x, t)

∂t
= D

∂2

∂x2
p(k, t) (3)

In a more general way that will be useful shortly, we can write the FT of the137

Brownian motion density as p(k, t) = exp(tA(k)), where the function of the138

wavenumber A(k) = D(ik)2, then following the same procedure the “inverse139

FT” of A(k) defines the linear space operator in the Cauchy equations140

dp(k, t)

dt
= A(k)p(k, t), (4)

with inverse FT141

dp(x, t)

dt
=

∫
A(x)p(x− ξ, t)dξ

≡ Axp(x, t)
(5)

where the Ax() denotes the linear space operator defined by convolution with142

A(x), the inverse FT of A(k). Here we use the fact that the product of two143

functions A(k)p(k, t) in Fourier space is a convolution in real space. This convo-144

lution, in turn, specifies an operation on the function p(x, t) in real space. For145

example (ik)2 ⇔ d2/dx2 represent the pair A(k) ⇔ Ax for Brownian motion.146

This convolution machinery can be used to explain the diffusion equation for147

Brownian motion, because the function (ik)2 is the (distributional) FT of the148

second derivative of the Dirac delta function. The Dirac delta function δ(x−a)149
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for some constant shift a is a “generalized function” (also called a distribution)150

defined by151 ∫
δ(x− a)f(x)dx = f(a). (6)

Its derivatives are defined via integration by parts:152 ∫
δ(n)(ξ)f(x− ξ)dξ =

∫
δ(ξ)f (n)(x− ξ)dξ. (7)

Because the values of f(x) for x 6= a do not affect the integral (6), we might say153

that154

δ(x− a) =

{
∞ if x = a
0 otherwise

(8)

where
∫
δ(x)dx = 1, so that the infinity at x = a is tamed by integration.155

Another intuitive definition of the Dirac function is that it is the limit of a156

Gaussian density function with mean a as the variance tends toward zero, i.e.,157

the Dirac delta is like the probability density “function” of the constant number158

a.159

Taking f(x) = e−ikx in equation (6) shows that the FT of δ(x − 0) equals160

1. Then the FT of δ′′(x) is (ik)2 × 1, so that multiplying the FT by (ik)2 is161

equivalent to convolution with δ′′(x). Therefore, Brownian motion, by virtue of162

the FT of its density function, defines the diffusion equation. This is the sole163

connection between the diffusion equation and Brownian motion. The notion164

that a concentration gradient “drives” a diffusion by physical means was dis-165

pelled by Einstein [17] and Crank [18] in their seminal work. The extension of166

the probability distribution for a single particle, p(x, t) to concentration for a167

large number of particles, requires independence of their motion and eliminates168

particles of one species acting upon each other as a driving force. This is also169

called the infinitely dilute approximation. The concept that the random motion170

of a single particle defines the diffusion equation, in which the flux happens to be171

proportional to concentration gradient, rather than the picture that a molecule172

moves in response to that gradient, is central to our further development, and173

is eloquently described by Crank [18]:174

If it were possible to watch individual molecules of iodine, and175

this can be done effectively by replacing them by particles small176

enough to share the molecular motions but just large enough177

to be visible under that microscope, it would be found that the178

motion of each molecule is a random one. In a dilute solution179

each molecule of iodine behaves independently of the others,180

which it seldom meets, and each is constantly undergoing col-181

lision with solvent molecules, as a result of which collisions it182

moves sometimes toward a region of higher, sometimes of lower,183

concentration, having no preferred motion towards one or the184

other. The motion of a single molecule can be described in185

terms of the familiar ‘random walk’ picture, and whilst it is186
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possible to calculate the mean-square distance travelled in a187

given interval of time it is not possible to say in what direction188

a given molecule will move in that time.189

This picture of random molecular motions, in which no molecule190

has a preferred direction of motion, has to be reconciled with191

the fact that a transfer of iodine molecules from the region of192

higher to that of lower concentration is nevertheless observed.193

Consider a horizontal section in the solution and two thin, equal194

elements of volume one just below and one just above the sec-195

tion. Though it is not possible to say which way any particular196

iodine molecule will move in a given interval of time, it can197

be said that on the average a definite fraction of molecules in198

the lower element of volume will cross the section from below,199

and the same fraction of molecules in the upper element will200

cross the section from above, in a given time. Thus, simply201

because there are more iodine molecules in the lower element202

than in the upper one, there is a net transfer from the lower to203

the upper side of the section as a result of random molecular204

motions.205

In the 1920s, Paul Lévy discovered the class of processes that correspond206

to the limits of all random walks (in 1-d) by easing the requirement of finite207

variance in the classical central limit theorem. When the probability of the208

individual motions have power-law tails P (|W | > x) ∼ Cx−α for some constant209

C and 0 < α < 2, the rescaled sum of these walks converges to a Lévy motion210

with FT211

p(k, t) = exp[−tD(a(ik)α + (1− a)(−ik)α)] (9)

so that (9) admits the same form as (4) but with A(k) = Da(ik)α + D(1 −212

a)(−ik)α. The (distributional) inverse transform of (ik)α is the power law213

x−1−α/Γ(−α) for x > 0, and the inverse transform of (−ik)α is (−x)−1−α/Γ(−α)214

for x < 0. The skewness parameter has a range 0 ≤ a ≤ 1. The probability215

increase/decrease rate equation216

dp(k, t)

dt
= p(k, t)[−tD(a(ik)α + (1− a)(−ik)α)]

implies that particles may jump long distances. This can be seen in a long form217

of the real-space equation218

dp(x, t)

dt
=

Da

Γ(−α)

∫ x

−∞
(x− ξ)−1−αp(ξ, t)dξ

+
D(1− a)

Γ(−α)

∫ ∞
x

(−x+ ξ)−1−αp(ξ, t)dξ.

(10)

Strictly speaking, these are convolutions of generalized functions like the Dirac219

delta function, because the power law x−1−α is not integrable at x = 0. As-220

suming a well-behaved function p that goes to zero at ±∞, the intergrals can221
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be regularized (tamed) into convergent forms using the integration by parts for-222

mula n times, where n− 1 < α < n, to obtain converging convolution integrals223

involving x−1−α+n.224

These convolutions with forward and backward power laws define two specific225

types of fractional-order derivatives, denoted in the diffusion equation226

∂p(x, t)

∂t
= Da

∂αp(x, t)

∂xα
+D(1− a)

∂αp(x, t)

∂(−x)α
. (11)

The forward direction fractional derivative (as well as a fractional time derivative227

defined later) is “causal” in that the derivative at some point depends on values228

to the left on the real line. The backward fractional derivative generally only229

pertains to space functions, because it is not causal; it depends on values to230

the right. While this sounds counterintuitive, the backward derivative models231

backward jumps; therefore, the probability change at some point depends on232

probability that a particle starts a jump from a forward location.233

The transition from integer to fractional derivatives is most easily understood234

in terms of Fourier transforms: Recall the FT pair dnf(x)/dxn ⇔ (ik)nf(k), and235

substitute a real-valued α for n. Some variations on this definition (described236

later) recognize the fact that for time derivatives, t = 0 defines a boundary237

that has some influence on the convolution, and must be treated properly. The238

main point we wish to emphasize here is that the same Fourier symbol A(k) =239

Da(ik)α + D(1 − a)(−ik)α determines both the fractional derivative, and the240

corresponding stable Lévy motion.241

2.1. 1-D Fractional Derivative: Numerics242

Before venturing into the territory of multiple dimensions, it is instructive243

at this point to examine the convolution operator (4) in relation to the clas-244

sical integer derivatives and their numerical approximations. The convolution245

specifies that the change in probability (and concentration) is due to the sum246

of concentrations everywhere weighted by the function in the convolution. The247

Dirac delta δ(x) and its derivatives are zero everywhere except where x = 0.248

This property defines a “local” operator. In a numerical implementation of249

convolution, one takes a finite domain Ω and discretizes it into N partitions of250

size ∆x. Convolution with a delta function δ(x) is represented by a weighted251

sum with zero weights everywhere, except for a value of 1 at x = 0. Call the252

weights wi, then w0 = 1, wi 6=0 = 0. The derivative of δ(x) is represented by the253

numerical “slope” on either side of the impulse: the immediate rise 1/∆x and254

fall −1/∆x. A second derivative is the slope of that function: 1/∆x2,−2/∆x2,255

and 1/∆x2. The second derivative at some grid location is a convolution of256

these weights with some function f(x) discretized at the same points:257

d2f(x)

dx2
≈
∞∑
l=0

wlf(x− l∆x) =
f(x)− 2f(x−∆x) + f(x− 2∆x)

∆x2
(12)
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Any integer derivative can be represented by a discrete convolution, using258

weights from the binomial coefficients:259

dnf(x)

dxn
= (∆x)−n

N∑
l=0

(−1)l
(
n

l

)
f(x− l∆x). (13)

The nth derivative has n + 1 terms, and for stability, the weights are typically260

shifted to the right by the greatest integer less than n/2, denoted [n/2], so that261

the formula for all integer-order derivatives becomes262

dnf(x)

dxn
= (∆x)−n

N∑
l=0

(−1)l
(
n

l

)
f(x− (l − [n/2])∆x). (14)

Grünwald recognized in the 1800’s that the formula for integer finite differences263

was easily extended to the fractional-order case. The binomial coefficients of264

any order α can be defined using the formula265 (
α

l

)
=

Γ(α+ 1)

Γ(α− l + 1)l!
, (15)

so the finite difference approximation formula for a fractional derivative of a266

function at point x (or approximate fractional integral for α < 0) can be written267

4α+f(x) = ∆x−α
N∑
l=0

(−1)l
(
α

l

)
f(x− l∆x)

= ∆x−α
N∑
l=0

wlf(x− l∆x),

(16)

where the Grünwald weights268

wl = (−1)l
(
α

l

)
=

(−1)lΓ(α+ 1)

Γ(α− l + 1)l!
(17)

are illustrated in Figure 1. Only a few orders are shown, but the weight functions269

smoothly interpolate between all orders, including when the derivative order is270

negative (indicating fractional integration). Note that for direct comparison, the271

derivative weights for positive α are not shifted to the left in Figure 1. While272

at their core, the fractional derivatives are defined by convolution with a power273

law, the discrete weights are not monotonic because the derivatives have a rise274

at the origin and subsequent fall. The same non-monotonic behavior is seen in275

the discrete version of any integer-order derivative as well.276

Equation (16) corresponds to the positive fractional derivative, so the weights277

apply to points to the left of x. The negative fractional derivative defined by278

the FT multiplier (−ik)α has a Grünwald approximation279

4α−f(x) = ∆x−α
N∑
l=0

(−1)l
(
α

l

)
f(x+ l∆x) (18)
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Figure 1: Grunwald (convolution) weights for finite differences of orders 2 through
-1.5 in 0.5 intervals. Connecting lines are used to guide the eye. ∆x is set to 1.

which depends on points to the right of x. It is called the negative, or backward,280

fractional derivative because it corresponds to particle jumps in the negative281

direction. Similar to the integer order case, for stability the weights shift by one282

position to the right for the positive direction derivative for 1 < α < 2, and shift283

one to the left for the negative direction derivative [19, 20]. It can be shown [?284

, Proposition 2.1] that these discrete Grünwald approximations converge to the285

integral convolutions in (10) as ∆x→ 0 just as in the integer-order case.286

Questions are often asked about what the fractional derivatives “mean” in287

terms of continuous functions, and answers are hard to deliver. But at this point288

it becomes apparent what the integer and fractional derivatives “mean” when289

related back to the random walks that generate the equations. The derivatives290

are accounting for mass transfer due to moving particles. Brownian motion291

is composed, by construction, of vanishingly small jumps, so one must look292

immediately to the left and right to see which particles might arrive at some293

point in a fixed time interval and change the concentration. Looking farther294

than ∆x, which goes to zero, is pointless because those particles cannot make295

it to the current location. The second derivative, a local operator, is well-296

suited to describe this process. Heavy-tailed random walks embody a significant297

probability that particles from some distance can, in the rescaled random walk,298

make it to the current location, and the Grünwald weights account for mass299

accumulation at any point due to distant random walkers. Which derivative300

pertains, traditional or fractional, depends on the specifics of the random walk.301
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Adding a constant-in-time drift to the random walk changes the probability302

density of the random walker p(k, t) = exp(A(k)t) by adding a term −v(ik) to303

A(k). Bearing in mind the FT relation dnf(x)/dxn ⇔ (ik)nf(k) with n = 1, it304

is evident that this adds the advection term −v ∂/∂x to the space operator in the305

diffusion equation. Again we wish to emphasize that the same Fourier symbol306

A(k) = −v(ik) + Da(ik)α + D(1 − a)(−ik)α determines both the fractional307

advection/dispersion operator, and the corresponding Lévy process, including308

the case when α = 2.309

2.2. Lévy motion and Fractional Derivatives in Several Dimensions310

The extension to multiple dimensions follows the same general approach.311

The limits of Markovian random walks define the derivative operators in multi-312

ple dimensions [? 22]. There are several scenarios. First, define the random walk313

jump magnitudes independent of direction by P (R > r) ∼ r−α, and the proba-314

bility of moving in any direction in d-dimensions by the random direction vector315

θ with probability measure M(dθ) on the unit sphere. If the random direction316

has a probability density m(θ), then the notation M(dθ) = m(θ)dθ; otherwise,317

the discrete measure can be constructed by a sum of Dirac delta function terms318

(analogous to the probability mass function of a discrete random variable). The319

direction measure M(dθ) is often called the mixing measure. The random walk320

with these jumps converges [? , Theorem 6.21] to a Lévy motion with FT321

p(k, t) = exp

[
−t〈ik,v〉+Dt

∫
‖θ‖=1

(〈ik, θ〉)αM(dθ)

]
, (19)

where 〈x,y〉 denotes the inner product of vectors x and y. This model recovers322

the one dimensional case because the unit vectors would be θ = ±1, the mixing323

measure M(dθ) = aδ(θ−1)dθ+(1−a)δ(θ+1)dθ, the distribution of the forward324

and backward jumps is M(+1) = a and M(−1) = 1−a, and the integral reduces325

to two terms: a(ik)α+(1−a)(−ik)α. The measure M(dθ) in multiple dimensions326

can be made as simple as a few Dirac delta functions on the coordinate axes or327

more elaborate to depict the superposition of flow directions [23].328

Take time derivatives and invert the FT to get329

∂

∂t
p(x, t) = −v · ∇p(x, t) +D∇αMp(x, t). (20)

The rightmost operator is an extended form of the original fractional Laplacian330

by Riesz [21], because it is a completely general mixture of fractional directional331

derivatives (explained in detail below). The point source solution p(x, t) has332

Fourier transform p(k, t) = exp(tA(k)), where333

A(k) = −v · ik +D

∫
‖θ‖=1

(〈ik, θ〉)αM(dθ).

Recall that the directional derivative is the inner product334

〈θ,∇f(x)〉 =
∑

θj
∂

∂xj
f(x) =

d

ds
g(s)

10



at s = 0 where g(s) = f(x + sθ). Its FT is 〈ik, θ〉f(k). Using the definition of335

a scalar positive fractional derivative (now in the radial coordinate r):336

dα

drα
g(s) =

1

Γ(−α)

∫ ∞
0

r−1−αg(s− r)dr (21)

The fractional directional derivative is this derivative evaluated at s = 0, and337

each directional derivative is weighted by its probability in every direction to338

get339

∇αMf(x) =
1

Γ(−α)

∫
‖θ‖=1

∫ ∞
0

r−1−αf(x− rθ)drM(dθ). (22)

The inner integral has FT 〈ik, θ〉α. So the fractional Laplacian is a mixture of340

directional fractional derivatives, i.e., a mixture of convolutions with a power341

law, the mixture defined by a directional probability measure (i.e., a density for342

continuous random variables). By virtue of (19), the fractional derivative once343

again is defined by the underlying Markovian Lévy motion.344

The Grünwald finite difference formula can be directly applied to approxi-345

mate certain cases of the mixing measure. For example, if there is only weight346

along the coordinate axes, the shifted Grünwald weights (17) can be used di-347

rectly. The outer integral of (22) reduces to a sum along the components of x.348

For a numerical solution using this idea, see [24]. If there is weight in-between349

the axes, the integer node locations no longer exist for all directions (i.e., nodes350

lying along the 45◦ direction are at a distance of
√

2 times the number of nodes351

away from the origin), hence the Grünwald weights have to be interpolated. For352

distances r larger than about 4 nodes in the range 1 < α < 2, the Grünwald353

weights closely follow the power law r−1−α/Γ(−α) (Fig. 2). A mathemati-354

cal procedure for approximating the general fractional Laplacian ∇αMf(x) with355

weight off the coordinate axes was detailed in [25], but numerical codes have356

yet to be implemented.357

2.3. Operator Scaling and the Anisotropic Laplacian358

There is no reason to expect that the power law index dictating the mag-359

nitude of large jumps must be the same in different directions. Using methods360

similar to the central limit theorem in multiple dimensions shows that up to d361

different power laws can persist in d-dimensions. One can construct a suitable362

random walk using matrix powers. Suppose the random variable R is character-363

ized by P (R > r) ∼ r−1. One could transform this into an isotropic heavy-tailed364

random magnitude by taking its scalar power R1/α, which has a tail that now365

decays with r−α, or one can generate a jump with different tail parameters in366

different directions by taking the matrix power RH , where H is a d× d matrix.367

Taking the power of a martix (besides the obvious integer cases) is calculated368

analogous to the scalar power formulas xp = ep log x for real powers of positive369

real numbers. For matrix powers we have RH = exp(H logR) which expands370

using the matrix exponential exp(H) = I + H + H2/2! + · · · where I is the371

identity matrix. For reference, we use the symbol H because of the relation-372

ship to the classical Hurst coefficient (more on this in the next section). The373
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Figure 2: Log-log plot of Grünwald (convolution) weights at integer node distances
(symbols) and power law x−1−α/Γ(−α) interpolation (lines). α = 1.1 and 1.9 are
shown.

matrix power creates larger or smaller exponents for the jump magnitudes in374

the eigenvector directions of H. The direction of each jump is given once again375

by a random unit vector with distribution M(dθ). Adding up these jumps and376

rescaling appropriately—analogous to taking the scaling limit of a random walk377

to create Brownian motion—results in an operator Lévy motion [13, 26, 27]:378

Z(t) =

[t/dt]∑
i=1

Xi =

[t/dt]∑
i=1

RH
i · θi, (23)

where Ri and θi are independent.379

As in the isotropic case (when H = 1
αI), the exponent of the random walk380

jumps is directly related to the order of the fractional derivatives that describe381

them. In the case of the matrix rescaled jumps, the order of the derivatives can382

be considered matrix-order as well. To illustrate the effect of the matrix scaling,383

consider a simple 2-d case where the two eigenvectors of H are orthogonal (or384

in other words, the primary directions of growth are perpendicular). Then the385

operator stable exponent dictates independent jumps:386

RH =

[
RH1 0

0 RH2

]
=

[
R1/α1 0

0 R1/α2

]
.

Because P (R > r) = r−1 for large values, the jump length probabilities on387

the kth eigenvector of H fall off as P (R1/αk > r) = r−αk . The jump length388

probabilities for trajectories off the eigenvectors decay like a mixture of power389

laws. For an example, if we also restrict motion directions to the forward x- and390
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y-directions, then the corresponding fractional dispersion equation would take391

the form392

∂p(x, y, t)

∂t
= D1

∂α1p(x, y, t)

∂xα1
+D2

∂α2p(x, y, t)

∂yα2
, (24)

and the Fourier symbol of this process A(k) = D1(ik1)α1 + D2(ik2)α2 also393

uniquely determines the underlying Lévy process: p(k, t) = exp(−tA(k)).394

In general, the random walk (23) converges to an operator-Lévy motion with395

governing equation [? 27, 28]396

∂

∂t
p(x, t) = −v · ∇p(x, t) +∇ ·DF∇p(x, t) +D∇A

Mp(x, t), (25)

where A is the inverse of H. As opposed to (20), there can be a Fickian397

dispersion term in this equation, with DF equal to 1/2 times the covariance398

matrix of particle jumps per time. The multidimensional isotropic equation399

(20) assumes that motions in all directions have the same tail parameter, so400

that infinite-variance jumps (with α < 2) occur in all directions. When jumps401

have different tail probabilities in different directions, there is room for Brownian402

motion in one direction and Lévy motion in another, hence the additional term403

in the anisotropic-order equation (25). In any given direction, either the Fickian404

dispersion term, or the fractional dispersion term, is zero, because only one of405

two possibilities (light-tailed or heavy-tailed random walk jumps) can apply.406

If all eigenvalues of H are greater than 1/2, then jumps in all directions are407

heavy tailed, DF = 0, and the Fickian portion disappears. Physically, this408

means that heavy-tailed jumps overwhelm thin-tailed ones. If all jumps in all409

directions are thin tailed, then the fractional dispersion term disappears. As410

mentioned previously, the matrix H is a scaling matrix that describes plume411

growth rates in all directions. In this way it is related to the classical Hurst412

coefficient, because the point source (Green’s function) solution to equation (25)413

with v = 0 is self-similar with a rescaling of time and space according to414

p(x, ct) = ‖c−H‖p(c−Hx, t) (26)

where ‖ · ‖ is the matrix determinant. Note that this includes the Fickian case415

where H is a scalar equal to 1/α = 1/2.416

A very flexible Eulerian numerical solution to equation (25) could be achieved,417

along the lines laid out in [25]. The operator ∇A
M is defined by a convolution,418

see [28]. Then the finite-difference solution is a series of convolutions, each rep-419

resenting a time step. A similar methodology was used in [29] to create operator420

scaling conductivity fields. See Subsection 2.5 for additional discussion.421

2.4. Divergence - Integer and Otherwise422

Up to this point, we have assumed that the mean advective drift velocity423

v and the strength of the dispersion D have been homogeneous in space. For424

the mean drift this means that the divergence of the flux ∇ · vp distributes425

like v · ∇p + p∇ · v. For divergence-free (incompressible) flow or first-order426

stationary processses, the second term is zero and there is no change to our427
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previous development. On the other hand, the traditional dispersion term in428

(25) can be viewed as the divergence of the particle flux. How can we view429

the fractional dispersion operator in (25) in terms of divergence (conservation430

of mass) and particle flux? In other words, what happens when the strength of431

dispersion varies in space? It turns out [30, 31] that the fractional dispersion432

may be derived in several different ways. If one starts from the microscopic433

expression of particle motion (i.e., the Ito or Langevin equations), the fractional434

Laplacian can be distributed in several ways.435

To illustrate, in the case of scalar order α in multiple dimensions, one may436

take a classical integer divergence of a fractional dispersion (∇ · D∇α−1
M ), or437

a fractional divergence of a classical integer-order flux (∇α−1
M · D∇). Here we438

follow the typical abuse of notation: the generalized fractional Laplacian ∇αM is439

a scalar-valued operator that reduces to the Laplacian ∆ = ∇2 = ∇ · ∇ when440

α = 2 and M is uniform, while the generalized fractional gradient ∇α−1
M is a441

vector-valued operator that reduces to the gradient ∇ when α = 2 and M is442

concentrated on the positive coordinate axes. If the local dispersion coefficient443

is a constant, these are equivalent. The differences in the case of space-variable444

dispersivity D = D(x) are subtle and small in many cases, but when the disper-445

sion coefficient D has strong fluctuations, the difference can be significant. For446

illustration of the numerical methods in Section 2.6, we will concentrate here447

on the equation448

∂

∂t
p(x, t) = −v · ∇p(x, t) +∇ ·DF∇p(x, t) +∇A−I

M D(x)∇p(x, t), (27)

including the simpler forms when A − I is the scalar α − 1 in one or more di-449

mensions. This formulation uses a fractional version of the conservation of mass450

equation: it implies that the change in probability, and by analogy concentra-451

tion, is due to upstream differences in local advective flux. The magnitude of452

the local fractional dispersion coefficient D(x), a scalar, is a measure of the453

difference between local mean velocity and the fluctuations of velocity [30, 31].454

2.5. Simulating Spatial Fractional Derivatives: Eulerian Methods455

As mentioned above, traditional finite difference methods can be thought of456

as discrete convolution formulas that lead to matrix equations [32, 33]. The local457

operators lead to sparse and banded matrix equations. Fractional-order equa-458

tions are conceptually similar, except that the matrix of weights on other nodes459

is fuller, up to 100% full when the measure M(dθ) is non-zero everywhere. Be-460

cause fuller matrices are typically solved iteratively, the fuller matrices should461

not pose tremendous numerical challenges. Many researchers are concentrat-462

ing on efficient simulation of the fractional derivative operators (e.g., [34, 35]463

and references therein). To date, however, finite difference solutions for multi-464

dimensional fractional derivatives have been concentrated on the coordinate465

axes [33].466

Fractional derivatives are linear operators; therefore, classical methods using467

finite elements can be adapted to solve fractional partial differential equations468
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[36, 37]. The finite element method hinges on the action of the linear operator469

on the chosen basis functions. That is why Dirac delta functions are commonly470

chosen as bases for the traditional integer order equations [38]. Roop’s method471

uses polynomials for the bases, which, when properly chosen, simplify the calcu-472

lation and implementation of the fractional derivative on the basis polynomials.473

This general procedure can be accelerated substantially, to the point where the474

fractional methods are not much more time-consuming to solve than the inte-475

ger cases [35, 39]. To date, we are unaware of this method being applied to476

hydrological problems.477

Eulerian approximations for fractional advection dispersion equations have478

been proven stable (when properly implemented) with a truncation error of or-479

der (∆x)2, so they are nearly as robust as proven methods for classical diffusion.480

These methods may also suffer less from the truncation error associated with481

the advection term. The well-known phenomenon of numerical dispersion arises482

from simulation of the hyperbolic portion of the advection-dispersion opera-483

tor, because the first truncated term is of the form ∆x v d2/dx2. Therefore,484

traditional finite difference methods must keep the grid Peclet number ∆x v/D485

reasonably small. The fractional dispersion has heavier tails and greater spread-486

ing rates than the pseudo-Fickian numerical dispersion, so the constraints on487

the grid spacing may be reduced, although this has not, to our knowledge, been488

explored in detail.489

2.6. Lagrangian (Particle) Methods490

Particle-tracking methods became popular as a way to eliminate numeri-491

cal dispersion, because each particle follows a characteristic curve (i.e., is an492

exact solution of the hyperbolic advection term [40]). Important research fol-493

lowed [41, 42, 43] concerning the solution of the expanded dispersion term494

∇·(D∇) = (∇·D)·∇+D∇2, primarily because geologic material may have very495

large, or even infinite gradients in the dispersion coefficient at sharp interfaces.496

These works highlighted the process involved in establishing the link between a497

(nonlinear) Langevin equation of instantaneous motion, the governing equation498

of that motion, and the link to the advection-dispersion equation that was the499

pre-supposed goal of the simulation.500

In a series of papers [44, 31, 45], Zhang and coworkers defined the Langevin501

equations for motions that correspond to the multi-dimensional fractional ADEs.502

In particular, they showed the subtle differences in the random walks that503

correspond to the operators D∇A
M , ∇D∇A−I

M , and ∇A−I
M D∇, including the504

cases when A reduces to a scalar α and also in 1-d. The solutions are de-505

rived using the finding that ∇D∇A−I
M , and −∇A−I

M̄
D∇ are adjoint operators506

for M̄(dθ) = M(d(−θ)). For practical purposes, when variations of D are small,507

the differences in the solutions between these fomulas are reasonably small.508

The recognition and addition of the heavy-tailed dispersion in any case is the509

first-order effect.510

To simulate the multi-scaling jumps, one distributes the initial condition,511

and subsequent sources of mass, into N particles, each of which follow a ran-512

dom walk approximation of (23) with finite time step ∆t. A mass-weighted513
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histogram of particle positions gives the concentration. An Euler approxima-514

tion of local advection X(t + ∆t) = X(t) + v∆t or exact analytic methods515

[46] are used for the deterministic drift. For simplicity, we illustrate the case516

where the mixing measure M(dθ) is concentrated on the eigenvalue coordinates517

of the scaling matrix H. For the random dispersion, as well as the effect of518

heterogeneous strength D(x), one simply generates independent jumps in each519

eigenvector direction. This is conceptually similar to generating independent520

standard Gaussian longitudinal and transverse jumps to simulate classical dis-521

persion. In the heavy-tailed case, the jump length of the particle along the522

eigenvector belonging to the kth eigenvalue 1/αk of H can be calculated by523

generating the following random number [44, 45]524

R1/αk = D(x)
1
αk dLαk(t) + Θ

∣∣∣∣ ∂D∂xk
∣∣∣∣ 1
αk−1

dLαk−1(t), (28)

where k represents the direction of the kth eigenvector of H , Θ = sign(∂D/∂xk),525

and dLα(t) and dLα−1(t) denote independent random noises underlying α-order526

and (α − 1)-order Lévy motions, respectively. These are generated by taking527

dt1/α times a standard, maximally-skewed αk-stable random variables with dis-528

tribution Sαk(σ = 1, β = +1, µ = 0). The stable random variables can be529

generated exactly using the modified Chambers-Mallows-Stuck (CMS) method530

(for details, see the Appendix). The fractional dispersivity D(x) must be first-531

order differentiable, so sharp interfaces are ruled out.532

Generating Lévy-stable random variables is somewhat computationally ex-533

pensive, so one can generate random vectors RH · θ in the domain of attraction534

of the stables. This concept is similar in principle to classical random walk codes535

that use a Uniform [−
√

3,
√

3] random variable as a substitute for a standard536

Gaussian: After as few as ten motions, the random walks with these jumps are537

indistinguishable from Brownian motion. The Langevin equation can be approx-538

imated using more easily-generated zero-mean random variables ξ with power539

law tails (Appendix). Once the heavy-tailed random variables ξ are generated540

and scaled as substitutes for the stable dL in (28), the jump contribution R1/αk
541

in each eigenvector is specified. As for direction, if the mixing measure has a542

known or assumed distribution function F (z) = P (θ ≤ z) on the unit circle,543

then the typical method using the inverse function on a Uniform [0,1] variable544

is used (as did [47]). Generate U , a Uniform [0,1] variable, and the direction545

vector θ = F−1(U). Otherwise, the measure M(dθ) is discretized in m classes546

and summed to make the cumulative measure M(θ) via Pm =
∑m
l=1M(dθl).547

Then the random direction vector in each case is θ = θm if Pm−1 < U ≤ PM .548

Now represent the vector θ in terms of the unit eigenvectors (ek) of H:549

θ = λ1e1 + λ2e2 + . . . , and the final particle motion RHθ is given by the vector550 ∑
λkR

1/αk . Several applications to field data are shown in Section 4.551

3. Fractional Time Derivatives552

Fractional time derivatives are formulated to respect causality, i.e., so that553

future events cannot affect the past. Therefore, the fractional time derivatives554
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are convolutions with a power law that is directional in time. The influence of555

events t units in the past decays with a power law. The fractional time deriva-556

tives take two different forms, based on the treatment of the initial condition.557

For clarity, we review both forms briefly here. A straightforward extension of558

the forward direction space derivative assumes that the function vanishes on559

t < 0:560

dγf(t)

dtγ
=

dn

dtn
dγ−nf(t)

dtγ−n
=

dn

dtn
d−(n−γ)f(t)

dt−(n−γ)
=

dn

dtn

∫ t

0

(t− y)n−γ−1

Γ(n− γ)
f(y)dy

(29)
This is called the Riemann-Liouville fractional derivative. Using the R − L561

subscript for this formula and taking Laplace transforms, one finds562

L
[
dαf(t)

dtα

]
R−L

= sγ f̃(s) +

n−1∑
k=0

sk
dγ−1−k

dtγ−1−k f(t)
∣∣
t=0

. (30)

For many applications, 0 < γ < 1, so n = 1, the summation disappears and563

the γth derivative represents multiplication in Laplace space by the quantity sγ ,564

where s is the Laplace parameter. In other cases, the terms in the sum will565

disappear for most well-behaved functions because the fractional derivatives566

involve an integral from 0 to t evaluated at t = 0. Recall that the traditional567

derivative of integer order has a Laplace transform that involves values of the568

function and its lower order derivatives at time t = 0. Generalizing on this569

formula, Caputo [48] defined a new kind of fractional time derivative such that:570

L
[
dγf(t)

dtγ

]
C

= sγ f̃(s) +

n−1∑
k=0

sγ−1−k d
k

dtk
f(t)

∣∣
t=0

(31)

where n − 1 < γ < n. Factor out the term sγ−n and we see that the Caputo571

derivative (labelled with a subscript “C”) is a convolution of a power law with572

the nth integer derivative of a function:573

L
[
dγf(t)

dtγ

]
C

= sγ−n
(
snf̃(s) +

n−1∑
k=0

sn−1−k d
k

dtk
f(t = 0)

)
= sγ−nL

[
dnf(t)

dtn

] (32)

An inverse Laplace transform reveals the Caputo derivative in real space:574 [
dαf(t)

dtα

]
C

=
tn−α−1

Γ(n− α)
?
dnf(y)

dyn
=

∫ t

0

(t− y)n−α−1

Γ(n− α)

dnf(y)

dyn
dy (33)

In the usual case, where the terms under the sum in (30) vanish, the two types575

of derivatives are related by:576 [
dγf(t)

dtγ

]
R−L

=

[
dγf(t)

dtγ

]
C

+

n−1∑
k=0

tk−γ

Γ(k + 1− γ)

dk

dtk
f(t = 0) (34)
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If 0 < α < 1, then n = 1, and577 [
dαf(t)

dtα

]
R−L

=

[
dαf(t)

dtα

]
C

+
t−αf(0)

Γ(1− α)
(35)

3.1. Fractional Time Derivatives and Random Walks578

The classical random walk is typically defined by motions that are divided579

by equal duration “waits,” and the passage to a continuous (Markov) motion580

process requires a subdivision of the motions into smaller and smaller indepen-581

dent jumps. Montroll and Weiss [49] defined a process, called a continuous time582

random walk (CTRW), in which the waiting times between particle jumps could583

have any distribution. A closely related topic called “subordination” was previ-584

ously explored for continuous time Markov processes by Bochner [50] and Feller585

[51]. Because the original motion processes we are interested in are Markovian586

diffusions, we follow their development. The Markov particle motion process,587

whether Brownian motion or the many Lévy motion extensions in the previous588

sections, denoted X(t), has density p(x, t) governed by the Cauchy equation:589

∂

∂t
p(x, t) = Axp(x, t). (36)

The point source solution of equation (36) has FT p(k, t) = etA(k). If the time590

a particle spends in motion during the epoch [0, t] is a random variable U(t),591

the resulting random particle location becomes A(U(t)). We will assume for592

simplicity that the amount of time actually spent in motion at any time is a593

continuous random variable with probability density h(u, t). The density that594

now describes a particle’s whereabouts, which we denote q(x, t), is given by595

conditioning over all possible probabilities of the operational time u for the596

clock time t:597

q(x, t) =

∫ ∞
0

p(x, u)h(u, t)du. (37)

An explicit solution may be computed from the integral (37) if the density h(u, t)598

of the operational time U(t) at any clock time t can be found. We take two599

tacks: one that gives the governing equation of the limits of traditional CTRW,600

and another that gives the solution for a two-phase system in which the particles601

transfer between mobile and immobile phases.602

3.1.1. Uncoupled CTRW603

A CTRW is built on the model of each motion being separated by a single604

random waiting time W . If the waiting time and the subsequent motion are605

independent, the CTRW is called uncoupled. The jump sizes are often taken606

to be the limit of a large number of jumps (e.g., Gaussian as reflected in a607

second-order space derivative), so that the same large number of waiting times608

can be assumed to pass to their limit as well. It is straightforward to sum the609

waiting times, but more difficult to figure the inverse, which is the time spent610

in motion. The sum of the waiting times T (n) =
∑n
i=1Wi gives the time of the611
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nth jump, while the operational time U(t) relates to the number of jumps N(t)612

that have occurred by time t. These random variables are inverses related by613

{N(t) ≥ n} = {T (n) ≤ t}. In the limit, the sum of random waiting times T (n)614

converges to another Markov process G(t), and this inverse relation becomes615

P (U(t) ≥ u) = P (G(u) ≤ t). The density functions for U(t) and G(u), denoted616

h(u, t) and l(t, u) are then related by [52]:617

h(u, t) =
d

du

(
1−

∫ t

0

l(τ, u)dτ

)
. (38)

If the individual waiting times W have a heavy tail, so P (W > t) ∼ Ct−γ for618

some constant C, then similar to the limit of random walks in space, the density619

of the Lévy process G(t) has Laplace transform L[l(t, u)] = l(s, u) = e−uβs
γ

,620

where β is a scale parameter depending only on γ and C (Appendix). Taking621

Laplace transforms t 7→ s in (38) leads to622

h(u, s) =
d

du
(−l(s, u)/s) = βsγ−1e−uβs

γ

. (39)

Take Laplace t 7→ s and Fourier x 7→ k transforms in (37) and use equation (39)623

along with p(k, u) = euA(k) to get:624

q(k, s) =

∫ ∞
0

p(k, u)h(u, s)du =

∫ ∞
0

euA(k) βsγ−1e−uβs
γ

du. (40)

Using 1/b =
∫
e−budu, we have625

q(k, s) =
βsγ−1

βsγ −A(k)
=

sγ−1

sγ −A(k)/β
. (41)

Now invert the FT and LT (one at a time) to get the fractional-order limit626

equation for CTRW:627

dγ

dtγ
q(x, t) =

1

β
Axq(x, t); q(x, t = 0) = δ(x), (42)

where we have used the Caputo fractional derivative (33). Note that the pa-628

rameters in the space operator Ax (velocity and dispersion) are reduced by the629

factor β.630

We are not aware of a similar development, using subordination, for coupled631

CTRW, i.e., the case where the size of particle jumps depends on the size of632

the preceding waiting time. This possibility was developed for CTRW by Scher633

and Lax [53]. The coupled CTRW have different rates of growth of moments of634

the Green function relative to the uncoupled CTRW [53, 54, 55]. Regarding the635

relationship of fractional calculus to coupled CTRW, certain functional forms of636

coupling can lead to more exotic governing equations with coupled space-time637

fractional derivatives, like (d/dt+ vd/dx)α, see [19].638
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3.1.2. Mobile/Immobile Particles639

Suppose that, between each waiting time in an immobile phase, the parti-640

cle participates in the motion process for exponential random times [52]. The641

rescaled limit of the waiting times follows the same procedure as the classical642

CTRW above, but while the particle is in the mobile phase, the clock time and643

the operational time are ticking away at the same rate [52]. This shifts the644

limit of the waiting time density by adding u = t, which multiplies the Laplace645

transform by eus: L[l(t, u)] = l(u, s) = e−use−uβs
γ

. Now the operational time646

density is calculated as647

h(u, s) =
d

du
(−l(u, s)/s) = (1 + βsγ−1)e−u(s+βsγ). (43)

The governing equation is calculated as before, by taking the FLT of (37) and648

substituting densities of p(k, u) and h(u, s):649

q(k, s) =
1 + βsγ−1

s+ βsγ −A(k)
(44)

Now invert the FLT for the real space governing equation of the limit of 2-state650

Mobile/Immobile processes:651

d

dt
q(x, t) + β

dγf(t)

dtγ
q(x, t) = Axq(x, t); q(x, t = 0) = δ(x), (45)

where once again we have used the Caputo fractional derivative.652

It is not quite as simple to equate probability to concentration in this case.653

The single particle exists alternately, in two different states: mobile, while it ac-654

tively participates in the motion process, and immobile between mobile epochs.655

The total probability of particle whereabouts is the sum of the mobile and im-656

mobile location probabilities. The FLT (44) has two terms in the numerator.657

These correspond, in a continuum sense, to the portion of the particles in the658

mobile and immobile phases, respectively. By combining these, equations (44)659

and (45) represent total resident concentration. This can be shown by con-660

sidering the continuum multirate mass transfer with infinite mean, power-law661

random waiting times, which have the following three equations for concentra-662

tion in 1) the “total” phase CT , 2) the mobile phase CM and 3) the immobile663

phase CI [13, 52]:664

∂CT
∂t

+ β
∂γCT
∂tγ

= AxCT

∂CM
∂t

+ β
∂γCM
∂tγ

= AxCM −
CM (x, t = 0)βt−γ

Γ(1− γ)

∂CI
∂t

+ β
∂γCI
∂tγ

= AxCI +
CM (x, t = 0)t−γ

Γ(1− γ)

(46)

The total concentration CT = θMCM + θICI where θM and θI are mobile and665

immobile porosities and β [Tγ−1] is defined here as capacity coefficient (see666
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[11] for a translation of the many forms of mobile and immobile porosity and667

sorption). Equations (46) assume that all solute begins in the mobile phase:668

CI(x, 0) = 0. Taking the FLT of these equations and comparing to (44), it is669

convenient to define the two components of q(k, t) by670

qM (k, s) =
1

s+ βsγ −A(k)

qI(k, s) =
βsγ−1

s+ βsγ −A(k)

(47)

which partitions the particle density location function into mobile and immobile671

contributions because qM + qI = q. As a result, θMCM (x, t) = qM (x, t) is the672

mobile concentration, and θICI(x, t) = qI(x, t) is the immobile concentration.673

The functions qM and qI are the portions of the total probabilities for a particle674

to occur at some point, hence these are related to the concentration in total675

(solid and liquid) aquifer material and must be adjusted by mobile and immobile676

porosities.677

This gives a simple method to simulate the fractal multi-rate mass transfer678

process in a particle tracking routine [52, 56]: The mobile times are exponential679

with mean 1/(βλ), where in this case λ is a tuning parameter to ensure enough680

transitions between mobile and immobile by the time of interest. If the particles’681

locations are desired at some time t, choose λ so that the mean mobile step is682

approximately one tenth of this: λ > 10/(tβ). For waiting times, use either683

the chopped (Appendix) or shifted Pareto following P (W > t) = Sγ(t + S)−γ ,684

generated by W = SU−1/γ −S, where S is the shift (which controls the scale of685

the waits) and U is a Uniform [0,1] random variable. To derive the proper shift686

S, start by setting λ = 1, then by the Appendix in [52], we need W to be in687

the domain of attraction of a standard [81] stable law. By [? , Theorem 3.37,688

Proposition 5.8], S = (Γ(1 − γ) cos(πγ/2))−1/γ . Changing the value of λ does689

not change the overall solution but makes each mobile sojourn shorter, hence690

places more alternating mobile/immobile phase changes in any given time step.691

There are λ times as many mobile and immobile episodes compared to λ = 1,692

so to get the same overall process, each W is multiplied by λ−1/γ because for693

stable random variables λ−1/γ
∑[λn]
i=1 Wi has the same distribution as

∑n
i=1Wi.694

Therefore for any λ, the shift S = (λΓ(1− γ) cos(πγ/2))−1/γ .695

4. Fractional ADEs and Field-Scale Tracer Test Data696

The first field application of the spatial fractional equation to tracer test data697

was the Cape Cod bromide plume, motivated by the apparent power-law growth698

of the plume’s dispersivity. This model successfully replaced the time-variable699

dispersivity in the traditional ADE by a constant parameter in the fractional700

ADE [7]. That model used a symmetric mix of forward and backward spatial701

fractional derivatives (a = 0.5 in (11)). The use of a symmetric fractional ADE702

was criticized by Zhang et al. [58]. They maintain that a more proper way to703

account for solute spreading behind the mean is by trapping in low permeability704
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zones, rather than long journeys upstream. Zhang et al. [58] modeled the705

Cape Cod data with a forward space and time fractional ADE. The forward706

space derivative term models the leading plume edge, and the fractional time707

derivative term models the trailing edge. That method yielded improved fits,708

although the relative homogeneity in the hydraulic conductivity (VAR(ln[K]) =709

0.26) at Cape Cod makes heavy tailed particle jumps less important. This is710

reflected in the fitted value α = 1.6 in that model: Because the space fractional711

ADE reduces to the traditional ADE at α = 2, the effect of setting α = 1.6 is a712

small increase, relative to other sites, in the heavy leading plume edge.713

Benson et al. [8] then examined the bromide and tritium plumes at the714

MADE site. Their analysis was done in 1-d using the maximum concentrations715

along the “core” of the plume. The higher ln(K) variance, recently measured716

to be on the order of seven [59], made the one-sided space-fractional ADE an717

attractive model, and some simple analyses of the K statistics allowed an a718

priori estimate of all equation parameters. The fitted value of α = 1.1 indicates719

a heavy leading plume edge, reflecting a highly heterogeneous K field. The720

space-fractional ADE produced a good fit to normalized concentration snap-721

shots (Fig. 3). Schumer et al. [13] applied an MRMT equation with γ = 0.33722

and β = 0.08 d−0.67 to explain the bromide plume zeroth spatial moment (to-723

tal mobile mass) decline. The fit of the zeroth moment was improved over724

single-rate methods [60]. Zhang et al. [58] used this estimate to fit the MADE725

plumes in 1-d, using (11) in (45), and found that both spatial and temporal726

non-locality were important. A further analysis of the centered second moment727

of the MADE plume showed different growth rates in the longitudinal versus728

transverse directions [27], indicating the need for a multiscaling fractional dis-729

persion term. Zhang et al. [23] used a 3-zone model with longitudinal derivative730

of order α = 1.1 and transverse of order α = 1.5 and included the fractal mo-731

bile/immobile parameters previously reported [13]. For the mixing measure,732

they assumed a braided stream network and derived the proportion of overlap-733

ping sinuous channels that point in any direction [23]. Their particle-tracking734

simulation (Fig. 4) is a reasonably faithful representation of the plume with735

comparatively few parameters—especially, a constant mean velocity v. In par-736

ticular, the spatial discretization (of, say, K) is vastly reduced. The non-local737

fractional derivatives are designed to replace finer-scaled velocity information738

and allow much coarser discretization. This concept has been demonstrated on739

an intensively studied 30.5×30.5 cm sandstone slab, where an analytic solution740

of a fractional PDE captures the important features of a plume that over 8,000741

measured K values fail to reproduce when used in the classical ADE [56].742

In related research, Harman et al. [61] examined water transport through743

hillslopes by assuming that, unabated, a parcel of water flows according to piston744

(wave equation) flow. But the parcels of water may be trapped in the hetero-745

geneous K field for random, heavy-tailed amounts of time, giving a fractional-746

in-time wave-type equation. The solutions of the equation match numerical747

solutions of water flow through mildly to strongly heterogeneous hillslope ma-748

terial.749

Bradley et al. [62] and Ganti et al. [63, 64] looked at experimental and750
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theoretical evidence for heavy-tailed transport and fractional ADEs for sand751

and gravel bedload transport in rivers. Foufoula-Giorgiou et al. [65] extended752

this concept to overland sediment transport and the evolution of landscapes.753

The transport equations take the exact forms presented herein. These processes754

are reviewed by Schumer et al. [66].755

5. Fractional Integration: fBm Random Fields and Extensions756

An integral is also called an antiderivative, with good reason. It is designed757

to be the inverse operator of a derivative. This is simply illustrated by the758

Fourier transform relation
∫
f ′(x)dx = f(x) ⇔ (ik)−1(ik)f(k) = f(k). As759

we showed in previous sections, fractional derivatives in several dimensions can760

apply a different order of fractional differentiation in each coordinate, using761

the Fourier symbols of different Lévy motions. We have called this Fourier762

picture A(k), and we have observed that multiplication by A(k) in Fourier763

space defines the multidimensional fractional derivative. It follows that the764

fractional antiderivative corresponds to division in Fourier space by A(k), in all765

of its forms presented above.766

Fractional Brownian motion (fBm) in 1-D was originally defined as a weighted767

sum of prior values of white noise, where the weights fall off like a power law.768

Although the forward-direction fractional integral of white noise B(t) diverges:769

B̃H(x) =
1

Γ(H + 1/2)

∫ x

−∞
(x− y)H−1/2B(dy), (48)

the difference of two fractional integrals BH(t) = B̃H(t)− B̃H(0) is a legitimate770

stochastic integral that converges [67]. Define for compact notation E = H+1/2771

where the Hurst scaling index 0 < H < 1, and equation (48) has the form of772

a fractional integral of order 1/2 < E < 3/2. If the random measure B(dy)773

were replaced by f(y)dy for a suitable non-random function, then the fractional774

integral (48) would be the inverse FT of (ik)−Ef(k). The same kind of finite775

sum approximation that is used to approximate the fractional derivatives is776

also possible with the stochastic integral (48), and this idea can be used to777

efficiently simulate an unconditioned fractional Brownian motion, as outlined in778

[72, 68]. Briefly, the stochastic integral (48) becomes a discrete convolution of779

a sequence of iid normal random variables B(∆y) with the Grünwald weights780

corresponding to fractional integration (Fig. 1), evaluated by taking the FT of781

both, multiplying, and inverting. This uses the fact that the FT of a convolution782

is a product.783

For space-functions, the (causal) positive fractional integral can be sensibly784

extended to a symmetrically weighted sum of positive and negative fractional785

integrals. The first multi-dimensional fractional Brownian motions were con-786

structed by taking a power of the wave vector defined by a Fourier multiplier787

|k|−E where E = H +d/2. A form of anisotropy can be implemeted by specify-788

ing a simple stretching in orthogonal directions by using fractional integration789

with Fourier symbol |λ ·k|−E where the vector λ controls the correlation length790
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Figure 3: Two spatial snapshots of the MADE tritium plume “core.” Concentra-
tions normalized to unit total mass. Bottom two plots are log-log scales. After
[8]. 24
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of the increments [69, 70, 71, 72]. Similarly, one could define a fixed distance791

and measure the value of the correlation. This corresponds to a radial mixing792

measure as defined above for the fractional derivatives. The stretching by vec-793

tor λ just described represents an elliptical set of weights in the mixing measure794

[68]. Once again the mixing measure is a completely user-defined probability795

distribution on the unit sphere, so that correlation of the increments can be796

restricted to any set number of directions (Fig. 5). All of the fields constructed797

in this manner have the same Hurst index in every coordinate, but a different798

correlation length (or strength). A log-log plot of the correlation of increments799

in any direction would have the same power law slope, but different magnitudes.800

However, many naturally occurring fields (e.g., K fields in alluvial aquifers)801

exhibit a different form of anisotropy, in which the Hurst index is different in each802

coordinate [68, 72, 73, 74, 75, 76, 77, 78]. These fields can be described using a803

multi-scaling fractional derivative, whose Fourier symbol A(k) can be explicitly804

computed from the Lévy representation of the corresponding operator stable805

Lévy process [57, 28]. This Fourier symbol is characterized by its matrix-scaling806

property cEA(k) = A(cQk). In other words, the function is scale invariant only807

when stretched different amounts in different directions. The corresponding808

multi-scaling fractional integration has Fourier multiplier ψ(k) = A(k)−1, so809

that ψ(cQk) = c−Eψ(k). To make the parametrization unique, we require810

trace(Q) = d, the number of dimensions. Then the matrix Q codes deviations811

from the overall order of fractional integration, and isotropic scaling has Q =812

I. The multi-scaling random field Bψ(x) constructed using this filter can be813

simulated in exactly the same way as a fractional Brownian motion, using the814

discrete Fourier transform in d dimensions. In the isotropic case with E =815

H + d/2, this random field scales according to Bψ(cx) = cHBψ(x) [68, 29, 79],816

consistent with isotropic fBm. Including the possibility of anisotropic scaling817

by giving Q different eigenvalues, we have the general scaling relationship:818

Bψ(cQx) = cHBψ(x) (49)

If Qkj = qjkj , then the coordinate process Bψ(xj) is an fBm with Hurst819

index H/qj . Larger variations in the eigenvalues of the matrix Q describe more820

strongly anisotropic fields, with a different Hurst index in each coordinate.821

5.1. Conditioned Random Fields: Numerics822

Creating an unconditioned operator-scaling Gaussian random fields Bψ(x) is823

a simple matter, once the user has defined the mixing measure M(dθ) on the unit824

sphere (e.g., Fig. 5), and the possibly unique Hurst index H in each coordinate825

(Fig. 6). These unconditioned fields may be constructed several ways, each826

using the fact that a convolution is taking place. One may either construct the827

function ψ(x) and take its fast Fourier transform (FFT) or directly construct828

ψ(k). Similarly, one may either construct a same-sized white noise field of829

uncorrelated Gaussian random variables and take the FFT, or construct the830

FT of white noise directly using the spectral representation of an uncorrelated831

Gaussian field [80, 81]. The product of ψ(k) and B(k) is taken and inverse832
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Figure 5: Isotropically scaling fBm fields generated with identical input noise B(x)
and an single scalar H = 0.3. (a) Elliptical weights, and (b) downstream weighted
mixing measure estimated from braided stream photograph. After [68].

transformed. Only a portion of the field is retained due to periodicity of the833

FFT routine.834

In real-world applications, the hydraulic conductivity (K) field is the most835

important control on the motion of conservative solutes. Furthermore, it is very836

common that some K data is collected, and any interpolation based on random837

field generation should honor these measurements. Creating a conditional field838

is more complicated (and significantly more time consuming) because the con-839

volution algorithm changes any points specified before the convolution. Based840

on the research of Revielle [82], we recommend two useful conditioning methods:841

The first, based on the discussion in Feller [51], is called orthographic projection;842

the second, an adaptation of a method proposed by Journel and Huijbregts [83],843

is called random bridging.844

5.1.1. Conditioning By Orthographic Projection845

The orthographic projection method relies on the conditional probability846

distribution of any unknown point, based on a set of known points. Similar to847

existing sequential simulation methods [84, 85], initially the conditioning points848

comprise the known list, and the points to be simulated comprise the unknown849

list. The known list is used to sequentially create conditional probability dis-850

tributions for each point within the unknown list. Once an unknown point has851

been simulated, it is added to the known list, and can be used to simulate subse-852

quent unknown points. This process of simulating unknown points, and placing853

them on the known list, is continued until each point has been estimated and854
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(b)(a)

Figure 6: Operator-scaling fBm fields generated with identical input noise B(x)
using the same H in the horizontal direction and different H in the vertical: (a)
H vertical = 0.4 and (b) H vertical = 0.8. After [68].

placed into the known list.855

Without loss of generality we will consider the creation of a zero-mean ran-856

dom field. Make a discrete approximation Xi =
∑
j ψ(j)B(i − j) ≈ Bψ(xi) of857

the stochastic integral that defines the random field, where the filter ψ(j) comes858

from inverting the Fourier symbol ψ(k), and B(i) is an uncorrelated Gaussian859

sequence with mean 0 and variance σ2
B . Then the covariance is860

E[XjXi] = E

[∑
k

ψ(k)B(j − k)
∑
l

ψ(l)B(i− l)

]
(50)

where E[ · ] is the expectation. Because E[B(i)B(j)] = 0 for i 6= j, the only861

nonzero terms in the sum occur when j − k = i − l, i.e., when l = i − j + k.862

Then the covariance reduces to:863

E [XjXi] = E

[∑
k

ψ(k)B(j − k)ψ(i− j + k)B(j − k)

]
= σ2

B

∑
k

ψ(k)ψ(i− j + k)

(51)

This expression, a discrete convolution, is used to determine the covariance864

of two points. For larger fields, the covariance can be calculated efficiently865

using a discrete FFT to evaluate the convolution. Since the field has stationary866

increments, on a regular grid, the computation need be performed only once.867

These covariance values can then be used to simulate unknown points in the868

orthographic projection. Given known points X1, X2, ..., Xn−1, to simulate an869

unknown point xn, compute the covariance matrix870

Mn =

 E[X1X1] . . . E[X1Xn]
...

...
E[XnX1] . . . E[XnXn]

 (52)
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and the inverse covariance matrixQ = [qij ] = M−1
n . Then simulate the unknown871

point by drawing a random Gaussian variate with mean and variance872

µn = a1X1 + ...+ an−1Xn−1 (53)
873

σ2
n = 1/qnn (54)

where ai = −qin/qnn and qij is the i, j entry of the inverse covariance matrix874

Q (see Feller [III.6] [51]). Once this unknown point is simulated, it is added875

to the known list, and can be used to simulate the remaining unknown points.876

As the list of known points grows, a subset of points must be selected from the877

known list, otherwise inverting the Mn matrix becomes inefficient. As a result,878

the known points included within each Mn must be carefully selected, in order879

to capture all important correlations present, yet remain efficient. Note also880

that this algorithm is very closely related to simple kriging: the mean value881

at a point is similar to a kriged surface, except that the “known” point list882

can (and almost certainly will) contain points that were not measured but were883

previously simulated.884

There are several issues concerning this algorithm that influence the speed885

of calculation and characteristics of the output field. The first is choosing the886

order of points to be created. Painter [85] suggests moving sequentially through887

the field. [82] found that combining the nearest neighbor search and a random888

spiral search for more distant points was efficient and accurate. Painter [86]889

discusses the potential drawbacks of the various methods, and we find that the890

appearence of these field is very sensitive to the details of the order of simulation.891

The procedure used to determine which known points are used to create892

each unknown point is also extremely important to the accuracy and efficiency893

of the output field. First, the number of points used to simulate each unknown894

point must be determined. Due to the computational inefficiency of using the895

entire known list to condition each unknown point, a selected portion of the896

known points is required. Known points must be selected which capture the897

correlations present at all scales, but also keep the size of the covariance matrix898

Mn manageable. A range of n from 20 to 50 was found to produce both accurate899

and efficient realizations and is consistent with previous work [85, 86, 87]. To900

select a representative set of X1, X2, ..., Xn−1 in 1-d, the only decision variable901

is the lag distance from the point of interest Xn. Therefore, to capture the902

correlations present at all scales in 1-d, the distance from each known point to903

Xn is calculated. When an isotropic kernel is used, only the absolute distance is904

required. When the kernel is anisotropic in multiple-dimensions, it is important905

to select points not only based on distance but also on orientation to the point906

of interest.907

5.1.2. Conditioning By Random Bridging908

The method of random bridging is similar to the conditional simulation909

method of Journel and Huijbregts [83]. On the surface it is more computation-910

ally demanding than orthographic projection because it requires kriging two911

mean surfaces — a procedure “built in” to the orthographic projection method.912
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However, when creating multiple realizations, the relative workload decreases for913

the random bridging method. For this reason, we typically prefer this method.914

We also find that it is insensitive to various numerical details such as the selec-915

tion of conditioning points. MATLAB implementations of both methods in 3-d916

are available from the author.917

Initially, the method begins with a set of conditioning values Zi at locations918

Xi, and an unconditional realization, Bψ(x). The unconditional realization919

is then conditioned by “molding” the noise from the unconditional surface to920

a “mean” surface interpolated through the conditioning points. This method921

requires finding an apparent mean or trend surface between conditioning points,922

and a similar trend surface within the unconditioned realization.923

Determining the deviation from a trend surface in the unconditional real-924

ization can be implemented by first interpolating the trend between the points925

Bψ(Xi) of the unconditional realization. This interpolated surface is called b(x),926

and is best created using an unbiased process similar to kriging [83]. In our case,927

the covariance matrix is a convolution of the function ψ(j) with itself. Using928

the same interpolation routine, the interpolated surface (call it z(x)) between929

the conditioning points Zi is created. Finally, the conditioned field is created930

by taking the difference between the unconditioned field and its trend surface,931

and adding this to the trend surface from the measured points:932

Bψ(x)′ = z(x) + [Bψ(x)− b(x)] (55)

5.2. Conditional osfBm933

The orthographic projection and random bridging algorithms remain the934

same in multiple dimensions, as far as using an inverted covariance matrix to935

estimate µn and σ2
n at each unknown point. The only change occurs in how936

points are selected to construct Mn in each algorithm. The method of searching937

through a field and selecting the best points to create each Mn has significant938

consequence on the efficiency of creating conditional fields in both algorithms.939

Due to the slow power-law covariance decay, every point within the field has940

an effect on every other. Ideally, every previously simulated point would be941

used to simulate the next in order to account for the infinite correlation length.942

However, as the field size grows, a computational ceiling is quickly reached.943

Therefore, a subset of known points must be chosen to create each Mn. We944

have implemented a search based on sorting points based on their value of945

covariance with the point being simulated (or kriged). Examples of 2-d fields946

conditioned using the two algorithms are shown in Figure 7. It is clear that,947

with a knowledge of the correlation structure, defined by the filter ψ(j), and a948

small number of conditioning points, faithful conditioned fields can be created949

that maintain the fractal structure at all scales.950

5.3. Fractional Differencing of fBm to determine H951

One of the handy features of the Grünwald weights is that it is very easy952

to perform fractional differences as well as fractional sums. Because fBm is953

a fractional integral of uncorrelated Gaussian noise, performing the “correct”954
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a) Training image from which 
    conditioning data is taken

b) 10 conditioning points (circles),
    representing 0.0038% by volume.

c) 41 conditioning points (circles),
    representing 0.0156% by volume.

d) 164 conditioning points (circles),
    representing 0.063% by volume.

e)  655 conditioning points (not shown),
    representing 0.25% by volume.

Figure 7: Conditional osfBm realizations created using H = 0.4, q1 = 0.9, q2 = 1.1;
therefore, Hhorizontal = 0.44 and Hvertical = 0.36. The mixing measure was fixed
delta functions with weights of unity on the vertical axes and 3 on the horizontal
axes. The data used to condition each field is from the training field shown at
the top. Each figure shows the locations of conditioning points using blue circles,
except for (e), in which the 655 points are omitted for clarity.
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order fractional derivative on fBm will give back an uncorrelated signal. This955

can aid in estimating the Hurst coefficient. In the discrete data case, following956

[88, 89], use (16) and (17) on a spatial series of hydraulic conductivity Kn. We957

took the 93× 93 K values measured on a slab of Massillon sandstone (see also958

[90, 91, 56] and analyzed each of the 93 columns of data and separately the 93959

rows of data, using a differencing distance of N = 10. Prior to differencing, the960

data in both columns and rows is highly correlated (Fig. 8, top plot). Here961

we show only the column data. Applying progressively higher-order fractional962

differences reduces correlation, until too high an order d induces statistically963

significant anticorrelation at lag one (Fig. 8, bottom plot). The differenced964

data also show more Normality (Fig. 9), although some heavier-tailed K data965

still exists at all levels of differencing.966

6. Conclusions and Recommendations967

This paper represents a survey of fractional calculus methods in hydrology968

with a few twists. First, we use the limit Markovian diffusions to define the full969

suite of fractional differential operators. This follows the logic that Brownian970

motion is an extremely useful model of diffusion and dispersion, in part because971

it represents a limit distribution, but also because it generates a solvable gov-972

erning equation. When the basic tenets of Brownian motion are violated, some973

extended models are often similarly useful. When individual random motions974

follow a distribution with a power law tail, the motions converge to Lévy mo-975

tion, which generates a diffusion equation with fractional space derivatives. In976

d-dimensions, up to d unique fractional derivative orders (including the classical977

second) may coexist. These orders dictate the rate of plume growth. If solute978

migrates into relatively immobile phase(s) and is released at a power law rate,979

then the diffusion equation’s first derivative is either replaced, or joined, by a980

time-fractional derivative. This modifies the plume growth rate and simulates981

the power-law decay often seen in breakthrough curves of conservative tracers.982

The fractional derivative operators are linear and admit Eulerian approxima-983

tions similar to classical finite differences, but with fuller matrices. Lagrangian984

techniques may also be used in the same vein as classical random walk particle985

tracking codes are used to simulate classical diffusion. In all cases the simu-986

lations are more taxing, but the non-local fractional derivatives are designed987

to replace finer-scaled velocity information (e.g., [56]) and should require much988

coarser discretization—in some cases analytic solutions capture the important989

features of real solute plumes in aquifers.990

Another approach to simulating transport in heterogeneous media is built991

on the creation of aquifer facsimilies. An attractive model is based on fractional992

Brownian motion because of the heterogeneity present at all scales and long-993

range correlation. Because fractional Brownian motion is built using fractional994

integrals of Gaussian noise, we are able to extend the classical isotropic fBm to995

have different Hurst coefficients in different directions. The fields are created by996

using the inverse operation specified by the multi-dimensional fractional deriva-997

tive operators that we described previously. These fields can be conditioned998
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Figure 8: Autocorrelation function (ACF) for columns of log10(K) data after fractional differ-
encing. The ACF are calculated for each of the 93 columns and averaged. The 95% confidence
interval is shown by the dashed lines. Differencing on the order of 0.9 to 1.0 (H = 0.4 to 0.5)
reduces autocorrelation at all lags to non-significant levels. After [56].
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Figure 9: Histograms and Normal probability plots for original and differenced data from
slab columns. (a) and (c): The raw log10(K) data (K in cm/s) is significantly nonGaussian.
(b) and (d): Following 0.9-order differencing (H=0.4), the data is more Normal, although
somewhat heavy-tailed. After [56].
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by measured data to create faithful representations of aquifer material—if it999

has the long-range dependence inherent in fBm—with the added flexibility of1000

variable Hurst coefficients and user-defined weights in all directions. An open1001

question is whether a link exists between these fractal K fields and the possible1002

fractional PDE that describes the transport of a passive scalar within.1003
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Appendix A. Generating Heavy-Tailed Random Variables1014

There are several methods to generate approximately stable random walk1015

variables ξ, for example the shifted Pareto P (ξ > r) = sα(r + s)−α. However,1016

the density is too peaked at the origin and convergence is slow [92]. One can1017

choose the modified Chambers-Mallows-Stuck (CMS) method to generate ex-1018

actly the stable random variables [93], but calculations are slowed by numerous1019

sine and cosine calls. Instead we recommend jumps R from a “chopped” Pareto1020

distribution (e.g., Fig. A.10d).1021

Here we review the CMS method for max-skewed stable variables. Following1022

[93], for α 6= 1, generate V distributed uniformly on (−π/2, π/2) and an inde-1023

pendent exponential random variable W with mean 1. Then ξ is standard max1024

skewed α-stable generated by:1025

ξ =

(
cos
(πα

2

))−1/(2α)

· sin[α(V + π/2)]

[cos(V )]1/α
·
[

cos[V − α(V + π/2)]

W

](1−α)/α

(A.1)
A more computationally efficient approximation can be had. Following [45]1026

use the distribution1027

P (ξ < r) =

{
m(r − p) if p < r < φ
1− cr−α r > φ,

(A.2)

and take c = 1/(Γ(1 − α) cos(πα/2)) to approximate standard stable jumps1028

(with scale 1, center 0, skewness 1 in the parametrization of Samorodnitsky and1029

Taqqu [81]) when 0 < α < 2, α 6= 1, see (7.19)–(7.21) in [57]. To ensure the1030

same slope at the cutoff r = φ, set m = αcφ−1−α. To ensure continuity at the1031

cutoff r = φ, equate1032
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1− cφ−α = αcφ(−1−α)(φ− p). (A.3)

For 1 < α < 2, Zhang et al. [45] recommend setting p = −2.5, so the cutoff1033

φ is solved by finding the root of the last equation. The chopped Pareto random1034

variable ξ can be generated by picking a Uniform [0,1] random variable U , and1035

setting:1036

ξ =

{
U/m+ p if U < 1− cφ−α
(c/(1− U))1/α otherwise.

(A.4)

For α > 1, this random variable has mean1037

µ =
αcφ−1−α

2
(φ2 − p2)− αc

1− α
φ1−α

so that ξ − µ gives a zero-mean random walk jump.1038

We find that this method is approximately two to three times faster than the1039

modified CMS method. When the random walk simulations break a particle’s1040

motion into at least ten jumps, then the sum of jumps converge nicely to the1041

exact generation method given by the modified CMS method (Fig. A.10 a,b,c).1042

In the infinite mean case α < 1, we find that setting p = 0 and adding an1043

empirical constant (≈ 0.3(1 − α)−1.2) speeds convergence considerably (Figure1044

A.10 d).1045
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Figure A.10: (a,b,c) Histograms (symbols) versus standard, maximally-skewed α-stable den-
sity functions (curves). The histograms are for 20,000 variables generated by the modified
CMS method [93] and rescaled sums of 10 jumps generated by the chopped Pareto method.
(d) Plots of the standard, maximally-skewed α-stable and the chopped Pareto density func-
tions for index α = 1.7. (e) Plot of the empirical constant (symbols) added to chopped Pareto
random variables for α < 1 to speed convergence and a fitted function.
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