CONTRACTOR REPORT

SAND94- 2019
Unlimited Release
uc-707

Extensions to the Integral Line-Beam

Method for Gamma-Ray Skyshine Analyses

J. K. Shultis, R. E. Faw
Department of Nuclear Engineering
Kansas State University
Manhattan, Kansas 55606

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited.

Printed August 1995

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED




Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liablity or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Ozk Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal RD
Springfield, VA 22161

NTIS price codes
Printed copy: A08
Microfiche copy: A01




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




SAND94-2019 Distribution
Unlimited Release Category UC-707
Printed August 1995

Extensions to the Integral
Line-Beam Method for
Gamma-Ray Skyshine Analyses

J. K. Shultis and R. E. Faw,
Department of Nuclear Engineering
Kansas State University
Manhattan, Kansas 55606

Sandia Contract No. 78-5706

Abstract

A computationally simple method for estimating gamma-ray skyshine dose rates has been
developed on the basis of the line-beam response function. Both Monte Carlo and point-
kernel calculations that account for both annihilation and bremsstrahlung were used in the
generation of line beam response functions (LBRF) for gamma-ray energies between 10
and 100 MeV. The LBREF is approximated by a three-parameter formula. By combining
results with those obtained in an earlier study for gamma energies below 10 MeV, LBRF
values are readily and accurately evaluated for source energies between 0.02 and 100
MeV, for source-to-detector distances between 1 and 3000 m, and beam angles as great as
180 degrees. Tables of the parameters for the approximate LBRF are presented.

The new response functions are then applied to three simple skyshine geometries, an open
silo geometry, an infinite wall, and a rectangular four-wall building. Results are
compared to those of previous calculations and to benchmark measurements. A new
approach is introduced to account for overhead shielding of the skyshine source and
compared to the simplistic exponential-attenuation method used in earlier studies. The
effect of the air-ground interface, usually neglected in gamma skyshine studies, is also
examined and an empirical correction factor is introduced. Finally, a revised code based
on the improved LBRF approximations and the treatment of the overhead shielding is
presented, and results shown for several benchmark problems.
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Preface

In 1986, at the urging of Charles Negin of Grove Engineering Inc., we began the devel-
opment of the integral line-beam method for skyshine analysis. The improvement of
existing approximations to the line beam response function, a key component of this
simplified method, was a priority so that the method could be extended to greater
source-to-detector distances and to accommodate a greater range of photon energies.
Under the encouragement of Hong-Nian and Ted Simmons of Sandia National Lab-
oratory this work has continued. This support and enthusiasm for the project are
gratefully acknowledged and are respomnsible in large part for the evolution of this
method into a even more practical tool for routine gamma skyshine analysis.

This report summarizes the present state of the integral line-beam method as
applied to bared and shielded gamma-ray skyshine sources. Results present here
allow the method to be applied with more accuracy over wider energy and source-to-
detector ranges than was previously possible.

The success of this project depended on the cooperative efforts of many of our
students who, at various times over the past ten years, have contributed to many
aspects of this skyshine problem. In particular, Murray Roseberry, Darin George,
and Michael Bassett, contributed to the early developed of the method. During this
present project, Xiaohong Deng, Ronald Brockhoff, Faisal Kahn, and Mark Stedry
performed many of the calculations reported here. To these students we extend our
thanks, and we hope that their work on this project will contribute to their successful
professional careers.

JKS and REF
Kansas State University
June, 1994.







Chapter 1

Introduction

1.1 Skyshine

The term skyshine generally refers to radiation that originates from a fixed source
and scatters in the atmosphere before reaching a point of interest (detector) near
the ground. Skyshine is important when sufficient shielding between the source and
detector prevents any significant radiation from reaching the detector directly through
the shield material.

Skyshine dose calculations have been used widely in the design of nuclear facilities
such as nuclear power plants, spent-fuel storage areas, and research laboratories. In-
these facilities, radiation sources are generally well shielded against radiation emitted
horizontally. However, there is usually far less shielding provided against radiation
emitted upward through the roofs of these facilities. Radiation escaping through the
roofs interacts in the air and returns to earth exposing people both near and far from
the facilities.

Elementary ray-analysis techniques coupled with buildup-factor concepts have
been applied very successfully to treat the direct dose arising from gamma photons
that travel directly from the source to the detector [Ch84]. In skyshine problems, how-
ever, ray-analysis techniques fail, and the radiation protection analyst has to resort to
specialized and generally computationally intensive techniques. The large computa-
tional expense inherent in multi-dimensional transport calculations precludes the use
of these techniques for routine or preliminary design analyses. Thus, approximate
techniques have been developed for the skyshine problem to reduce the computa-
tional effort. In this study, one such approximate technique is refined and its range
of applicability extended.




1.2 Previous Skyshine Studies

In previous skyshine studies, a variety of methods has been used, including radiation
transport methods, single-scattering methods, and response-function methods. The
Monte Carlo method was the first radiation transport method applied to the skyshine
problem. Lynch et al. [Ly58], using a customized Monte Carlo code, computed the
air dose as a function of distance from point monodirectional sources emitting pho-
tons at different angles from the source-detector axis. General purpose Monte Carlo
codes such as OGRE [Pe65], COHORT [So75], and MORSE [Em75] have been applied
to skyshine calculations [An87]. All of these codes are based on an exact transport
description of a particular skyshine problem and normally require a multidimensional
geometry and multigroup energy formulation, and, hence, a large computational ef-
fort.

The discrete-ordinate technique, another method based on transport theory, has
also been used in skyshine analyses [Gi90]. The codes DOT [My73] and ANISN [En67]
are representatives of general-purpose transport codes which also have been used for
skyshine calculations. To avoid troublesome ray effects inherent in these multidimen-
sional calculations involving a severely anisotropic source, fine angular meshes and
first or second scattered source formulations must be used. Also, as with general pur-
pose Monte Carlo codes, large computational efforts are required and the usefulness
of these codes for preliminary or routine skyshine calculations is limited.

An elementary single-scatter approximation method for calculating skyshine doses
was proposed by Trubey [Tr61]. This single-scatter technique ignores both the con-
tributions of multiply-scattered gamma photons as well as the attenuation and the
buildup of photons in the air. It is successful for near-field calculations, when the
detector is near the source, involving bare skyshine sources, but it is not as suit-
able for shielded sources or for far-field calculations, when the detector is far from
the source. Based on Trubey’s work, Kitazume [Ki68] modified the single-scatter
approximation by incorporating exponential attenuation and a Taylor-type buildup
factor. The inclusion of exponential attenuation for both uncollided photons and
scattered photons and the consideration of secondary radiation buildup allows this
single-scatter method to be applied to more complicated skyshine geometries and at
distances farther from the source. Other applications of the single-scatter method to
various gamma-ray skyshine problems include the work of Roseberry [Ro80], Rose-
berry and Shultis [Ro82], Chou et al. [Ch83], and George [Ge88]. Also general-purpose
single-scatter codes such as QAD [Pr74] and ¢3 [Ma73] have been used for skyshine
calculations.

An alternative simplified approach for skyshine analyses is the use of a skyshine
line-beam response function (LBRF) that gives the skyshine dose arising from a
monodirectional and monoenergetic beam of gamma radiation directed into the atmo-
sphere. Lynch et al. [Ly58] computed by Monte Carlo techniques the air dose caused
by multiply-scattered gamma photons initially emitted in a monoenergetic beam into
an infinite air medium at angles up to 180 degrees from the source-detector axis. The




LBRF could then be used as the basis for obtaining the skyshine dose for an arbitrary
source by simply decomposing the actual source into a sum of beam components.

Radiation Research Associates (RRA) carried out more extensive Monte Carlo
calculations for obtaining the LBRF and implemented the LBRF method in the
SKYSHINE series of codes [Pr76, La79, La88]. These codes were originally designed
to evaluate the effects of structure geometry upon the skyshine dose rate at detector
positions outside a building housing energetic gamma-ray sources. The structure ge-
ometry allowed by the SKYSHINE codes can include a rectangular structure with four
walls, a roof, and a floor. Each of the containment surfaces may be subdivided into a
maximum of nine different subsections, each with different composition or thickness.
A Monte Carlo sampling technique is used by SKYSHINE to determine from which
surface radiation is emitted and with what energy. After a correction for attenuation
as the beam penetrates the structure, the contribution to the skyshine dose made by
the transmitted beam is then calculated with the LBRF.

To reduce further the computational effort, and yet improve the accuracy of the
LBRF calculational method, Shultis and Faw [Sh87, Sh91, Sh92] developed a differ-
ent method to obtain the LBRF. The skyshine dose rate at a detector arising from
a monodirectional, monoenergetic photon beam was calculated by the point-kernel
technique accounting for gamma-photon attenuation, secondary photons, and pair
production in the scattered radiation field. These LBRF calculations, for fixed en-
ergy and emission angle, were then approximated by an empirical formula whose
parameters were determined by least-square fitting a three-parameter formula to cal-
culated values of the LBRF. The resulting LBRF was a function of source photon
energy, source-to-detector distance, and photon emission angle. To make the approx-
imate LBRF continuous in both energy and angle, a linear interpolation scheme was
introduced. The skyshine dose from a given photon source was then obtained by
numerically integrating the LBRF over all emission directions and energies allowed
by the skyshine source. This integral LBRF method with revised LBRF data has
been incorporated in the microcomputer code MICROSKYSHINE [Gr87].

Compared to the original LBRF approximation used by the SKYSHINE series of
codes, the LBRF obtained by Shultis and Faw had three important improvements.
First, the SKYSHINE approximation of the LBRF yielded good agreement with bench-
mark calculations over source-to-detector distances to 1500 m. Calculated skyshine
dose rates at beyond this limit, however, not only were overestimated but also did not
decrease as rapidly with increasing distance as did other benchmark calculations. The
new LBRF approximation is suitable for a greater source-to-detector range, namely
to 2500 m. Second, the photon energy and beam angle are treated in a multigroup
formulation in the SKYSHINE method [La88]. This multigroup treatment of the en-
ergy and angular variables occasionally produces random variations (a few percent)
in the calculated doses when one of the geometry parameters is altered only slightly.
Such random variations make sensitivity studies difficult since rather large parameter
changes must be used to obtain a meaningful change in the skyshine dose. Shultis and
Faw introduced an energy and angular interpolation scheme to make the LBRF con-




tinuous in these variables. The new continuous LBRF greatly improves the precision
of skyshine calculations so that sensitivity studies can be more easily performed. The
new LBRF also eliminates the stochastic variations observed in the original LBRF
caused by the fits to Monte Carlo data which themselves contained statistical errors.
Third, unilike the SKYSHINE method which uses a Monte Carlo technique to account
for different source emission directions, MICROSKYSHINE calculates the skyshine dose
by integrating (numerically) the line-beam response function over all directions al-
lowed by the problem geometry. Consequently, it is relatively easy to analyze simple
skyshine geometries, such as a bare source in an open cylindrical silo or behind an
infinitely-wide wall.

For a skyshine problem with shielding over the source, exponential attenuation
has been employed in estimates of the skyshine dose caused by all gamma photons
(uncollided and scattered) passing through the source shield [Sh91]. The integral
LBRF method has been also incorporated into a composite method to treat the silo
collimation with shielding over the source. This composite method [Ke82, Bag9]
uses an accurate one-dimensional transport code to compute the energy and angular
distribution of photons escaping from the source shield. Then a modified integral
LBRF method treats the emergent photons as an effective bare skyshine source in
calculations of the skyshine dose at the detector location.

1.3 Summary of the Integral Line-Beam Method

The LBRF R(d, F, ¢) gives the air kerma (rad per photon) at a distance d from a
point source emitting photons of energy F into an infinite air medium at an angle
¢ relative to the source-detector axis. The skyshine dose rate R(d) arising from a
bare, collimated point source which emits S(F, ) dE dS2 photons per unit time with
energies in dF about F into directions df2 about €2 is found by integrating the LBRF
over all source energies and over all photon emission directions allowed by the source
collimation, namely [Sh91]

R(d) = /0 P Tol /ﬂ AQS(E, )R, B, ¢(). (1.1)

Here €2, represents those directions in which radiation can stream directly from the
source into the atmosphere. Implicit in this approach is the assumption that the
ground can be treated as an infinite air medium. This assumption has proven to be
quite reasonable for most gamma skyshine problems.

For a shielded skyshine problem, the energy and angular distribution of photons
leaving the shield can be treated as a bare, polyenergetic, anisotropic, point source,
and the skyshine dose at a detector location can be calculated by Eq. (1.1). The
composite method for a shielded source uses this approach [Ba89]. In this method,
a one-dimensional transport model is used to calculate first the energy and angular
distributions of photons leaving the source shield. Then the skyshine dose is calculated
for the escaping photons by using the integral LBRF method.
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When the source energy distribution is represented by a multigroup approxima-
tion, the multigroup source spectrum can be incorporated in Eq. (1.1) as

R(d) = ; /n 0 S(E,, QR E,, 6(S2)). (1.2)

The above results are based on two implicit approximations. First, the walls
of the source collimation are assumed to be “black”, i.e., any photons that hit the
walls are assumed to be absorbed. This assumption allows one to neglect the dose
contribution at the detector of photons that penetrate the source containment walls
or that scattered from the walls before escaping into the atmosphere. Second, the
source containment structure is assumed to have a negligible perturbation on the
skyshine radiation field; i.e., once photons enter the atmosphere, they do not interact
again with the source structure. With this assumption, the calculation of the energy
and angular distribution of source photons penetrating any overhead source shield
or escaping from the containment structure becomes independent of the subsequent
transport of the photons through the air to the detector. In most far-field skyshine
calculations, the source and its containment have a negligible effect on the transport
of the photons through the air once the photons have left the source structure [Ba89].
However, for near-field calculations, as will be seen, this second assumption is not
always true.

If the point source is isotropic and monoenergetic, emitting S, photons of energy
E per unit time, the energy and angular distribution of the source can be represented
as s
S(E',Q) = f §(E' — E). (1.3)
7r
Then, in terms of a spherical-polar coordinate system with the source at the origin
and the polar axis directed vertically upwards, Eq. (1.1) reduces to
S 2w Wmaz
Rd) =2 [T dy [T duR(d, B, 9), (1.4)
0

:471'

Wmin

where w is the cosine of the polar angle 8, and the azimuthal angle ¢ is defined with
respect to the projection on the horizontal plane of the source-to-detector axis. Here
Winin and wWine, define the permissible range of the cosine of polar angles for photon
emission allowed by the source collimation. Generally, these limits are functions of
the azimuthal angle 7. '

The above formulation can be used to calculate the skyshine dose rate for any
point skyshine source. For some simple skyshine geometries, explicit expressions for
the limits wyin and wme, can be obtained (see Ch. 4). In any case, the integral
in Eq. (1.1) or (1.4) can be evaluated readily using standard numerical integration
techniques.




1.3.1 Approximation of the LBRF

An analytical approximation of the LBRF is used to evaluate efficiently the integral
in Eq. (1.1) or (1.4). As originally proposed for the SKYSHINE code [Pr74, La79] and
later confirmed by Shultis et al. [Sh92], the LBRF may be accurately approximated
by the following three-parameter function:

R(e, B, $) = EF = Er(p/p.)[e(p/ po)|'e= ¢/, (15)

Here p is the air density in the same units as the reference density p, = 0.001225
g/cm®. When F is measured in MeV and z in meters, the constant « is equal to
(1.602x107° erg/MeV)/ [(100 erg/g-cGy)(1225 g/m3)] = 1.308 x 10~ ¢cGy-m®/MeV.
The parameters a,b and ¢, which depend on the photon energy E and the emission
angle ¢, are determined by fitting Eq. (1.5) to calculated values of the LBRF.

Several compilations of the parameters a,b and c are available [La88, Sh91, Sh92]
for different energy and direction (£ and ¢) grids. Indeed, one of the prime objectives
of the present study is to obtain a set of fit parameters that allow the integral line-
beam method to be used at lower and higher energies or for smaller and greater
source-to-detector distances than was previously possible.

Interpolation of Fitted LBRF

The fit parameters a,b and ¢ in Eq. (1.5) are tabulated at discrete energies E;, 1 =
1,...,I and at discrete emission directions ¢;,5 = 1,...,J. In earlier applications
of the integral line-beam method, for example in the SKYSHINE codes [La79, La88|,
the approximate LBRF was also restricted to these discrete energies and directions.
However, to evaluate numerically the integrals in Egs. (1.1) or (1.4), it has been found
[Sh91] that much better results can be obtained if the approximate LBRF is made
continuous in both F and ¢.

A double interpolation scheme is proposed to make the approximate line-beam
response function continuous in both energy and angle [Sh91, Sh92|. The approximate
LBRF is first linearly interpolated in energy to yield the response at the energy
E of interest. If E; < F < E;;; then the approximating function F at the two
bracketing discrete energies are reconstituted from the fitting parameters in Eq. (1.5)
and F(E,z,¢;) is then obtained by linear interpolation as

E,— E E—-FE
f 9 E, i) — ‘E Li f; 'E. — E... 1-6
(z, E, ¢;) YRR Tl p T Ein o)
where
Fij = F(=, Ei, ¢). ()

Once the energy interpolation has been performed for at the two bracketing angles,
an interpolation in the beam direction ¢ is performed. For ¢; < ¢ < ¢4

F(z,E,$) = Flz, B, &) + | F(a, E, ds01) — F(z, E, @)]%. (1.8)
J 7




Here is assumed that 0 < ¢; < ¢3 < ... < ¢; < 180 degrees. For beam directions
in the two end intervals, a linear extrapolation procedure is used, namely, for ¢;_; <
¢ < @, degrees,

f@J&@=J%mﬂ¢ﬁ+U%aﬂ¢ﬁ—f@Jlm4ﬂé?%%? (1.9)
and for 0 < ¢ < ¢; degrees
f(iL’,E,¢) :-7:<x7Ea ¢1)+ [f(CL’,E,¢2)—f(x,E,¢1)}¢i:ill- (110)

With this double interpolation scheme, the approximating function of Eq. (1.5) is
made completely continuous in angle ¢ and energy E. Unlike the original LBRF [La79]
which was represented as histograms in both energy and angle, the new approximating
LBRF proposed here varies smoothly with small changes in the arguments of the
LBRF. However, it should be noted that, while this continuity feature increases the
precision of a skyshine calculations, it does require more computational effort and
has little effect on the accuracy of the skyshine doses [Sh87, Sh92].

1.3.2 Azimuthally Symmetric Skyshine Sources

In many skyshine problems, the gamma-ray emission from a source into the atmo-
sphere is azimuthally symmetric about a vertical axis. For such cases, the inte-
gral line-beam method for estimating the skyshine dose can be further simplified
by introducing a conical beam response function (CBRF). This function, denoted by
R.(z, E,0,h), gives the skyshine dose per source photon at a distance z and an ele-
vation A from a point source that emits photons of energy E uniformly in azimuth
at an angle 6 to the vertical axis. Thus, if an azimuthally symmetric skyshine source
has an angular and energy distribution, i.e., S(E, Q) = S(E, ), the skyshine dose at
the detector is given by

o0 emaz
m@:AdgA d6 sin 0 S(E, ) Ro(z, e, 6, h). (1.11)

From a comparison of this result to the integral line-beam result of Eq. (1.1}, it is
seen that Eq. (1.11) requires the numerical evaluation of only a double integral, one
less than required for Eq. (1.1).

Evaluation of the CBRF From the LBRF

For an infinite air medium, the conical-beam response function R.(z, E, 8, h) generally
depends on four independent variables: the photon energy FE, the polar source angle
6, the horizontal source-to-detector distance z, and the elevation of the detector with




respect to the source h. From a comparison of Eq. (1.1) to Eq. (1.11), it is seen that
the conical-beam response function can be obtained from the line-beam response
function R(z, E, ¢) by integrating the latter over all azimuthal angles, namely,

Rela, B,6,h) = [ dR(E,8(6,9,h),2) (112)

For the special case in which the source and detector are at the same elevation
(i.e., h = 0), the conical beam response function has only three independent variables.
This simplified CBRF is easily obtained by integrating the LBRF over all azimuthal
source angles v to give

Re(z B.0)= [ " R (z, B, $(0, ). (1.13)

This integral over v is readily performed by any standard numerical integration
method such as Gaussian quadrature, using the approximate LBRF of Eq. (1.5) to
evaluate the integrand. The resulting values of the CBRF can then be approximated
in the same manner as was used for the line-beam response function. Eq. (1.5)
was found to produce a good approximation to values calculated from Eq. (1.13)
and tabulations of the fitting coefficients a,b and ¢ for different photon energies and
conical angles have been produced [De91, Sh92].

1.4 Outline of Study

Although the integral LBRF method has produced results in good agreement with
other more elaborate calculations as well as with benchmark experimental data [Sh87,
Bag&9], its accuracy can still be improved, especially for sources of lower and higher
energies and for near-field skyshine calculations. For example, the MICROSKYSHINE
code is limited to skyshine problems with source energies from 0.1 to 10 MeV, and
for the range 0.1 to 1 MeV the LBRF energy dependence is sparsely represented.
Also the MICROSKYSHINE code is suitable only for far-field calculations, namely for
source-to-detector distances greater than about 50 m. In this study, several aspects
of the integral line-beam method are refined. Specifically, the LBRF is improved (1)
to treat more accurately low-energy skyshine sources in the range 0.02 to 1 MeV, (2)
to permit calculations for high energy sources in the range 10 to 100 MeV, and (3)
to allow both near-field and far-field skyshine calculations.

In Chapter 2, a point-kernel procedure for obtaining the skyshine dose arising from
a monodirectional photon beam is presented. The point kernel model for the LBRF
is improved over an earlier model [Sh91] by introducing a new approximation for
the differential scattering cross section and by adopting new gamma-ray interaction
data. Approximate methods for the inclusion of bremsstrahlung production and for
positron transport in the air prior to annihilation are also proposed.




In Chapter 3, Monte Carlo calculations of the LBRF, performed with the MCNP
code, are presented and used both to verify the accuracy of the point kernel model and
to generate reference values. As will be seen, the point-kernel model, gives excellent
values for the LBRF for source energies below 15 MeV. However, at higher energies
and for small beam angles, the point kernel model underpredicts the LBRF because
of the approximate way in which the model accounts for the angular distribution of
the bremsstrahlung. For energies above 15 MeV, the MCNP values of the LBRF are
thus recommended as the basis for obtaining a revised approximate LBRF.

In Chapter 4, the approximation of the LBRF by empirical formulas is considered,
and a data base is developed to allow ready evaluation of the LBRF as a continuous
function of source energy, emission direction and source-to-detector distance. Both
the traditional 3-parameter and a new 4-parameter approximation of the LBRF are
developed for use in the integral line-beam method.

The integral line-beam skyshine method based on the new approximations to the
LBRF is applied in Chapter 5 to simple skyshine geometries. The skyshine dose rate
is obtained by numerically integrating the LBRF over all emission directions allowed
by the source collimation in these geometries. Three simple collimation geometries
are treated by this integral LBRF method, namely, the open silo, the infinite wall,
and an open rectangular four-wall building. Comparisons of results with previous
skyshine benchmarks and calculations are also presented.

In Chapter 6, the integral line-beam method is applied to skyshine sources with
overhead horizontal shields. A hybrid method is developed in which the radiation
transport through the shield is treated by a specialized Monte Carlo procedure, and
the subsequent air-transport of escaping photons is treated with the integral line-
beam method. This hybrid method is compared to the simple exponential attenuation
approach used in earlier integral line-beam studies.

Finally in Chapter 7, results are shown for the effect of the air-ground interface.
Inherent in the integral line-beam method is the assumption that the ground interface
can be approximated by an infinite medium of air. It is shown that near the source,
the ground acts as a reflector and enhances the skyshine dose while far from the
source the ground acts as an absorber and depresses the skyshine dose. Approximate
correction factors are developed to modify the infinite-air LBRF to account for the
presence of the ground interface.




Chapter 2

Point-Kernel Model for the
Line-Beam Response Function

The detector response caused by the photons emitted from any source can be divided
conceptually into two components. The first component is the direct dose arising
from gamma photons that travel directly from the source to the detector without
interaction. The second dose component is due to photons that scatter one or more
times before reaching the detector. Skyshine refers to this second dose component
caused by the reflection in the air of photons emitted from a ground source back to
a target near the ground.

The integral line-beam skyshine method developed by Shultis and Faw [Fa87,
Sh91] was based on the availability of a line-beam response function (LBRF). The
LBRF R(z, E, ¢,...) is the air kerma (rad) at a distance z away from a point source
that emits a single photon of energy E into atmosphere at an angle ¢ from the
source-to-detector axis. Both the source and detector are located at or above the
ground surface. An exact calculation of the LBRF would consider the effects of the
air-ground interface on the skyshine radiation field. In this case the LBRF would
also be a function of the source and detector coordinates as well as the source energy
and emission direction. The LBRF would even be different for different ground com-
positions. Clearly it would be very difficult to evaluate and use such a complicated
response function.

To obtain an analytical formula for the LBRF that is just a function of F,z,
and ¢, the effect of the air-ground interface must be neglected. Since the average Z
number for most soils is reasonably close to that of air, the small contribution to the
LBRF made by photons reflected from the ground would be nearly the same as that
reflected by a half-space of air.! With this approximation, the LBRF R(z, E, ¢) can
be obtained by considering a beam of photons emitted into an infinite air medium.

!The greater soil density will cause photons that cross the interface and subsequently scatter
back into the atmosphere to do so at geometrically different positions than in the infinite air case.
However, this change in the interface-reflected dose is usually negligible. Quantification of the ground
interface effect is presented in Chapter 7.



Several techniques have been used to calculate the skyshine dose at the detec-
tor arising from a monodirectional gamma-photon beam. The Monte Carlo method
was first used by RRA to obtain the LBRF [La79]. This method, however, is com-
putational expensive, particularly for large source-to-detector distances. Discrete-
ordinates transport methods have also been attempted [Gi89], but since the skyshine
problem is inherently multi-dimensional, this method is also computational expensive.
Moreover, the so-called ray effects aggravated by the severe anisotropy of the skyshine
source limited the accuracy of the multi-dimensional discrete-ordinates approach. As
an alternative, the point kernel technique can be employed to evaluate the skyshine
dose at the detector [Fa87, Sh91]. It is this latter approach that is used for the most
part in this study.

2.1 Point-Kernel Calculation of the LBRF

Consider a point monoenergetic and monodirectional photon source in an infinite
homogeneous air medium, as shown in Fig. 2.1. The source emits I, photons per
unit time of energy F in a direction ¢ from the axis between the source and a point
isotropic detector that is a distance = from the source. Four types of secondary pho-
tons produced by interactions of the beam photons are mainly responsible for the
skyshine dose at the detector: (1) photons that are Compton scattered by the atomic
electrons in the air, (2) 0.511-MeV annihilation photons that arise from pair produc-
tion in the air, (3) fluorescent photons produced by photoelectric interactions, and
(4) bremsstrahlung photons produced by secondary electrons. These four skyshine
components are discussed in the following sections.

2.1.1 Compton Scattering Component

Compton scattering refers to the elastic scattering of a photon by an atomic electron.
Consider a source photon that travels a distance y along the emission direction, and,
while traveling a further differential distance dy, is Compton scattered (see Fig. 2.1).
After the scattering interaction, the photon has energy E’ and moves at an angle 8
measured from its initial direction. The scattered photon energy F’ is given by the
Compton relation [Ch84]

E
I = . 2.1
B = T Bim) A = cos b (21)
The scattering angle can be found by
8, = cos [(z® — r* — y*)/2ry], (2.2)

where 72 = 3% + 12 — 2yx cos ¢. Here z is the source-to-detector distance and 7 is the
distance between the photon scattering point dy and the detector.
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Figure 2.1. Geometry used for calculating the line-beam response
function. Source and detector are in an infinite homogeneous air
medium.

The probability a source photon reaches a distance y along the beam without
interaction is exp(—puy); and the probability that this photon, while traveling a further
distance dy, is scattered through an angle 6, into a unit solid angle about 6, is

Z N .0,(E,0,) exp(—py) dy,

where NV is the atomic density of the air, Z is the average number of electrons per atom
(= 7.225 for air), u is the total linear interaction coefficient for photons of energy F,
and .o,(FE,8,) is the microscopic differential scattering cross section per electron for
photons of energy E being scattered into a unit solid angle about a scattering angle
g;. For photons scattered by an unbound (free) electron, the microscopic differential
scattering cross section is given by the Klein-Nishina formula [Ch84]

1
Oun(E,0,) = 5 r2p? [1 4 p* — p(1 — cos® 6,)]. (2.3)

where p = E’'/F, and r, is the classical electron radius (equals to 2.818 x 10715 m).

In a previous study by Shultis and Faw [Sh91], the Klein-Nishina formula was used
to approximate the actual differential scattering cross section for all photon energies
considered (0.1 to 10 MeV). In general, however, photons are scattered by bound
electrons, and binding effects become especially important for low energy photons.
However, it is very difficult to calculate the differential scattering cross section ac-
counting for electron binding effects, and tabulated values of photon scattering cross
sections that include binding effects are not readily available.
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An approximate way to correct for electron binding effects is to assume that the
differential scattering cross section .os(F,8;) is proportional to the Klein-Nishina
(free electron) differential scattering cross section .o, (&, ;) and normalized to give
the correct total scattering cross section, namely

E,0;)

~ O gen(
c0s(E,05) ~ EJS(E)———eaKN(E) .

This approximation for .o;(E,8;), when integrated over all scattering angles, yields
the correct bound-electron total scattering cross section (o5(E). Here .o, ,(F) is the
total incoherent Klein-Nishina scattering cross section from a free electron given by

[Ch84]

(2.4)

1
o o (E) = 2r /_ d(c0s8,) o0 (E,6.)

= 7r2) [(1 —2X — 2)2) 1n<1 42 (2.5)

) 2(1 + 9X + 8X% + 2)3)
)}

(A +2)2 ’
where A = m.c?/E or A = 0.511/F with E expressed in units of MeV.

In this study values for the total cross section for scattering from bound elec-
trons, .os( ), were taken from the DLC-139 library of photon interaction coefficients
developed at the Ontario Cancer Institute [DI88]. A comparison of the microscopic
differential scattering cross section .os( E, §;) obtained by the approximate procedure
of Eq. (2.4) to .o, (E, ;) evaluated from the Klein-Nishina formula of Eq. (2.3) is
shown in Fig. 2.1.1 for three scattering angles. This plot shows the relative impor-
tance, in air, of electron binding effects on low energy photon scattering. At photon
energies above 0.2 MeV, the approximation of Eq. (2.4) gives nearly same results as
the Klein-Nishina formula. However in the low energy range (less than 0.2 MeV), the
difference between Eq. (2.4) and Eq. (2.3) increases with decreasing photon energy.
Note also that the difference is larger for small scattering angles than that for large
scattering angles.

To express the angular distribution of Compton scattered photons scattered from
the source beam, the function f, , is defined as

eUKN(E’ 08) .
BUKN(E)

Thus the probability a photon is scattered in dy into an unit solid angle about 8, can
be rewritten as

1
2_ﬂ_fKN(E795) = (26)

1
% ZNeas(E) fKN(E; 03) eXP(—ﬂy) dy7

If the photons scattered from dy are treated as a point source, their contribution to
the dose rate at the detector can be estimated from point kernel theory as

. Io 00 —KY !
Dy=g=N / dy 57 0(E) fo(E,05)B(E', /' r)R(E)) e, (2.7)

r
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Figure 2.2. Variation with energy of the differential scatter-
ing cross section as given by the Klein-Nishina formula (solid
lines) and by the approximation (dashed lines) of Eq. (2.4)
that accounts for electron binding effects.

where the total linear interaction coeflicient at the scattered energy E’ is denoted
by ¢/, and B(E’, u'r) is an appropriate infinite-medium buildup factor. The detector
response function R(FE) is taken here as the air absorbed dose per unit fluence of
photons with energy E, and is given by [Ch84]

R(E) = 1.602 x 1078 E (p0,/p). (2.8)

where (p¢ /p) is the mass energy transfer coefficient for air in units of cm? per gram,
E is in units of MeV, and R(E) is in units of rad cm?.

2.1.2 Annihilation Radiation Component

If a photon has an energy greater than 2m.c* (= 1.02 MeV), the photon can be
completely absorbed and in its place a positron-electron pair formed. The ultimate
fate of the positron is annihilation with an electron of the air, generally after slowing
to practically zero kinetic energy. The annihilation process results in the creation of
two photons moving in opposite directions, each with energy of E, = m.c? (= 0.511
MeV). The angular distribution of the annihilation photons is usually assumed to be
isotropic. In this section, for simplicity of model development, it is also assumed that
the positron travels a negligible distance before annihilation.

The probability a source photon, after traveling a distance y along the beam, will
undergo pair production in dy and produce an annihilation photon traveling in a unit
solid angle directed towards the detector is

1

9 N o, (E) exp(—py) dy,
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where o,,(E) is the microscopic pair-production cross section (per atom) for the
incident photon of energy E. Thus, based on point kernel theory, the contribution
of the annihilation photons produced along the beam to the skyshine dose at the

detector is

. Io co o
Dyp = 52N [ dy == 0,y (B B(En, par R(Es) 74", (2.9)
in which y, = p(E,) is the total linear interaction coefficient for annihilation photons.

The above result is valid only if positron transport effects can be neglected. This
is a reasonable assumption for source photons below about 10 MeV and can be argued
plausibly as follows. The maximum kinetic energy of a positron created by a 10 MeV
photon is about 9 MeV (E™** = E. — 2m.c?). The range for this a positron is about
40 meters in air. For this worst case, if the detector is located several hundreds
or thousands of meters away from the source, this 40 meters is still a negligible
value. But if the detector is located near the source, the skyshine dose will tend to be
overestimated if the positron travel distance is neglected. Even for near-field skyshine
calculations, the effect of positron transport is minor for photon energies less than 10
MeV. Positrons produced by 10 MeV photons have an average initial kinetic energy
of 4.5 MeV for which the range in air is 20 meters. Also, only 20 percent of 10-MeV
photons will produce electron-positron pairs when interacting with air.

However, for higher energy source photons above 10 MeV positron transport be-
tween creation and annihilation sites becomes increasingly important, and neglect
of positron transport can no longer be justified. In Section 2.2, refined models are
proposed to correct the above result for positron travel prior to annihilation.

2.1.3 Fluorescence Component

In the photoelectric effect, a photon interacts with an entire atom, resulting in the
emission of a photoelectron, usually from the K-shell of the atom. As the electron-
shell vacancy left by the photoelectron is filled by an electron from an outer shell,
either a fluorescence photon or an Auger electron will be emitted with an energy
equal to the potential energy change of the electronic transition. The probability of
photon emission during this transition is given by the fluorescence yield w.

To account for fluorescence photons in the calculation of the skyshine dose rate,
it is assumed that (1) every photoelectric interaction produces a K-shell vacancy so
that all fluorescence photons have the K, energy; (2) only fluorescence in oxygen
and nitrogen is important; and (3) the fluorescence photons are emitted isotropically;
Thus the number of fluorescence photons produced by a source photon in dy that are
traveling in a unit solid angle directed towards the detector is

IO 7 i
o 2 N opu(B)w, exp(—py) dy,

where, for element 7, w’ is the fluorescent yield per K-shell vacancy (=~ 0.005), Ey
is the energy of the fluorescence photon, and o;,(E) denotes the photoelectric effect
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cross section for energy E. For air, only oxygen and nitrogen need to be considered in
the summation in the above expression. For these elements, the energy of fluorescence
photons is assumed equal to the K, edge energy (Ex, = 0.525 keV for oxygen, and
Ex, = 0.392 keV for nitrogen).

Thus the contribution to the skyshine dose rate at the detector is estimated as

_ N/
ph 4

ph B(E! ,,uKr)fR(Ei{) e H KT, (2.10)

2.1.4 Bremsstrahlung Component

Source photons of sufficiently high energy produce energetic secondary electrons
positrons that in turn generate bremsstrahlung as they move through the air. The
angular distributions of both secondary electrons and the resulting bremsstrahlung
are very complex. Bremsstrahlung emission becomes increasingly anisotropic in the
forward direction as the photon energy increases. A rigorous treatment of the brems-
strahlung component requires coupled photon/electron transport calculations, calcu-
lations that are generally very computationally expensive. Moreover, even state-of-
the-art Monte Carlo codes which purport to treat bremsstrahlung do so with inherent
‘simplifications, e.g., one bremsstrahlung photon per electron or straight-ahead brems-
strahlung emission.

Because of the severe anisotropy in bremsstrahlung production in the energy
regime for which bremsstrahlung is important, point kernel techniques based on
isotropic point-source buildup factors are poorly suited to treat this source of ra-
diation. Nevertheless, approximations can be introduced to allow the contribution
of the bremsstrahlung to the skyshine dose to be estimated with the relatively sim-
ple point kernel techniques used in this study. Deng [De91] considered a low energy
approximation in which the angular distribution of secondary electrons produced by
Compton scattering and pair production can be assumed isotropic. But for those
source-photon energies that lead to significant bremsstrahlung production, this as-
sumption of isotropy is invalid. In this section, an alternative point kernel formulation
that accounts for the severe anisotropy of bremsstrahlung emission at high energies
is proposed.

Secondary electrons produced by Compton scattering and pair production from
high energy gamma rays move almost directly along the original photon direction.
Similarly, the bremsstrahlung photons produced by the more energetic of these sec-
ondary electrons, i.e., those that produce the important bremsstrahlung, are emitted
very close to the original travel direction of the initial electron. One may thus as-
sume that all bremsstrahlung from the secondary electrons produced by interactions
of the ortginal high-energy source photons continues to move along the source-beam
direction. Subsequently, the bremsstrahlung, with most photons much less energetic
than the source photons, is removed from the beam by Compton scattering or pair
production interactions, thus producing a response in the skyshine detector.
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With this straight-ahead approximation, the photon beam intensity in Fig. 2.1
should be augmented to include not only the original uncollided source photon inten-
sity I,(y) but also the intensity of bremsstrahlung produced by secondary electrons
released in source-photon interactions. Let I(y, E;) dE, denote the intensity at a
distance y along the beam of bremsstrahlung photons with energies in dE; about Fy
produced indirectly as a result of the interactions of the uncollided source photons.
This bremsstrahlung component is given by

aIb(y’ Eb)

oy = FENL, B+ Sy, By), (2.11)

where Sy(y, E3) is the rate at which bremsstrahlung photons within unit energy about
Ey are introduced into the beam. If the distances the secondary electrons move along
the beam are neglected,? then this source equals the rate at which bremsstrahlung is
produced by Compton recoil electrons and the electron-positron pairs at the location
in the beam where the electrons are produced, i.e.,

E
Sy, By) = N [ dT L(y) {Z.00(E, T) (T, Es)

+ 0 B, DT, Bs) + fo( B — 2mec® ~ T, )]} (2.12)

= Sb(Eb)Io(y)‘ (2-13)

Here .0,(E,T) is the differential electron production cross sections for Compton scat-
tering (per electron), o,,(E, T) is the differential electron production cross section for
pair production (the accompanying positron is emitted with energy F — 2m.c® — T'),
and f,(T, Ey) dEs is the number of bremsstrahlung photons with energies in dF}, about
E, ultimately produced by an electron of initial energy 7.

The uncollided intensity of source photons (all with energy E) along the beam is
I(y) = I, e ®W, (2.14)

With this result, the solution of Eq. (2.11), subject to the initial condition I(0) = 0,

1s .
Sp(Ep) Lo [e7#Y — e7#¥] [(py — ), g # ps
Ly, E)=1{ (2.15)
ySy(Ep)l, ™Y, B= b

where p = p(FE) and pp = p(Es).

The detector response caused by the removed beam bremsstrahlung (from Comp-
ton scattering, pair production and photoelectric interactions) is obtained in the same
manner used to obtain the detector response for source photons removed from the

2 Although secondary electrons from high-energy gamma rays can travel large distances in air (see
Section 2.1.2), the more energetic and hence more important bremsstrahlung will be produced near
the point where the energetic electron is produced. Thus the neglect of electron travel is somewhat
justified.
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beam. Replacement of I, e™#¥ by the bremsstrahlung intensity I;(y, E;) in Eqgs. (2.7),
(2.9), and (2.10) and integration over all bremsstrahlung energies yield

. N Tmaz oo I E ’
Db / dEb / dy M[Zeas(Eb)fKN(Eba HS)B(E,, MIT)R(EI)e_“ T
0 0

27 72

+ 0pp(Ep) B(Ea, pam)R(E,)e ™
£ 23 05 (B BB ) R(E e s, (2.16)

where the primed variables represent values at the scattered photon energy after
Compton scattering from energy E, through and angle 8,. For Compton scattering
the maximum energy of the recoil electron is T}, = 2E/(2 4+ m.c?/ E), while for pair

production the maximum electron/positron energy is Tyoe = £ — 2m.c?.

Other Approximations

To evaluate Iy(y, Ey), the energy distribution of the bremsstrahlung radiation along
the beam, S'b(Eb), must be evaluated from Eq. (2.13). To evaluate this expression,
the distributions o, (E,T), 0pp(E£,T) and f,(T, Ep) must be known. Rigorous expres-
sions for these distributions are very complex, and since the present straight-ahead
treatment of the bremsstrahlung is itself approximate, the following approximations
are used for these distributions.

For Compton recoil electrons, it is assumed that .o (E,T) ~ .0, ,(E,T), where
the Klein-Nishina recoil electron cross section is given by [Ch84]

7ri? 1 (A27)(A%1 + 2A7 — 2)

e (1) = E=2+ 157 (1+Ar)? ’

e (2.17)

where 7 ~ T'/m.c?* and A ~ m.c*/E.
There is no simple formula for 0,,(E,T), and for the purposes of this model,

it is assumed that the energy distribution of the electron or positron is uniformly
distributed over the permissible energy range, i.e.,

Oppl E
o,(E,T) = % (2.18)

One simple approximation that describes the high-energy portion of the thick-
target yield fo(T, Eb) is given by the Kramer formula [Kr23]

fo(T, Ey) = 2kZ (—é; - 1) . BEy<T, (2.19)

b

where k ~ 0.0007 MeV™!. Another approximation which holds to somewhat lower
bremsstrahlung energies is [Wy52]

FAT,Ey) =C [4 (Eﬂb - 1) +31n(E /T)] . B <T (2.20)
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where C is an empirical constant sometimes taken as Z/4000 MeV ™. However, better
agreement with more exact calculations can be achieved by expressing C in terms of
the Y(T), the fraction of the incident electron’s kinetic energy that is subsequently
emitted as bremsstrahlung. Integration of Eq. (2.20) yields

Y(r) = 7 / B Ef(T,E) = =er, (2.21)

This result can be used to express the normalization constant C in terms of Y(T),
namely C = 16Y(7")/(13T). With this choice for C, the approximation of Eq. (2.20)
agrees quite well with the thick-target bremsstrahlung spectrum calculated by much
more elaborate methods such as the continuous slowing down model (see Fig. 2.3).

10!

T T T T T T T T T T T LI N B N e B

—
(e
o

Bremsstrahlung photon number distribution (MeV"1)

Photon energy (MeV)

Figure 2.3. The distribution of bremsstrahlung photons, f3(T5, F),
produced by monoenergetic electron beams (energy 7,) incident on
a thick nitrogen target. The solid lines are calculations based on
the continuous slowing down approximation (CSDA) and the dashed
lines are based on the Wyard approximation of Eq. (2.20).

2.1.5 Total Dose at the Detector

The total skyshine dose rate at the detector location is the sum of the four individ-
ual components developed in the previous sections. However, for the source photon
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energies of interest in this study, i.e., > 0.02 MeV, the fluorescence component can
be neglected.

In Fig. 2.4, the mean-free-path length (A = p~!) of a photon in air at standard
density as a function of the photon energy. Fluorescence photons from photoelectric
interactions in air are all below 10 keV in energy and have a mean-free-path length of
less than a few centimeters. Consequently, fluorescence from the skyshine radiation
field can be completely ignored.
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Figure 2.4. Variation with energy of the mean-free-path
length in air at standard temperature and pressure. Data
are from the DLC/139 photon library [DI88].

Thus the LBRF ®(z, E, ¢) for source photon energies of less than about 15 MeV
can be reduced to two components, those for the Compton scattered photons, anni-
hilation photons, and bremsstrahlung. Thus adding Eqs. (2.7), (2.9), and (2.16) and
setting the source intensity I, unit emission rate give the LBRF in the form

N o e T n_—u'r
R(a,B,8) = - | dy 12 .ou(E)fxn(E, 0 B(E', i')R(E')e

+ Oup(E)B(Buy par)R(Ea)e ™| + Ri(z, B, ), (2:22)
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where the bremsstrahlung component (neglecting fluorescence) is

N [Tmas © Iy, FE
Rz, B,6) = o [ am, ["ay B g0 ) g, (5,0 BE ) ¢
R(ENe™" 4 0,,(E)B(E,, por) K (E,)e™"]. (2.23)

Inherent in this expression for the LBRF is the inclusion of an appropriate buildup
factor to account for the buildup of secondary photons between the location dy on the
beam where source photons are removed from the beam and the detector. Annihila-
tion photons are emitted isotropically near dy; however, Compton scattered photons
are removed from dy in a preferentially forward direction. Nevertheless, the assump-
tion of isotropic photon removal does not appear to introduce any serious error for
the energy range being considered [Sh91]. Thus the buildup factor selected for use
in Eq. (2.24) is that for the air-kerma for a point isotropic source in an infinite air
medium.

To simplify the numerical evaluation of Eq. (2.22), distances are re—expressed in

terms of mean-free-path lengths. The change of variables § = py, v’ = u'r, " = y,r,

and R = ur, recasts the line-beam response function as
R(E,2,6) = o= p*(ulp) [ i (/). o (B 0, BB Y R(E Y™

+(1/P)op(E)B(Ea, " )R(Eo)e ™| + Rio(2, B, 6), (2.24)

where (u/p), (1/p)s, and (p/p)yy are the total mass interaction coefficient, mass
incoherent Klein-Nishina scattering coefficient, and mass pair-production interaction
coefficient in air for photons of energy F, respectively. Here p is the mass density of
air which was taken as 0.001225 g cm™ for the calculations in this study.

The bremsstrahlung component can similarly be written in dimensionless form
with the change of variables § = u(Ey)y = woy, v’ = p'r, 1’ = por, and R = p(Ep)r.
The result is

Ru(o,B,6) = o o lp) [ aBs [y 2O 7,0, (5) 1 (B100)

B(E', u'm)R(Ee™ + (tpp(Es)/p)B(Ea, ™" )R(E)e™™].  (2.25)
where the renormalized bremsstrahlung beam intensity I (9, Ep) is
. Sa(Ey) [e790/m) — &3] [(uy — ), 1 # ovs
@, B)=1 | ) (2.26)
955 (Ey) €Y/ s, ’=

The bremsstrahlung component in the above results can be neglected for source
photons below about 10 MeV. Since the radiative energy loss of secondary electrons
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or positrons is proportional to £Z?, bremsstrahlung production is most important for
electrons with high energies in absorber materials of large atomic number Z. The ratio
of the radiative energy loss to collisional and ionization energy loss is approximately
EZ]700 with energy in MeV [Kn89]. For a 10 MeV electron in air, only 10 percent of
its initial energy is lost as bremsstrahlung. Moreover, for a typical secondary electron
with a few MeV of energy, the average energy of resulting bremsstrahlung emission
is relatively low and normally reabsorbed close to its point of origin.

2.2 Correction for Positron Transport

In the point kernel formulation of the line-beam response function all secondary anni-
hilation photons are assumed to be produced at the point where the positron-electron
pair are created. However, the range of positrons produced by high-energy photons
can be appreciable, and the distance travelled by the positron while slowing down
before annihilation should be taken into consideration. For example, a 50-MeV elec-
tron has a CSDA range of 162 m in air at STP, while a 100-MeV positron can travel
262 m before annihilation.

In this section, two simplified methods are proposed for incorporating positron
transport effects into the point kernel calculation of the LBRF. These two models
are then applied to the positrons created directly by the source photons and then to
positrons created by secondary bremsstrahlung that is also moving along the source
beam.

2.2.1 General Formulation

Consider a monodirectional beam of photons at an angle ¢ with respect to the source-
detector axis, as in Fig. 2.1. At any distance y along the beam, let I(y, F) dE be the
number of photons with energies in dE about E.

The number of positrons created in dy’ about 3’ through pair-production interac-
tions caused by the beam photons is

([ ap )16/, 5) | a0,

Emin

where E,,;, = 2m.c? is the minimum photon energy that can cause pair production
and F,,,. 1s the maximum photon energy in the photon beam.

Now make the key assumption that the positrons are emitted in the same direction
as the photon beam. This assumption is reasonable since positron emission in pair
production is highly forward peaked at high energies. Further, let Ps+(E,z)dz be
the probability that a positron created by a photon of energy E will travel a distance
z (crow-flight) and undergo annihilation in dz about z. With this distribution, the
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number of annihilation photons N,(y) produced per unit distance along the beam at
y =y’ + z can be expressed as

Emazx Yy

Nu@) =2 [ T dB u(E) ["dy 16/, E)P(Biy —y)  (220)
Emaz Yy

=9 /E " dE () /O dz I(y — 2, E)Py: (E, 2). (2.28)

With the above source of annihilation photons, which are emitted isotropically
along the beam, the standard point kernel technique can be used to estimated the
dose rate D, at the detector caused by these annihilation photons. Explicitly, one

has
Da(z) = R(E,) /0 * dy Nel¥) v BB, o), (2.29)

47r

where R(E,) is the detector response function for photons of energy E,, p, = u(F,)
is the total attenuation coefficient for annihilation photons, r = /2? + y? — 2zy cos ¢
the distance from the positron annihilation site on the beam to the detector, and

B(E,, uor) the dose buildup factor.

2.2.2 Approximation of the Positron Travel Distribution

In order to evaluate Eq. (2.27) or (2.28), it is first necessary to obtain an explicit
expression for Ps+(E,z). This distribution can be expressed in terms of a related
distribution F'(E, Eg+) that is the probability a photon of energy E will, upon un-
dergoing a pair-production interaction, produce a positron with an energy in unit
differential energy about Fgz+. The crow-flight distance z that a positron, with initial
energy Fgs+, travels before annihilation is taken here as the CSDA range A(Eg+). The
inverse relation is denoted by

Eﬁ+ = A_l(z). (230)

For corresponding dz and dEs+ intervals
Py (E,2z)dz = F(E,Eg+) dEg+. (2.31)

From this relation one then obtains

dEg+
dz
dA~1(z)

= F(E,A7'(2)) — (2.32)

Py (B, 2) = F(E,A_l(z))

Unfortunately, the distribution F', and consequently Pg+, is quite complex. Two
highly simplified approximations are introduced here for Pg+ that allow Eq. (2.28) to
be evaluated analytically.



Model 1 (“Mid-Range Model”): In this model, it is assumed that the positron
travel distance z is the range corresponding to the average positron energy. Explicitly

Ps+(E,z) = 6(z — A(E)), (2.33)

where A(E) = A([E — 2m.c?]/2), i.e., the range of a positron with one-half of the
kinetic energy of the positron-electron pair.

Model 2 (“Uniform-Travel Model”): In this approximation, the range of the
positron is assumed to be uniformly distributed between zero and the maximum
range a positron could have. Explicitly,

1/A(E —2m.c?), if 0 <z < A(E —2m.c?),

0, otherwise.

Pg+(E, 2) = { (2.34)

2.2.3 Application to Monoenergetic Source Photons

The intensity of monoenergetic source photons with energy E, along the beam is
simply
I(E,y)=1,e Y §(E — E,) (2.35)

where p, = p(E,), the total attenuation coefficient for source photons in air.

Model 1: Substitution of Eq. (2.35) into Eq. (2.27) gives

2ppp(Eo)Ioe”“°(y‘7\°), if y > A,,

- 2.36
0, ify <A, (2:36)

Nu(y) = {

where A, = A(E,) = A([E, — 2m.c?]/2). Substitution of this result into Eq. (2.29)
then yields the following detector dose rate

O)Ioe"“"(y_‘i")

0 E —ur
D2fa) = R(E) [ dy Lo B S T v g ), 28)
or equivalently
o0 — oy’ ,
Di(w) = R(E,) [ dy PoeEN €™ g i, (2.38)
0 2mr'?

where 1’ = \/(y' + 7o) + 22 — 2z(y + A,) cos ¢.

This result has the same form as that used in the previous study [Sh92] for which
no account was taken of positron travel, the only difference being that the beam
distance 3’ is now replaced by y’ 4+ A,. Consequently, the positron travel correction of
Model 1 is easily incorporated into the existing point kernel program for calculating

the LBRF.
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Model 2: Substitution of Eq. (2.36) into Eq. (2.28) gives

Naly) = *2””,’2(?)% et [esoteld) 1), (2.39)

where (,(y) = min[y, A,] and A, = A(E, — 2m.c?). Substitution of this result into
Eq. (2.29) then yields

0 - R(Ea)ﬂpp(EO)]o /oo e Hod tolo(y) BaT
Di(z) = Pm A A dy—— = [e —1]e7#"B(E,, faT). (2.40)

2.2.4 Application to Bremsstrahlung Photons

As the source photons travel along the beam, they produce secondary electrons which,
in turn, produce bremsstrahlung photons. If it is assumed that these secondary
bremsstrahlung photons are (1) produced at the site of the secondary electron pro-
duction and (2) that the bremsstrahlung is peaked in the forward direction so that the
bremsstrahlung photons can be assumed to travel along the beam direction, then the
intensity of bremsstrahlung photons along the beam is given by Eq. (2.15), namely

Se(Ep) Lole™#¥ — e™¥] [{up — pol, 16 F Hos
Ib(y,Eb) = (241)
Sp(Ep)Loe™ oYy, Bb = 1,0

where py = p(E,) and Sy(E3) is the energy spectrum of bremsstrahlung photons
(“thick-target spectrum”) produced by secondary electrons which in turn were pro-
duced by source photons of energy F,. The maximum energy of the bremsstrahlung
spectrum is E**® = E, — 2m.c?, and only those bremsstrahlung photons above 2m,c?
can cause pair production.

Model 1: Substitution of Eqgs. (2.33) and (2.41) into Eq. (2.28) gives

2m ec? (242)

Ema..r B ~
N (y) _ { 2 : dEy ﬂpP(Eb)Ib(y - Ab), ify > Ay,
07 if y < /_\(,,

where A, = A(E;) = A([Ey — 2m.c?]/2). With this result, Eq. (2.29) becomes

Emaa: Ab, Eb)

I
E)/mc dEy pipp(Ey) / dy e 272 e " B(E,, par), (2.43)

or equivalently

ETTLGI

Di(a) = R(E,) [

eC

Iy, Eb) .

2'/7 12

dBs ip(By) [ dy 522 7 B(Eaypar’), (244)

where r' = \/(y’ + A)? + 22 — 2z(y’ + Ay) cos 6.
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Again, Model 1 yields a result of the same form as the uncorrected annihilation
dose rate with y’ simply replaced by y’ + Ay and it thus easily incorporated into the
existing LBRF program.

Model 2: Substitution of Eq. (2.272) into Eq. (2.28) yields

Epas E /Lpp(Eb)Sb(Eb) {e—uoy [6uoCb B e HvY

11 —
mec? — Ho)A(Es) | po ] I

w21, [ —
(2.45)
where (, = min[y, A(E})]. For those energies E, such that p, = p, the integrand in

the above equation reduces to

fipp(Eb) So( Eb) toly
—__ﬂoA(Eb) {e < —1}.

Finally, substitution of this result into Eq. (2.29) gives the contribution to the
detector dose rate from bremsstrahlung produced annihilation photons as

dE, Hop(£5) Sy (E) Eb Sb Ey) / dy
27r

Ema:z

e " B(E,, kar), (2.46)

2

Di(z) = R(E,) |

2mec?

where

I, {e—l:oy [euoCb —1] - %’_{[eﬂbe — 1]} [ — o), if pp # pro,
(y) = 240
]o e—uoyy[eﬂo@ _ 1]/”‘0’ if Mo = [o.

2.3 Approximation of Needed Nuclear Data

To evaluate numerically the above models for the LBRF, many gamma interaction
data for air are needed. Specifically, interaction coefficients, buildup factors, and
positron ranges are needed for a wide range of energies. Many of these data are
available in tabulated form; others such as buildup factors above 15 MeV are not
available and had to be calculated for this project.

To avoid extensive sets of tabulated data and various energy interpolation tech-
niques, it is possible to fit multi-parameter functions to the tabulated values of the
needed nuclear data and to use these approximating functions whenever values of the
data are needed. In this section, such empirical approximations to the needed air
data are presented.

2.3.1 Interaction Coeflicients

Gamma-ray interaction coeflicient data for air were taken from references [Tr89,
Cu80], and the tabulated data were fit to a wide variety of multi-parameter formulas
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with the program TABLECURVE [Ja90]. Air was assumed to have the composition (by
weight fraction): carbon (0.00014), nitrogen (0.75519), oxygen (0.23179) and argon
(0.01288). The following formula was found to give excellent approximations for most
of the mass interaction coeflicients in air over the energy range 0.01 MeV to 100 MeV.

wi(E)] p = 107i00810(E)) (2.48)

where the function f;(z) is

ag + a1z + a2$2 + a3x3 + a4a:4 + azx®

fJ(JZ) = 1+ 61513 + bzxz + 631133 + 64334 + bsxs '

(2.49)

Here the subscript j denotes the type of interaction.

In these approximations the positron energy is in units of MeV and the mass
interaction coeflicients p;(E)/p in cm?/g. The empirical coefficients a, and b, for the
fits are given in Table 2.1.

Table 2.1. Parameters of Eq. (2.49) for the approximation of various mass inter-
action coefficients in air over the energy range 0.01 to 100 MeV.

Hph

Hincoh

Htot—coh

Htot

Hen

ag —5.411953857
ay —4.757725614
as —6.099164835
as —3.195266607
a4 —0.561096127
as —0.214401838
by +0.499549111
b +1.125996521
b3 +0.209836111
by +0.121207584
bs +0.003724012

—1.197066383
—0.949999366
—0.827908760
—0.544433391
—0.215300329
—0.032556304
+0.384881199
+0.429221785
+0.228570328
+0.036489965
—0.001333414

—1.197570951
—1.287939042
—0.478620029
—0.187140386
—0.159402680
—0.054576238
+0.668221483
+0.044919259
+0.116185742
+0.135682591
+0.026786314

—1.197148390
—1.255239241
—0.462805586
—0.183781928
—0.152173001
—0.052578736
+0.640028823
+0.043998833
+0.115072083
+0.130827016
+0.025457364

—1.558534822
—0.656955552
+0.337975295
—0.028192013
—0.479570878
—0.220448317
+0.303486701
—0.389069276
+0.084709952
+0.337659150
+0.077213621

%Err
av 0.113
max 1.214

0.022
0.091

0.082
0.642

0.077
0.499

< 0.1
<1

The interaction coefficient for pair production was fit over the range 1.022 MeV
to 100 MeV with the formula

bn(B)p = 3" ana” (2.50)

n=0

where z = log,o(FE). The coefficients a, are given in Table 2.2 below. Above 2
MeV this approximation has an average absolute deviation from the tabulated data
of 0.062% with a maximum deviation of 0.44%. Between 1.022 and 1.5 MeV this

approximation is poor; however, (i, is negligibly small in this energy region.
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Table 2.2. Parameters in Eq. (2.50) for the approx-
imation of the pair-production mass interaction coef-
ficient over the range 0.01 to 100 MeV.

ag | +5.228865308E-06 || as | +0.000266593

a; | —0.000448964 ar | +0.000676182
ay | +0.005342360 ag | —0.000378873
az | +0.001886103 ag | +4.607691079E-05
as | —0.001164943 aip | +4.537544864E-06

as | —0.001169877

2.3.2 Positron CSDA Range in Air

To correct the LBRF for positron transport by the methods proposed in Section 2.2,
it is first necessary to be able to evaluate the positron range A(E) in air. In this
study the positron range was taken as the CSDA range which is tabulated in [IC82].
To avoid interpolation of the tabulated data, the following fit to the tabulated data

was obtained:

pA(E) = 10*0o810(E)) (2.51)

where the function A(z) is

ai + asx + a3w2 -+ a4a:3 + a5x4

AMz) = .
(m) 1 -+ bl.'E + b2.’172 + b3$3 + b4IL'4 + bs.’Es

(2.52)

The empirical coeflicients a; and b; for the fit range 0.01 < F < 100 MeV are given

in Table 2.3

Table 2.3. Fit parameters for
the Eq. (2.52) approximation of the
CSDA positron range in air over the

energy range 0.01 to 100 MeV.

7 a; b;

1 | —0.30573759 —0.00763379
2 | +1.23660309 +0.35065179
3 | —0.39492659 —0.06292815
4 | +0.51295052 —0.00300923
5 | —0.12342656 —0.00106880

In this approximation the positron energy is in units of MeV and the mass range
pA in g/cm?. The maximum deviation between this approximation and the tabulated

data is 0.038%.
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2.4 Radiation Yield in Air

To calculate the thick target yield of bremsstrahlung produced by electrons in air
using the Wyard approximation of Eq. (2.20), it is necessary to first evaluate the
empirical constant C. This constant can be expressed in terms of the radiation yield
Y (T), the fraction of an electron’s initial kinetic energy 7" that is emitted as photons
as it thermalizes in an infinite air medium. Explicitly, C = 16Y(T")/(13T).

The radiation yield Y(T') for nitrogen can be approximated as
Y(T) = 10¥0es10(E)) (2.53)
where the function y(z) is

ay + aqz + azz® + auz®

1 + bliE + 625152 + b3$3 '

y(z) = (2.54)
By fitting the above expressions to yield data from [IC82], the empirical coefficients
a; and b; for the fit range 0.01 < F < 100 MeV were determined and are given in
Table 2.4. The radiation yield for air can then be evaluated by multiplying Eq. (2.53)
by the ratio of the average atomic number for air (7.225) to that for nitrogen (7).

Table 2.4. Parameters in Eq. (2.54) for the
approximation of the thick-target radiation
yield in nitrogen for electrons whose initial
energy is in the range 0.01 to 100 MeV.

a1 | —2.396006067 || b, | —0.397306727
az | +1.838708507 || b2 | +0.336262525
as | —0.994388033 || b5 { +0.018521651
as | +0.227334919

2.4.1 Buildup Factors

In the numerical evaluation of the LBRF, infinite medium buildup factors for the
absorbed dose in air for a point isotropic source are needed.

For low energies (E < 15 MeV), the buildup factor B(E, pr) in the integrand of
Eq. (2.22) was taken to be the infinite medium exposure (air-kerma) buildup factor as
approximated by the geometric progression (GP) model [Ha86] for a point isotropic
source in air. This buildup-factor approximation is expressed as

1+ (-9 K #1
B(E, uz) = , (2.55)
1+ (b-1)uz K=1
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where pz is the source-to-detector distance in mean-free-path lengths, & is the value
of the buildup at 1 mean free path, and K is the multiplication per mean free path
length and is approximated by

B . [tanh(pz /€ — 2) — tanh(—2)
K(uz) = c(pz)" +d _ ﬁ‘l — tanh(—2) ]

(2.56)

o [ 1 + exp(4)
=cp) +d |\l = e Td) +exp(4)} '

The parameters a, b, ¢, d, and &, for this buildup factor approximation were taken
from a revision of the QAD code [Rs86] and have recently been approved as a new
buildup-factor standard [An91]. The values of these parameters vary with the photon
energy, the shielding material, and the type of detector response. Parameters for the
exposure (kerma) buildup factor in air are presented in Table 2.5.

At high energies (E > 15 MeV), no buildup factor data were available. Conse-
quently it was necessary to compute the needed buildup factors in this energy range.
The GP buildup factor approximation was then fit to these calculated values. Thus
it was possible to use Eq. (2.55) over the full energy range 0.02 MeV to 100 MeV
that was of interest in this study. In the section below, details of the buildup factor
computations for the 10 to 100 MeV energy range are summarize. More complete
information is provided in [Fa93].

2.4.2 Calculation of High-Energy Buildup Factors
Method of Calculation

The EGS4 code [Ne85] employed in these calculations made use of the PRESTA method
[Bi86] for subdivision of the electron path length. Photons were tracked from source
energy F, to cutoff energy E.,;, = 10 keV. Secondary electrons were tracked until
their energies fell below 1 MeV. The only variance-reduction technique applied was
exponential transformation of the photon path length. Electron and photon cross
sections were generated using the PEGS4 code [Ne85]. Ordinarily, in determining the
pair-production cross section, the PEGS4 code interpolates in tabulated values [St67]
for energies less than 50 MeV and calculates cross sections for higher energies. For
this work, the code was modified to use tabulated values for all photon energies.
Atomic composition of air was as prescribed by ANS-6.4.3 [An91], namely 75.519%
nitrogen by weight, 23.179% oxygen, 1.288% argon, and 0.014% carbon. Air density
was taken as 0.0012 g cm™3. In calculation of the absorbed dose in air, mass energy
transfer and absorption coefficients, p;,/p and p.,/p, were taken from the DLC-139
data library.[Rs88, P175, Jo80]

In the calculations, electrons and photons were tracked to distances r equivalent
to as many as p(F,)r = 40 mean free paths radially from the source, measured at
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Table 2.5. Coefficients for the geometric progression form of the buildup-factor
correlation for low energy photons in air. The “Max. Dev.” is the maximum
absolute deviation between the GP approximation and the buildup factors to
which the GP approximation was fit over the range 0 to 40 mean free path
lengths. From [An91]

' Energy Max.
(MeV) e b ¢ d ¢ Dev.
0.015 0.2167 1.17648 0.40953 —0.12538 12.46546 | 0.83%
0.020 0.1893 1.41631 0.47543 -0.10996 13.17036 | 1.34%
0.030 0.1143 2.30165 0.67197 —0.06318 12.74985 | 1.81%
0.040 0.0008 3.39496 1.04034 —0.01072 12.09683 | 0.65%
0.050 | —-0.0718 4.32342 1.38544 0.02813 13.21649 | 1.05%
0.060 | —-0.1169 4.81537 1.66130 0.05295 13.40168 | 1.90%
0.080 | —0.1583 4.93526 1.97885 0.07171 13.63476 | 2.50%
0.100 | —0.1799 4.56104 2.15575 0.07797 12.58171 | 2.27%
0.150 | —0.1727 3.89109 2.14568 0.06853 14.31641 | 2.02%
0.200 | —0.1746 3.34907 2.13884 0.06974 14.05719 | 2.11%
0.300 | —=0.1595 2.88692 1.98686 0.06177 13.99073 | 2.01%
0.400 | —-0.1449 2.63845 1.85412 0.05647 14.13847 | 1.87%
0.500 | —0.1333 2.48289 1.75191 0.05304 13.90710 | 1.76%
0.600 | —0.1212 2.36534 1.66164 0.04769  14.02672 | 1.52%
0.800 | —0.1050 2.19612 1.54101 0.04362 13.78023 | 1.53%
1.000 | —0.0898 2.09339 1.44260 0.03762 13.68232 | 1.25%
1.500 | —0.0613 1.93203 1.27950 0.02723  13.48698 | 0.87%
2.600 | —0.0444 1.82827 1.18906 0.02184 12.70825 | 0.95%
3.000 | —0.0159 1.70545 1.06508 0.00737 11.71059 | 0.46%
4.000 0.0059 1.62521 0.98381 —0.00580 14.74790 | 0.32%
5.000 0.0207 1.56255 0.93337 —0.01492 12.94014 | 0.47%
6.000 0.0291 1.50882 0.90463 —0.02496 14.72248 | 0.74%
8.000 0.0415 1.42594 0.86792 —0.02660 11.81421 | 0.65%
10.00 0.0440 1.36386 0.85769 —0.02925 13.51159 | 0.81%
15.00 0.0533 1.26857 0.83193 —0.03967 14.08234 | 0.89%

the photon-source energy. However, buildup factors are reported for mean free paths
only from 0 to 20. Mass interaction coefficients used in the EGS4 code are listed in
Table 2.6. Photon energies and directions were extracted when photons crossed sur-
faces at selected values of r. From these data, the energy spectra of secondary-photon
fluences, ®,(F,r), normalized to one source photon, were determined implicitly and
absorbed-dose buildup factors were computed as

1 E,
B(E,,r)=1+ dE O, (E, r)Eue,(E)/p, 2.57
. ( ) Q,(7)Eopren(Fo)/ p JBewt (B 1)Bpen(E)/ (2:57)

where ®,(r) is the fluence of uncollided particles, namely, e~ #(Fo)" /4772,




Table 2.6. Mass interaction coefficients used
in the EGS4 calculations.

E, W(Eo)/p  ner(Eo)/p  pen(Eo)/p
(MeV) | (em?/g)  (cm?/g)  (cm?/g)
10 0.0204 0.0151 0.0145
15 0.0180 0.0142 0.0134
20 0.0170 0.0142 0.0132
30 0.0162 0.0143 0.0129
40 0.0160 0.0145 0.0127
50 0.0161 0.0149 0.0127
60 0.0162 0.0151 0.0125
70 0.0163 0.0154 0.0124
80 0.0165 0.0156 0.0123
90 0.0166 0.0159 0.0122
100 0.0168 0.0162 0.0122

Buildup Factor Results

Buildup factors for 10-MeV photons are examined in Fig. 2.5 and compared with re-
sults of moments method calculations [An91, Ch80]. The upper set of data (squares)
are absorbed dose buildup factors computed using Eq. (2.57), which, in both numer-
ator and denominator, uses the energy absorption coefficient u.,, as is appropriate
when the fluence energy spectrum ®,(F) accounts for bremsstrahlung. The moments
method calculations are for air kerma. In order to make a comparison, in one set
of EGs4 calculations (results shown as diamonds), production of bremsstrahlung was
suppressed as was the displacement during slowing down of the positron created in
pair production. This forced annihilation photons to be produced at the point of the
pair-production interaction, an assumption inherent in the moments method. For
that set of calculations, the air kerma buildup factor was computed using a variant of
Eq. (2.57) in which p., was replaced by the energy transfer (kerma) coefficient p,, as
is appropriate when the fluence energy spectrum ®,(F) does not account for brems-
strahlung. The excellent agreement between the air kerma buildup factors provides
validation of the use of the EGS4 code.

The fact that the absorbed dose buildup factor, say Be,, exceeds the air kerma
buildup factor, say B, is expected. For high energy source photons, secondary
charged particles are produced preferentially in the forward direction, and their en-
ergy is subsequently deposited in the medium relatively farther from the source.
Thus, within about a mean free path of the source, the total kerma D,.(E,, r), which
is proportional to By (E,, ) (Eo)®,(r), exceeds the absorbed dose D, (r), which
is proportional t0 Ben(E,, 7)tten(Fo)Po(r). However, farther from the source, the
absorbed dose exceeds the kerma as energetic secondaries produced near the source
deposit their energies. The minimum value of the ratio D.,/D,, occurs as r — 0
(where the Bs approach unity) and equals pe,(E,)/us(E,). The ratio of the two
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Figure 2.5. Comparison of the buildup factors for 10-
MeV photons calculated using the Monte Carlo and mo-
ments methods.

buildup factors is simply

Belfor)  Dalf)islB) , [Dalr)] [elB)]

BtT(EO’T) B Dtr('r) Nen(EO) - Dtr('r) »U’en(EO)

(2.58)

For source photons below a few MeV in energy, bremsstrahlung and positron-
transport effects are negligible and electronic equilibrium is closely approximated,
except very near the source. Consequently, the absorbed-dose and kerma buildup
factors may be used interchangeably. This is explicitly done in the “exposure” buildup
factors reported in Standard ANSI/ANS-6.4.3 [An91], which are actually B, values.
However, when the total absorbed dose is calculated for energies above a few MeV,
it important that B, be used and that the absorbed dose from uncollided photons
be calculated using the energy absorption coefficient ue,,/p.

Absorbed-dose buildup factors computed from photon fluences by Eq. (2.57) are
presented in Table 2.7. Uncertainties, computed as the standard deviation of the
mean value for ten trials, are less than 1% for 15 or fewer mean free paths and 3%
for 20 mean free paths.




Table 2.7. Absorbed-dose buildup factors for photons in air computed from photon fluences
calculated using the EGS4 Monte Carlo code for coupled electron and photon transport.

Photon Energy (MeV)
mean
free 10 15 20 30 40 50 60 70 80 90 100
paths
05 | 124 120 118 116 116 116 116 116 116 117 1.17
1 144 136 133 130 130 131 133 134 136 138  1.40
2 178 164 157 153 153 157 162 167 173 179 185
3 211 1.89 178 172 174 1.81 189 199 209 220 2.31
4 242 213 199 191 195 205 216 231 246 262 281
5 2.74 237 219 210 215 228 244 263 285 307 3.34
6 3.04 260 239 220 235 251 272 297 326 355  3.90
7 333 283 259 247 255 276 301 331 370 407 451
8 363 305 278 268 277 299 329 368 414 466 517
9 3.92 327 297 28 296 322 360 406 461 523 587
10 422 351 314 304 316 348 393 446 514 589  6.73
12 475 400 356 338 360 401 458 533 631 727 853
15 553 464 410 400 423 482 569 672 820 982 11.80
20 6.92 577 511 489 512 649 759 960 1248 1524 20.20

GP Buildup Factor Correlations

The data in Table 2.7 have been used to generate parameters for three commonly
used buildup-factor correlations in terms of the mean-free-path distance between the
source and detector x = u(E,)r [Fa93]. In particular, this study uses the resulting
fit to the GP buildup factor approximation, Eq. (2.55). The correlation coefficients
are presented in Table 2.8. The resulting geometric progression correlation had a
maximum error of less than 1%, save for the highest energies for which the maximum
deviation between the data and correlation slightly exceeds 1%.

Unlike previous tabulations of GP coefficients [Ha86] that were determined by a
multistep fit procedure so that they varied smoothly with photon energy, the present
coefficients were obtained by a simultaneous five-parameter minimization fit of the
GP formula to the calculated buildup factor data. Since coefficients do not always
vary continuously with energy, as can be seen from inspection of Table 2.8. Thus,
when applying any correlation in determination of the buildup factor for arbitrary
photon energy and source-to-detector distance, one should interpolate among buildup
factors calculated for tabulated energies, not among coefficients for the correlation.
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Table 2.8. Coefficients for the geometric progression form of the buildup-factor
correlation for photons in air.

Energy Max.

(MeV) e b ¢ d ¢ Dey.
10 0.091229  1.43245  0.76969 —0.05815  6.23291 | 0.32%
15 0.107053 1.36147 0.72474 —0.06088 7.78164 | 0.39%
20 0.101951  1.32233  0.72250 —0.04453  8.05175 | 0.48%
30 0.078499 1.28715 0.77095 —0.06878 13.22408 | 0.68%
40 0.088896  1.29297  0.76542 —0.06847  9.38404 | 0.31%
50 0.058493  1.30223  0.83687 —0.00767  6.23426 | 0.37%

60 0.046676 1.31855 0.88327 —0.04043 12.67235 | 0.56%
70 0.006063 1.33520 0.98051 0.02702 5.35244 | 0.65%

80 —0.007779 1.35151 1.04327  0.03035 5.83653 | 0.92%
90 —0.029070 1.37007  1.11056  0.04685 5.45224 | 1.05%
100 —0.046403 1.38530 1.18551 0.06058 6.36943 | 1.19%

2.4.3 Ewvaluation of the Buildup Factor in Air

The numerical evaluation of the integrals in the LBRF formulation of Eqs. (2.24) and
(2.25), requires that the air buildup factor B(E, z) be known for energies E between
0.02 and 100 MeV and for all penetration distances z = p(E)z. In this study, the
dose (kerma) buildup factor in air was based on the GP formulation of Eq. (2.55), and
interpolation and extrapolation procedures were used to obtain values of B at any
energy and for distances beyond those for which the GP approximation was made.

First the buildup factor B(F, z) is evaluated at three adjacent energies E,_4, E;
and Ej;; for which the GP parameters are tabulated where the selected tabulated
energies are such that F;_; < F < E; < Ej;1.> Then from the logarithms of
buildup factors evaluated at these three adjacent energies, a quadratic (parabolic)
interpolation procedure is used to estimate the value of B(E, z).

To evaluate B(E;,z) the GP approximation of Eq. (2.55) is used. For E; < 10
MeV, B(E;, z) is based on parameters in Table 2.5 which are valid for penetration
distances up to 40 mean free paths (mfp). For distances beyond 40 mfp, an extrap-
olation scheme implemented in the DANIEL program [Rs87] and the QAD program
[Sa90] is employed. This scheme extrapolates the GP K parameter of Eq. (2.56) from
its values at 35 and 40 mpf. This extrapolated value of K is then used in the GP
formula to evaluate the buildup factor at distances beyond 40 mfp.

For E; > 10 MeV, the GP parameters of Table 2.8 are used. These parameters
are valid up to penetration distances of 20 mfp, beyond 20 mfp, a linear extrapolation
of B(Ej, z) is used based on values at 15 and 20 mfp.

3If E is between the two highest tabulated energies (i.e., between 90 and 100 MeV), then E;i4
is replaced by E;_2 = 80 MeV.
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To avoid estimating buildup factors at excessive penetration distances, for which
the above extrapolation procedures would give meaningless results, the buildup factor
is limited to a maximum distance of 60 mfp. For greater penetration distances, the
60 mfp value is used. While this limiting value is incorrect, the contribution of beam
scattering at such extreme distances is negligible in the numerical evaluation of the
LBRF integral along the beam — see Eq. (2.24). The value of the LBRF is determined
by scattering from the source beam along portions of the beam that are much closer
to the detector.

The air buildup factor calculated by the above procedure is illustrated in Fig. 2.6.
Also shown on this plot are tabulated buildup factor values which are in excellent
agreement with the GP approximated values. To be noted are the exceptionally large
values which occur around 0.1 MeV and which require quadratic-logarithmic inter-
polation to obtain reasonable interpolated values. The attenuation factor A(E,z),
defined by

A(E,z) = B(E, z)e"“E)= (2.59)

has been suggested as a preferable function for interpolation in energy, but as seen
from Fig. 2.7 this function exhibits even larger variation below 0.1 MeV.

10° r . .
50 mfp
40
104 | 30 * ANS 6.4.3 .
o EGS4
20 — GP Approx.
108 - -

102 & /// . i
i
10t /

10° L L
1072 1071 10° 10t 102

Absorbed-dose buildup factor in air

Photon energy (MeV)

Figure 2.6. The absorbed-dose buildup factor for a point
isotropic source in an infinite air medium. The solid cir-
cles are air-kerma values reported in [An91] and the hollow
squares are absorbed-dose values [Fa93] calculated by EGs4.
The curves are values calculated with the GP approximation.
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2.5 Numerical Evaluation of the LBRF

To evaluate the LBRF given by Egs. (2.24) and (2.25), it is necessary to evaluate
the integrals numerically. The integrands can be accurately evaluated using the data
approximations described in the previous sections. In this section, the numerical
methods used to evaluate the various LBRF integrals are summarized.

2.5.1 Integration Along the Beam

In the absence of bremsstrahlung, the LBRF of Eq. (2.24) can be written as

R(E,z2,6)= [ dj (3,3, 5,9) (2.60)

where the integrand f(g,z, E, ¢) is given by
- e’ T n -
f(y7$>E’ ¢) = _R_z'[(ﬂ/p)SfKN(E7 HS)B(E 7 )R(E ) e

+ (1 P)w B(Ea, ™" )R(Eg)e™™"], (2.61)
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where g is measured in units of mfp from the source along the beam direction. This
positive integrand varies by many orders of magnitude over the effective integration
range and not always in a monotonic manmner.

The variation of the integrand with § and the source-to-detector distance z is
shown in Fig. 2.8 for 2 MeV photons at an emission angle of 5 degrees. It is seen
that the maximum value and the minimum value of the integrand differ by about 6
orders of magnitude over the range in which ¢ changes from 0.05 to 1 mfp and the
source-to-detector distance changes from 1 to 200 m. In this plot, there is a sharp
ridge which is particularly pronounced at small source-to-detector distances and small
y values. The accurate numerical integration over this ridge presents a challenge.

107
10
10°
10-10
10—71
10-12 )
10-13

integrand

50 100 150 200

S-D distance

Figure 2.8. Variation of the integrand in Eq. (2.61) with the source-
to-detector distance and the distance § along the beam for 2-MeV
photons with a beam angle of 45 degrees.

Figure 2.9 shows the integrand as a function of § and emission angle ¢ for photons
of energy 2 MeV and a source-to-detector distance of 100 m. In this case, the integrand
varies smoothly over most of the § and ¢ range except in a small region about ¢ = 0.5
degrees and § = 0.05 where the integrand again exhibits a sharp peak. Numerical
integration over this peak must be performed carefully to obtain accurate results.

Both examples have two common features: first, the integrand can change by many
orders of magnitude and, second, there may be a sharp ridge for forward emission
angles near the source. The ridge in the integrand shown in Figs. 2.8 and 2.9 is
mainly caused by the 1/R? term in Eq. (2.61). The value of 1/R? has a maximum
for that point on the beam that is closest to the detector, i.e., where y, z, and r in
Fig. 2.1 form a right-angle triangle (i.e., Jmar = = cos ¢ and r,,;, = z sin ¢). The peak
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Figure 2.9. Variation of the integrand in Eq. (2.61) with the beam
emission angle and the distance ¢ along the beam for 2-MeV photons
at a source-to-detector distance of 100 m.

in f(9, E,z,¢) is most pronounced for small angles and disappears if ¢ is larger than
30 degrees. The sharpness of the peak in Figs. 2.8 and 2.9 and the large variation of
the integrand make numerical evaluation of Eq. (2.60) difficult.

Several numerical quadrature schemes were investigated for evaluating Eq. (2.60)
[Sh92]. The most accurate and robust method is one which breaks the integration
along the beam into a sum of integrals over J contiguous subintervals, i.e.,

o J g

R(Eod)= [ difGo B0 =Y [" difGaE0, (26
=179~

where §; = 707 and 67 is some appropriate subinterval width such as 0.5 or 1 mfp.
The integral over each subinterval is then performed by using an adaptive 8-point
Gauss-Legendre algorithm with automatic interval bisection. A subroutine from the
SANDIA Mathematics Library [Ha78], called GAUSS, was used for this adaptive inte-
gration. This routine uses relative/absolute error control and a computed maximum
refinement level when the integration limits and are close together so as to achieve
any user-specified accuracy.

The number of subintegrals J needed to evaluate the LBRF is generally fairly
small since the integrand f(y,z, F, ¢) falls off rapidly to negligible values after the
first few mean-free-path lengths from the source, i.e., for § > 5 mfp. In evaluating

39




Eq. (2.62), the number of subintegrals J was determined by either of the following
two conditions: (1) the ratio of the integral from a subinterval to the cumulative
integral from all proceeding subintervals is less than some user-prescribed value, say
107%, or (2) the ratio of the integral from one subinterval to that from the preceding
subinterval is smaller than some user-prescribed value, say 10~2. Generally, criterion
(1) was preferred.

2.5.2 Evaluation of the Bremsstrahlung Spectrum

The evaluation of the bremsstrahlung spectrum S'b(Eb) defined by Eqgs (2.12) and
(2.13) requires an integration over recoil electron energies, namely

5(B) = N [ 4T (Z.0,(B, )T, By
+ 0 B, D) fo(T, Es) + o E — 2mec® — T, Ep)]} . (2.63)

The thick target yield fi(T, F;) was taken as the Wyard’s approximation of Eq. (2.20).
The integral over all recoil energies was then performed using the adaptive Gauss-

Legendre subroutine GAUSS [Ha78|.

2.5.3 Integration over the Bremsstrahlung Spectrum

The evaluation of the bremsstrahlung component of the LBRF, Eq. (2.25), or of the
bremsstrahlung-induced pair production component, Eq. (2.44) or Eq. (2.46), requires
evaluation of double integrals of the form

Eraz oo
/ ‘ dEb/O d?)g(Eb7ﬁ)x7Ea ¢)
The inner integral along the beam was evaluated using the adaptive Gauss-Legendre
method described above. To avoid excessive evaluation of the inner integral, the outer
integral was evaluated using fixed quadrature ordinates between E,,;, and E,,,,. Since
the integrand in the above expression is proportional to the bremsstrahlung spectrum
S’b(Eb) which is highly peaked towards the low energies, the integration over F;, was
split into two integrals, one from FE.,;, to F,;; and one from E;4 to Epg.. For
each subintegral, fixed-point Gauss-Legendre numerical quadrature or order 4, 8 or
16 was used. Typically, the energy E,.;4 dividing the integration range was chosen by
experience to obtain the best estimate of the bremsstrahlung contribution.
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Chapter 3

Monte Carlo Evaluation of the
LBRF

Although the single-scatter point-kernel model for the LBRF has previously been
verified for photon energies between 0.1 and 10 MeV [Sh87, Sh91, Sh92], there are
no benchmark experimental or calculated data for high energy skyshine. Thus in
this study, the LBRF was also calculated by Monte Carlo techniques to obtain re-
sults against which the point kernel model could be compared as well as serve as an
independent method whose results could be used in deriving approximations to the

LBRF.

In this study the Monte Carlo code MCNP [Br93] was used to calculate the LBRF.
This code, which can perform neutron, photon, and coupled neutron-photon, and elec-
tron transport calculations in general three-dimensional geometry, has been widely
tested against benchmark problems[Wh91] and even against a benchmark skyshine
experiment[O193]. Such comparisons have shown that MCNP can produce very accu-
rate results for photon transport problems. From these and many other comparisons,
MCNP has become widely accepted and was thought to be an excellent tool for this
study to investigate the LBRF at high energies and to assess the accuracy of the point
kernel model of the LBRF.

3.1 Using MCNP for the LBRF Problem

A rigorous description of high energy photon transport requires a detailed treatment
of all secondary photons and electrons. Moreover, at energies above 10 MeV, the
concept of doses and electronic equilibrium near such a beam of high energy photons
must be analyzed carefully. In this section, the modeling of the LBRF by MCNP is
described. Additional details may be found in [Br94].




3.1.1 The LBRF Geometry

the intersection of a horizontal plane with the cone).

The spatial distribution of doses around a photon beam in an infinite air medium
exhibits a cylindrical symmetry about the beam. Thus, the point photon source was
located at the origin of a cylindrical coordinate system with the source beam oriented
vertically upward along the positive z-axis. The LBRF R(z, E, ¢) then is the dose per
source photon at distance z from the origin along a conical surface making an angle
¢ with respect to the positive z-axis (see Fig. 3.1). The radiation field is the same
at all points at distance z along the surface of this cone (i.e., on the circle formed by
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conical surfaces are the detector volumes used.
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Figure 3:1. The MCNP cylindrical geometry used to model the LBRF. The
monoenergetic source is at the origin (at the apex of the cones) and the
photon beam is directed upward along the conical axis. All cells contain air,
and the volumes formed by the horizontal planes and the nearly concentric




Rather than use a point or ring detector, which are poorly suited for deep pene-
tration problems, the photon flux density was estimated by a volumetric track-length
detector. These ring-like volumetric detectors were defined by the intersection of
horizontal planes with two concentric cones, both of which have their vertices at the
origin but which have slightly different conical angles (¢ + A¢) as shown in Fig. 3.1.
To simulate the infinite air medium, cell 55 in Fig. 3.1 extends radially outward 5
mean-free-path lengths while cells 56 and 57 are 10 mean-free-path lengths in thick-
ness. The point monodirectional source, nominally at the origin, was placed 1 cm
above the origin in cell 1 since a source cannot be placed on a surface in MCNP .

The air used in the MCNP simulation was that specified by ANSI-6.4.3[An91],
namely 75.519% nitrogen, 23.179% oxygen, 1.288% argon, and 0.0014% carbon by
weight. The air density was taken as 0.0012 g cm™?

3.1.2 The Transport Physics

With two exceptions, the full coupled photon/electron physics afforded by mMcNp
were used. Specifically, photons could produce electrons, coherent photon scattering
was implemented, bremsstrahlung was produced by electrons, the full Bethe-Heitler
Born approximation was used for bremsstrahlung angular distributions, expected-
value straggling for electron energy loss was used, and all photon-induced secondary
electrons were considered. The only simplification used was the neglect of electron-
induced X rays and knock-on electrons. These two simplifications reduced signifi-
cantly the computational effort while introducing little error in the calculated results
for the high energy source photons considered in this study. An example LBRF cal-
culated with and without these two simplifying assumptions is shown in Fig. 3.2, and
the simplifications are seen to have negligible effect.

3.1.3 Choice of Tally

The average energy-integrated photon flux density in a cell was estimated using
MCNP’s “f4 tally” which computes the average path length per unit volume of the
cell, i.e.,

V// E)dEdV = = (WT) ;{_ ”;T (3.1)

where W; is the i-th photon’s weight, T; the track length of the photon in the cell,
V the cell volume, and N is the number of photons that enter the cell. The above
average can also include a response function R(E) so that the volumetric-averaged
response in the cell is

R——// dEdV—V(WTiR , i (E) (39

where F; is the energy of the i-th photon entering the cell.

43




1074 T T T T

T 10™® .
5 E
2
o ]
£ r ]
o
\ -
® 16
[, 10 =
~s E
[} o
1] {
c
S N
a
8 107k
& g
10—18 1 1 1 )
0 200 400 600 800 1000

Distance from the source r (m)

Figure 3.2. An McNP calculated LBRF (100 MeV and a
beam angle of 2 degrees) using the full physics treatment
(points) with that produced by neglecting electron-induced
X rays and knock-on electrons (histogram).

In the MCNP simulation of the LBRF, all secondary photons produced from Comp-
ton scattering, annihilation interactions, fluorescence emission, and bremsstrahlung
emission are included in the photon flux density @(+, E). Thus under the assump-
tion of electronic equilibrium, the average air absorbed dose in a cell can be obtained
by using a response function based on the mass energy absorption coefficient for air
(luen/p)v i'e'7

R(E) = 1.602 x 1072 E (f-‘;)ﬂ) , (3.3)

where E is the photon energy in MéV, and R(E) has units of rad cm? if (gen/p) is in
units of cm?/g [Ch84].

The MCNP code allow provides a “flagged 8 tally” which estimates the energy
deposition in a cell by both photons and electrons that enter the cell. This particular
tally must be used carefully, since it can give misleading results especially if variance
reduction techniques are used in the simulation [Br93]. For the LBRF problem, it
is important to use variance reduction techniques, particularly for beams emitted
in the backward directions. Nonetheless, the 8 tally does provide a mechanism to
estimate absorbed doses in air under conditions in which electronic equilibrium does
not exist. For 100 MeV photons near the source, previous studies [Fa93] have revealed
significant deviations from electronic equilibrium.
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Point Isotropic Source Example

To verify the proper operation of MCNP and to test its ability to treat high energy
photon transport problems, the absorbed dose distribution arising from a 100 MeV
point isotropic source in infinite air was calculated. In modeling this problem, spher-
ical shells concentric to the source were used as cells in which the average absorbed
doses were to be calculated. Also for this problem the {2 surface flux tally was used
in place of the f4 tally because of its greater efficiency in this problem. The 2 tally
is just a special case of the 4 track length per unit volume tally as the thickness of
the f4 volume goes to zero.

The results obtained are shown in Fig. 3.3. Also shown are three values obtained
from the buildup factors of Table 2.7 calculated from

R(E)e 5 B(E, u(B)r)
4rr? )

R(r) = (3.4)

From these results it is seen the true dose profile (f8 tally with electron transport)
near the source is considerably less than that predicted from the photon flux and
the assumption of electronic equilibrium (f2 tally), while at large distances from the
source the actual dose is greater than that predicted from the f2 tally. The neglect
of electron transport causes the 8 tally to overpredict the dose since electrons then
deposit their energy where they are created, i.e., nearer the source.

In this problem the {2 tally is dominated by the uncollided photons moving radially
outward from the source, thereby accounting for the exponential trend of the {2
results. The dose profile due only to secondary photons is shown in Fig. 3.4 along
with values inferred from the buildup factors and obtained using Eq. (3.4), but with
B replaced by B — 1. Notice that near the source where there is not electronic
equilibrium, the dose inferred from the scattered flux density is far less than the true
absorbed dose (shown on the previous figure).

LBRF Examples

The difference between using the f4 and {8 tallies to calculate the LBRF is shown in
Figs. 3.5 and 3.6 for 100 MeV photons. For the 2-degree case of Fig. 3.5, the 18 tally is
seen to give much greater estimates of the absorbed dose than the f4 tally. In this case
the source photons along the beam produce energetic secondary electrons that travel
mostly along the beam. These electrons then produce secondary bremsstrahlung that
also mostly travel along the beam direction, which in turn produce cascades of low
energy electrons. Near the beam, as in this 2-degree case, there will not be electronic
equilibrium, and the {8 photon-electron absorbed dose, dominated by low energy
electrons, will appear much higher than that predicted by the f4 tally of Eq. (3.2).
Most of the f8 dose is no doubt due to relatively low energy electrons, which, if a
human subject were present, would contribute primarily to skin dose. For the 45-
degree case of Fig. 3.6, the detector volumes are removed from the strong divergence
along the beam axis, and the f4 and {8 tallies are seen to agree much more closely.
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Figure 3.5. The McNP calculated LBRF for 100 MeV photons emitted at
2 degrees using the f4 (circles) and f8 (squares) tallies. Also shown are f4
tally results (triangles) when electron transport was omitted.
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tally results (triangles) when electron transport was omitted.
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Also shown in Figs. 3.5 and 3.6 are f4 tally results obtained when electron trans-
port was omitted in the MCNP calculations. As would be expected, the effect of
electron transport is to reduce the dose very near the source by allowing energetic
secondary electrons to travel along the beam before producing secondary annihila-
tion or bremsstrahlung photons. From the large differences in the {4 tallies with and
without electron transport, it is clearly important to use the MCNP electron transport
option for high energy photon sources.

Interpretation of LBRF Doses

As is apparent, for photon energies much in excess of 10 MeV and line beams passing
near detector locations, lack of electronic equilibrium makes interpretation and ap-
plication of dose tallies very uncertain. Both the f4 and {8 tallies are possible point
functions that might be useful in characterizing the skyshine radiation field but both
are for air dose, the {8 tally for the true absorbed dose and the f4 tally for what we
might call the equilibrium air dose — the absorbed dose that would be experienced
were secondary electrons in equilibrium with the photons. Which tally best serves to
characterize the radiation risk to human subjects? It would seem that the f8 tally is
the poorer choice. The tally includes local energy deposition in air due to electrons
and positrons as well as photons. The electrons and positrons, contributing the bulk
of the air dose, would contribute much of the shallow dose to the skin and eye lens
but not the deep dose in the body. By contrast, the photon flux f4 tally estimates the
dose strictly from the photon field, a dose that generally will be more penetrating. In
Table 3.1 the response function of Eq. (3.3) is compared to two deep-dose phantom
response functions for high energy photons. It is seen from this table that the point
dose estimate based on Eq. (3.3) tracks quite well with the phantom deep dose.

Table 3.1. Comparison of response functions.

Response function R(E), Gy em? x 10%°
Eq. (3.3) Slab Phantom® Sphere Phantom®
E(MeV) :R'Da.ir :RHI,d RHI,&
1.0 0.0445 - 0.0531
10. 0.232 0.243 0.234
20. 0.423 0.416 0.403
30. 0.620 0.577 -
40. 0.814 0.732 -
50. 1.02 0.925 0.873
100. 1.95 1.53 1.46

“Maximum absorbed dose in a 30-cm thick slab phantom [1c87)
’Maximum absorbed dose in a 30-cm diameter sphere phantom [Sa94]

In this study, it was decided that the more penetrating deep dose was of primary
concern in evaluating the skyshine field. Thus in the subsequent evaluation of the
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LBRF, the f4 tally, with Eqgs. (3.2) and (3.3), is used exclusively. Only for very
energetic source beams that pass near the volume of interest will this dose estimate
be significantly underpredictive, and then primarily from the neglect of the shallow
dose.

3.1.4 Energy Spectrum of the Skyshine

In Fig. 3.7, the energy spectrum of LBRF dose contribution made by the photons is
shown at various distances from the source of 100 MeV emitted at an angle of 2° to the
source-detector axis. These spectra were generated using the {4 tally with modified to
bin each photons according to its energy. The spectra exhibit a continuous nature that
becomes increasingly soften as the source-to-detector distance increases. Also evident
in this figure at the annihilation photon peak at 0.51 MeV and its first slowing down
discontinuity at 0.17 MeV (corresponding to the maximum change in the Compton
wavelength of A, + 2 that an annihilation photon with wavelength A, = m.c*/E, = 1
can have in a single scatter. Also notice that the very low energy part of the spectrum
decreases with increasing distance as photoelectric interactions preferentially remove
the low energy photons.

3.1.5 Importance Sampling

Early experience with MCNP indicated that if skyshine doses far from the LBRF source
are to be obtained, it would be necessary to use some of the variance reduction and
biasing options available in this code. It was decided to use the powerful “weight
windows” biasing technique which has many advantages over the simpler geometry
splitting or importance sampling methods (also available in MCNP )[Br93]. The basic
idea of weight windows is to first specify appropriate upper and lower weight bounds
for each cell. Then if a particle entering into (or interacting in) a cell has a weight
below the lower weight bound, Russian roulette is used either to increase the particle
weight until it lies within the weight bounds or to terminate the particle. If the en-
tering or interacting particle has a weight above the upper weight bound, the particle
is split such that all split particles lie within the cell’s weight bounds.

The establishment of weight bounds (in space and energy) is generally complex.
Fortunately MCNP has a weight window generator that estimates appropriate weight
windows for each cell. Thus by using multiple runs of MCNP , it is possible to obtain
near optimal weight windows for a particular problem. For difficult problems, such as
the LBRF emitted in the backwards direction (i.e., at angles greater that 90°), it was
very important to accurate determine the weight windows to avoid instabilities in the
results. Even with weight windows it was computationally prohibitive to calculate
many of the LBRF for distances greater than 1000 m from the source. Thus in this
phase of the study, the MCNP calculations of the LBRF were restricted to a maximum
distance of 1000 m.
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are shown for distances of 30, 75, 150, 250, 350, 450, 550,
650, 750, 850, and 950 meters from the source.

3.2 Electron Transport Correction for the Point-
Kernel LBRF Model

In the development of the point kernel model of the LBRF, two methods were pro-
posed for correcting for the transport of energetic secondary electrons and positrons
(see Section 2.2). To decide which of these two methods is the best, MCNP calcu-
lated LBRF using full electron transport were compared to results obtained with the
point kernel model. The effect of positron/electron transport is most evident near
the source and becomes increasingly important as the source energy increases. An
example comparison is shown in Fig. 3.8.

The travel correction has the most importance for those positrons created near the
source by the source photons causing pair production interactions. These energetic
positrons travel primarily in the beam direction, and, if their transport is neglected,
their subsequent annihilation will produce annihilation photons closer to the source
than actually occurs thereby causing the skyshine dose near the source to be larger
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rection, the dotted line is for the “uniform travel” correction
method, and the solid line is for the “mid-range” model.

than it should be. Fig. 3.8 clearly shows that near-field skyshine analyses, neglect of
positron travel can significantly overpredict the dose.

From fig. 3.8 and other comparisons, it was found the mid-range correction method
gives better agreement to MCNP results near the source. However, far from the source,
both correction methods give almost the same results as those obtained without any
correction. Finally, for source energies below 10 MeV, no electron/positron travel
correction appears to be necessary. In all subsequently reported calculations using
the point kernel LBRF model, the mid-range method is used.

3.3 Comparison of MCNP and Point-Kernel
Results

To assess the capabilities of the point kernel LBRF model, MCNP LBRF were per-
formed for a grid of energies between 0.01 and 100 MeV and for grid of beam angles
between 1.5 and 175 degrees. These computed LBRF values were then compared
to corresponding values obtained from the point kernel model. Because of the com-
putationally intensive nature of the MCNP calculations, the MCNP evaluations were
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limited to source-to-detector distances less than 1000 m. The point kernel model, by
contrast, can be used to estimate skyshine dose at distances several times this limit.

Representative examples of these LBRF comparisons are shown in Figs. 3.9 to 3.16.
Detailed tables of all the MONP results are available in [Br94]. From these comparisons
it is seen that the point kernel model agrees well with the MCNP at all beam angles
for energies below about 20 MeV. For higher energies the point kernel model, while
giving good agreement in the backward directions, tends to increasingly underpredict
the skyshine dose as the energy increases and the beam angle decreases. Clearly, for
high-energy, forward-directed beams, the straight-ahead approximation used in the
point kernel model to account for bremsstrahlung is too severe and approximation.

The primary purpose of this study was to produce simple approximations for the
LBRF over as large a source-to-detector range as possible. From these comparisons
it is evident than point kernel calculations can be used for source energies less than
20 MeV. However, for higher-energy sources it was decided to use the MCNP results
as the basis of approximating the LBRF. These approximations are discussed in the
next chapter.
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Chapter 4

Approximation of the LBRF

Compared to Monte Carlo techniques, calculating the line-beam response function
(LBRF) by the point kernel technique (discussed in the previous chapter) is consid-
erably expensive computationally. However, for routine skyshine analyses and calcu-
lations, even the point kernel method is prohibitively expensive, and an approximate
procedure is needed to reduce the computational effort even further.

It has been found that the LBRF R(z, F, ¢) can be approximated by an appropri-
ate empirical formula with a few adjustable parameters. The first approximate LBRF
was obtained by Radiation Research Associates (RRA) by fitting an empirical for-
mula with three adjustable parameters to results obtained by Monte Carlo skyshine
calculations. This approximate function then formed the basis of the SKYSHINE series
of codes [Pr76, La79).

Shultis and Faw [Sh87] later fitted the three-parameter RRA formula to point
kernel LBRF results for use in the MICROSKYSHINE code [Gr87]. A set of revised
parameters was obtained by least-squares fitting the approximating formula to point
kernel results. An interpolation and an extrapolation scheme were also introduced
to make the approximate LBRF continuous in both energy and emission angle. The
resulting data set of fitting parameters used by MICROSKYSHINE could treat skyshine
sources with energies from 0.1 MeV to 10 MeV and source-to-detector distances from
30 to 2500 m.

The omission of energies below 0.1 MeV and the relatively coarse energy mesh used
between 0.1 and 1 MeV is generally satisfactory for far-field skyshine calculations since
low energy source photons usually are of minor importance. However, for near-field
calculations with low-energy sources, there is a need for an improved approximate
LBRF to treat energies below 1 MeV. Recently, Shultis et al. [Sh92] revised the
energy grid for lower energy photons and obtained approximations for the LBRF
valid for the energy range 0.02 MeV to 10 MeV.

In this study, the energy range is extended above 10 MeV and a new approximation
for the LBRF is proposed for source energies between 10 and 100 MeV and which is
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valid for source-to-detector distances from 100 to 1000 m. Additionally, two refined
LBRF approximations are given for source energies between 0.02 and 15 MeV and
for source-to-detector distances between 1 and 3000 m.

4.1 Approximating the LBRF

It is possible to approximate the LBRF defined by Egs. (2.24) and (2.25), and mod-
ified for positron migration by the methods of Section 2.2, by a number of simple
approximate functions with a few adjustable parameters. To separate explicitly the
principal energy dependence of the response function, the LBRF is approximated as

R(z,E,¢) ~ ExF(z,a,b,c,...). (4.1)

The fitting parameters a, b, c, ... of the approximating function F' are functions
of the source photon energy E and the beam emission angle ¢. The beam response R
has units of rad per photon, F has units of MeV per photon and x has units of meters.
The function F(z,a,b,c,...) is the fraction of the source photon energy absorbed per
m? of air. The conversion factor « thus has units of rad absorbed dose per MeV /m?
energy absorption in air at the reference air density for the calculations.

4.1.1 Estimation of Fit Parameters

Once a particular approximating function F(z,a,bd,c,...) is chosen (see the following
subsection), the values of the parameters a,b, ¢, ... can be obtained for a given beam
energy and direction by fitting the approximating function to values of the LBRF
evaluated at a set of discrete source-to-detector distances xz,,,m = 1,..., M, i.e, to
R(xm, B, 9)/(kE) = Rpn/(kE). In this study, the reference LBRF values R,, were
calculated from the point kernel model of Chapter 2 for £ < 10 MeV or by MCNP for
E > 10 MeV.

To fit an approximating function F(z,a,b,c,...) to LBRF data R,./(kE), some
criterion must be specified a priori for adjusting the parameters a,b,c,... so as to
obtain close agreement between the approximation and the LBRF data. In this study
the following three criteria were investigated.

Least Squares Fit to Logarithm of LBRF

The LBRF R(z, E, ¢) is strongly affected by the source-to-detector distance and the
skyshine dose may vary by many orders of magnitude when z varies by a few hundred
meters. Thus, it is preferable to obtain the parameters a,b,c,... by fitting, not F,
but rather its logarithm to the logarithm of the LBRF. With this method, the LBRF




is approximated by choosing values of the fitting parameters a, b, c, ... such that

InF(z,a,b,¢c,...)~In[R(z, E, ¢)/(kE)]. (4.2)

For a fixed source energy E and beam emission angle ¢, the least squares estimations
of a,b,c,... are those parameter values which minimize

Si(a,b,c,...) = Y [InF(z,a,b,c,...) — In(Rn/E)]?, (4.3)

m=1

Minimize Maximum Fractional Deviation

A widely used criterion for fitting approximations to a set of data is to choose the
fitting parameters so as to minimize the maximum absolute deviation between the fit
and the data. Because the LBRF varies so widely over the source-to-detector range
of 1 to 3000 m, the fractional or relative difference is used. Thus a,b,c,. .. are chosen
so that
(kEYF (2, a,b,c,...)
R

Sa(a,b,c,...) = max|1 (4.4)

is minimized.
Minimize Average of Fractional Deviations

A modification of the above criterion is to minimize the sum of the absolute fractional
differences between the approximating function and the LBRF. This is equivalent to
minimizing the average of the absolute fractional deviations between the data and
the fitting function. In this method, fit parameters a,b, ¢, ... are chosen to minimize
the following function.

_ (kE)F(zm,a,b,c,. . )

- (4.5)

M
Si(a,byc,...)= > |1

m=1

For all three of these fitting criteria, the minimization of the objective function
Si(a,b,c,...) is readily accomplished using the simplex procedure [Pr92].

4.1.2 Reference Values of the LBRF

Before obtaining an approximation for the LBRF, it is first necessary to obtain ref-
erence values R,, of the LBRF at different distances from the source for each beam
energy and direction for which an approximate LBRF is desired. Because the point
kernel model of the LBRF was found to be sufficiently accurate for photon energies
below 15 MeV, it was used to generate the reference LBRF values. For higher energies
MCNP was used to generate the necessary reference values.
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For the low-energy point-kernel calculations, the LBRF was evaluated at the 28
distances z,,, at the 15 discrete energies E;, and at the 20 discrete beam directions
¢; (see Table 4.1). For the MCNP calculations above 15 MeV, spatial cells centered
about the following 12 source-to-detector distances were used: 5, 30, 75, 150, 250,
350, 450, 550, 650, 750, 850, and 950 m. The discrete energies E; selected were 10,
20, 40, 70 and 100 MeV, and the 17 discrete beam angles ¢; that were used are listed
in Table 4.2. The MCNP reference LBRF values used to obtain an approximate LBRF
for high energy photons have been tabulated by Brockhoff [Br94].

Table 4.1. Source-to-detector distances ., (meters), photon
energies £;, and beam angles ¢; used in the point kernel LBRF
reference calculations for photon energies below 15 MeV.

Source-to-detector distances z,, (m):
Tm | M T | M T | M Ty | M Ty

1 1 7 20 | 13 300 | 19 1000 | 25 2250
2 2 8 40 | 14 400 | 20 1200 | 26 2500
3 4 9 60 | 15 500 | 21 1400 | 27 2750
4 6 { 10 80 { 16 600 | 22 1600 | 28 3000
5 8 {11 100 | 17 700 | 23 1800
6 10 | 12 200 | 18 800 | 24 2000

Beam energies E; (MeV):
¢ E; i E; i E; ? E; ) E;
1 002 4 0.06 7 020 | 10 1.0 | 13 7.0
2 003 5 0.08 8 040 | 11 20| 14 10.0
3 0.04 6 0.10 9 070 | 12 4.0 | 15 15.0

Beam angles ¢, (degrees):
I % 3 b5 b d o1 7 b
1 0.5 5 6.0 9 2501} 13 650 | 17 1100
2 1.5 6 85 | 10 350 | 14 750 | 18 1300
3 2.5 7 125 | 11 450 | 15 85.0 | 19 150.0
4 4.0 8 17512 550 | 16 950 | 20 1700

4.1.3 Selection of the Approximating Function

Many formulas can be used for fitting function F' to approximate the LBRF. One
of the initial purposes of this study was to seek alternate fitting formulas for the
LBRF to that previously used. To find alternate fitting formulas, the microcomputer
program TABLECURVE [Ja90] was used. This program fits a given set of (z,y) data
to many hundred fitting formulas and produces statistical information about each
fit. It then ranks the different fits in decreasing order of the goodness of the fit as
determined by the r? correlation coefficient. The program also allows one to see the
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Table 4.2. The discrete beam directions ¢; (degrees), with respect
to the source-detector axis, used for deriving reference LBRF values
for energies above 15 MeV.

J ;| 7 ¢ | J i | 7 ¢ | I3 ¢

1 2.0 5 10.0 9 45.0 13 95.0 17 150.0
2 3.5 6 15.0 10 60.0 14 105.0

3 5.0 7 20.0 11 75.0 15 120.0

4 75| 8 30012 850 | 16 1350

estimated confidence bands around the fit, the residuals, and, most importantly, how
the fit behaves outside the x-range of the data. An example of the rankings of the
first 76 formulas used by TABLECURVE for a typical LBRF fit is shown in Table 4.3.

To approximate the LBRF, one seeks a simple formula (i.e., one with only a few
parameters) that not only gives a good fit over the data range but one that also
behaves reasonably when extrapolated past the last datum. TABLECURVE was used
to fit representative LBRF point kernel data for low and high photon energies and
for small and large beam angles. Based on a balance between a good fit to the data,
simplicity of the fitting formula, and proper asymptotic behavior at large x, those
formulas with more than four parameters were not considered.

The best fitting formula with four adjustable parameters was found to be
In[F(z,a,b,c,d)] =a+bz+clnz+ dz?, (4.6)
the best among the three-parameter formulas was
In[F(z,a,b,c)] =a+blnz—cz, (4.7)
and the best among the two-parameter formulas was
In[F(z,a,b)] = a+ by/z. (4.8)

The parameters in these formulas are still functions of the photon energy EF and
emission angle ¢. Interestingly, formula (4.7) is the same approximating function
used by RRA to represent the original line-beam response function [Pr76, La88].

Recently, a new version of TABLECURVE (version 3.0) was released that increased
the number of formulas for approximating the input data to several thousand. In
particular, the number of three parameter formulas was increased from 27 to 630
different formulas. Representative LBRF point kernel data have recently been ana-
lyzed by this new version of the program. Again Eq. (4.7) was found to be either
the best or second best of the three parameter formulas. One formula which yielded
a slightly better fit for high energy sources was considerably worse at low energy.
Thus Eq. (4.7), originally introduced with little justification, now appears to be a
very astute choice.




Table 4.3. The equations used by TABLECURVE [Ja90] to fit the LBRF. The

r2 values are for fitting to point kernel LBRF results for 3.5 MeV photon at an
emission angle of 45 degrees and for source-to-detector distances from 1 to 3000

meters.
Rank r? Equation
1 0.999986784  y=(a+bx+cln(x)+dx2)
2 0.999983793  y=(a+bx+cln(x)-+dexp(-x))
3 0999981885  y=(a-tbx-+cln(x)+d/x2)
4 0999977734  y=(a+bx+cln(x)+dsqrt(x))
5 0.999966853  y=(a+bx+cln(x)+d/x)
6 0.999965859  y=(a+bx+cln(x)+dx3)
7 0.999965568  y=(a+bx+cln(x))
8 0.999886711 y=(a+cx+ex2+gx3+ixd+kx5)/(1+bx+dx2+fx3+hx4+jx5
9 0.999824100  y=(a-cx-+ex2+gx3+ixd)/(1+bx+dx2+fx3+hxd+jx5)
10 0.999788045  y=(a+cx+ex2+gx3+ix4)/(1+bx+dx2+fx3+hx4)
11 0.999758396  y=(a+cx+ex2+gx3)/(1+bx+dx2+fx3+hx4)
12 0.999571195  y=(atcx-+ex2+gx3)/(1+bx+dx2+fx3)
13 0999477716  y=(a+bx-+c/x+dsqrt(x))
14 0.999059623  y=(a+bx+csqrt(x)+dexp(-x))
15 0.999058343  y=(a+bx+cx2+dx3+ex4+{x5+gx6+hx7+ix8+jx9+kx10)
16 0.998914975  y=(a+bx+csqrt(x)+d/x2)
17 0.998684487  y=(a+bx+cx2+dx3-+ex4-+x5+gx6+hx7+ix8+jx9)
18 0.998599909  y=(a+cx+ex2)/(1+bx+dx2+{x3)
19 0.998308829  y=(a+bx+csqrt(x)+dx2)
20 0.998139449  y=(a+bsqrt{x)+cx2)
21  0.998125158  y=(a-+bx-tcx2-+dx3rexd-+x5+gx6+hx7+ix8)
22 0.997949142  y=(a+bx+csqrt(x)+dx3)
23 0.997704006  y=1/((a-+cx-rex2)/(1-+bx+dx2))
24 0.997381553  y=(a+bx+c/x+dexp(-x))
25 0.997356687  y=(a+bx+cx2+dx3+ex4+1ix5+gx6-+hx7)
26 0.997087051  y=(a+bx-+csqri(x))
27 0.997050439  y=(a+bx+c/x-+dx2)
28 0.996812046  y=((a+cx+ex2)/(1+bx+dx2))
29 0.996605050  y=(a-+bx-+cx2+dx3+exd-+x5+gx6)
30 0.996376560  y=1/((a-+cx)/(1+bx-+dx2))
31 0.996206689  y=(a+bx+c/x+d/x2)
32 0.996078913  y=(a+bx-+c/x+dx3)
33 0995831741  y=(a+bx-+cx2-+dx3+exd+fx5)
34 0.995798418  y=(a+bsqrt{x)+cx3)
35  0.995354403  y=(a+bx+ex2+dexp(x))
0.994988939  y=(a+bx+cx2+d/x2)
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Table 4.3. (cont.):

Rank r? Equation
37 0.994663233  y=(a+bx+cx2+dx3+ex4)
38 0.993993224  y=(a+bx+cx3+dexp(-x))
39 0.993583705  y=(a+bx-+c/x2+dx3)
40 0.992857540  y=(a+bx-+cx2+dx3)
41 0992823326  y=(a+bx+c/x)
42 0991416880  y=((a+cx)/(1+bx+dx2))
43 0.989948137  y=(a+bx+c/x2+dexp(-x))
44 0989783884  y=(atbxtcx2)
45 0989560417  y=(a+bx+cexp(-x))
46 0.989030837  y=(a+bx+c/x2)
AT 0.987628576  y=(atbx-+cx3)
48 0.987524653  y=1/((a+cx)/(1+bx))
49 0.986630980  y=((a+cx)/(1+bx))
50 0.980963339 y=(a+bx)
51 0.980326577  y=(a+bln(x)+csqrt(x))
52 0.976763918  y=(a+bln(x)+cx2)
53 0.972450550  y=1/(a+bx+cx2+dx3+ex4)
54 0.968988761  y=1/(a+bx+cx2+dx3)
55 0.968086424  y=(a+b/x+csqri(x))
56 0.967276292  y=(a+bsqrt(x)+cexp(-x))
57 0.967254806  y=(a+bsqrt(x)+c/x2)
58 0.966964866  y=(a+bsqri(x))
50 0.961787417  y=1/(a+bsqrt(x))
60  0.945617104  y=(a+bln(x)+cx3)
61  0.930547347  y=(a+bx2+cx3)
62 0910399712  y=1/(at+bx+cx2)
63  0.881016930  y=(a+b/x+cx2)
64 0.862562487  y=(a-+bx2+cexp(-x))
65  0.860796660  y=(a+bx2+c/x2)
66  0.852790865  y=1/(a+bln(x))
67 0.831747013 y=(a+bx2)
68  0.812584302  y=1/(a+bx)
69  0.782989034  y=(a-+b/x+cx3)
70 0.763944860  y=(a-+bln(x)+c/x)
71 0.756049099  y=(a+bx3+cexp(-x))
72 0753688193  y=(atb/x2+cx3)
73 0.737016402  y=(a+wn(x)+cexp(-x))
74 0.732439718  y=(a+bln(x)+c/x2)
75 0.714115818  y=(a+bx3)
76 0.685126772  y=(a+bln(x))




The residual between a fitting formula and the LBRF of Eq. (2.24), for a fixed
source energy F and emission angle ¢, is defined as

R(z) =InF(z) — In[R(E, z, ¢)/kE]. (4.9)

An illustration of the residuals obtained with the three fitting formulas, Eqs. (4.6)
to (4.8), for 3.5 MeV photons at an emission angle of 2.5 degrees is given in Fig. 4.1.
Obviously, the two parameter formula should not be used for this fitting because of its
large residuals both near and far from the source. While the four-parameter formula
looks a little bit better than the three parameter formula, the three-parameter formula
is still reasonably accurate over the full 1 to 3000 m source-to-detector range. Based
on a balance between the goodness of the fitting and the computational effort, the
three-parameter formula of Eq. (4.7) is a good choice.

Fit residuals

-

-06 L1 ! i
0 1000 2000 3000

Source-to-detector distance (m)

Figure 4.1. Residuals for the three approximating formulas
Egs. (4.6)-(4.8) for the LBRF at a photon energy of 2 MeV
and for a beam angle of 45 degrees.

Recently, another four-parameter approximating function has been proposed for
the LBRF, namely [Ha94]

In[F(z,a,b,c,d)] =a+blnz —czx —dz Inz (4.10)

This fitting formula was found to be superior to that of Eq. (4.6) for energies less
than a few MeV. However, for energies above 10 MeV, it does not approximate the
LBRF as well as Eq. (4.6). Consequently, for the low-energy approximation to the
LBRF this formula, along with Eq. (4.7), was fitted to the reference LBRF values for
beam energies below 10 MeV.
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4.2 Improved LBRF Approximations

4.2.1 A Three-Parameter Approximation

From the experience gained with TABLECURVE, it was apparent that the three-par-
ameter formula of Eq. (4.7) to approximate the LBRF is a good choice. Therefore,
Eq. (4.1) can be expressed as

R(z,E,¢) ~ kEexp[lnF(z,a,b,c)]
~ kEz’expla — cul. (4.11)

In this section the results of fitting the this three-parameter formula to the reference
LBRF values are presented.

The fitting parameters a, b, and ¢ were determined in this study for 20 discrete
energies F; and for 20 or 17 (depending on the energy region) discrete beam angles
¢; (see Tables 4.1) and 4.2. Compared to LBRF energies used in previous studies
[La88, Sh91], this energy set has three new features. The first is that, while the
original energy had a lower limit of 100 keV, the new energy range is extended down
to 20 keV. The second is that there are more energies in the lower energy range than
in the higher, since the skyshine dose rate varies much more rapidly with energy in
the lower energy range. The third is that the upper energy range has been extended
from 10 MeV to 100 MeV. The angular structure used for energies below 15 MeV,
listed in Table 4.1, is the same as that used in earlier studies [La88, Sh91].

For each discrete beam energy and angle, the parameters, a, b, and c of Eq. (4.11),
were found by minimizing one of the objective functions S;(a,b,c), i = 1,2,3 for
source-to-detector distances z,, from some minimum distance (1 m for the point
kernel data or 100 m for the MCNP data) to a maximum range z,, . The maximum
range was taken to be 3000 m or the distance z;, at which ®,; becomes less than
some prescribed value, e.g., 1073 rads per photon. Although greater fit ranges can
be achieved than those limited by the 1073 rads per photon criterion, the point kernel
reference values used in such a fit would be unreliable since the point kernel model
would make use of buildup-factor approximations beyond their range of applicability.

The variation of z,, with energy F is shown in Fig. 4.2 for the three emission
angles of 1.5, 45, and 150 degrees. As would be expected, the z,, range increases
with increasing energy and with decreasing emission angle. For smaller emission
angles, z,, increases faster than for larger emission angles. The approximate LBRF
of Eq. (4.11) for low energy photons in the backward directions has a maximum fit
range considerably less than the 3000 m desired. Nevertheless, this approximation
may still be applied in most skyshine analyses for distances greater than z,, since
the extremely small and uncertain doses from such low-energy and backward moving
beam components are negligible compared to the much higher doses caused by higher
energy or forward directed source photons.
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Figure 4.2. Variation of the maximum range x,, (m)used in the fit
of the LBRF with photon energy. For source-to-detector distances
greater than z,, (m), the LBRF was less than 10~%° rad/photon.

Values of the approximation parameters a, b and ¢ depend on the fitting criterion
used, i.e., which of the objective functions S; of Egs. (4.3) to (4.5) is to be minimized.
Several measures of the goodness of the approximating fit can be used such as the
average absolute deviation, the maximum deviation, or the mean squared deviation
between the fit and the reference values. A plot is shown in Fig. 4.3 of the resulting
maximum versus average fit deviations for the least squares (S1) and the minimization
of the maximum deviation (S;) or MMD criteria for the low-energy (< 15 MeV) fits
made to the 300 different beam energies and angles of Table 4.1. Although both fitting
criteria produce the same range of average deviations, the Sy criterion produces, as
would be expected, smaller maximum deviations between the fits and the reference
values. The deviations produced by the S3 criterion (not shown in Fig. 4.3) are
very similar to those for the S; criterion except than several fits produced average
deviations considerably greater than those for the S; fits. From these results it was
decided to use the MMD (S;) criterion to obtain the approximation parameters for
the 3-parameter approximation of the LBRF.

The results obtained for the fitting parameters a, b, and c, are presented in Ap-
pendix A, together with the quantifications of the absolute deviations of the fit to the
reference values.
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Figure 4.3. Fit deviations produced by fitting the 3-parameter for-
mula Eq. (4.11) to the 300 sets of energy-angle reference LBRF data
calculated from the point kernel LBRF model for 15 MeV and below.
Shown are results obtained by the least-squares method (circles) and
by the MMD method (open squares).

4.2.2 A Four-Parameter Approximation

The four-parameter function of Eq. (4.10) can also be used to approximate the LBRF
as
R(z, E, ¢) ~ cExb — dz)e® . (4.12)

This function was fitted to the 300 sets of point kernel reference LBRF data for
photon energies of 15 MeV or less. In Fig. 4.4 the average and maximum deviations
between the fit and the reference data are shown for the 280 fits for energies of
10 MeV or less. From a comparison of this figure to Fig. 4.3, it is apparent that
the four-parameter function represents the LBRF data much better than does the
three-parameter approximation. Indeed, if the 10 MeV case were also excluded from
Fig. 4.4 there would be only three points with average deviations above 7%. Again
the Sy fit is seen to produce results with slightly lower maximum deviations than
does the least-squares S; fit. For this reason the S, fit was used to obtain the fitting
parameters a, b, ¢, and d tabulated in Appendix B.

Because the fitting errors produced with the four-parameter approximation were
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comparable to those produced with the three-parameter formula,
fits are reported for energies above 15 MeV.

no four-parameter

25 T T
o°®
®

20 L -
P .
5 L4 o
= ° * I
=] b [ ] a]
B 5 . o .
A [ Ja) a a
-
3
5 o
8 [s]
o o
] o _
E
5
E
>
o
=

1
8 12

Average absolute deviation (%)

Figure 4.4. Fit deviations produced by fitting the 4-parameter for-
mula Eq. (4.12) to the 280 sets of energy-angle reference LBRF data
calculated from the point kernel LBRF model for 10 MeV and below.
Shown are results obtained by the least-squares method (circles) and
by the MMD method (open squares).

4.3 Correction for Different Air Densities

For an infinite homogeneous medium of density p with a point source of arbitrary en-
ergy and angular distribution at the origin, the dose distribution D,(r) can rigorously
be related the dose distribution D, (r) for the same problem but with the medium’s
density changed to p,. Specifically, Zerby [Ze56] showed

D,(1) = £, o/ (413)

[4

This general result can be immediately applied to the LBRF.

The calculations of R and its approximation of Eq. (4.11) were all made with a
reference mass density p, = 0.0012 g/cm3. Skyshine problems often involve atmo-
spheres at different densities. With the density scaling property of Eq. (4.13), the
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3-parameter approximate LBRF for air with density p becomes

R(z, E, §) = kE(p/ o) la(p] po) e /0. (4.14)

The fitting parameters a, b, and ¢ are the same as those obtained at the reference
’ density p, and depend only on the source energy E and the beam angle ¢.

The 4-parameter LBRF approximation of Eq. (4.12) can be corrected similarly for
atmospheric density, namely

R(z, B, 8) = KE(p/po)’[a(p/ po)| "~ /P lecx0lre), (4.15)

An example of this density scaling result is shown in Fig. 4.5 which shows MCNP
calculated values of the LBRF in an infinite air medium of density p, = 0.0012 g cm 3
(open squares) and then corrected to a density of p = 0.00135 g cm™ by Eq. (4.13).
Also shown in the figure by the solid squares are values directly calculated by MCNP
for an air density of p = 0.00135 g cm™3. Clearly, the two sets of results are in

excellent agreement.

If the medium is not homogeneous, then Eq. (4.13) does not rigorously apply.
However, because soil has very similar photon cross sections as those of air, one
might expect that the scaling property used in Egs. (4.14) and (4.15) might be ex-
cellent approximations of the effect of changes in the air density. In Fig. 4.6, MCNP
calculations similar to those shown Fig. 4.5 are shown except in these calculations
there was an air-ground interface present. The good agreement between the density
corrected values and the calculated values verifies that density scaling can also be used
for skyshine problems with an air-ground interface. Further effects of the air-ground
interface are presented in Chapter 7.

4.4 Interpolation of Fitted Response Function

A double interpolation scheme was used in this study to make the approximate line-
beam response function continuous in both energy and angle [Sh91]. The approximate
LBRF is first linearly interpolated in energy to yield the response at the energy E of
interest. If F; < E < Ej;;; then the approximating function F = R/FE at the two
bracketing discrete energies are reconstituted from the fitting parameters in Eq. (4.11)
or (4.12) and F(E, x, ¢;) is then obtained by linear interpolation as

E;—E E—E;

f ] E, i) — fL T E B — Fory’ 416
(z b;) flvﬂ E;—E;; + i Ei—-E ( )

) where
Fij = Fz, Ei, ¢)- (4.17)

Once the energy interpolation has been performed at the two bracketing angles,
an interpolation in the beam direction ¢ is performed. In earlier work [Sh87, Sh92]
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Figure 4.5. MCNP calculated values of the LBRF in an infinite air medium. The
open squares are values calculated with a density p, = 0.0012 g cm™3 and then
corrected to a density of p = 0.00135 g cm™3 by Eq. (4.13). The solid squares are

values directly calculated by MCNP for an air density of p = 0.00135 g cm™3.
107 o 1 1 1 1 I 3
C Om 10 MeV beam at 2 deq. ]
10-17 L Og __
= =) 4 E
= 0 3
~— N o | | :
S 1o® [ = ° o n -
£ c m o4 * . E
= - ]
“é, oL g “m u/— 25 MeV beam at 20 deg. i
= : Og e 7 MeV beam at 30 deg. E
\g - e L) o n =] B
C . ]
L 10‘20 L u a a =
@ E a [ ] 3
a E - LI é‘
ol 0 Density corrected values . a .
10 & Calculated at density 0.00135 g cm™ i E
10—22 i : L I S | ! 1 |

0 200 400 600 800 1000 1200

Source-to-detector distance (m)

Figure 4.6. MCNP calculated values of the LBRF with a ground interface present.
The open squares are values calculated with a density p, = 0.0012 g cm~3 and then
corrected to a density of p = 0.00135 g cm™2 by Eq. (4.13). The solid squares are
values directly calculated by MCNP for an air density of p = 0.00135 g cm™3.
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this angular interpolation employed linear interpolation between F(z, E, ;1) and
F(z, E, ¢;). However, at large distances, it was found that these two bracketing values
could vary by more than an order of magnitude and that such linear interpolation
could produce quite inaccurate results. Much better results are obtained by using a
logarithmic interpolation scheme. Thus, with G = In F, one obtains for ¢; < ¢ < ¢4

¢—9¢;
D41 — G5
For beam directions in the two end intervals, a logarithmic linear extrapolation pro-
cedure is used, namely, for ¢; = max{¢;} < ¢ < 180 degrees,

9(z,E,9) =G(z,E,¢;) +[G(z, E, p541) — G(x, E, ¢;)] (4.18)

- s

G(z,E,¢) =G(z,E, ¢5) +[G(z, E, ¢;5) — G(z, E, ¢J—1)]m- (4.19)
and for 0 < ¢ < ¢, = min{¢,} degrees
0(2,E.8) = G(a, B,61) + [0, B, 60) - Gle, B, o) 2=, (420)
Finally, the desired LBRF is obtained as
R(z, E, ) = Eexpld(z, F, ) (4.21)

With this double interpolation scheme, the approximate LBRF of Eq. (4.11) or
(4.12) is made completely continuous in angle ¢ and energy F. Unlike the original
LBRF [La79] which was represented as histograms in both energy and angle, the new
approximating LBRF proposed here varies smoothly with small changes in the argu-
ments of the LBRF. However, it should be noted that, while this continuity feature
increases the precision of a skyshine calculations, it does require more computational
effort and has little effect on the accuracy of the skyshine doses [Sh&7].

4.5 Examples of the Approximate LBRF

Both a three-parameter and a four-parameter approximation for the LBRF has been
developed, the former applicable over the entire energy range studied (0.02 to 100
MeV) and the latter applicable only to energies less than 15 MeV. The parameters
for the three-parameter approximate LBRF of Eq. (4.14) are tabulated in Appendix
A, and those for the four-parameter approximation given by Eq. (4.15) are listed
in Appendix B. Before examples of skyshine calculations are presented in the next
chapter, examples of the LBRF and its approximations are given here.

4.5.1 Comparison of Point-Kernel and Approximate LBRF

Example comparisons of the approximate line-beam response functions, Eqs. (4.14)
and (4.15), to the point kernel model of Eq. (2.24) are shown in Figs. 4.7 through
4.11. The data points in these figures are calculated with the point kernel LBRF
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Figure 4.11. Comparison at different source-to-detector distances
of the point kernel LBRF (dots) with the three-parameter (dashed
lines) and four-parameter (solid lines) LBRF approximations for a
beam angle of 150 degrees.

model and most of the points are at energies or angles other than those used to
generate the reference LBRF data to which the approximate LBRFs were fit. Both the
three parameter approximation (dashed lines) and the four-parameter approximation
(solid lines) agree closely with the point kernel data over a wide range of beam angles
and directions, As would be expected the four-parameter approximation gives better
agreement than the three-parameter approximation.

In Figs. 4.9 through 4.11, which show the LBRF as a function of energy, those por-
tions of the approximate LBRF above 15 MeV were calculated by the three-parameter
approximation (obtained by fits to MCNP data). The four-parameter approximation
was not developed for these energies, and the four-parameter algorithm used to gener-
ate these results reverts automatically to the three-parameter model, thereby causing
both approximations to appear to produce identical results. Also the high-energy
portion of these results for distances greater than 1000 m are values obtained by ex-
trapolating the three-parameter approximation beyond its maximum fit range, and

as will be seen in the next section, such an extrapolation tends to underpredict the
LBRF.

Finally, in Fig. 4.12 the LBRF is shown as a function of the source-to-detector
distance. Besides results from the point kernel LBRF model and the two approxi-
mate LBRF's, this plot also includes Monte Carlo values calculated by Lynch {Ly58]
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and values from an alternative point kernel model [Ge88]. The excellent agreement
between all these results gives confidence in the new approximate LBRFs reported
here.

Previous Approximate LBRF's

The three-parameter approximation of Eq. (4.14) has been used in several earlier stud-
ies to approximate the LBRF [Pr76, La79, Sh87, Sh92]. The set of approximating
parameters used varied with each study, each study improving the accuracy and/or
range of the approximate LBRF. The most recent of these earlier sets of approxi-
mating parameters [Sh92], although slightly different than that of Appendix A, gives
nearly the same results for most skyshine problems and can be used as an alternative
to that of Appendix A.

No parameter set for the four-parameter LBRF approximation has previously been
reported. The slightly improved accuracy of this approximation generally makes this
approximation the preferred choice for the line-beam skyshine method for source
energies below 10 MeV.

4.5.2 The High Energy Approximate LBRF

As mentioned earlier, the point kernel model of the LBRF does not give sufficiently
accurate results for photon energies above 15 MeV to form the basis for developing
a set of approximation parameters (see Figs. 3.15 to 3.16). With future work, the
bremsstrahlung component of the present point kernel LBRF model, which is based
on the overly simplistic straight-ahead approximation, may be improved by using a
better description of the angular distribution of secondary bremsstrablung. Such an
improved model is needed if accurate reference data are to be generated for distances
far from the source.

In the present study, MCNP calculations of the LBRF were used to generate the
reference LBRF values, and despite large calculational expenditures, values of the
LBRF produced were generally restricted to source-to-detector distances of 1000 m
or less. Only for the smallest beam angles was it possible to obtain statistically mean-
ingful values at greater distances. Based on these MCNP calculations, the parameters
listed in Appendix A were derived for the three-parameter approximate LBRF. The
paucity and accuracy of the reference LBRF values above 15 MeV, precluded fitting
a four-parameter approximation to the LBRF.

In Figs. 4.13 to 4.15 the resulting three-parameter approximate LBRF is compared
to the MCNP results used to generate the approximation. The approximation is seen
to faithfully reproduce the MCNP results.

The question arises as to whether the approximate LBRF may be used at source-
to-detector distances greater than the 1000 m limit used to generate the fit parame-
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ters. With multi-day MCNP runs it was possible to obtain far-field LBRF values for
a few small beam angles at distances up to 3000 m. Two examples of these far-field
calculations are shown in Figs. 4.16 and 4.17. Also shown on these far-field exam-
ples are the three-parameter approximation (dotted line) and the point kernel LBRF

. (solid line). The point kernel not only underpredicts the LBRF but even has the
wrong asymptotic slope. The three-parameter approximate LBRF gives good agree-
. ment with the MCNP results up to about 1200 m, but at greater distances increasingly

underpredicts the LBRF. Thus use of the three-parameter approximate LBRF for en-
ergies greater than 15 MeV must be used cautiously at distances greater than about
1200 m.
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Figure 4.15. Comparison of the three-parameter ap-
proximate LBRF (smooth lines) to MCNP calculations (his-
tograms) for 70 MeV photons. The nine LBRF angles are 2,
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Chapter 5

Application to Unshielded Sources

In the previous chapters, the monoenergetic and monodirectional skyshine line-beam
response function (LBRF) has been determined by the point kernel method and
approximated by a three-parameter empirical formula. With this approximate LBRF,
the skyshine dose arising from a point source with any energy and angular distribution
can be evaluated easily. In this chapter, explicit results for three basic skyshine
geometries are presented.

In the original SKYSHINE method [La79, La88], the LBRF was approximated
by the same three-parameter empirical formula used in this study. Tables of the
three parameters for the approximating formula were obtained by fitting the for-
mula to Monte Carlo results for 12 energy and 20 angular groups. The SKYSHINE
methodology then used a Monte Carlo approach to sample the energy and emission
direction of the radiation leaving the skyshine source. The energy and angular group
of each source photon was determined and its response function was then used to
determine the photon’s contribution to the dose at the detector. Such a Monte Carlo
approach was still computationally expensive, since it required extensive sampling of
source photons to obtain a statistically meaningful estimate of the dose at the de-
tector. Moreover, the relatively broad energy and angular group structure precluded
this method from being able to determine the effect of a small change in the energy
and/or angular distribution of the skyshine source.

Rather than to use a Monte Carlo approach with the LBRF constrained to fixed
energy and angular groups, it is better to use a LBRF which is continuous in energy
and direction. The skyshine dose at a remote detector can then be evaluated by
integrating the LBRF, weighted by the energy and angular distribution of the source,
over all source energies and emission directions. This integral LBRF method has
been shown to be a simple, computationally inexpensive, and accurate method for
performing routine skyshine analyses [Sh87, Sh91].

The general formulation of the integral LBRF method has already been outlined
in Section 1.3. For a bare, monoenergetic, vertically collimated, isotropic source that
has no overhead shield, the dose rate at a distance d from the source is given by
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Eq. (1.4), namely
27 Wmaz
R@ =22 [Ty [T R, B,9) (5.1)
47" 0 Wmin

where w is the cosine of the polar angle § with respect to the zenith, and the azimuthal
angle v is defined with respect to the projection of the line beam on the horizontal
plane. Here wyi, and wpe, define the permissible range of w allowed by the source
collimation. Generally, these limits are functions of the azimuthal angle 1.

This formulation can be used to calculate the skyshine dose rate for any point mo-
noenergetic skyshine source.! Once the integration imits wp;, and wpe, are obtained
for a particular geometry, either from explicit expressions or numerical procedures, the
integrals in Eq. (5.1) can be evaluated readily using standard numerical integration
techniques.

In this chapter explicit expressions are given for the integration limits for three
frequently encountered skyshine geometries. These are (1) an unshielded source on
the axis of a vertical cylindrical-shell shield (open silo), (2) a source behind a infinitely
long shield wall, and (3) a source inside a roofless rectangular building.

5.1 Open Silo Geometry

Figure 5.1 shows the geometry of a vertical cylindrical-shell shield with no overhead
shielding. The inner radius of the silo is r and the wall is assumed to be black, i.e.,
all incident source radiation is absorbed by the wall. A monoenergetic point source
isotropically emitting photons of energy E is located on the vertical axis of the silo
at distance h; below the horizontal plane of the silo top. A detector (receiver or dose
point) is located in air of density p at a radial distance z from the silo axis and at a
distance hg below the horizontal top of the silo wall. If the source or the detector is
located above the top of the silo, h; or hy is taken to be negative. The total detector
response for this open silo geometry, with azimuthal symmetry, is explicitly
S ks 1
R(d) =22 /0 dy [ doR(d, E, ). (5.2)

27 Wo

To evaluate this expression, one must first determine w,, ¢, and the source-to-
detector distance d in terms of the problem parameters. The distance from the source
to the detector is

d = /22 + (hy — hy)? (5.3)

and the angle ( between the horizontal and the source-to-detector axis is

¢ = tan"*[(hs — hq)/x). (5.4)

For polyenergetic sources, Eq. (5.1) also needs to be integrated over the source energy distribu-
tion, or equivalently, treated as a sum of monoenergetic sources. See Section 1.3.
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Figure 5.1. Geometry for the open silo skyshine problem. The point source
is on the silo axis at the origin of the spherical coordinate system. The silo
walls are assumed to be black.

The photons emitted from the point source are collimated by the silo wall into a cone
with a polar angle 9,4, given by

Wo = CO8 Vg = hs//72 + h2. (5.5)

The emission angle ¢ between the direction (s, ) of photon emission and the
source-to-detector axis is a function of the polar angle ¥, the azimuthal angle ¥
measured from the vertical plane through the source and the detector, and the angle
¢ given by Eq. (5.4). For a photon emitted at polar angle ¥ and azimuthal angle
¥, the cosine of the beam angle ¢ is the dot product of the unit vector along the
emission direction (denoted by e) and the unit vector along the source-to-detector
axis (denoted by u). Explicitly

e =1isindcost + jcos?d + ksindsiny (5.6)

and
u=1icos( +jsin(, (5.7)

where the 1, j, and k are the unit vectors along the x-axis, y-axis and z-axis, respec-
tively. Thus, the cosine of emission angle ¢ is

cos ¢ = e*u = sin ¥ cos ¥ cos ( + cos P¥sin(. (5.8)
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The integral over w from w, to 1 in Eq. (5.2) means that only those photons emitted
from the source with a polar angle ¥ equal to or less than ¥,,,;, or w > cos Vmez,
defined by the silo wall, make a contribution to the skyshine dose rate at a distance d
from the source. The wall does not influence the dose estimate other than to provide
source collimation. However, the detector response may be slightly underestimated
because of the neglect of contributions from photons that first scatter from the silo
wall and then escape the confines of the silo. This underestimate is balanced by the
neglect of the shielding provided by the silo walls against photons that scatter in the
air inside the silo before proceeding towards the detector. However, both of these
contributions are generally small, especially for large source-to-detector distances.

5.1.1 Comparison with Experiment and Previous Results

In a skyshine benchmark experiment [Na81], an isotropic point %°Co source was placed
on the axis of a cylindrical concrete silo with a wall sufficiently thick to preclude
radiation penetrating it radially. The ratio of the silo radius r to the source depth A,
was designed so as to define an open conical aperture with a full-angle, 26,,4,, of 150.5
degrees with the source at the apex. Calculations for this geometry were performed
using the integral line-beam method over a source-to-detector distance range from
5 m to 700 m, and energy range from 0.05 MeV to 1.25 MeV. The results of these
calculations are shown in Fig. 5.2 together with the benchmark experimental data.
In this plot, the source-to-detector distance is expressed in units of areal density,
the product of the air density and the source-to-detector distance. The dependent
variable is the exposure per photon multiplied by the square of the source-to-detector
distance and divided by the solid angle of collimation, namely 4.683 sr. In this form,
the strong effect of source-to-detector distance on detector response, through the
inverse-square law, is suppressed.

There are two sets of calculations illustrated in Fig. 5.2. The solid lines are the
results based on the new 3-parameter LBRF approximation obtained in this study.
The dashed lines are the results based on a previous LBRF approximation [Sh87).
The differences between the new and old results increase with decreasing photon
energy. There are no comparison data for 0.05 MeV photons since the old LBRF
could not be used to evaluate skyshine for source photons below 0.1 MeV (the new
LBRF can be used for skyshine dose calculations for photons between 10 keV and
15 MeV). It is seen from these results that the improved line-beam response function
gives results that are slightly closer to the experimental benchmark results, especially
at large detector distance, than are those obtained with the older line-beam response
function.

Fig. 5.3 shows the same data in a different format along with very detailed MCNP
calculations done for this experiment [0193] and with results obtained from the new
3-parameter and 4-parameter approximate LBRFs. Fig. 5.4 shows the same results
on a logarithmic scale as well as results from a 39 energy-group discrete-ordinates
calculation [Na81]. All these results agree well, although there are noticeable dif-
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Figure 5.2. Results for a benchmark skyshine experiment. The source is
on the axis of a cylindrical silo with 150.5-degree (full conical angle) col-
limation. Solid lines represent results obtained with the improved LBRF
approximation. Dashed lines are results based on an earlier LBRF approxi-
mation [Sh91]. Closed circles are results of detailed MCNP calculations [O193].
Measured data are from a benchmark skyshine experiment for a 49Co source
[Na81]. Open circles represent measurements made using a high pressure
ion chamber. Open squares represent measurements made using a Nal scin-
tillation detector.
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ferences between the two approximate LBRFs with the 4-parameter LBRF giving
slightly better values at large source-to-detector distances.
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Norm. Exposure rate (m mR h” ¢
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Areal source-detector distance (g/cmz)

Figure 5.3. Comparison of calculated and experimental results for the open-silo
benchmark experiment with a 80Co source [Na81]. Open diamonds represent mea-
surements made with a high pressure ion chamber, and the open squares are mea-
surements made with a Nal scintillation detector. The lines are results obtained
from the integral line-beam method, with the solid line based on the four-parameter
approximate LBRF, and the dashed line on the three-parameter approximation.
Solid circles are from detailed MCNP Monte Carlo calculations [O193].

5.1.2 Importance of In-Silo Scattering

In the proceeding analysis for the open silo problem, it was assumed that all photons
emitting from the collimated source make a contribution to the skyshine dose (as
indicated by the integration along the line beam from zero to infinity in Eq. (2.24))
even though the initial portions of the line beam is occluded from the detector by the
silo wall. Photons scattered from the initial portion of the beam are still inside the silo,
and, therefore, they cannot make a direct contribution to the skyshine dose. Photons
emitted in the backward direction, away from the detector, and that interact in the
air just outside the source structure can also be shielded from the detector by the
interposing source confinement structure. Generally, inclusion of this in-silo scattering
(or occluded) component will not cause a serious overestimation in the skyshine dose
except, perhaps, for the case of very low energy photons that travel only a short
distance along the beam before interacting. In this section, the importance of the
occluded portion of the line beam is discussed.
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Figure 5.4. Comparison of calculated and experimental results for the
open-silo benchmark experiment with a ®*Co source [Na81]. Open squares
represent measurements made with a high pressure ion chamber, and the
open circles are measurements made with a Nal scintillation detector. The
lines are results obtained from the integral line-beam method, with the solid
line based on the four-parameter approximate LBRF, and the dashed line
on the three-parameter approximation. The broken line (with short dashes)
is based on DOT 39-group discrete ordinates calculations. Solid circles are
from detailed MCNP Monte Carlo calculations [O193].

The geometry used to analyze the importance of in-silo scattering is illustrated
in Fig. 5.5. Consider an arbitrary photon beam emitted from a monoenergetic point
source located at the axis of an open silo. Secondary photons produced along the
beam from 0 to y, cannot make direct contributions to the skyshine dose because of
the intervening silo wall. The value of y;, is the length along the beam from the source
to the point at which a line from the detector that just grazes the top of the silo wall
intersects the beam. Thus the line beam response function, defined by Eq. (2.24),
should be modified as

R(o B, 6) = 5= #'(ufo) [ di £(52. B, ), (5.9)

where the function f(§,z, E, ¢) is the integrand given by Eq. (2.61).

For the special case that the source and the detector are at the same elevation, ¥,
is found to be [De91]

hsz
Yn =

= 1
zcosf + hysinfcosyy — rcosfcosi,’ (5.10)
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Figure 5.5. Geometry used to analyze the effect of the silo wall occluding the
initial portion of the line beam.

with o
e = sin™! <M> . (5.11)

tan 4,

Skyshine doses calculated from Eq. (2.24) (y, = 0) and from Eq. (5.10) (y, > 0)
for the open silo geometry are compared for different source energies in Figs. 5.6 and
5.7. In Fig. 5.6 the source is 5 m below the top of an open silo of 1-m radius. The
contribution from the occluded portion of the beam is seen to be significant only for
very low energies (E < 30 keV) and is greatest when the detector is near the outer
wall of the silo. In Fig. 5.7 the source is raised to 1 m from the top of the silo, thereby
greatly broadening the conical collimation of the emitted radiation and shortening the
beam occlusion lengths. Even for the lowest of the energies shown, the contribution
from the occluded portion of the emitted beams is seen to be negligible.

For most practical cases the inclusion of the occluded beam section in the skyshine
dose introduces a negligible over estimation. Only for very low source energies and
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Figure 5.6. Comparison of the skyshine dose with the occluded portion
of the source beams excluded (dashed lines) and using the entire length of
the source beams (solid lines). Results are for a source on the axis of a 2-m
diameter silo 5 m below the silo top.
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Figure 5.7. Comparison of the skyshine dose with the occluded portion
of the source beams excluded (dashed lines) and using the entire length of
the source beams (solid lines). Results are for a source on the axis of a 2-m
diameter silo 1 m below the silo top.
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for sources deep below the top of the confinement walls should the occluded portion
of the beam be omitted in the skyshine calculations.

5.2 Infinite Wall Geometry

The geometry of this skyshine problem is illustrated in Fig. 5.8. A point monoener-
getic source, shielded by a vertical and infinitely long black wall, isotropically emits
photons of energy E. The source is a vertical distance i, from the horizontal plane
through the top of the wall and a perpendicular distance r from the wall. A detector
is located in air of density p at a distance hy beneath the same reference plane as
used for A, at a distance x4 from the source along a normal to the wall, and with a
horizontal offset z to the normal axis from the source to the wall.

Detector

Y %

N/ UNSHIELDED
Wall WALL GEOMETRY

Figure 5.8. Geometry for the infinite wall skyshine problem. A point isotropic
source is place a distance i, below the top and a distance r behind an infinitely
long black wall. The detector on the other side of the wall has coordinates (z4, hs—
ha, z4) in a coordinate system with the origin at the source and the horizontal z —y
plane parallel to the top of the wall.




The skyshine dose for this infinite-wall geometry is given explicitly by

1

R(d) = f—; /0 T [ deR(d,9). (5.12)

Wmin

To evaluate this expression, one must first determine wy,;,, the beam angle ¢, and
the source-to-detector distance d. From the geometry of Fig. 5.8, the distance from
the source to detector is found to be

d = /22 + (hy — ha)? + 23, (5.13)

and the angle { between the horizontal and the source-detector axis is determined by

¢ = tant | L2l (5.14)
Jai+a) '

The angle £ between the source-to-detector axis and the normal from the source to
the wall is given by

£ = tan""(z4/a), (5.15)

The cosine of the angle ¢ between the direction of the photon beam and the
source-to-detector axis is the dot product of the unit vector e along the beam and
unit vector u along the source-detector axis, namely

e =1isinfcos(yp — &) + jcosd + ksinfsin(yp — &), (5.16)
and
u=icosfcos(+jsin{ —kcos(siné. (5.17)
Thus,
cos ¢ = e*u = cos Y sin # cos ( + cosfsin (. (5.18)

For this infinite wall geometry, the minimum polar angle of rays emitted into the
atmosphere 8,,, is clearly equal to 0. To obtain the maximum polar angle 8,4,
the (0,27) range for the angular variable ¢ is divided into two ranges. In one range
(0< ¥ <w/2+ &) and 3/27 + £ < ¢ < 27), photon beams are directed towards the
wall, and the maximum polar angle (Wmin = COS O, ) is defined by the photon beam
that just clears the top of the wall. In the second range (7/2 +¢ < ¢ < 37/2 +§),
photon beams are directed away from the wall. For this case, all beams directed
away from the wall are assumed to contribute to the skyshine dose and hence the
maximum polar angle is set to 7/2 (0r Wy = 0). This simplified treatment for the
backward beams will, in principle, overestimate the skyshine dose because the initial
portion of these backward beams will be occluded from the detector by the infinite
wall. However, this overestimation will generally not cause a serious error since the
contribution made by the shielded portion of the backward beams is several orders
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of magnitude less than that made by the beams directed towards the detector. Thus
the maximum polar angles for the infinite wall problem are given by [Sh91]

tan—l(m%——@), 0<¢<m/2+€ 3/2m+{ <y <2,

gmax -

/2, T/2+& <P <3n/2+¢
(5.19)

Figure 5.9 shows the results of skyshine dose calculations for the infinite-wall
geometry problem. A bare, point, isotropic source of 1*N gamma photons with energy
of 6.2 MeV emits one photon per second. A detector is placed at distances x ranging
from 10 to 1600 m, and at an offset z, = 0 m. The skyshine doses are calculated for
the source placed at different depths h; at a perpendicular distance r of 1 m from
the black wall. The solid lines are results based on the new approximation for the
LBRF, and the data points are results based on the LBRF obtained by Shultis et al.
[Sh91]. The excellent agreement between the new and old results at this energy is to
be expected since the old LBRF has been shown to be quite accurate in this energy
region. The dose rate produced by a bare source near the top of the wall (h, = 0) is
much higher than that for a source below the top of the wall. The shielding effect of
the wall is very obvious even at an hs of 0.5 m.

Figure 5.10 compares the skyshine doses for the infinite wall skyshine problem
obtained by the new LBRF approximation (solid lines) and a previous LBRF approx-
imation [Sh91] (dashed lines) for different source energies The results obtained from
the new and the old LBRF are in good agreement at energies above 1 MeV. The dif-
ferences between two approximations, however, increase with decreasing energy below
0.2 MeV. There are no comparison data for the 0.05 MeV skyshine dose in Fig. 5.12
since the old LBRF is restricted to an energy range of 0.1 MeV to 10 MeV.

5.3 Open Rectangular Building Geometry

Of considerable practical importance is the skyshine problem in which photons are
emitted from a source inside a rectangular building with thick walls but a thin roof.
The geometry for this skyshine problem is illustrated in Fig. 5.11. A point monoen-
ergetic source, isotropically emitting photons of energy F, is located on the z-axis at
a depth h, from the horizontal plane defined by the top of the rectangular building.
As shown in Fig. 5.11(b), the source is a perpendicular distance x; from the front
wall, 21 from the rear wall, y; from one side wall, and y; from the other side wall.
The walls are assumed to be black. A detector is located at coordinates z (= z1 +z4)
and y (= yq4) in a horizontal plane, with z4 measured from the detector along an axis
normal to the front wall and offset a distance y4 from this normal axis. The detector
is located at depth hy below the horizontal plane through the top of the wall. The
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Figure 5.9. Variation of the skyshine dose with source-to-detector distance
for a source of 6.2 MeV photons 1 m behind a black wall and at various
depths below the top of the wall. The detector is placed 17.4 m below the
top of the wall. Data points are based on earlier LBRF approximations
[Sh91]. Solid lines are based on the new 4-parameter LBRF approximations.

skyshine dose for the detector is then given explicitly by

R(d):f—; /O%dw 1 doR(d,E, ) (5.20)

Wmin

To evaluate this expression, one must first determine w,,;,, the beam angle ¢, and

the source-to-detector distance d. The distance from source to detector is found to
be

d = \/(zz + 2)? + (hs — ha)? + ¥2. (5.21)

The angle between the reference plane through both the source and the detector and
a plane normal to the wall is given by

¢ = tan™" (L) , (5.22)

Lo+ x4

and the angle ¢ between the horizontal and the source-to-detector axis is given by

= tan~! fs — 23
¢ =tan (\/(x2 Y +y§) . (5.23)

The angle ¢ between the direction of a photon beam and source-detector axis is given
by Eq. (5.8) for this rectangular building problem.
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Figure 5.10. Variation of the skyshine dose with source-to-detector dis-
tance for different photon energies. The source is located 1 m behind a
black wall and 5 m below the top of the wall. The detector is placed 17.4 m
below the top of the wall. The solid lines are results obtained with the
improved LBRF approximation, and the dashed lines a results based on a
previous LBRF approximation [Sh91].

The minimum polar angle 6,,;, equals 0. To obtain the maximum polar angle, the
27 range for v was divided into four subranges. As shown in Fig. 2.9(b), ¢ is measured
in the horizontal plane from a vertical plane through the source-detector axis. Each
1) range is defined by the critical angles 1, 1y, 3, and 14 shown in Fig. 5.11(b) that
are measured from the reference plane to the corners of the rectangular building. The
critical ¥ angles are given by

P = tanTH(y /@) — &, (5.24)
Py = tan" (zy/y) + /2 €, (5.25)
Y3 = tan " (yp/71) + 7 — &, (5.26)
Yo = tan"(za/ys) + 37/2 — &, (5.27)

In the above formulation, the angle £ can be either positive (when the detector
is offset in the positive ¢ direction) or negative (when the detector is offset in the
negative ¢ direction). Thus the maximum polar angles for this rectangular building
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Figure 5.11. (a) Geometry for the rectangular building skyshine
problem. A point isotropic source is placed within a roofless rectan-
gular building with black walls. (b) Plan view showing the geometry
variables used to calculate the skyshine dose.
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problem are found to be

|
o
o

emax = 9

tan~! (

5.3.1 Results for

hcos(zb—}-f) Ya—2r <Y <t
hscos(qp+§_7r/2)) Y1 S Y < o
(5.28)
hcos(z/)+§ 7r)> Yo S Y < s
Y2
hy cos( + £ — 37r/2)) Yy S Y < Yy

ANSI Benchmark Skyshine Problems

ANSI/ANS-6.6.1 Reference Problem I-1 involves a 6.12-MeV point isotropic source
positioned in air 18.3 m above the earth. Detectors are placed 0.91 m above the earth
at distances from 61 to 1500 m from the normal through the source to the ground.
The results of skyshine dose calculations based on the new beam response function
compared with those of several benchmark calculations are presented in Fig. 5.13.

Only the dose rate due to

skyshine is shown.
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4 (62 ft heigh)
(4 ft thick)

Figure 5.12. Geometry for the ANSI/ANS-6.6.1 Reference Problem No. I.2.

ANSI/ANS-6.6.1 Reference Problem I-2 involves a 6.12-MeV point isotropic source
collimated by an open rectangular building [An87]. The source is placed on the ver-
tical axis of the rectangular roofless building which has black walls. The geometry
of this benchmark problem is shown in Fig. 5.12. The results of skyshine dose cal-
culations based on the new beam response function compared with those of several
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Figure 5.13. Comparison of results obtained by different methods for
ANSI/ANS-6.6.1 Reference Problem I1 [An87]. The solid lines are values
obtained with the new 4-parameter LBRF approximation. Dashed lines are
based on the original 3-parameter LBRF approximation used in the RRA
SKYSHINE series of codes [La79].

benchmark calculations are presented in Fig. 5.14. The new LBRF approximation
gives results that are in much better agreement with other benchmark calculations
than those from the SKYSHINE code which uses an older LBRF approximation.

5.4 Comparison to Moment-Method Results

A special limiting case for the skyshine problem occurs when the point monoener-
getic source and detector are at the same horizontal level as the top of the shielding
walls, with w,n;,, = 0. The source thus emits photons of energy E isotropically into a
hemisphere. The skyshine dose for such a 27-collimated source is exactly one-half of
the dose from a bare point isotropic source in an infinite air medium (less the uncol-
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Figure 5.14. Comparison of results obtained by different methods for
ANSI/ANS-6.6.1 Reference Problem 12 [An87]. The solid line are values
obtained with the new LBRF approximation using the rectangular building
skyshine geometry.

lided component). The exposure due to a point isotropic source has been calculated
by the moments method by Chilton, Eisenhauer, and Simmons in their calculation
of the point-source, infinite-medium, buildup factor [Ch79]. Therefore, one can use
these moments calculations to verify the integral line-beam method for the limiting
27-collimation case.

The moments method results for the 27-geometry problem can be obtained by
taking one-half of the scattered dose component arising from a point source in an
infinite air medium. If Rx(E) is the air kerma rate response function (rad m?),
B(E,z) the kerma buildup factor for photons of energy E at distance z from the
source, and p(E) the total air attenuation coefficient for photons of energy E, the
kerma rate, in units of rad/photon, is given by

Ry (E)e#E=[B(E, z) ~ 1]

Srz?

R(z)/S, =

. (5.29)




Comparison benchmark values were obtained from this expression by using the
buildup factors found by the moments method [Ch84] and the attenuation coefficient
data from the same source as used in the LBRF calculations [DI88]. The skyshine
dose calculation for this limiting 27-geometry problem was performed with open silo
geometry with the source and detector at the same elevation as the top of the silo wall
and with a 1-m silo radius, although the silo radius plays no role in the calculation.
Thus the skyshine dose rate reduces to

R(d)/S, = /0 " /0 ' dwR(E, 6, d), (5.30)

where the LBRF can be approximated by either Eq. (4.14) or (4.15). In the verifi-
cation calculation, the source-to-detector distance varied from 2 to 2500 m, and the
photon energy ranged from 0.1 MeV to 100 MeV. A standard air density of 1.225
mg/cm?® was used.

The 27w-skyshine results obtained from these two different methods are shown
in Fig. 5.15. The solid lines are the results obtained with the integral line-beam
method, and the data points are the results based on the moments method. A
similar comparison of the two methods was previously given by Faw and Shultis
[Fa87, Sh91]. In their plot, there were some inconsistencies at low energies because
of the coarseness of the energy structure used in their LBRF below 1 MeV. In this
study, using an improved LBRF with better low energy structure, the results of two
different methods are in remarkably good agreement.
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Chapter 6

Application to Shielded Sources

In many instances, photons from a skyshine source must first pass through some
mass of overhead material before escaping into the atmosphere. The overhead mate-
rial acts as a shield and tends to reduce the skyshine doses. While passing through
such overhead material, some photons will be absorbed, others will be scattered into
different directions with lower energies, some will create secondary annihilation pho-
tons through pair production interactions, and some will pass through the material
without interaction and maintain their original energy and direction.

6.1 Previous Approaches

The exact transport treatment of the skyshine doses arising from photons escaping
through a source shield and subsequently migrating through the atmosphere is a
computationally difficult problem, especially for large source-to-detector distances.
For accurate results, particle transport methods such as discrete ordinates or Monte
Carlo techniques must be used. However, such methods are expensive for routine
or preliminary analyses and, consequently, several approximate and computationally
less expensive approaches have been proposed to account for the effect of an overhead
shield on the skyshine dose. Four such approximate methods are reviewed below.

6.1.1 Exponential Attenuation With Buildup

The use of simple exponential attenuation combined with a buildup factor has been
found effective in describing the skyshine from photon beams passing through hor-
izontal overhead slab concrete shields [Ro82, Ge88] and has been incorporated into
the integral line-beam method [Sh91] and the MICROSKYSHINE code [Gr87]. In this
approach, the expression for the skyshine dose of Eq. (1.1) is modified as

R(d) = /0 V4B /ﬂ AQS(E, QR B, 9()B(E, N)e™. (6.1)
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Here B(E’, \') is the buildup factor in the shield material for source photons of energy
E’ emitted in direction € which must travel A’ mean-free-path lengths through the
shield before they reach the atmosphere. In this method the attenuation and buildup
of scattered photons in the shield is accounted for, but the change in energy and
direction of the secondary photons created in the shield is neglected. Although simple
to implement in the integral line-beam method, this method is at best approximate
and can result in over- or underprediction of the skyshine dose by factors of 2 to 5
[Ba89).

6.1.2 Transmission Factors

The later versions of the SKYSHINE codes [La88lincorporated empirical “transmission
functions” that approximately calculate the energy and angular distribution of pho-
tons that pass through a slab of material which is illuminated by photons of a given
energy and angle of incidence. Thus energy and angular distributions of source pho-
tons incident on interior walls of a confining structure around the source are modified
to account for spectral and angular changes as the photons pass through the walls.
The modified transmitted energy-angle distribution is then used as a source for a
bare skyshine calculation based on the infinite medium LBRF. This approach is com-
putationally simple since it avoids any detailed transport description of the photons
passing through a source shield. Its accuracy is determined primarily by the detail
contained in the empirical transmission functions and by the Monte Carlo procedure
used to integrate over all photon energies and directions. Decoupling of radiation
transport in building materials and in the atmosphere is discussed in greater detail
in Section 6.1.4.

6.1.3 Modified Line-Beam Response Functions

A recent approach for treating an overhead slab shield is to incorporate the shield’s
effect directly into the LBRF itself [Ha94]. With this method the shield can be
accounted for exactly, provided the LBRF is approximated from data that includes
the exact effects of the shield. The skyshine dose a distance d from the source is thus
calculated as o

R(d) = /0 dE' /Q dQS(E', R, E', (), T). (6.2)

where now the LBRF R is a function of the shield thickness T and the shield material.
This “shielded LBRF” can be approximated well by the four-parameter formula of
Eq. (4.12) by fitting this formula to Monte Carlo results that include the overhead
shield [Ha94]. At present, parameters for an approximate shielded LBRF are not
available. Although this method appears capable of good accuracy, the computa-
tional effort required to generate reference LBRF values and to obtain approximation
LBRF parameters for all combinations of source energies, beam angles, and shield
thicknesses, and shield materials appears to be prohibitive.
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614 ~Decoupled Calculations

b 'Another approach, which is capable of good accuracy for the case of a horizontal slab

- shield over a point source, is to decouple the shielded skyshine problem into two inde-

pendent problems. First the energy and angular distribution of the photon flow rate
or z-component of the current density, j,(z,y,T, E, 2), escaping through the plane
surface (z = T') on the atmospheric side of the shield is computed using a transport
method such as discrete ordinates or Monte Carlo. This escaping distribution is then
integrated over the entire slab surface and used as an effective bare point skyshine
source Syg(E, ) centered on the outer shield surface, namely

S(E, Q) = / dz / dy j.(z,y,T, E, Q) (6.3)

where the integration is over the entire outer shield surface. This effective point
source is then used in an unshielded skyshine calculation performed with the integral
line-beam method.

One important approximation in this two step hybrid approach is that the lateral
spread of the photons escaping the shield is negligibly small compared to the source-
detector distances of interest. Further, it is assumed that the dimensions of the
shielding structure are much less than the air transport distances, so as to have negli-
gible effect on the subsequent atmospheric transport problem. A key simplification in
the transport calculation is achieved if lateral leakage of photons can be ignored as,
for example, in a very wide slab shield. In this case a much simpler one-dimensional
transport calculation suffices to obtain S,g(F,2) [Ba89]. If, in addition, the angular
distribution of the incident photons on the inner shield surface is azimuthally symmet-
ric, such as shield illumination from a point isotropic source, the transport calculation
can be performed with a one-dimensional azimuthally-symmetric algorithm.

Keck and Herchenroder [Ke82] were the first to use this two step method. They
used the one-dimensional discrete ordinates code ANISN [En67] to estimate the
surface-integrated flux density of photons escaping from the shield. Later Bassett
[Ba89] used the discrete ordinates code KSLAB [Ry79], which is based on the exact-
kernel method [Mi77], to calculate the escaping photon distribution. This later ap-
proach is capable of a more detailed evaluation of the angular dependence of the
escaping photons than is a discrete ordinates method based on traditional Legen-
dre polynomial expansions. This accurate angular capability is especially needed for
source photons that are collimated vertically before reaching the overhead shield,
e.g., by the walls of a building or shielding around an experiment. The results of such
calculations were shown to give good predictions of shielded benchmark skyshine ex-
periments and were then used as benchmarks themselves to assess the accuracy of the
simpler exponential attenuation with buildup method to account for the shield effect
[Bag9].
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6.2 A Hybrid Monte-Carlo/LBRF Approach

In this study two variants of the two-step hybrid method for shielded skyshine sources
were investigated. A specialized analog Monte Carlo code module was written to
generate the energies and directions of photons escaping from the outer surface of an
infinite horizontal slab shield which is illuminated on the inner surface by monoener-
getic photons emitted from a point isotropic source. The source may be collimated
so that only a portion of the inner surface is illuminated.

Once the energy and direction of escaping photons are determined by the Monte
Carlo procedure, two methods can be used to obtain an estimate of the skyshine dose
caused by these escaping photons. In the first method, called the individual scoring
scheme, the LBRF evaluated at each escaping photon’s energy E and direction ¢ with
respect to the source-detector axis is factored into the average value contributed by
previous photons at the detector where the skyshine dose is to be estimated. This
running average will approach the true skyshine dose, per source particle, as the
number of escaping particles used to compute the running average becomes large.

If a large number of escaping photons is used to estimate the skyshine dose by the
individual scoring method, the LBRF will have to be evaluates many times, once for
each photon leaking from the shield. To reduce the computational effort an alternative
scoring procedure was investigated. In this second method, called the binning scoring
method, the Monte Carlo shield simulation is used first to generate the energies and
directions of many escaping photons each of which is binned according to its energy
E and direction ¢. Then, after the energy and directional distribution of escaping
photons has been built up from many source photon histories, the values of the LBRF
evaluated at the centroid of each bin and weighted by the bin’s relative number are
summed to obtain the dose at the detector location. In this way far fewer evaluations
of the LBRF are required.

Although, this second binning approach requires less computation for the same
number of source particles, it does introduce a discretization error by restricting
photon energies and directions to those of the bin centroids. The relative merits of
these two Monte Carlo approaches were investigated in this study.

6.2.1 Simplified Simulation

Monte Carlo simulations usually require considerable computer resources and gen-
erally are not attempted on microcomputers. However, the recent increase of com-
putational capability of microcomputers and the simplicity of the one-dimensional
simulation needed for the shielded skyshine problem make it possible to incorporate
the Monte Carlo hybrid method into a microcomputer program.

Because the geometry for this infinite horizontal slab shield is relatively simple
and because only the energy and direction of escaping photons is needed and because
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the (z,y) coordinates of where a particle escapes the shield are not needed, the
Monte Carlo simulation becomes a simple one-dimensional simulation. Where on the
shield’s upper surface photons exit is of no interest since the hybrid method assumes
all escaping photons do so at the center of the upper shield surface. Consequently,
only the energy E, direction §2, and z-coordinate (normal to the slab surface) need be
computed for each event in constructing the random walk in the shield for a photon.

The Monte Carlo module developed for this study accounts for secondary photons
from Compton scattering, based on the Klein-Nishina cross section, and from anni-
hilation of positrons created by pair production. However, no correction for positron
transport in the shield is made; positrons are assumed to annihilate in the shield
at the point where they were created. No fluorescence or bremsstrahlung is consid-
ered. Cross sections for the shield material are approximated by accurate rational
approximations similar to those used for air (see Egs. (2.48) and (2.49)).

To simplify further the Monte Carlo simulation, any photon reflected from the
shield is immediately killed, and photons are allowed to migrate laterally to any
distance inside the shield. With this simplification, a photon history is continued in
the slab shield until the photon is absorbed or crosses a shield surface.

The one complicated aspect of the Monte Carlo algorithm is the capability to
allow very general collimation of the incident source photons on the inner surface of
the shield. This collimation feature is discussed next.

6.2.2 Collimation of Source Photons Beneath the Shield

The gamma photons incident on the inner surface of an overhead shield will often be
effectively collimated by shielding around the source or by building walls. Thus, the
shield, modeled as an infinite horizontal slab, will generally not be illuminated at all
points. Rather, the area of illumination will be restricted to some finite portion of the
surface. To permit analysis of such a restricted area of illumination, the Monte Carlo
simulation algorithm used in this study was designed to track only those photons
that stream from a point isotropic point source and enter the shield only in the area
permitted by the collimation.

The area of the shield surface illuminated by the source is assumed to be in the
shape of a polygon defined by N vertices (z;,%;), ¢ = 1,..., N on the inner surface
of the shield. To determine whether a source photon is to be tracked in the Monte
Carlo simulation, it is necessary to determine if the point (z,,%,) on the surface at
which a source photon enters the shield is within the polygon.

The standard method for determining if a test point (x,, y,) lies within a polygon
is known as the “far-point algorithm”. This method selects a point known not to
be inside the polygon (usually a point far from the polygon). A straight line is
then drawn from this “far” point to the test point and the number of crossings this
line makes with the polygon’s perimeter is calculated. If the test point is inside the
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polygon the number of perimeter crossings will be an odd number.

Unfortunately, this algorithm is computationally inefficient in a Monte Carlo sim-
ulation since it must compute the intersection point of the test line with the lines
joining each adjacent pair of polygon vertices. Each intersection then must be tested
to determine if it occurs between the pair of vertices and thus represents an intersec-
tion with the polygon’s perimeter.

A New Inside-Point Algorithm

For the present simulation it was decided to restrict the class of all polygons illumi-
nated by the source to convex polygons, i.e., to those polygons whose interior vertex
angles are all less than 180 degrees. For these polygons, the far point algorithm is
considerably simplified since the line from the far point, which is outside the polygon,
to an interior point makes only a single intersection with the polygon’s perimeter. If
zero or two intersections are found, then the test point lies outside.

However, an even simpler algorithm was developed in this study to determine if
a test point is inside the polygon. Consider the general polygon shown in Fig. 6.1.

P(Xp:)/p) \

i+1

x

Figure 6.1. General convex polygon with a test point P inside.
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If the test point (x,,%,) is inside a convex polygon, then the angle ¢; between the
vector u; from node 7 to the neighboring node 7+ 1 (counter-clockwise node ordering
is assumed) and the vector v; from node 7 to the test point P will be < 180 degrees for
every node ¢. If P is outside, then at least one ¢; will be > 180 degrees. Equivalently,
sing; >0, ¢ = 1,..., N if the point P is inside the polygon, and at least one sin ¢;
will be negative if the point is outside. If P should lie exactly on the perimeter of the
polygon, then one ¢; will vanish.

Rather than evaluate sin ¢; (computationally expensive), the following procedure
can be used. The vectors u; and v;, which lie in the  — y plane, are given by

u; = i(l’i_H — QTZ) +j(yi+1 — yz) +kO0 (64)
Vi = i(xp - ;) +j(yp - ) +kO. (6.5)

where the nodes are labeled cyclically (counterclockwise) with vertex IV +1 = vertex
1. Recall that

w; X v; = kjuj|v|siny;
i J k
= det| (zip1 —2:) (Y1 —w:) O
(@p—z) (Yp—w) O
= k{(@iv1 — 2:)(Wp — ) — (3 — @) (Yo — w)]- (6.6)

Thus for sin ¢; to be positive at each node, &; = (21— ) (Yp—¥i) — (Tp— i) (Yiy1 — ¥s)
must also be positive at each node. If P is outside the polygon at least one §; will
be negative. Notice, that the calculation of the ¢; involves only simple arithmetical
operations.

Finally, this algorithm can be generalized to relax the assumption of counterclock-
wise ordering of the vertices. If P is inside the polygon, all §; will have the same sign
for either clockwise or counterclockwise ordering, whereas if P is outside, one or more
6; will have a sign different from the others.

6.2.3 The Monte Carlo Algorithm

The Monte Carlo simulation model described above has been implemented in a
shielded skyshine code written for this study. The details of the algorithm are de-
scribed elsewhere [St94] and are not further discussed here.
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6.2.4 Comparison of Binning and Individual Scoring
Computational Times

The reason for proposing the binning method of estimating the skyshine dose was
to decrease the computational effort. To test the two scoring methods, three test
problems were constructed. All three cases used a ®°Co source (E = 1.25 MeV) and a
concrete overhead shield of density 2.3 g cm™3. The first problem was for a shielded
silo in which the silo walls collimated the source photons into a vertical cone with a
30 degree half angle. The second problem was also for a shielded silo but one with a
conical collimation half angle of 60 degrees. The third problem was for a source 10 m
below the concrete roof shield and on the vertical axis of a rectangular building with
interior walls each of 10 m width.

Calculations of the skyshine dose were made using both scoring methods at 20
source-to-detector distances ranging from 50 m to 1000 m. Various thicknesses of the
overhead concrete shield, up to a maximum thickness of 7 mean-free-path lengths,
were used. For the binning method, 20 equi-spaced energy bins and 20 angular bins
were used. For each scoring method the calculations were performed using the same
particle histories, i.e., the same sequence of pseudo random numbers were used, so
that the difference in execution times is a direct result of the scoring technique used.

In Fig. 6.2 the ratio of the execution times for the two methods is shown as a
function of the shield thickness. As is to be expected, the execution times approach
each other as the shield becomes very thick since most of the execution time is spent
tracking the particles inside the shield. However, for thin shields in which many
sources particle penetrate the shield without collisions and for which the Monte Carlo
simulation involves very few steps per particle, the computational cost of calculating
a LBRF for each particle escaping the shield becomes a major component of the total
execution time. For shield thickness greater than a few mean-free-path thickness,
there is no appreciable difference between the two methods and the individual scoring
method is preferred since it involves no binning errors. For thin shields, by contrast,
it is much more efficient to use the binning scoring method.

Accuracy of the Binning Method

Although the binning method is computationally preferred for source shields of less
than a few mean-free-path lengths in thickness, this method nevertheless introduces
an error from the discretization of the energy and angles of the photons escaping the
shield. To assess this error, a test problem was constructed in which the source was
on the z-axis 10 m below the bottom of a horizontal laminate shield composed of
one mean-free-path thickness each of lead (bottom) and concrete (top). Further, the
source was collimated such that only an irregular hexagonal area on the lower shield
surface was illuminated. The (z,y) coordinates of the six vertices of this illuminated
polygon were chosen as (-5,-5), (-5,5), (-2,10), (5,15), (10,0) and (5,-5). The skyshine
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Figure 6.2. Ratio of execution times for the two scoring meth-
ods using in Monte Carlo line-beam hybrid method as a function
of the concrete shield thickness for three test problems.

detectors were located at an elevation 10 m above the source (bottom shield elevation)
along the z-axis. Three different source energies were used, namely 0.5 MeV, 1.25
MeV (%°Co), and 6.12 MeV (1°N).

To assess the effect of different bin sizes 20 different bin structures were employed.
The coarsest structure used 10 energy bins and 20 angular bins. The energy bins
were all of equal width equally distributed between 0.02 MeV (the cutoff energy) and
the source energy. Energy bin structures using 10, 20, 30, 40 and 50 bins were used.
The angular bin structure, by contrast, was not equally distributed between 0 and
180 degrees. The upper limits of the 20 angular-bin case is shown below. To create

Table 6.1. The angular limits, in degrees,
for the case of 20 angular bins.

J ¢l J ¢l JF Pl J ¢;
1 1.0 6 10.0 |11 50.0{16 100.0
2 201 7 15012 60.0{17 120.0
3 30| 8 20013 70.018 140.0
4 5.0 9 300114 800119 160.0
5 7.0110 40.0;15 90.020 180.0

finer angular bin structures, the 20 angular bins were divided into halves, fourths and
eights to create 40, 80 and 160 angular bins.
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Calculations were made using the same photon histories but with varying numbers
of energy and angle bins for sorting the photons that penetrate the shield. The same
particle histories were also use in the individual scoring method for this test problem.
The detailed results of these calculations are tabulated by Stedry [St94].

To quantify the accuracy of the binning scoring method relative to the individual
scoring method, the following procedure was used. The absolute fractional difference
in the skyshine dose estimated by the two methods was calculated at 20 source-to-
detector distances d; equally spaced between 50 and 1000 m. These 20 fractional
difference were then summed to give a measurement of the differences between the
two methods averaged over a range of source-to-detector differences. Explicitly, the
following quantity was determined for varying numbers of energy and angle bins for
each of the three source energies.

2 | p N Ry (d;
Total Absolute Fraction Difference = Z Rina(d;) — Ruin(d;)
i=1 Ring(d;)

(6.7)

where R;,q and Ry, are the skyshine doses calculated by the individual and binning
scoring methods, respectively. The results are presented in Table 6.2.

Table 6.2. The sum over 20 source-to-detector distances of the absolute factional differ-
ences between the individual and binning scoring methods of calculating the skyshine doses.

Total Absolute Fractional Difference for 20 Distances
Energy 0.5 MeV 1.25 MeV 6.12 MeV
No. angle bins No. angle bins No. angle bins
No. energy bins | 20 40 80 160 | 20 40 80 160 | 20 40 80 160
10 11 .047 012 .009 | .226 .099 060 .050 | .853 .720 .641 .620
20 108 .052 .013 .003 | .190 .071 .023 .012 | .315 .178 .101 .080
30 .108 053 .013 .003 | .187 .076 .022 .008 | .274 .101 .048 .038
40 -1 .108 053 .014 .003 | .184 074 .020 .006 | .290 .113 .054 .041
50 108 053 013 .003 | .184 .075 .020 .006 | .282 .109 .045 .030

As expected, the binning results generally agree more closely to the individual
scoring results as the number of energy and angle bins increases. The results shown
in Table 6.2 show that all the energy and angle bin combinations vary at most by
approximately a 4% average percent deviation at any given detector location d;.
The average percent deviation at a detector location d; is calculated by dividing the
total fractional difference by the number of detector locations (in this case 20) and
multiplying the result by 100. Thus, for the 6.129 MeV case with 10 energy bins and 20
angle bins (the worst agreement), the average percent deviation at a detector location
is just over 4%. One observation from Table 6.2 is that for a given number of energy
bins the difference between the results of the two methods decreases as the number of
angle bins increases. Also, for a fixed number of angle bins the difference between the
results decreases as the number of energy bins increases. For a fixed number of angle
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bins there is a maximum number of energy bins past which more energy bins does
not improve the calculated skyshine dose. For the 0.5 MeV and the 1.25 MeV cases
this is clearly seen, while for the 6.129 MeV case the fractional difference begins to
fluctuate around the limiting number of energy bins. This observation means that for
a given number of angle bins a limit of the number of energy bins exists past which
better accuracy is not achieved. Based on the results in Table 6.2, 20 energy bins
and 20 angle bins are recommended for routine calculations using the hybrid Monte
Carlo/LBRF method.

6.3 Comparison of Results

6.3.1 Comparisons to Benchmark Experimental Results

In Fig. 6.3 results are shown for the bare skyshine experiment discussed earlier in
Section 5.1.1. In this plot, the measured skyshine dose rate D,,.., has been normalized
by (1) multiplying the dose rate by the square of the source-to-detector distance r to
remove the 1/7% geometric attenuation effect, and (2) by dividing by the 89Co source
activity, Seet, 1-€-, Dnorm = T2 Dimeas/Sact- The source-to-detector distance is expressed
in areal density pr to correct approximately for the different atmospheric densities
which occurred during the measurements. Also shown on Fig. 6.3 are calculations
using the hybrid MC-LBRF method and the integral line-beam method. Both of these
methods used the 3-parameter approximate LBRF and an air density of 0.001125
g/cm®. The MC-LBRF hybrid method used binning scoring with 20 energy bins
and 20 angular bins. Since the Monte Carlo component consists solely of uncollided
radiation, it is not surprising that these results agree well with the integral line-beam
calculations.

The KSU benchmark skyshine experiment [Na81], besides providing benchmark
skyshine data for an unshielded 5°Co source, also included two sets of measurements
when the source in the silo was placed beneath a slab concrete shield with two different
thicknesses. Specifically, the source photons, which were collimated by the silo walls
into a vertically upward cone with a 150.5 degree full angle, were shielded by a concrete
shield of density 2.13 g cm™3 and of thickness 21.0 cm or 42.8 cm.

In Fig. 6.4 results from the MC-LBRF hybrid method for the two shielded bench-
mark experiments are compared with experimental and results from an earlier hybrid
method by Bassett [Ba89]. It is seen the present MC-LBRF hybrid method agrees
closely with Bassett’s discrete-ordinates-LBRF hybrid method and with the experi-
mental data.

Although the hybrid method is more computationally expensive than the simpler
approach for shielded source of exponential attenuation with buildup (see Section
6.1.1), it is more accurate. Results using exponential attenuation with buildup for
the two shielded skyshine experiments are also shown in Fig. 6.4 and, while sufficient
for very approximate analyses, are not as accurate as the MC-LBRF hybrid method,
particularly at large source-to-detector distances.

110



106 T T ! T T T T T ]

I S TV o

7T T 17717

10°

1

|||llll

Normalized skyshine dose (m® microR h™ Ci™")

103 i | i l ] 1 1 1 i
0 20 40 60 80 100

Source-to-detector distance in areal density (g/cm?)

Figure 6.3. Comparison of measurements (squares and diamonds) for the
unshielded benchmark skyshine experiment [Na81] with values obtained by
the MC-LBRF hybrid method (solid line). Also shown are results (dashed
line) from the integral line-beam method presented earlier in Chapter 5.
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Figure 6.4. Comparison of high-pressure ion chamber measurements
(squares) and Nal measurements (diamonds) for the shielded benchmark
skyshine experiment [Na81] with values obtained by (1) the MC-LBRF hy-
brid method (solid lines), (2) Bassett’s hybrid method [Ba89] based on dis-
crete ordinates calculations (long-dash lines), and (3) the LBRF method
using exponential attenuation with buildup to account for the shield (bro-
ken lines).
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Comparison to Bassett’s Hybrid Method

Bassett [Ba&9] used a hybrid method in which transport through the source shield
calculated by a specialized energy-multigroup discrete-ordinates algorithm that was
capable of giving an accurate description of the angular distribution of the photons
escaping through the shield. Although he used a slightly different set of parameters
for the three-parameter approximate LBRF than was developed in this study, his
results should provide an excellent standard against which the MC-LBRF hybrid
method proposed here can be tested.

In Figs. 6.5 to 6.7 a comparison of the two hybrid methods is shown for several
shielded silo skyshine problems. Each figure is for a different source energy (6.12,
1.25, and 0.5 MeV) and shows the skyshine dose at a fixed distance from the source
as a function of concrete shield thickness for several different source collimation angles.
From these figures, it is seen that the two hybrid methods give almost identical results.
By contrast, the exponential attenuation with buildup method is seen to underpredict
the skyshine dose at high source energies and to overpredict at low energies.
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Figure 6.5. The skyshine dose at 475 m from a shielded, collimated, point N
source (E = 6.13 MeV) in shielded silo geometry as calculated by the discrete-
ordinates LBRF hybrid method of Bassett [Ba89] (open symbols), by the MC-LBRF
method developed in this study (solid lines), and by the exponential attenuation with
buildup method (dashed lines).

Finally, Figs. 6.8 to 6.9 show results from the two hybrid methods for a concrete
or iron source shield, both one mean-free-path in thickness. Both methods are seen
to give very similar results, the differences resulting primarily from the different ap-
proximate LBRFs used by each method. More important, the dose profiles are nearly
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Figure 6.6. The skyshine dose at 475 m from a shielded, collimated, point 50Co
source (E = 1.25 MeV) in shielded silo geometry as calculated by the discrete-
ordinates LBRF hybrid method of Bassett [Ba89] (open symbols), by the MC-LBRF
method developed in this study (solid lines), and by the exponential attenuation with
buildup method (dashed lines).
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Figure 6.7. The skyshine dose at 475 m from a shielded, collimated, point, mo-
noenergetic (£ = 0.5 MeV) in shielded silo geometry as calculated by the discrete-
ordinates LBRF hybrid method of Bassett [Ba89] (open symbols}), by the MC-LBRF
method developed in this study (solid lines), and by the exponential attenuation with
buildup method (dashed lines).
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silo geometry in which the source is collimated to a 80-deg. half angle and shielded
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method of this study are shown as a solid line and results by Bassett’s [Ba89]
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Figure 6.9. The skyshine dose from a point 16N source (E = 6.12 MeV) in shielded
silo geometry in which the source is collimated to a 80-deg. half angle and shielded by
an iron overhead slab one mean-free-path thick. Results by the MC-LBRF method
of this study are shown as a solid line and results by Bassett’s [Ba89] discrete-
ordinates-LBRF hybrid method by a dashed line.




identical for the two different shield materials. This result suggests that the mass
thickness of the source shield is the important shield parameter and that skyshine
doses are relatively insensitive to the particular material used for the shield. Further
justification of this conjecture is presented later.

Comparison to the Exponential Attenuation with Buildup Method

The MC-LBRF may be used to test the range of applicability of the simpler but less
accurate method of using exponential attenuation with shield buildup (see Section
6.1.1). In Fig. 6.10 results from the two methods are shown for a shielded silo problem
with three different energy sources shielded by a 3 mean-free-path thick concrete
shield. For the broad source collimation used in this problem, both methods give
comparable results over a wide range of source-to-detector distances. Similarly, both
methods are seen in Fig. 6.11 to give similar results for different concrete shield
thicknesses, again for a broadly collimated source. However, as the collimation of
the sources becomes smaller, i.e., more tightly collimated in the vertical direction,
the exponential attenuation with buildup method can be expected to increasingly
underpredict the skyshine dose because this method cannot properly account for
those photons redirected by the shield into directions with polar angles greater than
allowed by the collimation. This collimation angle effect is seen clearly in Fig. 6.12.
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Figure 6.10. The skyshine dose resulting from a shielded source in silo geometry
for three different source energies. The concrete shield is 3 mean-free-path lengths
thick and the source is collimated into a vertical cone with an 80-degree half angle.
Solid line are results from the MC-LBRF method and dashed lines are from the
exponential attenuation with buildup method.
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Figure 6.11. The skyshine dose resulting from a shielded source in silo geometry
for three different shield thicknesses. The source emits 6.13-MeV photons which
are collimated into a vertical cone with an 80-degree half angle. Solid lines are
results obtained with the MC-LBRF method and dashed lines are for the exponential
attenuation with buildup method.
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Figure 6.12. The skyshine dose resulting from a shielded source in silo geometry
for three different source collimations (denoted by their conical half-angle). The
source emits 6.13-MeV photons and has an overhead concrete shield 3 mean-free-
path lengths thick. Solid lines are results obtained with the MC-LBRF method and
dashed lines are for the exponential attenuation with buildup method.
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6.4 Effect of Shield Material

The results for the iron and concrete shields, Figs. 6.8 and 6.9, are almost identical.
Further calculations were made with the MC-LBRF method for shields of other ma-
terial. Results for shields of different thicknesses and of various materials are shown
in Fig. 6.13. The results, for a given shield mass thickness, are almost independent
of the shield material for the specified source energy and collimation. In Fig. 6.14,
it is also seen that the skyshine dose for different source collimation angles is also
insensitive to the shield material.

Finally, in Fig. 6.15 which shows the effect of different source energies on the
shielded skyshine dose, it is seen that at low source energies a lead shield begins to
have a slightly different influence on the dose compared to the other shield materials.
This is a result of the quite larger photo-electric absorption cross sections for lead
compared to the other materials, which, for low source energies, causes lead to absorb
more photons in a given mass thickness of a shield compared to the other materials.

From the results presented in this section, it is seen that for shielded skyshine
calculations the composition of the overhead shield is unimportant, for all but the
lowest source energies. Rather, the mass thickness of the shield alone determines the
skyshine doses.
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Figure 6.13. The skyshine dose from a collimated point ®N source (E =
6.13 MeV) in shielded silo geometry in which the source is collimated to
a 80-deg. half-angle and shielded by different materials of the same mass
thickness.
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Figure 6.14. The skyshine dose from a collimated point 8N source (E =
6.13 MeV) in shielded silo geometry in which the source has different half-
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Figure 6.15. The skyshine dose from a collimated point source with three
different energies in shielded silo geometry in which the source has an 80-
degree half-angle collimations and is shielded by a concrete shield 3 mean-
free-paths thick.
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Chapter 7

Air-Ground Interface Effect

Conventional wisdom in skyshine analyses is that the air-ground interface is well
modeled by using an infinite air medium. This premise is supported by the fact
that most soils have an average atomic number close to that of air (Z,;, = 7.225).
However, the actual abrupt change in mass density experienced by radiation crossing
the interface can be expected to alter the reflective properties at the interface as
compared to that of a homogeneous infinite air medium.

At detector positions near the source, radiation scattered from the atmosphere
into the ground, will more be more likely to scatter closer to the detector and hence
reach the detector than if the ground were replaced by air with its much smaller
density. Thus the ground will appear to act near the source as a reflector compared
to an air medium below the interface.

By contrast, at distances far from the source, the soil will prevent photons that
scatter first in the atmosphere and then in the ground from reaching the detector
since these photons must travel through a much greater mass thickness to reach the
detector than if the ground were replaced by an air medium. Thus for far detector
distances, the ground will appear to act as an absorber compared to the case when
air is placed beneath the interface.

However, despite these expectations of the difference between air and soil beneath
the interface, the quantification of this difference has not previously been made for
the skyshine problems considered in this report. Though the effect is conventionally
thought to be small, how small has not been determined. As an ancillary investigation
to this study, computations were made for the LBRF both in an infinite air medium
and in a medium with soil beneath the air-ground interface. As discussed in this
chapter this difference is not always negligible, and, consequently, empirical correction
factors were derived to correct skyshine doses computer for infinite air medium to
account for the air-ground interface. The results of this investigation are reported in
this chapter.
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7.1 LBRF Examples with a Ground Interface

To investigate the effect of the air-ground interface, the line-beam skyshine problem
was modeled by the MCNP code to obtain the LBRF for both an infinite air medium
and a medium with a ground interface. For the case with a ground interface, the soil
was assumed to have a composition defined by [Ja86], the point source was placed
1 m above the interface, and the detectors were located 1 m above the air-ground
interface!. Details of the MCNP models used are reported by Kahn [Ka95].
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Figure 7.1. The LBRF in an infinite medium (dashed lines and squares) and
in a medium with an air-ground interface (solid lines and circles) for a 0.1-MeV
source emitting photons at three different angles to the source-detector axis.

The LBRF was calculated by the MCNP models, with and without the air-ground
interface, for 15 source energies (0.1, 0.25, 0.5, 1, 1.5, 2, 2.5, 3,4, 5, 6, 7, 8, 9, and
10 MeV) at 15 beam angles (2, 3.5, 5, 7.5, 10, 15, 20, 30, 45, 60, 80, 85, 90, 110, and
130 degrees) and 16 source-to-detector distances (40, 50, 60, 70, 80, 90, 100, 200, 300,
400, 500, 600, 700, 800, 900, and 1000 m).? In all, 3,465 values of the LBRF were
computed with the ground interface and an equal number for an infinite air medium.
Examples of these calculated LBRF's are shown in Figs. 7.1 to 7.3. From such results,
the ground is indeed seen to act as a reflector near the source while far from the
source the ground acts as an absorber.

!The “detector” was an air volume in which the average fluence, weighted with the air-kerma
response function, was computed. These detector volumes were 2 m tall, 15 m wide, and 10 m thick
for distances less than 100 m and 100 m thick for greater source-to-detector distances.

’For the lowest energies, the maximum distance for the LBRF was less than 1000 m. The
maximum distance for energies of 0.1, 0.25, and 0.5 MeV were 500, 700, and 900 m, respectively.
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Figure 7.2. The LBRF in an infinite medium (dashed lines and squares) and
in a medium with an air-ground interface (solid lines and circles) for a 1-MeV
source emitting photons at three different angles to the source-detector axis.
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Figure 7.3. The LBRF in an infinite medium (dashed lines and squares) and
in a medium with an air-ground interface (solid lines and circles) for a 10-MeV
source emitting photons at three different angles to the source-detector axis.
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7.2 Ground Correction Factors for LBRF

To avoid the necessity of deriving an approximate LBRF with a ground interface,
the infinite medium LBRF was multiplied by a ground correction factor CF. This
correction factor is defined as

§Rgnzi(x) E) ¢)
Roo(z, E, 8)

where R,,4 and Ry is the LBRF with and without the ground interface. The CF
also depends on the relation of the source-detector axis to the ground interface. In
this study the source-detector axis is positioned 1 m above the ground.

CF(z,FE,¢) = (7.1)

The CF can be evaluated from the MCNP calculations described in the previous
section by taking the ratio of the LBRF with the ground interface to that of the
infinite air medium at the same values of z, F, and ¢. The complete set of CF' values
so calculated are reported by Kahn [Ka95]. Some of these values of CF are shown
in Figs. 7.4 through 7.9. In each plot the CF values for a given beam angle are
plotted for all energy and source-detector distances used in the MCNP calculations.
Only for the smallest angle (2 degrees) is a discernible pattern apparent. For the
smallest distance (40 m) the CF is seen to be very large, about 4, for all energies
between 0.1 and 10 MeV. As the beam angle or distance increases, the CF's for a
given distance, while still displaying a pattern as a function of the mean-free-path
distance, the patterns for each distance overlap. Surprisingly, the general trend of
these scatter diagrams shows a similar behavior — a monotonic decreasing value of
CF with increasing source-to-detector distance expressed in terms of mean-free-path
lengths, uz.

7.3 Empirical Formulas

The CF values calculated from the MCNP calculations were used as the basis for deriv-
ing an approximate formula for the ground correction factors. To find a function that
can accurately represent these data, the program TABLECURVE-3D [Ja93] was used.
This program fits many thousands of different two-dimensional (i.e., two independent
variables) to any set of data. From such analyses, the two approximating formulas
discussed below were developed.

7.3.1 An Energy-Distance Formula

The CF values calculated for each beam angle (such as those shown in each one
of Figs. 7.4 to 7.9) were fit by TABLECURVE-3D. For the 15 different beam angles
considered, the following formula was found to give the best fit to the data.
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CF = pzEexpla+blnE + cln(uz) + d(In px)?]

_ eaEb+1(ux)c+dlnua:+1 (72)
The approximation parameters a, b, ¢, and d depend only on the beam angle ¢.
The values of these parameters for the different beam angles used are presented in
Table 7.1. The formula was obtained for each angle from MCNP CF values for energies
0.1 < EF < 10 MeV, and distances 40 < z < 1000 m.

The average absolute difference between this fit and the MCNP data is almost
always less than 5% and the maximum absolute difference is less than 12% for all but
the lowest energies (0.1 and 0.25 MeV) or the smallest beam angle (2 degrees). For a
beam angle of 2 degrees, the approximation underpredicts CF by as much as 45% at
the nearest distance to the source (40 m). Similarly, at energies below about 0.4 MeV
the approximation can produce maximum errors of over 40%. Thus Eq. (7.2) should
be use for source energies in the range 0.5 < E < 10 MeV. Similarly, for a beam angle
of 2 degrees or less, the approximation is useful only for source-to-detector distances
greater than 100 m.

Table 7.1. Parameters for the approximate ground correction factor of
Eq. (7.2). Approximation is valid for 0.1 < F < 10 MeV and for source-
to-detector distances between 0.1 and 10 mean-free-path lengths in air.

Angle ¢ Parameters for Approximate Correction Factor

(degrees) a b ¢ d
2.0 0.36926681 —1.09056278 —1.27822860 0.00664603
3.5 0.21009622  —1.06774858  —1.20246703 0.01527704
5.0 0.16831381 —1.04249133 —1.14460081 0.00017244
7.5 0.12535491 —1.01321668 —1.13753496 —0.02508111
10.0 0.11241432  —1.00809364  —1.13092737  —0.03043949
15.0 0.09071555 —1.00166524 —1.12317594 —0.03227529
20.0 0.07367380  —0.99877595  —1.12284850  —0.03523390
30.0 0.03669662  —1.00143750 —1.12830365  —0.03344318
’ 45.0 —0.00630292 —1.00196498 —1.14871980 —0.03693434
60.0 —0.04900306  —1.00563896  —1.16935065  —0.04659270
. 80.0 —0.11426299  —1.00959999  —1.22568433  —0.05361156
7 90.0 —0.19684753 —1.01725920 —1.20003669 —0.02561614
110.0 —0.26018469  —1.02106343  —1.26545276  —0.04098882
130.0 —0.34254488  —1.04104105 —1.31574368  —0.06258089




7.3.2 An Energy-Distance-Angle Formula

A approximation formula depending on all three beam parameters was also sought.
The best formula found was

CF = (pzE/¢)expla+bln(¢/E) + cln(uzx)

= ()t ({é) (73

By a least squares fit of this formula to the CF calculated by MCNP | the ap-
proximation parameters were found to be ¢ = 0.134307854, b = 0.936284462, and
¢ = —1.13375177. The range of applicability of this approximate formula is as fol-
lows: 0.1 < F < 10 MeV, 2 < ¢ < 150 degrees, and 50 < z < 1000 m. While this
global formula is considerably simpler than that of Eq. (7.2), it is not as accurate,
especially for energies below .5 MeV and beam angles less than 5 degrees, and should
be used only if very approximate results are appropriate.

7.4 Comparison of Calculated and Approximate
Ground Correction Factors

To assess the accuracy of the approximate CF formula of Eq. (7.2) the ratio of the
CF values calculated from the approximation to that determines from the MCNP data
were calculated for each energy, distance, and angle used in the MCNP calculations.
The better the fit approximation, the closer these ratios will be to unity. Typical
results, corresponding to the CF' values of Figs. 4.4 to 4.11, are shown in Figs. 4.12
to 4.17.
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Figure 7.11. Ratio of the approximate CF calculated from Eq. (7.3) to
that obtained from MCNP calculations for a beam angle of 3.5 degrees.
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Figure 7.12. Ratio of the approximate CF calculated from Eq. (7.3) to
that obtained from MCNP calculations for a beam angle of 10 degrees.
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Figure 7.13. Ratio of the approximate CF calculated from Eq. (7.3) to
that obtained from MCNP calculations for a beam angle of 45 degrees.
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Figure 7.14. Ratio of the approximate CF calculated from Eq. (7.3) to
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Figure 7.15. Ratio of the approximate CF calculated from Eq. (7.3) to
that obtained from MCNP calculations for a beam angle of 130 degrees.
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Chapter 8

Conclusions

A refined point-kernel model for the gamma-ray LBRF in an infinite air medium
has been developed. This model, which extends an earlier model by including sec-
ondary bremsstrahlung and the transport of positrons and electrons, was found from
comparison to MCNP calculations to give accurate values of the LBRF for energies
below 15 MeV. Moreover, unlike MCNP which was able to calculate the LBRF only
for source-to-detector distances less than 1000 m, the point kernel model was able to
predict the LBRF at distances up to 3000 m from the source.

Values of the LBRF obtained from the point kernel model were then used to obtain
two approximations for the LBRF, one based on the same three-parameter formula
used in earlier studies, and another on a new four-parameter formula that was found
to give a more accurate representation of the point kernel data with little increase
in computational effort. Several different fitting criteria were investigated, and the
method adopted in this study for generating the coefficients for the approximate
LBRFs was based on minimizing the maximum absolute fractional deviation between
the LBRF values and the approximation.

For gamma-ray energies above about 20 MeV, the “straight-ahead” approximation
used by the point kernel model to describe the angular distribution of bremsstrahlung
approximation was found to be too crude to yield accurate values of the LBRF at
small beam angles. Thus, to develop an approximate LBRF for gamma-ray energies
between 15 and 100 MeV, extensive MCNP calculations were performed. From the
results of these calculations, coefficients for a three-parameter LBRF approximation
were determined for source-to-detector distances up to 1000 m.

With the new approximations for the LBRF developed in this study, the integral
line-beam method was used to analyze several benchmark skyshine problems. From
comparison of these results to both experimental measurements and to results ob-
tained by other computational methods, the integral line-beam method was found to
give excellent agreement for unshielded skyshine sources.
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For shielded skyshine sources, the use of exponential attenuation with buildup
to account for photon interactions in the source shield is often an effective and sim-
ple way to account for the effect of the shield. This simple approximation has been
found to be give results within a factor of two compared to a more accurate skyshine
methods for broadly collimated sources [Sh91]. For tightly collimated sources and
thick source shields in which significant photon redirection can occur, the exponen-
tial attenuation with buildup method, however, is underpredictive sometimes by a
factor of four. Nevertheless, for many skyshine analyses, particularly those involv-
ing broadly collimated sources with modest overhead shielding, this simple method
provides acceptable accuracy.

For thick shields over a tightly collimated source, a more accurate method is
needed if highly accurate skyshine results are desired. In this study a hybrid method
was developed that used a Monte Carlo simulation to accurately calculate the energy
and direction of photons transmitted through the source shield and then used the
integral line-beam method to transport these transmitted photons through the atmo-
sphere. The new hybrid method also allows the source to be collimated in almost any
manner beneath the shield. While computationally more expensive than the exponen-
tial attenuation with buildup method, the hybrid MC-LBRF method gives excellent
agreement with benchmark experimental data and with other hybrid calculations.

Finally, the effect of the air-ground interface on the skyshine dose at positions
near the interface was investigated. The ground was found to increase the skyshine
dose at locations near the source (60 m) by up to a factor of four for small beam
angles (2 degrees). By contrast, at large source-to-detector distances (1000 m) the
ground interface can depress the skyshine dose by up to a factor of two. An empirical
formula was developed for a ground correction factor for all beam angles and for
photon energies between 0.02 and 10 MeV.

Future work still is needed to improve the LBRF approximation above 15 MeV.
To extend the approximation beyond 1000 m, methods other than MCNP or discrete
ordinates must be used. The refined point kernel method described in this report
has the capability of predicting the LBRF at large source-to-detector distances, and,
with a more rigorous treatment of the directional dependence of bremsstrahlung, this
model should be capable of generating values of the LBRF upon which to base a
better approximation of the LBRF for high-energy photons.

With the results obtained in the study, the integral line-beam method may be
used with confidence for a wide range of source energies at a small fraction of the
computational effort required by other skyshine methods.
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Appendix A

Data for the Three-Parameter
Approximate LBRF

In Chapter 4, an approximate LBRF was obtained by fitting the following three-
parameter empirical formula to calculated LBRF values.

%(I) Ev ¢) = “E(P/Po)2[xp/po]be“'cxf’/’"hoo

Here p, is the standard air density (= 0.0012 g cm™3), p is the actual air density, F
is the photon energy in MeV, and, for k = 1.308 x 107!, the LBRF R has units of
air-rad/photon.

Values for the parameters a, b, and ¢, which depend on E and ¢, were obtained
by fitting the above equation calculated values of the LBRF'. For energies less than
20 MeV, the approximate LBRF was fit values obtained from the point-kernel LBRF
model. For higher energies the fit was based on values calculated by MCNP . The ap-
proximation parameters (a, b, ¢) so obtained are tabulated here for 19 discrete source
energies from 0.02 to 100 MeV. For each discrete energy, parameters are tabulated at
20 (for £ < 20 MeV) or 17 (for E > 20 MeV) discrete beam angles.

In these tables the maximum range of the fit and deviations from the point-
kernel LBRF value are also given. Parameters were obtained by fits to LBRF values
calculated over a limited range of source-to-detector distances. For energies less than
20 MeV, the fit extended from 1 m to a maximum distance z,, which was taken as
the smaller of 3000 m or the distance at which the LBRF dose became less than
1073° rad/photon. Although fits over greater ranges are available from the authors,
the point-kernel values, upon which the fits depend, are based on buildup factor data
extrapolated beyond their tested validity. For energies of 20 MeV or higher, the fits
were limited to the maximum range of the MCNP calculations, namely 1000 m. The
minimum source-to-detector distance used for the high energy fits was 100 m. )

The average deviation of the fitted LBRF to the point-kernel values over all data
values and the mazimum deviation and where it occurs are also provided in these
tables.
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Source Energy 0.02 MeV

b; Fit LBRF Fit Parameters Deviations
(deg.) Range® “ b c Aver. | Max. ZTmasx
7| 2y (m) ) | %)  (m)
0.5 400 —3.2260 —1.01008 0.082733 0.5 -0.7 400
1.5 400 —4.3262 —1.02587 0.082972 1.1 1.7 1
* 2.5 400 —4.8423 —1.03759  0.083122 1.5 -2.2 10
4.0 400 —5.3226 —1.05197 0.083298 1.9 2.8 1
6.0 400 —5.7431 —1.06857 0.083484 2.3 3.4 200
8.5 400 —6.1111 —1.08709  0.083677 2.7 4.1 1
12.5 400 —6.5294 —1.11307  0.083952 33 -4.9 8
17.5 400 —6.9077 —1.14100 0.084293 3.8 -5.6 8
25.0 400 —7.3244 —1.17944  0.084817 4.5 6.5 100
35.0 300 —7.7283 —1.23323 0.085354 5.7 8.1 1
45.0 300 —8.0482 —1.26546  0.086869 5.8 -8.0 6
55.0 300 —8.2911 —1.30727  0.088023 6.6 -9.1 6
65.0 300 —8.4674 —1.36460  0.088447 8.6 11.7 100
75.0 300 —8.6262 —-1.37644  0.090837 82 | -11.1 6
85.0 300 —8.7348 —1.39885  0.092420 8.8 11.9 100
95.0 300 —8.7970 —1.43095  0.093787 8.9 14.3 1
110.0 300 —8.8880 —1.41313 0.096396 9.3 -12.6 8
130.0 300 —8.9319 —1.39895  0.099190 9.0 | -12.3 8
150.0 300 —8.9420 —1.38270 0.101293 8.7 11.9 100
170.0 300 —8.9415 —1.37327  0.102427 85 | -11.6 8

@ Dose beyond this range is less that 10™%° rad/photon
Source Energy 0.03 MeV

bj Fit LBRF Fit Parameters Deviations
(deg.) Range” a b c Aver. | Max. Zmaz
) ey, (m) ® | ® @
0.5 1000 —4.4477 —0.99217 0.036624 0.6 0.8 20
1.5 800 —5.5594 —0.98604 0.036444 0.9 -14 400
2.5 800 —6.0823 —0.98150 0.036389 1.3 1.9 800
4.0 800 —6.5680 —0.97762  0.036372 1.6 -2.4 300
6.0 800 —6.9910 —0.97605 0.036395 1.7 2.7 1
8.5 800 —7.3574 —0.97780  0.036449 1.6 2.7 20
12.5 800 —7.7683 —0.98477  0.036559 1.3 -2.4 200
17.5 800 —8.1338 —0.99661  0.036719 0.9 1.8 20
25.0 700 —-8.5233 —1.02011 0.036967 0.4 -0.7 4
35.0 700 —8.8999 —1.05291  0.037385 1.0 -1.8 6
45.0 700 —9.1820 —-1.08656 0.037864 2.2 -3.5 8
55.0 700 —9.3966 —1.12149  0.038408 3.5 5.4 1
65.0 700 —9.5609 —1.15425 0.039022 4.7 7.4 200
3 75.0 600 —9.6878 —1.17912  0.039772 5.6 8.9 200
85.0 600 —9.7696 —1.21142  0.040168 71 | -11.5 10
95.0 600 —9.8489 —1.21027  0.041223 7.0 11.2 200
F 110.0 600 —9.9155 —1.21367 0.042262 7.3 -11.6 10
130.0 600 —9.9499 —1.21375 0.043214 7.3 | -124 10
150.0 600 —9.9716 —1.19207 0.044380 6.9 | -11.0 10
170.0 600 —9.9734 —1.18496  0.044871 6.7 | -10.7 600

@ Dose beyond this range is less that 10730 rad/photon




Source Energy 0.04 MeV

@; Fit LBRF Fit Parameters Deviations
(deg.) Range” “ b . Aver. | Max. Zmax
2y (m) % | &) (m)
0.5 1200 —5.2498 —0.98579  0.025860 1.3 1.9 40
1.5 1200 —-6.3942 095719 0.025523 3.6 5.5 40
2.5 1200 —6.9346 —0.93815  0.025393 5.1 7.9 40
4.0 1200 —7.4396 —0.91771 0.025315 6.7 | -10.1 500
6.0 1200 —-7.8783 -0.90028 0.025291 7.8 | -11.9 1
8.5 1200 —8.2567 —0.88736  0.025311 8.6 | -13.1 500
12.5 1200 —8.6834 —0.87420 0.025429 9.3 14.3 40
17.5 1200 —9.0456 —0.87587  0.025503 9.1 13.7 1200
25.0 1000 —9.42556 —0.89362 0.025556 7.3 11.6 20
35.0 1000 —9.7973 —0.91429  0.025857 6.2 | -10.0 400
45.0 1000 —10.0687 -—0.94130 0.026188 5.0 -7.9 400
55.0 1000 —10.2745 -0.97131 0.026551 3.6 5.8 40
65.0 1000 —10.4304 —1.00040 0.026955 2.6 3.6 40
75.0 1000 -10.5230 —1.03221  0.027363 1.6 -2.3 600
85.0 1000 —10.6052 —1.04910 0.027859 2.0 -2.9 8
95.0 1000 —10.6692 —1.05969 0.028324 2.6 4.0 1
110.0 800 —10.7285 —1.06729  0.028968 3.0 -5.2 10
130.0 800 —10.7738 —1.05676  0.029737 3.1 4.8 300
150.0 800 —-10.7856 —1.04775 0.030294 3.0 -4.8 20
170.0 800 —10.7870 —1.04235 0.030595 2.9 4.7 300

* Dose beyond this range is less that 10~%° rad/photon

Source Energy 0.06 MeV

o; Fit LBRF Fit Parameters Deviations
(deg.) Range” a b c Aver. | MaXx. Zmaz
7| 7y (m) ) | %) (m)
0.5 1600 —6.1089 —0.98678 0.019503 2.2 3.7 1600
1.5 1600 —7.2549 —0.93625 0.019074 82 | -134 800
2.5 1600 —7.8889 —0.88471 0.018954 11.2 17.6 1600
4.0 1600 ~8.4148 —0.84805 0.018851 14.1 21.9 1600
6.0 1600 —8.8969 —0.80814 0.018849 16.4 -25.9 1
8.5 1400 —9.2540 —0.80177 0.018622 164 | -25.1 1
12.5 1400 —9.6929 —0.77641 0.018648 17.9 -27.1 600
17.5 1400 —10.0813 —-0.75884 0.018724 18.6 27.9 40
25.0 1400 —10.4881 —0.75089 0.018866 18.5 -27.9 500
35.0 1400 —10.8702 —0.75722  0.019078 17.5 | -26.5 500
45.0 1400 —-11.1412 -0.77559  0.019306 16.0 -24.3 500
55.0 1400 —11.3415 —0.79937  0.019558 14.2 21.6 1400
65.0 1400 —11.4882 —0.82471  0.019831 12.2 -18.6 500
75.0 1200 —11.5798 —0.85583  0.020022 9.4 14.4 1200
85.0 1200 —11.6588 —0.87247  0.020337 7.8 12.0 40
95.0 1200 —11.71568 —0.88280 0.020643 6.7 | -10.1 1
110.0 1200 —11.7723 —0.88751  0.021062 5.6 -8.3 500
130.0 1200 —11.8119 —0.88254  0.021527 5.1 -74 500
150.0 1200 —11.8275 —-0.87607 0.021864 4.9 -7.2 500
170.0 1200 —11.8315 —0.87214 0.022046 4.9 -7.1 400

¢ Dose beyond this range is less that 10730 rad/photon
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Source Energy 0.08 MeV

o Fit LBRF Fit Parameters Deviations
(deg.) Range® a b c Aver. | Max. Zmae
7|z (m) )y | )  (m)
e 0.5 1800 —6.4784 —0.98979 0.017245 36 6.0 300
1.5 1800 —T7.7109 —0.90971 0.016888 104 | -171 1
b 2.5 1600 —8.1901 --0.89674 = 0.016592 12.9 211 60
4.0 1600 —8.7769 —0.84483  0.016497 16.1 25.5 60
6.0 1600 —9.2859 —0.79872  0.016450 18.6 | -28.8 700
8.5 1600 -9.7153 —0.76011  0.016483 20.5 | -32.5 1
12.5 1600 —10.1946 —0.71935 0.016581 22.7 36.2 40
17.5 1600 —10.5639 —0.71142 0.016499 232 | -355 600
25.0 1600 —11.0504 —0.67063 0.016873 249 | -395 1
35.0 1600 —11.3896 —0.69692  0.016802 22.8 -34.8 600
45.0 1600 —11.6705 —0.71134 0.017000 215 | -32.9 600
55.0 1600 —11.8652 —0.73514 0.017209 19.8 | -30.5 600
65.0 1400 —12.0081 —-0.76635 0.017321 16.8 25.5 40
75.0 1400 —12.1321 —-0.78359  0.017590 14.9 22.6 40
85.0 1400 —12.2156 —0.79878  0.017852 13.3 | -201 600
95.0 1400 —12.2767 —0.80824 0.018103 12.0 18.1 40
110.0 1400 —12.3394 —0.81253  0.018440 10.9 16.2 40
130.0 1400 —12.3877 —0.80703 0.018807 104 | -15.2 500
150.0 1400 —12.4124 —-0.79980 0.019064 10.2 | -15.0 500
170.0 1400 —12.4216 —0.79542  0.019201 10.2 15.0 20

@ Dose beyond this range is less that 10720 rad/photon

Source Energy 0.1 MeV

o Fit LBRF Fit Parameters Deviations
(deg.) Range® a b c Aver. Max. Zmae
7|z (m) (%) (%) (m)
0.5 1800 —6.6238 —1.00191 0.015962 4.1 -6.0 1000
1.5 1800 —7.8593 -—-0.91815 0.015607 10.4 -17.2 1000
2.5 1800 —8.4558 —0.87163  0.015468 14.3 | -23.2 800
4.0 1800 —9.0119 —-0.82592 0.015366 17.8 -28.4 800
6.0 1800 —9.4946 —0.78681  0.015302 20.7 | -32.5 800
8.5 1800 —9.8987 —0.75674 0.015271 22.7 | -35.5 700
12.5 1800 —10.3808 —0.71966 0.015285 244 | -38.2 700
17.5 1800 —10.7957 —0.69512  0.015333 25.6 | -39.9 700
25.0 1800 —11.2446 —0.67658  0.015442 26.0 | -40.4 700
35.0 1600 —11.6866 —0.66391 0.015698 25.6 | -40.7 1
45.0 1600 —11.9434 —0.69416 0.015686 23.2 | -36.0 1
55.0 1600 —12.2130 -0.69112 0.016098 22.8 | -36.4 1
65.0 1600 —-12.3357 -—0.73070 0.016119 199 | -30.7 1
75.0 1600 —12.4554 —0.74962 0.016355 18.1 28.0 40
' 85.0 1600 -12.5359 —0.76577 0.016592 16.6 25.8 40
95.0 1400 —12.5980 —0.78091 0.016716 14.6 221 40
; 110.0 1400 —12.6731 —0.78342 0.017036 13.6 | -20.4 600
130.0 1400 —12.7311 =0.77879 0.017387 13.1 -19.3 600
150.0 1400 —12.7490 —-0.77592 0.017623 13.1 | -19.3 500
170.0 1400 —12.7653 —0.77120 0.017754 13.0 19.1 20

“ Dose beyond this range is less that 1073° rad/photon




Source Energy 0.2 MeV

é; Fit LBRF Fit Parameters Deviations
(deg.) Range® a b . Aver. | Max. Zmax
7 3y, (m) (%) | (%) (m)
0.5 2250 —-6.6392 —1.02974 0.013119 3.6 -7.1 1400
1.5 2250 —7.8308 —0.96259 0.012803 11.0 | -19.3 1200
2.5 2250 —8.4817 —0.91106 0.012692 143 | -25.1 1000
4.0 2250 —-9.1089 -—0.85571 0.012619 17.9 30.2 2250
6.0 2250 —9.6651 —0.80532 0.012583 209 | -34.1 1000
8.5 2250 —10.1427 -0.76164 0.012606 23.3 | -38.0 1
12.5 2250 —10.6212 —-0.73470  0.012579 25.6 | -40.5 1000
17.5 2250 —11.0631 —0.71063 0.012630 27.1 -42.5 1000
25.0 2000 —11.5621 —0.69283 0.012684 26.5 -42.3 1
35.0 2000 —12.0459 —0.68932  0.012828 26.3 41.6 40
45.0 2000 —12.4932 —0.66331 0.013295 28.2 -44.6 1
55.0 2000 —12.6433 —0.72148 0.013248 25.0 | -39.7 800
65.0 1800 —12.8772 —0.73884  0.013406 22.4 35.0 40
75.0 1800 —13.0635 —0.74810 0.013687 21.0 | -32.7 700
85.0 1800 —13.2075 —0.75519  0.013966 19.7 | -30.7 1
95.0 1800 —13.3086 —0.76140 0.014224 18.8 29.3 1800
110.0 1600 —13.4229 -0.76412 0.014553 174 27.8 40
130.0 1600 —13.5045 —0.76983  0.014806 16.8 25.7 40
150.0 1600 —13.5545 —0.76633 0.015043 17.1 -25.9 600
170.0 1600 —13.6012 —0.75826  0.015177 16.9 25.7 40

* Dose beyond this range is less that 1073° rad/photon

Source Energy 0.4 MeV

Y Fit LBRF Fit Parameters Deviations
(deg.) Range® a b c Aver. Max. Tmax
7| @y, (m) %) | )  (m)
0.5 2750 —6.8132 —1.01346 0.010558 3.1 -4.9 1800
1.5 2750 —7.9922 —0.96488 0.010291 9.1 15.5 2750
2.5 2750 -8.6244 —0.92355 0.010197 12.1 -21.1 1400
4.0 2750 -9.3021 —0.86517 0.010154 15.3 -25.3 1200
6.0 2750 —9.8097 -—0.83151 0.010120 18.1 -29.7 1200
8.5 2750 —10.2779 —0.79695 0.010150 20.8 -34.2 1
12.5 2750 -10.7890 —0.77127 0.010160 22.8 -36.5 1
17.5 2750 —11.2741 —-0.74817 0.010247 245 -39.0 1000
250 2500 —11.8073 —0.73949 0.010333 24.5 -38.7 1000
35.0 2500 -12.3707 -—0.73107 0.010621 25.1 -39.7 1000
45.0 2250 —12.7820 —0.74652  0.010847 23.7 | -37.3 800
55.0 2250 —13.1706 —0.74506 0.011226 23.0 -36.3 800
65.0 2250 —13.4650 —0.75024 0.011611 22.2 -35.1 800
75.0 2000 —-13.6597 —0.77057 0.011874 20.3 -31.9 800
85.0 2000 —13.8378 —0.77498 0.012237 19.7 -31.0 800
95.0 2000 —13.9797 —-0.77691  0.012568 19.3 -30.4 800
110.0 1800 —-14.1176 —0.78771  0.012900 18.0 28.0 40
130.0 1800 —-14.2733 —0.78137 0.013360 17.9 27.8 40
150.0 1800 —14.3687 —0.77600 0.013666 17.9 -27.8 700
170.0 1800 —14.3655 —0.78495 0.013794 18.2 28.6 40

* Dose beyond this range is less that 107*° rad/photon
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Source Energy 0.7 MeV

b Fit LBRF Fit Parameters Deviations
(deg.) Range® “ b . Aver. | Max. Zmaz
7 zy (m) %) | (%) (m)
h 0.5 3000 —7.0617 —1.00458  0.008475 2.2 -3.1 1800
1.5 3000 —-82370 —0.96936 0.008252 64 | -11.1 1600
i 2.5 3000 —8.9139 —0.92435 0.008189 8.9 -15.0 1400
4.0 3000 —9.4742 —0.89573  0.008133 11.7 | -19.7 1400
6.0 3000 —-9.9829 —-0.86818 0.008115 14.2 | -23.6 1400
8.5 3000 —10.4429 —0.84390 0.008131 16.3 | -26.9 1200
12.5 3000 —10.9929 —0.81606 0.008204 186 | -30.2 1200
17.5 3000 —11.5097 —0.79498 0.008338 20.3 -32.7 1200
25.0 3000 —12.1310 —-0.77407  0.008599 21.6 | -34.7 1200
35.0 2750 —-12.7676 —0.76734  0.008966 21.6 34.5 60
45.0 2750 -13.2827 -0.76320 0.009436 22.0 -34.9 1000
55.0 2500 —13.6431 —0.77959  0.009857 21.2 33.7 40
65.0 2500 —14.0201 —0.76938 0.010384 20.7 32.8 40
75.0 2250 —14.2607 —0.78142  0.010785 194 30.7 2250
85.0 2250 —14.4720 —0.78166  0.011239 19.3 | -30.6 800
95.0 2000 —14.6150 —0.79365  0.011547 18.3 28.8 2000
110.0 2000 —14.8303 —0.78818  0.012084 18.3 28.8 40
130.0 1800 —15.0041 —0.79442  0.012529 17.5 27.2 40
150.0 1800 —15.1166 —0.79293  0.012887 17.7 | -275 700
170.0 1800 —15.1820 —-0.78916  0.013075 17.6 274 40

@ If less than 3000 m, dose beyond this range is less that 1072 rad/photon
Source Energy 1 MeV

b; Fit LBRF Fit Parameters Deviations
(deg.) Range® o b c Aver. Max. Tmaz
T oz, (m) (%) | (%)  (m)
0.5 3000 —7.3049 —0.99389  0.007225 1.2 -2.0 1800
1.5 3000 —8.4947 —0.96151  0.007041 4.7 7.9 100
2.5 3000 —9.0754 —0.94022 0.006961 6.9 | -11.6 1400
4.0 3000 —9.6029 —0.92235 0.006908 9.3 | -159 1400
6.0 3000 —10.1455 —0.89227  0.006906 11.5 -19.0 1400
8.5 3000 —10.6115 —0.87131  0.006933 13.3 21.9 3000
12.5 3000 —11.1732 —0.84739  0.007025 154 -25.1 1200
17.5 3000 —11.7154 —0.82793  0.007190 17.0 | -27.5 1200
25.0 3000 —12.4317 —0.78523  0.007637 20.5 33.4 60
35.0 3000 —13.1556 —0.76134  0.008197 22.8 36.1 60
45.0 3000 —13.7157 —0.75288  0.008772 22.8 | -36.6 1
55.0 2750 —14.0696 —0.78240  0.009167 20.1 | -31.9 1000
65.0 2500 —14.4061 —0.78804  0.009692 19.4 | -30.9 1000
X 75.0 2500 —14.7152 —-0.77967  0.010263 19.4 30.8 2500
85.0 2250 —14.8953 —0.79476  0.010682 18.8 | -30.0 800
95.0 2250 —15.1262 —0.78274 0.011160 18.7 29.6 40
3 110.0 2000 —15.3219 —0.79226 0.011650 17.9 -28.2 800
130.0 2000 —15.5065 —0.79610 0.012235 18.3 29.1 2000
150.0 1800 —15.6603 —0.79505 0.012551 17.2 26.8 40
170.0 1800 —15.7254 —0.79419 0.012746 17.3 | -26.8 1

 If less than 3000 m, dose beyond this range is less that 10~%° rad/photon




Source Energy 2 MeV

Y Fit LBRF Fit Parameters Deviations
(deg.) Range “ b c Aver. | Max. ZTmaz
z,, (m) (%) | (B  (m)
0.5 3000 —7.7503 —0.99299 0.005109 0.8 1.3 3000
15 3000 —8.8938 —0.98007 0.004969 2.9 -4.9 1400
2.5 3000 —9.5002 —0.95935 0.004927 4.3 7.2 100
4.0 3000 —10.0600 —0.94313 0.004900 5.9 9.9 100
6.0 3000 -10.5789 —0.92678  0.004912 7.5 -12.4 1
8.5 3000 —-11.0630 —0.91192  0.004965 8.8 | -14.6 1200
12,5 3000 -11.6801 —0.88817 0.005133 10.8 18.0 80
17.5 3000 —12.2734 —0.87649  0.005340 11.9 | -19.2 1200
25.0 3000 -13.0164 ~0.85713 0.005791 13.5 21.8 3000
35.0 3000 —13.8161 —0.83421 0.006513 15.3 24.5 3000
45.0 3000 —14.4440 —0.81468 0.007298 16.9 26.9 3000
55.0 3000 —14.9502 —0.79617  0.008086 18.1 -28.7 1000
65.0 2750 —~15.3678 —0.78179  0.008797 18.2 28.8 2750
75.0 2500 —15.7255 —0.75839  0.009554 19.7 31.7 60
85.0 2500 —15.9966 —0.74961  0.010153 20.6 32.5 60
95.0 2250 —16.0909 ~0.79682  0.010304 16.3 | -25.9 800
110.0 2250 —16.2930 —0.82512  0.010598 13.3 | -20.1 600
130.0 2250 —16.4711 —0.85865 0.010793 9.4 14.3 40
150.0 2000 —16.4608 —0.91269 0.010806 9.2 144 1200
170.0 2000 —16.4096 —0.95593 0.010734 11.4 16.7 1200

% If less than 3000 m, dose beyond this range is less that 107*° rad/photon

Source Energy 4 MeV

&b Fit LBRF Fit Parameters Deviations
(deg.) Range” o b c Aver. | Max. Zmaz
| =y (m) ) | %) (m)
0.5 3000 —8.2758 —0.98923  0.003561 0.6 1.0 6
1.5 3000 —9.4475 —0.97774  0.003475 1.7 -2.9 1400
2.5 3000 -10.0171 -=0.97071  0.003444 2.6 4.5 3000
4.0 3000 —10.5948 —0.95890 0.003442 3.6 6.2 3000
6.0 3000 —11.1462 —0.94601  0.003478 4.5 -7.8 1400
8.5 3000 -11.6673 —0.93523  0.003557 5.5 9.3 80
12.5 3000 —-12.3366 —0.92036  0.003743 6.6 11.1 3000
17.5 3000 ~13.0435 —0.89535  0.004098 83 | -141 1200
25.0 3000 —13.8961 —0.86519  0.004715 10.3 17.1 80
35.0 3000 —14.7437 —0.84347  0.005556 10.9 | -17.8 1000
45.0 3000 -15.4316 —0.80780 0.006519 12.5 20.1 3000
55.0 3000 —-16.0274 —0.75342 0.007593 16.4 25.9 60
65.0 3000 ~16.4891 —0.71579  0.008514 18.9 | -29.3 1
75.0 2750 —16.7164 —0.73543  0.009067 16.5 | -26.7 1000
85.0 2500 ~16.9985 —0.72739  0.009588 15.4 25.1 2500
95.0 2500 —17.1738 —0.74239  0.009874 13.5 | -21.5 800
110.0 2250 ~17.3938 —0.77161  0.009984 83 | -13.0 1
130.0 2250 ~17.5883 —0.79817  0.010083 5.1 8.0 40
150.0 2250 —-17.6928 —0.82578  0.010002 2.2 3.3 40
170.0 2250 ~17.7441 —0.83766  0.009993 1.8 -3.0 300

 Tf less than 3000 m, dose beyond this range is less that 1073 rad/photon
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Source Energy 7 MeV

b; Fit LBRF Fit Parameters Deviations
(deg.) Range”® a b c Aver. | Max. Zpacx
V| 2y (m) %) | %  (m)
0.5 3000 —8.7366 —0.98522  0.002731 0.6 -1.6 20
1.5 3000 —9.9111 —0.97908 0.002675 1.2 -2.2 1
2.5 3000 —10.5030 —0.97167 0.002665 1.8 -3.0 1
4.0 3000 -11.0991 —-0.96280 0.002679 2.6 4.0 100
6.0 3000 —-11.6799 —0.95355 0.002727 3.3 5.1 3000
8.5 3000 —12.2511 —0.94369  0.002825 4.0 -6.1 1200
12.5 3000 —12.9971 —-0.92818 0.003046 4.8 7.2 80
17.5 3000 —13.7578 —0.90887  0.003409 5.6 8.4 10
25.0 3000 —14.6649 —0.87832 0.004081 6.9 10.5 10
35.0 3000 —15.6265 —0.80689  0.005259 11.7 | -15.1 1
45.0 3000 —16.3092 —0.78085 0.006202 9.7 | -14.8 800
55.0 3000 -16.8448 —0.73980 0.007241 11.6 | -17.8 800
65.0 3000 —17.3930 —0.65099  0.008440 18.2 23.9 80
75.0 2750 —17.7441 —0.62661  0.009151 15.8 24.0 80
85.0 2500 —17.9783 —0.63045 0.009543 14.1 | -20.7 1000
95.0 2500 —18.1721 —-0.63762 0.009780 11.9 -17.1 1000
110.0 2500 —18.3791 —0.66374  0.009875 7.8 | -11.2 1
130.0 2250 —18.5822 —0.69285 0.009870 4.1 6.9 4
150.0 2250 —18.7128 —0.70699  0.009877 2.9 -4.9 1
170.0 2250 ~18.7757 —0.71234  0.009883 2.4 4.1 4

@ If less than 3000 m, dose beyond this range is less that 1030 rad /photon
Source Energy 10 MeV

o Fit LBRF Fit Parameters Deviations
(deg.) Range”® a b R Aver. | Max. Zmaz
]z, (m) (%) (%) (m)
0.5 3000 —9.0128 —0.98651  0.002360 1.5 2.2 20
1.5 3000 —10.2088 —0.97795 0.002323 1.6 -2.7 1200
2.5 3000 —10.8240 —0.96682  0.002345 2.2 3.9 20
4.0 3000 —11.4369 —0.96433  0.002342 2.2 -3.8 1200
6.0 3000 —-12.0593 —0.95128 0.002427 3.2 5.2 10
8.5 3000 —12.6725 —0.94721 0.002505 3.3 -5.5 1
12.5 3000 —13.4995 —0.91818 0.002810 5.7 -8.4 1
17.5 3000 —~14.3047 —0.90810 0.003120 5.1 8.9 10
25.0 3000 -15.2699 —0.86862  0.003838 7.1 11.8 10
35.0 3000 —16.2390 —0.80974 0.004940 9.3 -15.3 500
45.0 3000 —16.9695 —0.75096  0.006080 10.9 18.1 10
55.0 3000 —17.5507 —0.69119 0.007189 11.9 19.9 8
65.0 3000 —-18.0818 —0.58373  0.008494 17.9 26.9 10
75.0 2750 —18.4452 —0.54038 0.009317 20.1 27.6 10
85.0 2500 —18.6529 —0.56660 0.009519 13.8 | -21.6 1000
95.0 2500 —18.8486 —0.57068  0.009738 114 | -18.5 1
110.0 2500 —19.0804 —0.57172  0.009965 10.0 15.2 6
130.0 2500 —19.2583 -—0.61284 0.009876 5.3 9.1 4
150.0 2250 —19.3800 —0.62850 0.009875 4.4 -6.6 1
170.0 2250 —19.4411 -0.63086  0.009897 3.2 5.8 4

@ If less than 3000 m, dose beyond this range is less that 103 rad/photon
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Source Energy 15 MeV

8 y LBRF Fit Parameters Deviations
(deg.) Range a b c Aver. | Max. Zmaz
&)z, (m) %) | (%)  (m)
0.5 | 3000 —9.3204 —0.98134  0.002086 1.8 | -2.7 40
1.5 | 3000 |—10.5377 —0.97434  0.002056 2.2 3.4 20
25 | 3000 |-—11.1842 —0.96023 0.002101 29 | -54 1
4.0 | 3000 | —11.8504 -—0.95198 0.002132 36 | -64 1
6.0 | 3000 |—12.5102 ~—0.95427 0.002134 35| -59 800
85 | 3000 |—13.1987 —0.94400 0.002244 4.3 7.0 20
125 | 3000 | —14.0811 —0.92796 0.002492 6.0 | -9.3 600
175 | 3000 | —15.0360 —0.86111 0.003074 76 | 16.0 20
25.0 | 3000 |—16.0715 —0.79763  0.003897 9.6 | 20.9 20
35.0 | 3000 |—17.0954 ~—0.71128 0.005128 | 11.8 | -25.8 1
45.0 | 3000 | —17.7750 —0.69366 0.006045 | 16.8 | -24.4 400
55.0 | 3000 |—18.4651 —0.56180 0.007542 | 16.4 | -32.1 1
65.0 | 3000 |-—18.8348 —0.56239 0.008250 | 17.9 | 27.3 3000
75.0 | 2750 | —19.3079 -0.43873 0.009487 | 23.7 | 34.9 10
85.0 | 2500 | —19.4561 —0.49512 0.009484 | 154 | 25.1 8
95.0 | 2500 | —19.7029 —0.45011  0.009981 174 | 26.2 10
1100 | 2500 | -19.8314 —0.51867 0.009792 | 10.8 | 16.7 2500
130.0 | 2500 | —20.0569 —0.50219  0.010062 8.1 | -13.8 1
150.0 | 2500 | —20.1422 —0.54596  0.009914 6.0 8.5 4
170.0 | 2250 | —20.1998 —0.54699  0.009933 3.9 7.6 4

 If less than 3000 m, dose beyond this range is less that 10~%° rad/photon

Source Energy 20 MeV

&; Fit LBRF Fit Parameters Deviations
(deg.) Range “ b R Aver. | Max. Tmae
z), (m) %) | B (m)
2.0 1000 ~11.5254 —0.83971  0.002336 1.3 3.6 850
3.5 1000 -12.1040 —0.87880  0.002201 0.6 -1.6 250
5.0 1000 —12.2872 -0.94602 0.002147 0.5 0.8 650
7.5 1000 —13.1321 -0.92409 0.002240 0.8 1.4 850
10.0 1000 —-13.7109 —0.92011 0.002360 0.5 -1.1 750
15.0 1000 —14.7587 —0.88616  0.002634 0.9 -1.7 250
20.0 1000 —15.5978 —0.84187  0.003056 1.0 2.5 650
30.0 1000 —16.5634 ~0.81272  0.003909 0.8 1.9 650
45.0 1000 —17.4956 —0.77512  0.005232 2.0 -3.2 950
60.0 1000 —17.4157 —0.89453  0.006081 3.7 -7.5 950
75.0 1000 —-18.9171 —-0.65583  0.007686 2.1 -4.8 950
85.0 1000 —19.0702 -0.67991  0.008210 2.4 4.3 750
95.0 1000 —18.6824 —0.78609  0.008300 3.2 5.3 550
105.0 1000 —20.1047 —0.50890  0.009520 2.9 -6.5 750
120.0 1000 —19.6238 —0.66046  0.009405 1.2 2.0 750
135.0 1000 —19.5357 —0.71284  0.009503 1.2 -2.2 250
150.0 1000 —20.5199 —0.52957  0.010147 45 [ -17.6 850




Source Energy 40 MeV

& Fit LBRF Fit Parameters Deviations
(deg.) Range a b c Aver. | Max. Zmaz
7 2y (m) ) | ) (m)
2.0 1000 —11.8173 —0.79296  0.002288 11 -2.1 250
3.5 1000 —12.5321 —0.81852  0.002255 0.5 1.5 750
5.0 1000 —13.0204 -0.84391  0.002232 0.8 1.9 550
7.5 1000 —13.9220 -0.82980  0.002272 1.1 -2.3 250
10.0 1000 —14.7938 —0.78470  0.002419 0.9 -2.0 250
15.0 1000 —16.2632 —0.67687  0.002871 1.2 -2.4 950
20.0 1000 —17.0569 —0.65228  0.003186 11 3.1 650
30.0 1600 —18.2489 —0.59163  0.004005 1.6 -3.0 250
45.0 1000 —18.5164 —0.69527  0.005024 3.2 6.4 750
60.0 1000 —18.8970 —0.72093  0.006110 33 -5.4 250
75.0 1000 —-19.7789 —0.61671  0.007384 23 5.6 850
85.0 1000 -19.1617 —0.79481  0.007494 4.3 7.4 650
95.0 1000 —19.8258 —0.69570 0.008221 3.1 -6.0 950
105.0 1000 —19.4890 —0.79981  0.008275 41 -8.4 950
120.0 1000 —22.8286 —0.13046 0.010713 5.4 11.9 950
135.0 1000 —20.4077 -—0.68665  0.009323 2.0 -3.3 950
150.0 1000 —23.4310 —0.07530  0.011202 9.3 22.3 950

Source Energy 70 MeV

&5 Fit LBRF Fit Parameters Deviations
(deg.) Range a b . Aver. | Max. Zmaz
T 3y (m) (%) | (%)  (m)
2.0 1000 —12.2645 —0.66953  0.002439 0.9 -2.4 250
3.5 1000 —13.2846 —0.65430 0.002437 1.7 -3.1 250
5.0 1000 —14.3083 —0.58927  0.002591 1.2 -3.9 250
7.5 1000 —-16.0555 —0.43965  0.002768 2.4 -5.4 250
10.0 1000 -17.3921 —0.31804 0.003034 2.4 -5.4 250
15.0 1000 —19.4567 —0.12560 0.003501 2.3 -5.2 250
20.0 1000 —20.0629 —0.15312 0.003647 2.1 -34 350
30.0 1000 —20.8303 -—0.18181  0.004359 2.4 -4.6 950
45.0 1000 —20.3404 —0.44229  0.005060 3.9 -7.1 950
60.0 1000 —20.2337 —0.57049  0.006019 59 | -13.1 950
75.0 1000 —20.0056 —0.70464  0.006708 56 | -10.2 950
85.0 1000 —20.5941 —0.63060 0.007525 3.2 -5.7 850
95.0 1000 —20.5578 —0.67732  0.007969 4.5 7.5 650
105.0 1000 -19.5986 —0.91715 0.007729 8.7 | -189 950
120.0 1000 —21.5116 —0.56177  0.009139 2.1 -4.0 250
135.0 1000 —20.1149 —0.89330 0.008584 7.1 20.0 850
150.0 1000 -322.0577 -0.51814 0.009751 3.0 6.0 750




Source Energy 100 MeV

@; Fit LBRF Fit Parameters Deviations
(deg.) Range “ b . Aver. | Max. Zmax
T @y, (m) %) | %) (m)
2.0 1000 —12.4373 —0.59313  0.002566 0.8 -1.8 250
3.5 1000 —14.3007 —0.43470  0.002759 1.9 -3.6 250
5.0 1000 —16.0334 —0.25688  0.003008 3.2 -6.0 250
7.5 1000 -18.0766 —0.06719  0.003232 3.5 -5.4 250
10.0 1000 —20.2588 0.19482  0.003641 3.3 -5.7 250
15.0 1000 —21.8571 0.27787  0.003875 2.2 -3.6 250
20.0 1000 —22.1404 0.18095  0.003888 33 6.1 750
30.0 1000 —22.4079 0.05628  0.004467 1.7 2.6 550
45.0 1000 —~22.0297 —-0.17763  0.005334 3.3 5.7 750
60.0 1000 —22.0498 —0.27341  0.006488 3.0 -5.5 950
75.0 1000 —19.9816 —0.80877  0.005959 7.3 | -12.8 950
85.0 1000 -21.8342 —0.46573  0.007794 3.8 -7.1 250
95.0 1000 —22.9422 -0.29019 0.008532 6.8 -16.7 950
105.0 1000 —~23.6121 —0.15362  0.009863 44 | -12.0 850
120.0 1000 —22.1031 —0.52334  0.009245 7.5 33.0 850
135.0 1000 —21.4043 —0.69378  0.009269 1.8 3.8 850
150.0 1000 —21.1517 —0.78965  0.009154 5.4 13.1 850

150




Appendix B

Data for the Four-Parameter
Approximate LBRF

In Chapter 4, an approximate LBRF was obtained by fitting the following four-
parameter empirical formula to calculated LBRF values.

R(z, E, 3) = KE(p/ o) [wp/ po) b= er=ewlro

Here p, is the standard air density (= 0.0012 g cm™2), p is the actual air density, E
is the photon energy in MeV, and, for x = 1.308 x 107!, the LBRF R has units of
air-rad /photon.

Values for the parameters a, b, ¢, and d, which depend on E and ¢, were obtained
by fitting the above equation to values calculated with the point-kernel model of
Chapter 2. The approximation parameters so obtained are tabulated here for 15
discrete source energies from 0.02 to 15 MeV. For each discrete energy, parameters
are tabulated at 20 discrete beam angles.

In these tables the maximum range of the fit and deviations from the point-
kernel LBRF value are also given. Parameters were obtained by fits to LBRF values
calculated over a limited range of source-to-detector distances. The fit extended from
1 m to a maximum distance z,, which was taken as the smaller of 3000 m or the
distance at which the LBRF dose became less than 1073° rad/photon. Although
fits over greater ranges are available from the authors, the point-kernel values, upon
which the fits depend, are based on buildup factor data extrapolated beyond their
tested validity.

The average deviation of the fitted LBRF to the point-kernel values over all data
values and the mazimum deviation and where it occurs are also provided in these
tables.




-

Source Energy 0.02 MeV

@; Fit LBRF Fit Parameters Deviations
(deg.) Range® a b . d Aver. | Max. Zmaz
8| 2, (m) %) | (%) ()
0.5 400 -3.2316  —1.00079 0.084128 —0.000215 0.0 0.0 1
1.5 400 —4.3375  —1.00541 0.086187 —0.000498 0.2 -0.2 300
2.5 400 —4.8561  —1.01139 0.087389 —0.000664 0.3 04 1
4.0 400 —5.3388  —1.01947 0.088758 —0.000851 0.5 0.6 400
6.0 400 —5.7619  —1.02912 0.090193 —0.001047 0.7 0.8 60
8.5 400 —6.1323  —1.04083 0.091647 —0.001245 0.8 1.1 1
12.5 400 —6.5541  —1.05790 0.093345 —0.001466 1.1 1.3 1
17.5 400 —6.9340  —1.07967 0.094860 —0.001652 14 -1.7 300
25.0 400 —7.3508  —1.10978 0.097000 —0.001908 1.8 -2.5 300
35.0 300 —T7.7632 —1.13177 0.103947 —0.002938 1.5 2.5 1
45.0 300 ~8.0736  —1.16694 0.107122 —0.003304 2.0 3.2 40
55.0 300 —8.3214  —1.20455 0.109286 —0.003479 2.6 36 300
65.0 300 —8.5068  —1.22703 0.114258 —0.004077 2.8 4.7 40
75.0 300 —8.6537  —1.24823 0.118003 —0.004450 3.2 -5.2 200
85.0 300 —8.7640 —1.26187 0.121439 —0.004754 3.4 5.6 1
95.0 300 —8.8437  —1.26810 0.124266 —0.004951 3.6 5.8 40
110.0 300 —8.9198  —1.26807 0.126879 —0.004991 3.6 5.8 1
130.0 300 —8.9638 —1.25697 0.128859 —0.004855 3.5 -5.5 200
150.0 300 —8.9745  —1.24541 0.129826 —0.004667 3.3 5.2 1
170.0 300 —8.9737 —1.23797 0.130477 —0.004587 3.2 -5.1 200

@ Dose beyond this range is less that 1073° rad/photon
Source Energy 0.03 MeV

&; Fit LBRF Fit Parameters Deviations
(deg.) Range® “ b c d Aver. | Max. Zmaz
), (m) (%) | (%) (m)
0.5 1000 ~—4.4406 —0.99970 0.035983 0.000087 0.0 0.1 500
1.5 800 —5.5468  —1.00010 0.035085 0.000191 0.0 0.1 500
2.5 800 —6.0655  —1.00063 0.034525 0.000262 0.1 -0.1 200
4.0 800 —6.5481 —1.00091 0.034063 0.000325 0.1 -0.2 200
6.0 800 —6.9704 —1.00090 0.033873 0.000356 0.2 0.5 500
8.5 800 —7.3389  —1.00109 0.033998 0.000347 0.4 0.7 500
12.5 800 —7.7543  —1.00292 0.034554 0.000286 0.5 -0.8 200
17.5 800 —8.1240  —-1.00804 0.035452 0.000182 0.5 0.7 20
25.0 700 —8.5181  —1.02314 0.036664 0.000045 0.4 -0.7 700
35.0 700 —8.9051  —1.03810 0.039434 —0.000299 0.6 1.1 1
45.0 700 —9.1935  —1.05746 0.041712  —0.000560 1.2 -1.9 500
55.0 700 —9.4150  —1.07667 0.044222 —0.000846 1.9 2.9 60
65.0 700 —9.5861  —1.09360 0.046853 —0.001139 2.5 39 60
75.0 600 —-9.7272  -1.10731 0.049506 —0.001444 2.6 -3.7 6
85.0 600 —9.8276  —1.11459 0.051845 —0.001680 2.9 4.0 1
95.0 600 —9.9011 —1.11694 0.053742 —0.001854 31 -4.2 6
110.0 600 —9.9720 —-1.11401 0.055549 —0.001969 31 -4.1 400
130.0 600 —10.0145  —1.10469 0.056581 —0.001940 2.9 -4.1 400
150.0 600 —10.0326  —1.09326 0.057107 —0.001881 2.7 3.9 600
170.0 600 —10.0364 —1.08647 0.057409 —-0.001852 2.7 3.8 100

* Dose beyond this range is less that 1073° rad/photon

152
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Source Energy 0.04 MeV

¢; Fit LBRF Fit Parameters Deviations
(deg.) Range® . b . d Aver. | Max. Zmas=
1 )| 2, (m) % | B ()
0.5 1200 —5.2291 —1.00342 0.024663 0.000159 0.2 0.2 200
1.5 1200 —6.3365 —1.00685 0.022000 0.000469 0.3 -0.4 8
> 2.5 1200 —6.8542 —1.00787 0.020369 0.000669 0.2 -0.4 8
4.0 1200 —7.3450 —1.00404 0.018901 0.000856 0.4 -0.7 300
6.0 1200 —7.7622 —1.00207 0.017717 0.001012 0.6 -1.3 1200
8.5 1200 —8.1310 —0.99753 0.016981 0.001115 0.9 -1.9 1200
12.5 1200 —8.5521 —0.99056 0.016608 0.001177 1.3 -2.6 200
17.5 1200 —8.9257 —0.98609 0.016758 0.001174 1.6 -3.0 200
25.0 1000 —9.3258 —0.99162 0.016807 0.001203 14 -2.6 200
35.0 1000 —9.7095 —0.99894 0.018324 0.001036 1.2 -2.2 1000
45.0 1000 —10.0057 —1.00710 0.020242 0.000817 1.0 -1.5 200
55.0 1000 —10.2110 —1.02352 0.022338 0.000574 0.8 -1.1 6
65.0 1000 -10.3787 —1.03599 0.024047 0.000400 11 1.8 1
75.0 1000 —10.5083 —1.04378 0.026231 0.000155 1.5 -2.4 8
85.0 1000 —10.6061 —1.04746 0.028086 —0.000033 1.9 2.8 1
95.0 1000 —10.6787 —1.04567 0.029910 —0.000226 1.8 -2.9 8
110.0 800 —10.7540 —1.03153 0.032709 —0.000532 1.5 -2.2 8
130.0 800 —10.7992 —1.01985 0.033834 —0.000584 1.2 -1.8 500
150.0 800 —10.8121 —1.01003 0.034336 —0.000575 1.0 1.6 200
170.0 800 —10.8134 —1.00483 0.034582 —0.000567 0.9 1.6 800

@ Dose beyond this range is less that 10~3° rad/photon
Source Energy 0.06 MeV

;5 Fit LBRF Fit Parameters Deviations
(deg.) Range” a b . d Aver. | Max. Zmae
Tz (m) (%) (%)  (m)
0.5 1600 —6.0522 —1.01717 0.018223 0.000161 1.0 2.1 1600
1.5 1600 —7.1609 —1.03063 0.013321 0.000738 14 2.3 200
2.5 1600 —7.6851 —1.03121 0.010588 0.001073 1.1 -1.9 10
4.0 1600 —8.1837 —1.02323 0.008351 0.001351 1.1 -1.6 1600
6.0 1600 —8.6368 —1.00695 0.006828 0.001544 1.7 -2.7 1600
8.5 1400 —9.0060 —1.00300 0.004946 0.001793 1.5 -2.7 1400
12.5 1400 —9.4350 —0.98923 0.003852 0.001943 1.9 3.8 1000
17.5 1400 —9.8189 —0.97614 0.003439 0.002010 24 4.8 1000
25.0 1400 —10.2369 —0.96369 0.003716 0.001994 2.9 5.6 1000
35.0 1400 —10.6385 —0.95602 0.004875 0.001871 3.0 -6.0 1400
45.0 1400 —10.9357 —0.95556 0.006431 0.001696 2.8 5.8 1000
55.0 1400 —-11.1629 —0.95840 0.008221 0.001493 2.5 5.2 1000
65.0 1400 —11.3366 —0.96189 0.010121 0.001279 2.1 -4.4 1400
, 75.0 1200 —11.4390 —0.97818 0.010984 0.001208 0.9 2.3 800
85.0 1200 —11.5563 —0.97107 0.012921 0.000991 1.0 -1.8 300
95.0 1200 —11.6301 —0.96626 0.014401 0.000834 0.8 -1.5 1200
N 110.0 1200 —11.7000 —0.95740 0.015878 0.000692 0.6 -1.3 300
130.0 1200 —11.7538 —0.94260 0.016944 0.000613 0.9 -14 300
150.0 1200 —11.7762 —0.93073 0.017592 0.000573 1.2 1.9 6
170.0 1200 —11.7837 —0.92442 0.017890 0.000558 1.4 2.2 6

¢ Dose beyond this range is less that 10730 rad/photon




Source Energy 0.08 MeV

&j Fit LBRF Fit Parameters Deviations
(deg.) Range® a b . d Aver. | Max. Zmae
7| 2y (m) %) | %) (m)
0.5 1800 -6.3750 -1.03192 0.015906 0.000164 2.2 4.3 1800
1.5 1800 ~7.4895  —1.05013 0.010201 0.000839 2.5 -4.2 1000
2.5 1600 —8.0201 —1.04963 0.007353 0.001185 2.1 -3.4 10
4.0 1600 ~8.5176 —1.04470 0.004410 0.001557 1.8 -2.8 10
6.0 1600 —8.9546 —1.03567 0.002394 0.001808 14 -2.0 1600
8.5 1600 —-9.3656 —1.01583 0.001115 0.001974 2.0 3.0 1200
12.5 1600 -9.8062 —0.99906 —0.000135 0.002140 2.4 4.4 1200
175 1600 —10.2011 —0.98288 —0.000750 0.002230 2.8 5.6 1200
25.0 1600 —10.6356 -0.96650 —0.000748 0.002247 3.4 -6.8 1600
35.0 1600 —11.0572  —0.95405 0.000131 0.002159 3.7 -7.5 1600
45.0 1600 —11.3724 —0.94887 0.001494 0.002009 3.7 7.5 1200
55.0 1600 —11.6153 —0.94832 0.003077 0.001832 3.4 7.0 1200
65.0 1400 —~11.7841 —0.96186 0.003644 0.001797 2.1 -4.6 1400
75.0 1400 —11.9289 —0.95960 0.005491 0.001588 1.8 -4.0 1400
85.0 1400 —12.0391 —0.95512 0.007139 0.001406 1.6 -3.7 1400
95.0 1400 —12.1214 —0.94883 0.008469 0.001265 1.5 3.4 1000
110.0 1400 —12.2056 —0.93759 0.009826 0.001131 1.6 3.4 1000
130.0 1400 —12.2682 —0.92262 0.010760 0.001058 2.0 3.6 1000
150.0 1400 —12.2975 —0.91076 0.011218 0.001033 2.3 -3.9 300
170.0 1400 —12.3083  —0.90436 0.011432 0.001024 2.5 -4.1 1400

~

® Dose beyond this range is less that 107 rad/photon

Source Energy 0.1 MeV

b5 Fit LBRF Fit Parameters Deviations
(deg.) Range® a b c d Aver. | Max. Zmas
7 2y (m) %) | %)  (m)
0.5 1800 —6.5300  —1.02988 0.015323 0.000077 2.7 5.4 300
1.5 1800 -7.6241  —1.05962 0.009153 0.000808 3.2 -5.5 1000
2.5 1800 —8.1569  —1.06191 0.006130 0.001174 2.9 4.6 200
4.0 1800 ~8.6536  —1.05892 0.003156 0.001547 2.3 -3.7 10
6.0 1800 —9.0950  —1.04978 0.001054 0.001807 1.9 -2.8 600
8.5 1800 ~9.5229 —1.02631 —0.000156 0.001962 2.6 3.9 1400
12,5 1800 ~9.9812 —1.00559 -—-0.001330 0.002115 3.3 -5.5 1800
17.5 1800 —10.3461 —1.00016 ~—0.002216 0.002236 34 -7.2 400
25.0 1800 —10.8023  -0.97925 —0.002215 0.002252 4.2 -87 1800
35.0 1600 —11.2579  —0.96908 —0.002540 0.002328 3.7 74 1200
45.0 1600 —11.5913  —0.96182 —0.001358 0.002202 3.7 7.5 1200
55.0 1600 —11.8500  —0.95878 0.000106 0.002041 3.5 -7.1 1600
65.0 1600 —12.0508  —0.95676 0.001724 0.001862 3.2 6.6 1200
75.0 1600 —12.2063 —0.85392 0.003305 0.001688 2.9 -6.0 1600
85.0 1600 —12.3250  —0.94959 0.004705 0.001538 2.6 56 1200
95.0 1400 —12.3976 —0.95522 0.004855 0.001556 1.6 -3.6 400
110.0 1400 —12.4913  -0.94460 0.006060 0.001440 1.7 3.5 1000
130.0 1400 —12.5652 —0.92992 0.006988 0.001365 2.1 -3.7 300
150.0 1400 —12.6026  —0.91861 0.007459 0.001337 2.4 4.0 1000
170.0 1400 —12.6178 —0.91243 0.007690 0.001324 2.6 -4.2 300

@ Dose beyond this range is less that 10730 rad/photon

154




Source Energy 0.2 MeV

b; Fit LBRF Fit Parameters Deviations
(deg.) Range® " b . d Aver. | Max. Zmaz
‘: z,, (m) %) | (%)  (m)
0.5 2250 —6.6467  —1.03733 0.012698 0.000051 3.4 -6.4 1400
1.5 2250 —7.7595 —1.06411 0.007745 0.000621 3.9 7.0 300
k 2.5 2250 —8.2984  —1.06795 0.005191 0.000922 3.5 -5.9 1200
4.0 2250 —8.8025 -1.06721 0.002759 0.001215 2.8 4.9 200
6.0 2250 —9.2497 —1.06249 0.000703 0.001468 2.4 4.0 1
8.5 2250 —-9.6491 —1.05414. —0.000753 0.001646 2.0 -3.0 10
12.5 2250 —10.1625 —1.02792 -0.001775 0.001778 3.0 -4.4 600
17.5 2250 —10.6099 —-1.00942 —0.002466 0.001873 3.8 -6.0 500
25.0 2000 —11.0881 —1.00591 —0.003744 0.002055 3.4 -5.7 400
35.0 2000 —11.5954 —0.99242 -0.003546 0.002057 3.8 6.9 1400
45.0 2000 —11.9942 —0.98487 —0.002836 0.001998 3.9 7.3 1400
55.0 2000 —12.2762 —0.99118 —0.002023 0.001925 3.7 7.4 1400
65.0 1800 —12.5464 —0.99046 —0.001526 0.001903 2.7 5.1 1400
75.0 1800 —12.7456 —0.98746  —0.000297 0.001781 2.5 4.8 1400
85.0 1800 —12.9016 —0.98286 0.000845 0.001670 2.4 4.6 1400
95.0 1800 —13.0234 —0.97682 0.001774 0.001585 2.4 4.6 1400
110.0 1600 —13.1463  —0.97632 0.001970 0.001610 1.9 -3.6 1600
130.0 1600 —13.2655 —0.96418 0.002593 0.001577 2.3 -4.2 300
150.0 1600 —-13.3356 —0.95495 0.002871 0.001574 2.6 -4.8 1600
170.0 1600 —13.3683 —0.95012 0.002986 0.001576 2.8 -5.1 300

@ Dose beyond this range is less that 1072 rad/photon

Source Energy 0.4 MeV

&; Fit LBRF Fit Parameters Deviations
(deg.) Range® a b . d Aver. | Max. ZTmax
z,, (m) (%) | (%) (m)
0.5 2750 —6.8233 —1.02376 0.010058 0.000059 2.2 3.8 1
1.5 2750 —7.9344 —1.04479 0.006783 0.000421 3.0 4.9 400
2.5 2750 —8.4709 —1.04912 0.004973 0.000628 2.7 -4.5 1400
4.0 2750 —8.9790 —1.04987 0.003153 0.000842 2.2 -3.9 20
6.0 2750 —9.4347 —1.04696 0.001692 0.001015 1.8 -32 . 10
8.5 2750 —9.8442 —1.04230 0.000463 0.001165 1.7 2.5 200
12.5 2750 —10.3746 —1.01930 —0.000342 0.001271 2.6 3.6 2000
17.5 2750 —10.8041 —1.02018 —0.001230 0.001390 2.9 -5.5 2750
25.0 2500 —11.3880 —1.00124 = —0.001853 0.001494 3.5 5.5 1800
35.0 2500 —11.9700 —0.99001 —-0.001762 0.001520 4.2 -6.9 1
45.0 2250 —12.4253 —0.99667 —0.002115 0.001611 3.6 -6.1 2250
55.0 2250 —12.8062 —0.99358 —0.001410 0.001569 3.7 6.4 1600
65.0 2250 —13.1117 —0.99123 —0.000562 0.001511 3.7 -6.5 2250
75.0 2000 —13.3363 —1.00030 —0.000501 0.001556 2.7 -4.8 400
g 85.0 2000 —13.5278 —0.99721 0.000280 0.001503 2.6 4.8 1400
95.0 2000 —13.6805 —0.99358 0.000909 0.001466 2.6 4.9 1400
. 110.0 1800 —13.84056 —0.99554 0.000978 0.001517 1.9 -3.6 1800
130.0 1800 —13.9998 —0.98733 0.001524 0.001506 2.1 3.9 1400
150.0 1800 —14.0970 —0.98132 0.001830 0.001506 2.3 4.2 1400
170.0 1800 —14.1436 —0.97796 0.001987 0.001506 2.3 4.3 1400

“ Dose beyond this range is less that 1073 rad/photon
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Source Energy 0.7 MeV

o; Fit LBRF Fit Parameters Deviations
(deg.) Range® a b . d Aver. | Max. Zmaz
T ay (m) (%) | (%) (m)
0.5 3000 —-7.0739  -—1.01292 0.008036 0.000052 1.1 1.9 3000
1.5 3000 —8.1891 —-1.02770 0.005847 0.000286 1.9 3.0 3000
2.5 3000 —8.7274  —1.03184 0.004513 0.000436 1.8 -2.9 20
4.0 3000 —9.2389  —1.03370 0.003134 0.000596 1.6 -2.7 20
6.0 3000 —9.7031 —1.03240 0.001986 0.000732 1.3 -2.2 10
8.5 3000 —10.1244  —1.02970 0.001033 0.000848 1.2 1.9 200
12.5 3000 —10.6372  —1.02227 0.000175 0.000961 1.6 3.0 2000
17.5 3000 —11.1713 —1.00226 —0.000156 0.001019 2.6 -4.0 600
25.0 3000 —11.7747 —0.99050 —0.000410 0.001083 3.4 5.5 2000
35.0 2750 —12.4150 —0.98742 —0.000760 0.001180 3.6 -5.9 2750
45.0 2750 —12.9193  —0.98818 —0.000508 0.001208 4.0 -7.1 2750
55.0 2500 —13.3565 —0.98593 —0.000374 0.001258 3.5 6.0 1800
65.0 2500 —13.6980  —0.98288 0.000261 0.001243 3.6 6.2 1800
75.0 2250 —13.9590  —0.99048 0.000202 0.001314 2.9 -5.2 1
85.0 2250 —-14.1789  —0.98749 0.000781 0.001299 3.0 54 1600
95.0 2000 —14.3429  —0.99494 0.000533 0.001386 2.3 4.2 1400
110.0 2000 —14.5517 —0.99157 0.001053 0.001388 2.4 -4.5 2000
130.0 1800 —14.7338  —0.99646 0.000911 0.001478 1.9 -3.5 1
150.0 1800 —14.8547  —0.99361 0.001242 0.001482 2.0 3.7 1400
170.0 1800 —14.9130 —0.99151 0.001434 0.001481 2.0 3.8 1400

@ If less than 3000 m, dose beyond this range is less that 107%° rad/photon

Source Energy 1 MeV

&; Fit LBRF Fit Parameters Deviations
(deg.) Range® a b c d Aver. | MaX. Zmae
7| 3y (m) (%) | (%)  (m)
0.5 3000 —7.2747 ~—1.00801 0.006846 0.000044 0.7 11 3000
1.5 3000 —8.3949 —1.01891 0.005188 0.000218 1.2 -2.0 1800
2.5 3000 —8.9354 —1.02285 0.004097 0.000340 1.3 -2.0 20
4.0 3000 —9.4519 —1.02493 0.002961 0.000471 1.2 -2.0 20
6.0 3000 -9.9231 —1.02462 0.001985 0.000587 1.0 1.7 200
8.5 3000 —10.3553  —1.02305 0.001169 0.000688 0.9 1.4 200
12,5 3000 —-10.9008  —~1.01278 0.000490 0.000783 14 -2.1 700
17.5 3000 —11.4371  —1.00202 0.000077 0.000853 21 -3.1 600
25.0 3000 —12.0549  —0.99997 —0.000320 0.000940 2.6 -4.7 500
35.0 3000 —12.75648  —0.98835 —0.000204 0.000990 3.5 6.1 2000
45.0 3000 —-13.3393  -0.97309 0.000306 0.001001 41 -6.8 3000
55.0 2750 —13.7822  —0.97548 0.000311 0.001077 3.9 -6.5 500
65.0 2500 —14.1180  —0.98505 0.000176 0.001169 33 -5.9 400
75.0 2500 —14.4241  -0.97714 0.000791 0.001163 3.5 -6.0 400
85.0 2250 —14.6487  —0.98414 0.000615 0.001252 2.8 -5.1 2250
95.0 2250 —14.8431  —0.98171 0.001045 0.001257 3.0 54 1600
110.0 2000 —15.0579  —0.98864 0.000881 0.001355 2.3 -4.3 2000
130.0 2000 —15.2742  —0.98652 0.001393 0.001366 2.5 46 1400
150.0 1800 —-15.3956  —0.99357 0.001138 0.001452 1.9 -3.5 1800
170.0 1800 —15.4606 -0.99323 0.001309 0.001455 1.9 3.6 1400

@ If less than 3000 m, dose beyond this range is less that 1073 rad/photon
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Source Energy 2 MeV

é; Fit LBRF Fit Parameters Deviations
(deg.) Range” a b c d Aver. | Max. Zmaz
y 7l oz, (m) %) | (%)  (m)
0.5 3000 —7.7335 —1.00194  0.004832 0.000033 0.3 0.5 400
N 15 3000 —8.8667 - —1.00741 0.003850 0.000133 0.6 1.0 1
2.5 3000 —9.4163 —1.00997 0.003160 0.000210 0.7 -1.1 20
4.0 3000 —9.9477 —1.01166 0.002405 0.000297 0.7 -1.1 10
6.0 3000 —10.4395 —1.01209 0.001725 0.000381 0.7 -1.1 10
8.5 3000 —10.9014 -1.01131 0.001170 0.000453 0.6 1.0 200
12.5 3000 —11.4922 -1.00421 0.000714 0.000526 1.0 1.5 2000
175 3000 —12.0892 —0.99599 0.000446 0.000587 1.6 -24 3000
25.0 3000 —12.8199 —0.98695 0.000284 0.000662 2.2 -3.4 500
35.0 3000 -13.6034 —0.97610 0.000327 0.000745 2.9 -4.7 1
45.0 3000 —14.2226  —0.96580 0.000564 0.000812 3.6 -5.7 500
55.0 3000 —14.7154 —0.95632 0.000920 0.000865 41 6.5 2000
65.0 2750 —15.1009 —0.95678 0.000822 0.000970 3.8 6.2 1800
75.0 2500 —15.4109 —0.96026 0.000672 0.001074 3.3 -5.6 1
85.0 2500 —15.6764 —0.95400 0.001341 0.001062 3.6 6.2 1800
95.0 2250 —15.8953 —0.95252 0.001895 0.001049 3.6 6.5 1600
110.0 2250 —16.1610 —0.92822 0.005089 0.000693 6.0 11.3 1600
130.0 2250 —16.4428 —0.88763 0.009648 0.000139 8.4 15.6 1400
150.0 2000 —16.6229 —~0.87829 0.011137 —0.000037 7.7 | -144 400
170.0 2000 —16.6997 —0.86991 0.012514 —0.000212 7.9 -14.9 400

® If less than 3000 m, dose beyond this range is less that 10730 rad/photon

Source Energy 4 MeV

¢; Fit LBRF Fit Parameters Deviations
(deg.) Range® a b c d Aver. Max. Zmaz
|z (m) (%) | (%)  (m)
0.5 3000 —8.2658 —0.99510 0.003316 0.000029 0.7 1.0 6
1.5 3000 —9.4110  —0.99885 0.002701 0.000092 0.7 -1.1 8
2.5 3000 -9.9743  —1.00051 0.002259 0.000142 0.6 -1.1 10
4.0 3000 —10.5295 —1.00127 0.001781 0.000199 0.7 -1.2 10
6.0 3000 —11.0568 —1.00058 0.001381 0.000251 0.8 1.2 4
8.5 3000 —11.5669 —0.99847 0.001053 0.000300 0.8 -1.2 10
12.5 3000 —12.2243 —0.99281 0.000881 0.000343 0.8 1.2 2000
17.5 3000 —12.9126 —0.98022 0.000844 0.000386 1.1 -1.8 3000
25.0 3000 —13.7403 —0.96514 0.000891 0.000452 1.7 -2.8 1
35.0 3000 —14.6005 —0.94351 0.001123 0.000535 2.3 -4.0 500
45.0 3000 —15.2668  —0.92103 0.001481 0.000608 29 4.9 1800
55.0 3000 —15.7925 —0.90010 0.001901 0.000671 34 58 2000
65.0 3000 —16.2150 —0.88302 0.002254 0.000735 3.7 -6.5 3000
; 75.0 2750 ~16.5400 —0.88111 0.001973 0.000864 29 | -53 500
85.0 2500 —16.8059 —0.87846 0.002118 0.000918 2.2 -4.2 2500
95.0 2500 -17.0421 —-{.86112 0.003711 0.000760 2.8 -5.3 500
# 110.0 2250 —17.3134  —0.84345 0.006029 0.000495 2.8 54 1600
130.0 2250 —17.5544 —0.83056 0.008528 0.000187 2.6 -4.7 2250
150.0 2250 —17.6943 —0.83007 0.009693 0.000040 2.0 34 1200
170.0 2250 —17.7611 —0.83146 0.010156  —0.000019 1.6 -2.8 300

@ If less than 3000 m, dose beyond this range is less that 1072° rad/photon




Source Energy 7 MeV

b5 Fit LBRF Fit Parameters Deviations
(deg.) Range” a b c d Aver. | Max. Zmaz
7 7y (m) ) | %  (m)
0.5 3000 —8.7366  —0.98590 0.002550 0.000023 0.9 -1.6 20
1.5 3000 -9.8087  —0.98863 0.002095 0.000071 1.0 -1.7 20
2.5 3000 —10.4812 —0.98919 0.001804 0.000105 1.0 -1.8 20
4.0 3000 —11.0677 -0.98865 0.001490 0.000144 1.1 -1.8 20
6.0 3000 —11.6444  —0.98461 0.001265 0.000176 1.3 -1.9 20
8.5 3000 —12.2130 —0.97948 0.001256 0.000189 0.7 -2.1 20
12.5 3000 —12.9519 —0.97026 0.001400 0.000195 1.8 -2.7 1
17.5 3000 —13.7114 —0.95445 0.001560 0.000220 2.5 3.8 8
25.0 3000 —-14.6222  —0.92542 0.001962 0.000254 3.0 -5.7 500
35.0 3000 —15.5467 —0.88272 0.002752 0.000283 4.9 7.8 8
45.0 3000 —16.2514 —0.84021 0.003488 0.000324 5.8 -9.5 1
55.0 3000 ~16.8006 —0.80510 0.003794 0.000422 5.2 -10.3 1
65.0 3000 —17.2310 —0.78042 0.004028 0.000504 5.9 10.2 6
75.0 2750 —17.5653 —0.77293 0.003500 0.000667 5.6 8.7 6
85.0 2500 —17.8393 —0.76335 0.003714 0.000705 5.2 7.6 4
95.0 2500 —18.0681 —0.74540 0.005045 0.000573 4.8 -7.3 1
110.0 2500 —18.3320 —0.72532 0.007011 0.000350 3.7 6.7 4
130.0 2250 —18.5696 —0.71533 0.008117 0.000219 2.8 5.6 4
150.0 2250 —18.7091 —0.71307 0.009586 0.000036 2.9 4.5 4
170.0 2250 —18.7750 —0.71385 0.009729 0.000020 2.2 -4.0 1

@ If less than 3000 m, dose beyond this range is less that 10~3° rad/photon
Source Energy 10 MeV

ol Fit LBRF Fit Parameters Deviations
(deg.) Range® a b . d Aver. | Max. Zmaez
7| Ty (m) (%) | (%) (m)
0.5 3000 —9.0224 —0.98312 0.002435 —0.000009 1.5 2.2 20
1.5 3000 —10.2037 —0.98361 0.001985 0.000041 0.9 1.9 20
2.5 3000 —10.8046 —0.98286 0.001771 0.000066 0.9 -1.9 40
4.0 3000 —11.4203 —0.98071 0.001640 0.000084 1.1 -2.1 40
6.0 3000 —12.0325 —0.97655 0.001634 0.000090 1.8 2.5 10
8.5 3000 —12.6498 —0.96917 0.001642 0.000102 2.2 3.3 10
12.5 3000 —13.4612 —0.95294 0.001823 0.000109 3.1 4.8 10
17.5 3000 —14.2847 —0.92712 0.002282 0.000100 4.5 7.0 10
25.0 3000 —15.2557 —0.88198 0.003201 0.000076 6.6 10.5 10
35.0 3000 —16.2296 —0.81914 0.004458 0.000058 8.9 14.3 10
45.0 3000 —16.9594 —0.76367 0.005380 0.000084 10.5 -16.5 1
55.0 3000 —17.5226 —0.71814 0.005913 0.000152 11.5 17.5 8
65.0 3000 -17.9529 —0.69083 0.005684 0.000302 11.3 16.6 8
75.0 2750 ~18.2807 —0.68498 0.004746 0.000515 9.9 -14.2 1
85.0 2500 —18.5466 —0.67576 0.004818 0.000567 8.7 12.3 6
95.0 2500 —18.7676 —0.65803 0.006026 0.000446 8.0 | -11.3 1
110.0 2500 —19.0202 —0.64006 0.007769 0.000248 6.9 -9.8 1
130.0 2500 —19.2465 —0.63079 0.009151 . 0.000087 5.6 -8.0 1
150.0 2250 —19.3812 —0.62677 0.009944 —0.000008 4.4 6.7 4
170.0 2250 —19.4426 —0.62836 0.010099 —0.000025 3.6 -6.0 1

@ If less than 3000 m, dose beyond this range is less that 1073 rad/photon
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Source Energy 15 MeV

é; Fit LBRF Fit Parameters Deviations
(deg.) Range® a b . d Aver. | Max. Zmaz
Y|z, (m) (%) (%) (m)
05 | 3000 | —9.3251 —0.07878  0.002190 —0.000012 20 | -29 800
15 | 3000 |-10.5340 —0.97720  0.001935  0.000014 21 | -31 1
25 | 3000 |—11.1633 —097511  0.001807  0.000030 22| 33 20
40 | 3000 |~11.8243 —0.97052  0.001740  0.000040 26 | 39 20
60 | 3000 |-124995 —0.96269  0.001780  0.000042 32 48 700
85 | 3000 |-13.1916 —0.04055  0.002000  0.000029 41| 63 20
125 | 3000 |-~14.0975 —0.92312  0.002550 —0.000006 58| 90 20
175 | 3000 |~14.9973 —0.88267  0.003385 —0.000057 82 | 128 20
250 | 3000 |-16.0281 —0.81802  0.004684 —0.000120 | 112 | 174 20
350 | 3000 |-17.0593 —0.73228  0.006452 —0.000192 | 147 | 23.2 10
450 | 3000 |-~17.8278 —0.65713  0.007753 —0.000204 | 17.0 | 268 10
550 | 3000 |-18.3046 —0.60813  0.007938 —0.000088 | 17.8 | -27.2 1
650 | 3000 |~18.8089 —0.58597  0.007103  0.000138 | 172 | 248 10
75.0 | 2750 | —10.1139 —0.58865  0.005592  0.000418 | 147 | 20.7 8
850 | 2500 |—19.3656 —0.58085  0.005623  0.000468 | 12.7 | -17.7 600
950 | 2500 |-19.5776 —0.56331  0.006811  0.000347 | 11.6 | 16.1 6
110.0 | 2500 |—19.8132 —0.54839  0.008331  0.000177 08 | 134 6
130.0 | 2500 | -20.0217 —0.54190  0.009488  0.000048 76 | -10.6 1
150.0 | 2500 | —20.1451 —0.54176  0.010118 —0.000024 61| 88 4
170.0 | 2250 | —20.2039 —0.53975  0.010602 —0.000084 53 | 80 4

% If less than 3000 m, dose beyond this range is less that 107%¢ rad/photon
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