

Acceleration of Radiance for Lighting
Simulation by Using Parallel Computing
with OpenCL

W. Zuo, A. McNeil, M. Wetter, E.S. Lee

Building Technologies Department
Environmental Energy Technologies Division

September 2011

Proceedings of the 12th International Conference of the
International Building Performance Simulation Association
(Building Simulation 2011); Sydney, Australia,
November 14-16, 2011

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of
California.

 1

Acceleration of Radiance for Lighting Simulation by Using
Parallel Computing with OpenCL

W. Zuo, A. McNeil, M. Wetter, E.S. Lee

Building Technologies Program, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory
Mailstop 90-3111, 1 Cyclotron Road, Berkeley, CA 94720, USA

Abstract

We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-
tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the
floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications
was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross-
platform parallel programming language. Numerical experiments show that the combination of the above
measures can speed up the annual daylighting simulations 101.7 times or 28.6 times when the sky vector has 146
or 2306 elements, respectively.

Keywords: Daylighting, Simulation, Building Energy Efficiency, Radiance, Graphic Processing Unit, OpenCL,
Parallel computing, Matrix multiplication

1. Introduction

Due to the increasing demands in accuracies and resolutions, building simulations requires more and more
computing power. Since increasing the clock rate alone cannot meet the rapidly growing demands on computing
power, it is more feasible to compute in parallel on multiple processors. Parallel computing on supercomputers is
already widely used in other industries and there are also a few applications in building industry (Wenisch et al.
2007, Hasama et al. 2008, Mazumdar and Chen 2008). However, purchasing and maintaining supercomputers is
usually too expensive for small businesses that make up the majority of the building industry. A low-cost and
high-performance parallel computing is necessary to meet the increasing computational needs of building
simulations. Besides cloud computing (Armbrust et al. 2009), there are two other promising options for parallel
computing. One is to use single/multiple CPUs with multi-cores, which are widely adopted by personal
computers. The other is computing on graphics processing units (GPUs). The GPU is the core of a computer
graphics card and has hundreds of low-frequency processors. Both options cost only a few hundred US dollars
and can be realized on a desktop computer or a laptop computer. For example, Zuo and Chen (2010) accelerated
an indoor flow simulation up to 30 × using a GPU on a desktop computer.

Radiance is a highly accurate ray-tracing program that is widely regarded as best in class for lighting simulation
(Larson and Shakespeare 1998). A recent addition to Radiance, known as three-phase simulation method,
enables users to perform annual daylight simulations for complex and/or dynamic fenestration systems (Ward
2010, Ward 2011).

The three-phase method breaks luminous energy traversal of the model into three phases: from sky to exterior of
the fenestration, through the fenestration and from interior of the fenestration to the sensor points. Luminous
energy transfer for each phase is described by a matrix of coefficients. The daylight (exterior) matrix
characterizes how energy from each of 145 Tregenza sky patches arrives into 145 directional Klems patches at
the window. The daylight matrix characterizes the external environment including obstructions. The
fenestration transmission matrix characterizes how light incident on the fenestration in each of 145 incident
patches leaves through 145 exiting patches. The transmission matrix characterizes transmission properties of a
fenestration system, including diffusion and redirection of daylight. And finally the interior, or view, matrix
characterizes how lighting leaving the fenestration in each of the 145 directional patches arrives at each of the
illuminance sensor points. The view matrix characterizes flux transversal through the interior space model. Each

 2

matrix is independent of the others so, for example, the daylight matrix can be changed in order to simulate a
different orientation or additional external obstructions without changing the other two matrices.

The three-phase method uses Radiance’s rtcontrib program to produce the daylight and view matrices. The
transmission matrix can either be produced using Radiance’s genBSD, Window 6 or a combination of the two.

To generate an illuminance result we first create a sky vector using Radiance’s genskyvec. The sky vector is 145
values, the luminance of the 145 Tregenza patches for a given time, location and sky type. The sky vector is
multiplied by the other three coefficient matrices to generate a result for all of the sensor points. The three-phase
method allows users to generate annual results for many different fenestration systems including those with
dynamic components.

The Radiance program that performs the matrix multiplication, called dctimestep, is a sequential code written in
C language. The main calculation for this feature is to multiply matrices with large dimensions, which may take
hours for an annual simulation depending on the number of illuminance sensor points. Accelerating dctimestep
will enable users to quickly evaluate different fenestration systems and optimize the design of fenestration
systems through parametric study. This could accelerate the adoption of emerging daylighting technologies by
reducing the technical and market barriers.

To accelerate dctimestep, the key is computing the matrices multiplication more efficiently, such as computing
them in parallel using multi-core CPUs or GPUs. There are various parallel programming languages, such as
OpenMP (Chapman et al. 2007), MPI (Gropp et al. 1999), CUDA (NVIDIA 2007) and OpenCL (Munshi 2010).
Since Radiance is a publicly released code running on various types of computing hardware, it is important that
the programming language is supported by various platforms so that we can save a lot of repeated efforts on code
development. Thus, we selected OpenCL because it is a cross-platform language and supported by major CPU
and GPU vendors.

2. OpenCL

OpenCL is the first open standard for parallel programming on heterogeneous platforms, including CPUs, GPUs,
embedded processors and other processors. The development of OpenCL was initiated by Apple Inc in 2008 and
is currently led by Khronos Group. The most recent release of OpenCL was version 1.1 in 2010. The official
website of OpenCL is http://www.khronos.org/opencl/.

OpenCL adopts a host-device platform model (Figure 1). A host is the commander that connects to one or more
devices. A device contains one or more compute units. A compute unit can be further divided into one or more
processing elements. The processing element is the basic unit for computing on a device. For instance, a
computer may have two CPUs and one GPU. Each CPU has 2 processors and 4 cores per processor. The GPU
has 42 processors and 8 cores on each processor. In OpenCL platform model, one CPU can be the host, the other
CPU and GPU can be two devices. The device 1 (CPU) has 2 compute units (processors) and 4 processing units
(cores) on each compute unit. The device 2 (GPU) has 42 compute units (processors) and 8 processing elements
(cores) on each compute unit.

To execute an OpenCL program, we need a host program running on the host and one or more kernels running
on devices. The host program identifies and initializes the OpenCL hardware, creates the OpenCL environment,
defines and manages the kernel. The parallel computing is conducted through kernels on devices. Users can
specify different kernels on various devices depending on the parallel modeling they use. Currently, OpenCL
supports both data parallel programming and task parallel programming. For more details of OpenCL, one can
refer the OpenCL specification (Munshi 2010).

http://en.wikipedia.org/wiki/Heterogeneous_computing�
http://www.khronos.org/opencl/�

 3

Figure 1. Platform model in OpenCL.

3. Implementation

The dctimestep code was written for sequential computing. Additionally dctimestep was written to produce a
result for one time step. To perform an annual simulation, dctimestep would be called roughly 4380 times by a
script. To speed it up, it is critical to profile and identify potential parts for parallelization, modify algorithms for
parallel computing, and optimize the implementation for better performance. This section will first introduce the
analysis and optimization to reduce redundant computation and input/output (I/O) operation of the dctimestep
algorithm for annual simulation. After that, we will discuss the further speedup by implementing matrices
multiplication in OpenCL on a GPU.

3.1 Analyses and Optimization of Daylighting Simulation for a Period

The dctimestep is to calculate an illuminace vector, VI(t), at each simulation sensor point for one time step:

VI(t) = MVMTMDVS(t), (1)

where MV is a view matrix defining lighting connection from the exiting directions of the windows to the
sensors. MT is a matrix converted from bidirectional transmittance distribution function (BTDF), which describes
transmission of the light passes through the surface of studied windows. MD is a daylighting matrix defining
coefficients between incoming directions for the windows and sky patches. VS(t) is the sky vector defining sky
patch radiance for a specific time step, t (Ward 2010). The implemented calculating sequence in dctimestep is

VR(t) = MDVS(t), (2)

 VC(t) = MTVR(t), (3)
VI(t) = MVVC(t), (4)

where VR(t) and VC(t) are temporary vectors.

dctimestep calculates VI(t) for three basic colors (red, green and blue). For each color, the dimensions of MV, MT,
MD and VS(t) are the same although the value of entries may be different. Suppose VS(t) is a column vector with
N entries and MD, MT and MV are the N × N matrices, to calculate an entry vRi,j(t) in VR(t) for one color, we need
2N – 1 floating-point operations, including N multiplications and N-1 additions. VR(t) has N entries so that we
need N(2N – 1) floating-point operations in total for calculating VR(t). We also need the same number of
floating-point operations for equations (3) and (4). Thus, the total number of floating-point operations for these
matrices multiplications is 3N (2N – 1) ≈ 6N2 (when N » 1). To calculate three colors at one time step, dctimestep

 4

needs 6N2 × 3 = 18N2 floating-point operations. For n time steps, dctimestep has to be invoked n times, so the
total number of floating-point operations is about 18nN2.

Considering MV, MT and MD are constant during the simulation, the other approach is to calculate MVMTMD once
and use the result for the rest of simulation:

MVSD = MVMTMD, (5)
VI(tk) = MVSD VS(tk), {tk}k=1,…n. (6)

Assuming N » 1, the floating-point operations in equations (5) and (6) are 2N2(2N – 1) ≈ 4N3 and nN(2N – 1) ≈
2nN2, respectively. For three colors, the total number of floating-point operations will be around 12N3 + 6nN2.

Compared to the current approach in equation (2) to (4), the new approach in equations (5) and (6) can reduce
the floating-point operations by 12nN2 – 12N3. Assume there are 12 hours daylighting per day, we need to
calculate n = 4380 vectors for an hourly simulation over a year. Suppose N = 145, then the reduction in floating-
point operations is 1.07 × 109, which is 66% of total computing efforts.

Meanwhile, we found that there were significantly redundant data I/O operations when repeatedly calling
dctimestep for annual simulation. For a simulation with n time steps, the current approach repeatedly reads the
matrices MV, MT and MD at each time step although they were the same. On the contrary, the new approach reads
them only once.

Furthermore, it takes time to identify GPU platform, setup OpenCL programming environment and initialize the
GPU memory when the GPU program is invoked. To utilize the high computing capacity of GPU, we can reduce
the number of program invocations by merging n sky vectors VS(tk) {tk}k=1,…n into a single matrix, MVS = [VS(t1),
..., VS(tn)].

Combining the optimizations mentioned above, we implemented a new algorithm for daylighting calculation
over a period:

MVI = MVMTMDMVS , (7)
where MVI = [VI(t1), ..., VI(tn)].

In addition, the entries of the daylighting vector may be zero when there is no daylighting, such as at night. Thus,
when VS(tk) has only zero entries, we can set the corresponding entries in VI(tk) to be zeros without calculation.
We used three steps to implement the filtering-inserting procedure. First, we identify and remove the zero VS(tk)
from MVS, which can reduce the N × n matrix MVS to a N × n1 matrix M’

VS1 (where n1 is the number of non-zero
sky vectors). Then, we calculate equation (7) and get a shrunk M’

VI1 by using MVS1. Finally, we get MVI by
inserting the zero vectors at corresponding columns in M’

VI1.

Using the new approach in equation (7) and the filtering-inserting approach, we implemented two programs. One
was called dctimestep_gpu that was a hybrid code of C and OpenCL and ran on both CPU and GPU. The other
was dctimestep_cpu that was a C code and ran only on CPU. The dctimestep_cpu was used to compare with
dctimestep_gpu to quantify the performance enhancement by using GPU. Meanwhile, dctimestep_cpu can be
useful for users who do not have OpenCL supported hardware. Since the implementation of dctimestep_cpu is
straight forward, this paper will only discuss the implementation of GPU program dctimestep_gpu in detail.

3.2 Implementation of GPU Program Using OpenCL

We used a computer with an Intel Xeon CPU and a NVIDIA GeForce GTX 460. The configurations are given in
Table 1. In our implementation, the host was CPU and the GPU was the device. Although the Xeon CPU has 4
processors and 24 cores, only one core is used by the host program. The GTX 460 GPU has 42 multi-streaming
processors and 8 streaming processors on each multi-streaming processor, which is corresponding to 42 compute
units and 336 processing elements in OpenCL.

 5

Table 1. Configurations of computer hardware.
CATEGORY COMPUTER 1

GPU Type NVIDIA GeForce GTX
460

GPU Cores 336
GPU Processor Clock 1350 MHz
GPU Memory
Bandwidth

115.2 Gb/s

GPU Memory 1 GB GDDR5
Host-Dev Bandwidth 2767.6 MB/s
Dev-Host Bandwidth 2910.1 MB/s
CPU Type Intel Xeon
CPU Processor Clock 2.67 GHz
CPU Cores 24
CPU Cache 48 MB
CPU Memory Clock 1333 MHZ
Operating System Ubuntu 10.04

NVIDIA GPUs supports the OpenCL by running it on the CUDA architecture that is designed for NVIDIA
GPUs. The basic computing unit in CUDA is thread and one multi-streaming processor can support 756 threads.
Thus, the GeForce GTX 460 GPU can support up to 1,354,752 CUDA threads. For details about CUDA, one can
refer the CUDA programming guide (NVIDIA 2007).

Figure 2 shows the schematic of implementation. The host programs are “dctimestep_gpu.c” and “matrixmul.c”.
The “dctimestep_gpu.c” is C code modified from “dctimestep.c”. It reads MV, MT, MD, and MVS which contain
data for three colors. Thus, we split them so that each matrix only contain data for one color. It also writes the
MVI when the simualtion is done.

The “matrixmul.c” prepares for matrix multiplication on GPU. It was modified from a matrix multiplication
sample code in NIVIDA OpenCL SDK (NVIDIA 2011). It identifies and initializes the OpenCL device, creates
OpenCL programming environment, allocates device memory and copies the data from host memory to device
memory, and defines input parameters needed by the kernel functions. The original SDK code was written in
C++ and we changed it to C code to be compatible with “dctimestep_gpu.c”. In addition, the SDK code was
desigend for 16a × 16b matrices, where a and b are positive integers. Since the dimensions of matrices in our
application can be arbitrary numbers, we modfied the code to eliminate this limitation.

After the initialization, a kernel “matrixmul.cl” is launched for matrix multiplication in parallel on device. In our
implementation, one thread computes one entry by using the following code:

__kernel void
matrixMul (__global float* C, __global float* A, __global float* B, int uiWA, int uiWB){
 float Cele = 0;
 int i;

 //Identify the coordinate of thread
 int col = get_global_id(0);
 int row = get_global_id(1);

 //Matrix multiplication for element C(row, col)
 for(i = 0; i < uiWA; i++)
 Cele += A[uiWA * row + i]*B[i*uiWB +col];

 //Copy data from temporary variable to matrix
 C[row*uiWB+col] = Cele;
}
__kernel is an OpenCL key word which defines kernel functions. Function get_global_id () returns the indices
of a thread. All the data are stored in GPU global memory, which is the main GPU memory.

 6

Figure 2. Schematic of implementation.

4. Numerical Experiments

4.1 Settings

We evaluated three programs, including current dctimestep in Radiance, an optimized CPU code dctimestep_cpu
and a GPU code dctimestep_gpu. They were compared by conducting daylighting simulation using two kinds of
sky vectors. The first type of sky vectors used Tregenza sky discretization (Tregenz 1987) and had 146 elements.
The second used Reinhart sky discretization (Reinhart 2001) and had 2306 elements. A finer sky subdivision
provides more accurate results, but is more time consuming during matrix multiplication stage. Table 2 lists the
matrices used in our study. We used hourly data for sky vectors and the n in MVS defines the simulated period,
which varies from a day (n = 24) to a year (n = 8760). The approach of filtering zero sky vectors was applied to
all programs. It was performed in a bash script for dctimestep and in C code for dctimestep_cpu and
dctimestep_gpu.

Table 2. Dimensions of matrices used in numerical experiments.
MATRIX SETTING 1 SETTING 2

MV 64 × 145 64 × 145
MT 145 × 145 145 × 145
MD 145 × 146 145 × 2306
MVS 146 × n 2036 × n
MVI 64 × n 64 × n

4.2 Computing Time
Figure 3 compares the computing time of dctimestep with and without filtering zero sky vectors. The time is
elapsed time measured by time command in Linux. It includes the time to run dctimestep as well as the time to
filter the zero vectors from MVS and insert zero vectors into MVI that are performed by a bash script in Linux.
When n = 8760, filtering zero vectors can reduce the total simulation time by 45% for setting 1 and 28% for
setting 2.

 7

(a) Setting 1

(b) Setting 2

Figure 3. Comparison of simulation time used by dctimestep with and without filtering zero daylighting vectors.

Because time command was used to measure the time for dctimestep, we also used it to measure dctimestep_cpu
and dctimestep_gpu for consistency. As we will see later, the elapsed time includes both time spending on
overhead in Linux and computing time used by the program.

Figure 4 compares the simulation time used by different programs for various n in two settings. dctimestep_cpu
is always faster than dctimestep. This indicates that the optimization for sequential code can reduce the
computing time. On the other side, using GPU does not necessarily speed up the simulation. dctimestep_gpu is
slower than dctimestep_cpu when n < 5000 in setting 1 and n < 1000 in setting 2. Because the GPU needs more
time for initialization than CPU does, its advantage in computing speed can only be seen when computing
demand is large enough.

Figure 5 compares the speed ratio of different programs. The speed ratio is defined as the ratio of computing
speed of two programs, which is a multiplicative inverse of ratio of computing time. For setting 1,
dctiemstep_cpu is from 10 × (n = 24) to 86.9 × (n = 4380) faster than dctimestep (plotted as “S1 cpu”). The ratio
is 78.8 for annual simulation (n = 8760). On the other hand, the ratio of dctimestep_gpu to dctimestep (plotted as
“S1 gpu”) increases from 0.36 (n = 24) to 101.7 (n = 8760).

For setting 2, the speed enhancement by dctimestep_cpu is from 11.0 × (n = 8760) to 16.0 × (n = 264). The
dctimestep_gpu has better performance than dctimestep_cpu with a speedup of 28.6 × at n = 8760.

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000

Si
m

ul
at

io
n

Ti
m

e
in

 [s
]

n

without filter

with filter

0

100

200

300

400

500

600

0 2000 4000 6000 8000

Si
m

ul
at

io
n

TI
m

e
in

 [s
]

n

without filter

with filter

 8

(a) Setting 1

(b) Setting 2

Figure 4. Comparison of computing time used by different programs.

Figure 5. Comparison of speed ratios between the optimized codes and original code. S1: Setting 1, S2 Setting 2;
cpu: dctimestep_cpu/dctimestep; gpu: dctimestep_gpu/dctimestep.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0 2000 4000 6000 8000

Si
m

ul
at

io
n

Ti
m

e
in

 [s
]

n

dctimestep
dctimestep_cpu
dctimestep_gpu

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0 2000 4000 6000 8000

Si
m

ul
at

io
n

TI
m

e
in

 [s
]

n

dctimestep
dctimestep_cpu
dctimestep_gpu

0

20

40

60

80

100

120

0 2000 4000 6000 8000

Sp
ee

d
Ra

ti
o

n

S1 cpu S1 gpu
S2 cpu S2 gpu

 9

To see the performance change by switching from CPU to GPU, Figure 6 compares the speed ratio of
dctimestep_cpu and dctimestep_gpu. For setting 1, the GPU code is slower than CPU code when n < 5000 and
there is only a speedup less than 1.5 × when n > 6000. For setting 2, GPU code is faster than CPU code when n
> 1000. The speedup reaches 2.5 × when n > 6000. When n = 8760, the ratios are 1.29 for setting 1 and 2.60 for
setting 2.

Figure 6. Comparison of speed between the dctimestep_cpu and dctimestep_gpu. The ratio is speed of GPU code
divided that of CPU.

Figures 5 and 6 also indicate some oscillations in the performance of GPU code. To find the course of
oscillations, we measured the detailed usage of computing time by dctimestep_gpu:

Elapsed Time = Overhead for Linux

+ Load Sky Vectors
+ Create OpenCL Context
+ GPU Compute
+ Rest, (8)

where Overhead for Linux is the time for Linux system to invoke the dctimestep_gpu and release it after the
execution is over. It is the difference between elapsed time measured by Linux time command and the program
running time measured by a C function gettimeofday() in dctimestep_gpu. Load Sky Vectors is the time used to
read the matrix MVS from hard disk drive to CPU memory. Create OpenCL Context is the time to create OpenCL
context by running a OpenCL function clcreateContext(), which creates a OpenCL context for a device.
clcreateContext() is a part of the initialization process for computing on device using OpenCL. The OpenCL
runtime uses context for managing objects such as command-queues, memory, program and kernel objects and
for executing kernels on devices specified in the context. GPU Compute is the time to conduct computing on
GPU. Rest is the time used by other parts of the program, including reading and writing other matrices, filtering
the zero vectors, transferring data between CPU and GPU, initializing the GPU hardware and OpenCL
programming environment except clcreateContext().

Figure 7 shows the details in computing time by dctimestep_gpu for setting 1. The Overhead for Linux and
Create OpenCL Context (Figure 7a) use significant amount of time. For instance, they count for 90% of total
time when MVS is a 146 × 24 matrix. We also found that the time spent on Overhead for Linux and Create
OpenCL Context was random. They are not related to size of matrices and not repeatable for different program
runs with the same matrices. They contribute the most to the oscillations of simulation time. The computing time
reported in this paper was averaged over 20 program runs.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2000 4000 6000 8000

Sp
ee

d
Ra

ti
o

n

Setting 1
Setting 2

 10

(a)

(b)

Figure 7. A detailed analysis of computing time used by GPU for setting 1 with the 146 × n matrix MVS.

The time for Load Sky Vectors continuously increases when the size of MVS increases and it becomes significant
when MVS is large. For instance, when MVS is a 146 × 8760 matrix, it needs 0.696 s to load MVS, which is the
biggest part in simulation time. The GPU computing time (GPU Compute in Figure 7b) is less than 0.01s except
n = 4380, where the matrix actually computed is 146 × 2347 after filtering the zero columns. The sudden
increase in computing time is repeatable and they are caused by difficulty in transferring data between GPU
memory and processors for certain dimensions of array. Similar phenomenon was also observed in other work
(Zuo and Chen, 2010). The time used by other features of the program is about 0.2 s (Rest in Figure 7b). It is
increasing with the size of MVS because the program needs more time to pre-process and transfer data when MVS
is getting bigger.

With a larger matrix (2306 × n), Load Sky Vectors becomes the dominant part of GPU computing time in setting
2 (Figure 8b). For instance, it counts for 79% time when MVS is a 2306 × 8760 matrix. Time for Linux overhead
and creating OpenCL context still changes randomly. However, they are less than 2s and are less important in
total simulation time. The GPU computing time is less than 0.3 s except n = 4380.

 11

(a)

(b)

Figure 8. A detailed analysis of computing time used by GPU for setting 2 with the 2306 × n matrix MVS.

4.3 Accuracy
To compare the accuracy of the new codes, we calculated the relative error ei,j for each entry in MVI:

ei,j = (yi,j – yrefi,j) / yref,i,j , i =1,.., 64, j = 1, .., n (9)

where yi,j is an entry in MVI calculated by dctimestep_cpu or dctimestep_gpu and yref,ij, is the reference value
computed by dctimestep. If yref,ij = 0, ei,j will be computed by the following equation:

ei,j = 107yi,j , i =1,.., 64, j = 1, .., n (10)

We compared the distribution of ei,j when n = 8760. The zero columns in MVI are not counted in comparison
since they are not computed. MVI has 4590 non-zero columns so the number of total entries in comparison is 64
× 4590 × 3 = 881,280. The comparison shows that the dctimestep_cpu code could produce identical results as
that by the dctimestep. The results by dctimestep_gpu were slightly different from the one by CPU codes. As
shown in Figure 9, the relative errors for both settings are in a range of -1 × 10-5 to 1 × 10-5. With more
computing efforts, more data in setting 2 has larger relative errors than setting 1.

5. Discussion

To further speed up dctimestep_gpu, the key will be to load MVS more efficiently. For instance, it is possible to
reduce the I/O time if one uses solid state drive, which is significantly faster than traditional hard disk drive used
in the current study.

 12

Figure 9. Distributions of relative errors of GPU results compared to CPU results when n = 8760.

Using GPU does not have much advantage when computing demand is small. As we have seen, the initialization
of GPU and overhead for Linux system can count for a large portion of total GPU simulation time for setting 1.
To reduce the influence of initialization, we should run a larger simulation job which requires longer simulation
time, such as we did for setting 2.

To avoid the sudden increase in GPU computing time, such as when MVS is a 146 × 2347 matrix, we should
optimize the data flow in GPU. Furthermore, we can achieve higher performance by optimizing the
implementation of GPU code for specific GPU hardware to fully utilize the capacity of GPU hardware (Volkov
and Demmel 2008). Since Radiance is widely used software and may run on many hardware configurations, it
will need too many resource to optimize Radiance for different hardware platform. Thus, one must balance one’s
choice between performance and compatibility.

6. Conclusion

By optimizing the dctimestep code and running it in parallel on a GPU, we have accelerated the annual
daylighting simulation of Radiance by two orders of magnitudes. The optimization of the algorithm can speed up
an annual daylighting simulation on a CPU by a factor of 86.9 and 11 using sky vectors with 146 and 2306
elements, respectively. Running in parallel on a GPU using OpenCL can further accelerate the simulation by a
factor of 1.29 and 2.60. This leads to total speed-ups of factor 101.7 or 28.6.

As a pilot study, we only tested the OpenCL code on one GPU hardware. Since OpenCL is a cross-platform
language, it would be interesting to evaluate the performance of the same code on different hardware platforms

Acknowledgement

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building
Technologies Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the
California Energy Commission through its Public Interest Energy Research (PIER) Program on behalf of the
citizens of California.

The authors would also like to thank Amir Roth from the U.S. Department of Energy for his constructive
comments on this paper.

References

Armbrust, M., A. Fox, et al. (2009). “Above the Clouds: A Berkeley View of Cloud Computing,” Electrical

Engineering and Computer Sciences, Technical Report No. UCB/EECS-2009-28, University of
California at Berkeley.

 13

Chapman, B., G. Jost, et al. (2007). Using OpenMP: Portable Shared Memory Parallel Programming, The MIT
Press.

Gregg, C., and K. Hazelwood (2011). “Where is the Data? Why You Cannot Debate GPU vs. CPU Performance
Without the Answer,” International Symposium on Performance Analysis of Systems and Software
(ISPASS), Austin, TX.

Gropp, W., E. Lusk, et al. (1999). Using MPI: Portable Parallel Programming with the Message-Passing
Interface, The MIT Press.

Hasama, T., S. Kato, et al. (2008). "Analysis of Wind-induced Inflow and Outflow through a Single Opening
using LES & DES." Journal of Wind Engineering and Industrial Aerodynamics 96(10-11): 1678-1691.

Larson, G. W. and R. A. Shakespeare (1998). Rendering With Radiance: The Art And Science Of Lighting
Visualization, Morgan Kaufmann Publishers.

Mazumdar, S. and Q. Chen (2008). "Influence of Cabin Conditions on Placement and Response of Contaminant
Detection Sensors in A Commercial Aircraft." Journal of Environmental Monitoring 10(1): 71-81.

Munshi, A. (2010). The OpenCL Specification Version 1.1, Khronos OpenCL Working Group.
NVIDIA (2007). NVIDIA CUDA Compute Unified Device Architecture-- Programming Guide (Version 1.1).

Santa Clara, California, NVIDIA Corporation.
NVIDIA (2011). "NVIDIA OpenCL SDK Code Samples." Retrieved on 01/26/2011, from

http://developer.download.nvidia.com/compute/opencl/sdk/website/samples.html.
Reinhart, C.F. (2001). “Daylight Availability And Manual Lighting Control in Office Buildings: Simulation

Studies and Analysis of Measurement,” Ph.D. thesis, Department of Architecture, Technical University
of Karlsruhe.

Tregenza, P.R. (1987). “Subdivision of The Sky Hemisphere For Luminance Measurements.” Lighting Research
& Technology, 19, 13-14.

Volkov, V. and J.W. Demmel, (2008). “Benchmarking GPUs to Tune Dense Linear Algebra.” 2008 ACM/IEEE
Conference on Supercomputing (SC08).

Ward Larson, G. and Shakespeare, R. (1998). “Rendering with Radiance: The Art and Science of Lighting
Visualization.” San Francisco, Morgan Kaufmann.

Ward, G., Mistrick, R., et al. (2011). “Simulating the Daylight Performance of Complex Fenestration Systems
Using Bidirectional Scattering Distribution Functions Within Radiance.” Technical report LBNL-
4414E, Lawrence Berkeley National Laboratory.

Wenisch, P., C. v. Treeck, et al (2007). “Computational Steering on Distributed Systems: Indoor Comfort
Simulations as A Case Study of Interactive CFD on Supercomputers." International Journal of Parallel,
Emergent and Distributed Systems, 22(4): 275-291.

Zuo, W. and Q. Chen (2010). "Fast and Informative Flow Simulations in A Building By Using Fast Fluid
Dynamics Model on Graphics Processing Unit." Building and Environment, 45(3): 747-757.

http://developer.download.nvidia.com/compute/opencl/sdk/website/samples.html�
http://mc.stanford.edu/cgi-bin/images/6/65/SC08_Volkov_GPU.pdf�

	Building Technologies Program, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory
	Mailstop 90-3111, 1 Cyclotron Road, Berkeley, CA 94720, USA
	3. Implementation
	The dctimestep code was written for sequential computing. Additionally dctimestep was written to produce a result for one time step. To perform an annual simulation, dctimestep would be called roughly 4380 times by a script. To speed it up, it is crit...
	3.1 Analyses and Optimization of Daylighting Simulation for a Period
	3.2 Implementation of GPU Program Using OpenCL
	/

