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Abstract 
 
We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-
tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the 
floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications 
was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross-
platform parallel programming language. Numerical experiments show that the combination of the above 
measures can speed up the annual daylighting simulations 101.7 times or 28.6 times when the sky vector has 146 
or 2306 elements, respectively. 
 
Keywords: Daylighting, Simulation, Building Energy Efficiency, Radiance, Graphic Processing Unit, OpenCL, 
Parallel computing, Matrix multiplication 
 
 
 
 
1. Introduction 
 
Due to the increasing demands in accuracies and resolutions, building simulations requires more and more 
computing power. Since increasing the clock rate alone cannot meet the rapidly growing demands on computing 
power, it is more feasible to compute in parallel on multiple processors. Parallel computing on supercomputers is 
already widely used in other industries and there are also a few applications in building industry (Wenisch et al. 
2007, Hasama et al. 2008, Mazumdar and Chen 2008). However, purchasing and maintaining supercomputers is 
usually too expensive for small businesses that make up the majority of the building industry. A low-cost and 
high-performance parallel computing is necessary to meet the increasing computational needs of building 
simulations. Besides cloud computing (Armbrust et al. 2009), there are two other promising options for parallel 
computing. One is to use single/multiple CPUs with multi-cores, which are widely adopted by personal 
computers. The other is computing on graphics processing units (GPUs). The GPU is the core of a computer 
graphics card and has hundreds of low-frequency processors. Both options cost only a few hundred US dollars 
and can be realized on a desktop computer or a laptop computer. For example, Zuo and Chen (2010) accelerated 
an indoor flow simulation up to 30 × using a GPU on a desktop computer.  
 
Radiance is a highly accurate ray-tracing program that is widely regarded as best in class for lighting simulation 
(Larson and Shakespeare 1998). A recent addition to Radiance, known as three-phase simulation method, 
enables users to perform annual daylight simulations for complex and/or dynamic fenestration systems (Ward 
2010, Ward 2011).   
 
The three-phase method breaks luminous energy traversal of the model into three phases: from sky to exterior of 
the fenestration, through the fenestration and from interior of the fenestration to the sensor points.  Luminous 
energy transfer for each phase is described by a matrix of coefficients.  The daylight (exterior) matrix 
characterizes how energy from each of 145 Tregenza sky patches arrives into 145 directional Klems patches at 
the window.  The daylight matrix characterizes the external environment including obstructions.  The 
fenestration transmission matrix characterizes how light incident on the fenestration in each of 145 incident 
patches leaves through 145 exiting patches.  The transmission matrix characterizes transmission properties of a 
fenestration system, including diffusion and redirection of daylight.    And finally the interior, or view, matrix 
characterizes how lighting leaving the fenestration in each of the 145 directional patches arrives at each of the 
illuminance sensor points. The view matrix characterizes flux transversal through the interior space model.  Each 
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matrix is independent of the others so, for example, the daylight matrix can be changed in order to simulate a 
different orientation or additional external obstructions without changing the other two matrices.  
 
The three-phase method uses Radiance’s rtcontrib program to produce the daylight and view matrices.   The 
transmission matrix can either be produced using Radiance’s genBSD, Window 6 or a combination of the two. 
 
To generate an illuminance result we first create a sky vector using Radiance’s genskyvec. The sky vector is 145 
values, the luminance of the 145 Tregenza patches for a given time, location and sky type.  The sky vector is 
multiplied by the other three coefficient matrices to generate a result for all of the sensor points.  The three-phase 
method allows users to generate annual results for many different fenestration systems including those with 
dynamic components. 
 
The Radiance program that performs the matrix multiplication, called dctimestep, is a sequential code written in 
C language. The main calculation for this feature is to multiply matrices with large dimensions, which may take 
hours for an annual simulation depending on the number of illuminance sensor points. Accelerating dctimestep 
will enable users to quickly evaluate different fenestration systems and optimize the design of fenestration 
systems through parametric study.  This could accelerate the adoption of emerging daylighting technologies by 
reducing the technical and market barriers.  
 
To accelerate dctimestep, the key is computing the matrices multiplication more efficiently, such as computing 
them in parallel using multi-core CPUs or GPUs. There are various parallel programming languages, such as 
OpenMP (Chapman et al. 2007), MPI (Gropp et al. 1999), CUDA (NVIDIA 2007) and OpenCL (Munshi 2010). 
Since Radiance is a publicly released code running on various types of computing hardware, it is important that 
the programming language is supported by various platforms so that we can save a lot of repeated efforts on code 
development. Thus, we selected OpenCL because it is a cross-platform language and supported by major CPU 
and GPU vendors. 
 
 
2. OpenCL 
 
OpenCL is the first open standard for parallel programming on heterogeneous platforms, including CPUs, GPUs, 
embedded processors and other processors.  The development of OpenCL was initiated by Apple Inc in 2008 and 
is currently led by Khronos Group. The most recent release of OpenCL was version 1.1 in 2010. The official 
website of OpenCL is http://www.khronos.org/opencl/.  
 
OpenCL adopts a host-device platform model (Figure 1). A host is the commander that connects to one or more 
devices. A device contains one or more compute units. A compute unit can be further divided into one or more 
processing elements. The processing element is the basic unit for computing on a device. For instance, a 
computer may have two CPUs and one GPU. Each CPU has 2 processors and 4 cores per processor. The GPU 
has 42 processors and 8 cores on each processor. In OpenCL platform model, one CPU can be the host, the other 
CPU and GPU can be two devices. The device 1 (CPU) has 2 compute units (processors) and 4 processing units 
(cores) on each compute unit. The device 2 (GPU) has 42 compute units (processors) and 8 processing elements 
(cores) on each compute unit. 
 
To execute an OpenCL program, we need a host program running on the host and one or more kernels running 
on devices. The host program identifies and initializes the OpenCL hardware, creates the OpenCL environment, 
defines and manages the kernel. The parallel computing is conducted through kernels on devices. Users can 
specify different kernels on various devices depending on the parallel modeling they use. Currently, OpenCL 
supports both data parallel programming and task parallel programming. For more details of OpenCL, one can 
refer the OpenCL specification (Munshi 2010).    
 

http://en.wikipedia.org/wiki/Heterogeneous_computing�
http://www.khronos.org/opencl/�


 3 

 
 

Figure 1. Platform model in OpenCL.   
 
 
3. Implementation 
 
The dctimestep code was written for sequential computing. Additionally dctimestep was written to produce a 
result for one time step. To perform an annual simulation, dctimestep would be called roughly 4380 times by a 
script. To speed it up, it is critical to profile and identify potential parts for parallelization, modify algorithms for 
parallel computing, and optimize the implementation for better performance. This section will first introduce the 
analysis and optimization to reduce redundant computation and input/output (I/O) operation of the dctimestep 
algorithm for annual simulation. After that, we will discuss the further speedup by implementing matrices 
multiplication in OpenCL on a GPU.  
 
3.1 Analyses and Optimization of Daylighting Simulation for a Period 
 
The dctimestep is to calculate an illuminace vector, VI(t),  at each simulation sensor point for one time step:  

 
VI(t) = MVMTMDVS(t),                                                                            (1) 

 
where MV is a view matrix defining lighting connection from the exiting directions of the windows to the 
sensors. MT is a matrix converted from bidirectional transmittance distribution function (BTDF), which describes 
transmission of the light passes through the surface of studied windows. MD is a daylighting matrix defining 
coefficients between incoming directions for the windows and sky patches. VS(t) is the sky vector defining sky 
patch radiance for a specific time step, t (Ward 2010). The implemented calculating sequence in dctimestep is  

 
VR(t) = MDVS(t),                                                                                     (2) 

  VC(t) = MTVR(t),                                                                                      (3) 
VI(t) = MVVC(t),                                                                                     (4) 

 
where VR(t) and VC(t) are temporary vectors.  
 
dctimestep calculates VI(t) for three basic colors (red, green and blue). For each color, the dimensions of MV, MT, 
MD and VS(t) are the same although the value of entries may be different. Suppose VS(t) is a column vector with 
N entries and MD, MT and MV are the N × N matrices, to calculate an entry vRi,j(t) in VR(t) for one color, we need 
2N – 1 floating-point operations, including N multiplications and N-1 additions. VR(t) has N entries so that we 
need N(2N – 1) floating-point operations in total for calculating VR(t). We also need the same number of 
floating-point operations for equations (3) and (4). Thus, the total number of floating-point operations for these 
matrices multiplications is 3N (2N – 1) ≈ 6N2 (when N » 1). To calculate three colors at one time step, dctimestep 



 4 

needs 6N2 × 3 = 18N2 floating-point operations. For n time steps, dctimestep has to be invoked n times, so the 
total number of floating-point operations is about 18nN2.  
 
Considering MV, MT and MD are constant during the simulation, the other approach is to calculate MVMTMD once 
and use the result for the rest of simulation:  

 
MVSD = MVMTMD,                                                                                                           (5) 
VI(tk) = MVSD VS(tk),  {tk}k=1,…n.                                                   (6) 

 
Assuming N » 1, the floating-point operations in equations (5) and (6) are 2N2(2N – 1) ≈ 4N3 and nN(2N – 1) ≈ 
2nN2, respectively. For three colors, the total number of floating-point operations will be around 12N3 + 6nN2.   
 
Compared to the current approach in equation (2) to (4), the new approach in equations (5) and (6) can reduce 
the floating-point operations by 12nN2 – 12N3. Assume there are 12 hours daylighting per day, we need to 
calculate n = 4380 vectors for an hourly simulation over a year. Suppose N = 145, then the reduction in floating-
point operations is 1.07 × 109, which is 66% of total computing efforts.   
 
Meanwhile, we found that there were significantly redundant data I/O operations when repeatedly calling 
dctimestep for annual simulation. For a simulation with n time steps, the current approach repeatedly reads the 
matrices MV, MT and MD at each time step although they were the same. On the contrary, the new approach reads 
them only once.         
 
Furthermore, it takes time to identify GPU platform, setup OpenCL programming environment and initialize the 
GPU memory when the GPU program is invoked. To utilize the high computing capacity of GPU, we can reduce 
the number of program invocations by merging n sky vectors VS(tk) {tk}k=1,…n into a single matrix, MVS = [VS(t1), 
..., VS(tn)].  
 
Combining the optimizations mentioned above, we implemented a new algorithm for daylighting calculation 
over a period: 
 

MVI = MVMTMDMVS ,                                                                                                   (7) 
where MVI = [VI(t1), ..., VI(tn)]. 

 
In addition, the entries of the daylighting vector may be zero when there is no daylighting, such as at night. Thus, 
when VS(tk) has only zero entries, we can set the corresponding entries in VI(tk) to be zeros without calculation. 
We used three steps to implement the filtering-inserting procedure. First, we identify and remove the zero VS(tk) 
from MVS, which can reduce the N × n matrix MVS to a N × n1 matrix M’

VS1 (where n1 is the number of non-zero 
sky vectors). Then, we calculate equation (7) and get a shrunk M’

VI1 by using MVS1. Finally, we get MVI by 
inserting the zero vectors at corresponding columns in M’

VI1. 
 
Using the new approach in equation (7) and the filtering-inserting approach, we implemented two programs. One 
was called dctimestep_gpu that was a hybrid code of C and OpenCL and ran on both CPU and GPU. The other 
was dctimestep_cpu that was a C code and ran only on CPU. The dctimestep_cpu was used to compare with 
dctimestep_gpu to quantify the performance enhancement by using GPU. Meanwhile, dctimestep_cpu can be 
useful for users who do not have OpenCL supported hardware. Since the implementation of dctimestep_cpu is 
straight forward, this paper will only discuss the implementation of GPU program dctimestep_gpu in detail.  
 
3.2 Implementation of GPU Program Using OpenCL 
 
We used a computer with an Intel Xeon CPU and a NVIDIA GeForce GTX 460. The configurations are given in 
Table 1. In our implementation, the host was CPU and the GPU was the device. Although the Xeon CPU has 4 
processors and 24 cores, only one core is used by the host program. The GTX 460 GPU has 42 multi-streaming 
processors and 8 streaming processors on each multi-streaming processor, which is corresponding to 42 compute 
units and 336 processing elements in OpenCL.   
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Table 1. Configurations of computer hardware. 
CATEGORY COMPUTER 1 

GPU Type NVIDIA GeForce GTX 
460  

GPU Cores 336 
GPU Processor  Clock 1350 MHz 
GPU Memory 
Bandwidth  

115.2 Gb/s 

GPU Memory  1 GB GDDR5 
Host-Dev Bandwidth 2767.6 MB/s 
Dev-Host Bandwidth 2910.1 MB/s 
CPU Type Intel Xeon  
CPU Processor Clock  2.67 GHz 
CPU Cores 24 
CPU Cache 48 MB 
CPU Memory Clock 1333 MHZ 
Operating System Ubuntu 10.04 

 
NVIDIA GPUs supports the OpenCL by running it on the CUDA architecture that is designed for NVIDIA 
GPUs. The basic computing unit in CUDA is thread and one multi-streaming processor can support 756 threads. 
Thus, the GeForce GTX 460 GPU can support up to 1,354,752 CUDA threads. For details about CUDA, one can 
refer the CUDA programming guide (NVIDIA 2007).  
 
Figure 2 shows the schematic of implementation. The host programs are “dctimestep_gpu.c” and “matrixmul.c”. 
The “dctimestep_gpu.c” is C code modified from “dctimestep.c”. It reads MV, MT, MD, and MVS which contain 
data for three colors. Thus, we split them so that each matrix only contain data for one color. It also writes the 
MVI when the simualtion is done.   
 
The “matrixmul.c” prepares for matrix multiplication on GPU. It was modified from a matrix multiplication 
sample code in NIVIDA OpenCL SDK (NVIDIA 2011). It identifies and initializes the OpenCL device, creates 
OpenCL programming environment, allocates device memory and copies the data from host memory to device 
memory, and defines input parameters needed by the kernel functions. The original SDK code was written in 
C++ and we changed it to C code to be compatible with “dctimestep_gpu.c”. In addition, the SDK code was 
desigend for 16a × 16b matrices, where a and b are positive integers. Since the dimensions of matrices in our 
application can be arbitrary numbers, we modfied the code to eliminate this limitation.   
 
After the initialization, a kernel “matrixmul.cl” is launched for matrix multiplication in parallel on device. In our 
implementation, one thread computes one entry by using the following code:  
 
__kernel void 
matrixMul ( __global float* C, __global float* A, __global float* B, int uiWA, int uiWB){ 
  float Cele = 0; 
  int i; 
     
  //Identify the coordinate of thread 
  int col = get_global_id(0); 
  int row = get_global_id(1); 
 
  //Matrix multiplication for element C(row, col)   
  for(i = 0; i < uiWA; i++) 
        Cele += A[uiWA * row + i]*B[i*uiWB +col]; 
   
  //Copy data from temporary variable to matrix   
  C[row*uiWB+col] = Cele; 
} 
__kernel is an OpenCL key word which defines kernel functions. Function get_global_id ( ) returns the indices 
of a thread.  All the data are stored in GPU global memory, which is the main GPU memory.  
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Figure 2. Schematic of implementation. 
 
 
4. Numerical Experiments  
 
4.1 Settings  
 
We evaluated three programs, including current dctimestep in Radiance, an optimized CPU code dctimestep_cpu 
and a GPU code dctimestep_gpu. They were compared by conducting daylighting simulation using two kinds of 
sky vectors. The first type of sky vectors used Tregenza sky discretization (Tregenz 1987) and had 146 elements. 
The second used Reinhart sky discretization (Reinhart 2001) and had 2306 elements. A finer sky subdivision 
provides more accurate results, but is more time consuming during matrix multiplication stage. Table 2 lists the 
matrices used in our study. We used hourly data for sky vectors and the n in MVS defines the simulated period, 
which varies from a day (n = 24) to a year (n = 8760). The approach of filtering zero sky vectors was applied to 
all programs.  It was performed in a bash script for dctimestep and in C code for dctimestep_cpu and 
dctimestep_gpu.  
 

Table 2. Dimensions of matrices used in numerical experiments. 
MATRIX SETTING 1 SETTING 2 

MV 64 × 145 64 × 145 
MT 145 × 145 145 × 145 
MD 145 × 146 145 × 2306 
MVS 146 × n 2036 × n 
MVI 64 × n 64 × n 

 
4.2 Computing Time 
Figure 3 compares the computing time of dctimestep with and without filtering zero sky vectors. The time is 
elapsed time measured by time command in Linux. It includes the time to run dctimestep as well as the time to 
filter the zero vectors from MVS and insert zero vectors into MVI that are performed by a bash script in Linux. 
When n = 8760, filtering zero vectors can reduce the total simulation time by 45% for setting 1 and 28% for 
setting 2.  
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(a) Setting 1 
 

 
 

(b) Setting 2 
 

Figure 3. Comparison of simulation time used by dctimestep with and without filtering zero daylighting vectors. 
 
Because time command was used to measure the time for dctimestep, we also used it to measure dctimestep_cpu 
and dctimestep_gpu for consistency. As we will see later, the elapsed time includes both time spending on 
overhead in Linux and computing time used by the program.  
 
Figure 4 compares the simulation time used by different programs for various n in two settings. dctimestep_cpu 
is always faster than dctimestep. This indicates that the optimization for sequential code can reduce the 
computing time. On the other side, using GPU does not necessarily speed up the simulation. dctimestep_gpu is 
slower than dctimestep_cpu when n < 5000 in setting 1 and n < 1000 in setting 2. Because the GPU needs more 
time for initialization than CPU does, its advantage in computing speed can only be seen when computing 
demand is large enough.  
 
Figure 5 compares the speed ratio of different programs. The speed ratio is defined as the ratio of computing 
speed of two programs, which is a multiplicative inverse of ratio of computing time. For setting 1, 
dctiemstep_cpu is from 10 × (n = 24) to 86.9 × (n = 4380) faster than dctimestep (plotted as “S1 cpu”). The ratio 
is 78.8 for annual simulation (n = 8760). On the other hand, the ratio of dctimestep_gpu to dctimestep (plotted as 
“S1 gpu”) increases from 0.36 (n = 24) to 101.7 (n = 8760).      
 
For setting 2, the speed enhancement by dctimestep_cpu is from 11.0 × (n = 8760) to 16.0 × (n = 264). The 
dctimestep_gpu has better performance than dctimestep_cpu with a speedup of 28.6 × at n = 8760.  
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(a) Setting 1 
 

  
 

(b) Setting 2 
 

Figure 4. Comparison of computing time used by different programs. 
 

 

 
 
 

Figure 5. Comparison of speed ratios between the optimized codes and original code. S1: Setting 1, S2 Setting 2; 
cpu: dctimestep_cpu/dctimestep; gpu: dctimestep_gpu/dctimestep. 
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To see the performance change by switching from CPU to GPU, Figure 6 compares the speed ratio of 
dctimestep_cpu and dctimestep_gpu. For setting 1, the GPU code is slower than CPU code when n < 5000 and 
there is only a speedup less than 1.5 × when n > 6000.  For setting 2, GPU code is faster than CPU code when n 
> 1000. The speedup reaches 2.5 × when n > 6000. When n = 8760, the ratios are 1.29 for setting 1 and 2.60 for 
setting 2.       
 

 
 
 

Figure 6. Comparison of speed between the dctimestep_cpu and dctimestep_gpu. The ratio is speed of GPU code 
divided that of CPU. 

 
Figures 5 and 6 also indicate some oscillations in the performance of GPU code. To find the course of 
oscillations, we measured the detailed usage of computing time by dctimestep_gpu: 
 
Elapsed Time = Overhead for Linux  

+ Load Sky Vectors  
+ Create OpenCL Context 
+ GPU Compute 
+ Rest,                                                                                                                                             (8) 
 

where Overhead for Linux is the time for Linux system to invoke the dctimestep_gpu and release it after the 
execution is over.  It is the difference between elapsed time measured by Linux time command and the program 
running time measured by a C function gettimeofday( ) in dctimestep_gpu. Load Sky Vectors is the time used to 
read the matrix MVS from hard disk drive to CPU memory. Create OpenCL Context is the time to create OpenCL 
context by running a OpenCL function clcreateContext( ), which creates a OpenCL context for a device. 
clcreateContext( ) is a part of the initialization process for computing on device using OpenCL. The OpenCL 
runtime uses context for managing objects such as command-queues, memory, program and kernel objects and 
for executing kernels on devices specified in the context. GPU Compute is the time to conduct computing on 
GPU. Rest is the time used by other parts of the program, including reading and writing other matrices, filtering 
the zero vectors, transferring data between CPU and GPU, initializing the GPU hardware and OpenCL 
programming environment except clcreateContext( ).    
 
Figure 7 shows the details in computing time by dctimestep_gpu for setting 1. The Overhead for Linux and 
Create OpenCL Context (Figure 7a) use significant amount of time. For instance, they count for 90% of total 
time when MVS is a 146 × 24 matrix. We also found that the time spent on Overhead for Linux and Create 
OpenCL Context was random. They are not related to size of matrices and not repeatable for different program 
runs with the same matrices. They contribute the most to the oscillations of simulation time. The computing time 
reported in this paper was averaged over 20 program runs.  
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(a) 
 

 
(b) 

 
 

Figure 7. A detailed analysis of computing time used by GPU for setting 1 with the 146 × n matrix MVS. 
 
 

The time for Load Sky Vectors continuously increases when the size of MVS increases and it becomes significant 
when MVS is large. For instance, when MVS is a 146 × 8760 matrix, it needs 0.696 s to load MVS, which is the 
biggest part in simulation time. The GPU computing time (GPU Compute in Figure 7b) is less than 0.01s except 
n = 4380, where the matrix actually computed is 146 × 2347 after filtering the zero columns. The sudden 
increase in computing time is repeatable and they are caused by difficulty in transferring data between GPU 
memory and processors for certain dimensions of array. Similar phenomenon was also observed in other work 
(Zuo and Chen, 2010). The time used by other features of the program is about 0.2 s (Rest in Figure 7b). It is 
increasing with the size of MVS because the program needs more time to pre-process and transfer data when MVS 
is getting bigger. 
 
With a larger matrix (2306 × n), Load Sky Vectors becomes the dominant part of GPU computing time in setting 
2 (Figure 8b). For instance, it counts for 79% time when MVS is a 2306 × 8760 matrix. Time for Linux overhead 
and creating OpenCL context still changes randomly. However, they are less than 2s and are less important in 
total simulation time. The GPU computing time is less than 0.3 s except n = 4380.    
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(a) 

 

 
(b) 

 
Figure 8. A detailed analysis of computing time used by GPU for setting 2 with the 2306 × n matrix MVS. 

 
4.3 Accuracy 
To compare the accuracy of the new codes, we calculated the relative error ei,j  for each entry in MVI:  
 

ei,j = (yi,j – yrefi,j) / yref,i,j , i =1,.., 64, j = 1, .., n                                                    (9) 
 
where yi,j is an entry in MVI calculated by dctimestep_cpu or dctimestep_gpu and yref,ij, is the reference value 
computed by dctimestep. If yref,ij = 0, ei,j will be computed by the following equation:  

 
ei,j = 107yi,j , i =1,.., 64, j = 1, .., n                                                                    (10) 

 
We compared the distribution of ei,j when n = 8760. The zero columns in MVI are not counted in comparison 
since they are not computed. MVI has 4590 non-zero columns so the number of total entries in comparison is 64 
× 4590 × 3 = 881,280. The comparison shows that the dctimestep_cpu code could produce identical results as 
that by the dctimestep. The results by dctimestep_gpu were slightly different from the one by CPU codes. As 
shown in Figure 9, the relative errors for both settings are in a range of -1 × 10-5 to 1 × 10-5. With more 
computing efforts, more data in setting 2 has larger relative errors than setting 1.  
 
 
5. Discussion 
 
To further speed up dctimestep_gpu, the key will be to load MVS more efficiently. For instance, it is possible to 
reduce the I/O time if one uses solid state drive, which is significantly faster than traditional hard disk drive used 
in the current study. 
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Figure 9. Distributions of relative errors of GPU results compared to CPU results when n = 8760. 
 
 

Using GPU does not have much advantage when computing demand is small. As we have seen, the initialization 
of GPU and overhead for Linux system can count for a large portion of total GPU simulation time for setting 1. 
To reduce the influence of initialization, we should run a larger simulation job which requires longer simulation 
time, such as we did for setting 2.  
 
To avoid the sudden increase in GPU computing time, such as when MVS is a 146 × 2347 matrix, we should 
optimize the data flow in GPU. Furthermore, we can achieve higher performance by optimizing the 
implementation of GPU code for specific GPU hardware to fully utilize the capacity of GPU hardware (Volkov 
and Demmel 2008). Since Radiance is widely used software and may run on many hardware configurations, it 
will need too many resource to optimize Radiance for different hardware platform. Thus, one must balance one’s 
choice between performance and compatibility.  
 
6. Conclusion 
 
By optimizing the dctimestep code and running it in parallel on a GPU, we have accelerated the annual 
daylighting simulation of Radiance by two orders of magnitudes. The optimization of the algorithm can speed up 
an annual daylighting simulation on a CPU by a factor of 86.9 and 11 using sky vectors with 146 and 2306 
elements, respectively. Running in parallel on a GPU using OpenCL can further accelerate the simulation by a 
factor of 1.29 and 2.60. This leads to  total speed-ups of factor 101.7 or 28.6. 
 
As a pilot study, we only tested the OpenCL code on one GPU hardware. Since OpenCL is a cross-platform 
language, it would be interesting to evaluate the performance of the same code on different hardware platforms 
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