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Abstract. We are interested in the stability of three-dimensional fluid
flows to small disturbances. One computational approach is to solve a
sequence of large sparse generalized eigenvalue problems for the leading
modes that arise from discretizating the differential equations modeling
the flow. The modes of interest are the eigenvalues of largest real part
and their associated eigenvectors. We discuss our work to develop an effi-
cient and reliable eigensolver for use by the massively parallel simulation
code MPSalsa. MPSalsa allows simulation of complex 3D fluid flow, heat
transfer, and mass transfer with detailed bulk fluid and surface chemical
reaction kinetics.

1 Introduction

Galerkin least squares finite element discretization (GLS FE) of time-dependent
Navier-Stokes modeling of incompressible fluid flow (see [8]) produce the matrix
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where u is the fluid velocity and possible temperature, p is the pressure, M
is the symmetric positive definite matrix of the overlaps of the finite element
basis functions, N is an up-winded mass matrix, L is the sum of the discretized
diffusion, nonlinear convection and any possible reaction operators, C is the
discrete gradient, C” is the discrete divergence operator, R diagonal matrix
representing variable density, and G and K (pressure Laplacian) are stabilization
terms arising from the GLS FE.

Linearizing about the steady state gives rise to the following generalized
eigenvalue problem
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Here, J is the Jacobian matrix associated with the steady state or base flow and
B is mass matrix, that is singular for incompressible flows. We denote the order
of the matrices J and B by n.

The steady state is stable if Real(\) < 0 for all the eigenvalues of (1). Hence,
computing approximations to the right-most eigenvalues determines the stability
of the steady state. The goal of our paper is to present preliminary results on
providing a massively parallel eigensolver for computing these rightmost eigen-
values.

To compute the right-most eigenvalues, a shift-invert spectral transforma-
tion [14] is typically used to transform (1) into the standard eigenvalue problem

1
=(J — oBY'Bx = - _
Tx=J—-0B)"" Bx=wvx, » pyp 2)

The above formulation maps the infinite eigenvalues of (1) (arising from sin-
gular B) to zero. By selecting the pole near the imaginary axis, the right-most
eigenvalues are mapped by T, into those of largest magnitude. However, because
J and B are real matrices, we only allow a real o to keep the computation in
real arithmetic. Although a natural choice is to select a zero pole, the resulting
transformation might miss a Hopf bifurcation (complex conjugate pair of eigen-
values that is in the right half of the complex plane). This occurs, for instance,
when the distance to the Hopf bifurcation is greater than the distance to other
(perhaps stable) eigenvalues of (1). The paper [3] discusses these issues in some
detail.

The computational burden is in solving the linear set of equations with co-
efficient matrix (J — ¢B)~!B. The standard approach is to use a sparse direct
solver to factor J —oB and then solve linear sets of equations (see [3],[4],[1],[10]).
In this paper, we use the related generalized Cayley spectral transformation [14]
that is discussed in Section 3.

Because our interest is in three dimensional systems with coupled fluid flow,
heat transfer, and mass transfer, we need methods that will work for system sizes
of order over n = 10% and that will scale well up to systems of size n = 10%. Hence,
solving linear systems with sparse direct methods is not a viable alternative.
They require O(n?) operations plus a prohibitive amount of memory. Instead,
this paper considers the use of iterative methods for the linear solves on massively
parallel machines. Along with a scalable eigensolver, such an approach allows
very large system eigenvalue problems to be solved.

2 The Players

In this section, we introduce the massively parallel software for modeling three-
dimensional fluid flow, the large scale parallel sparse eigensolver, the iterative
linear solver and the massively parallel supercomputer.
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2.1 MPSalsa

MPSalsa [20],[18] simulates complex systems with coupled fluid flow, thermal en-
ergy transfer, mass transfer and non-equilibrium chemical reactions. Currently,
computer simulations of these complex reacting flow problems are usually lim-
ited to idealized systems in one or two spatial dimensions when coupled with
a detailed, fundamental chemistry model. The goal of the MPSalsa project is
to develop, analyze and implement advanced massively parallel numerical al-
gorithms that will allow high resolution three-dimensional simulations with an
equal emphasis on fluid flow and chemical kinetics modeling.

MPSalsa uses a GLS FE formulation [8] and has been written for unstruc-
tured meshes in two and three dimensions and to run on distributed memory
massively parallel computers. A fully-coupled Newton’s method is used to solve
the nonlinear equations, which requires the inversion of a large sparse matrix at
every iteration. With these robust methods, it is often possible to reach steady-
state solutions directly from a trivial initial guess without the need of following
a time transient. Since the steady-state algorithm does not discriminate between
stable and unstable steady states, linear stability analysis is a crucial capability
for using MPSalsa as an analysis tool.

MPSalsa has been used to analyze a variety of reacting flow systems, includ-
ing the analysis of 3D models of Chemical Vapor Deposition (CVD) reactors for
the growth of gallium arsenide semi-conducting films [19].

2.2 P_ARPACK

P_ARPACK ([12] software is capable of solving large scale symmetric, nonsym-
metric, and generalized eigen-problems from significant application areas. The
software is designed to compute a few eigenvalues with user specified features
such as those of largest real part or largest magnitude. The software implements
an implicitly restarted Arnoldi Method [21]. Restarting is used so that the num-
ber of Arnoldi iterations (the size of the corresponding Hessenberg matrix) re-
mains fixed. An effective restarting scheme finds ever better starting vectors so
that the subsequent Arnoldi run contains the desired eigenvalue approximations.
Implicit restarting is a stable and efficient scheme; for more information see [11].
P_ARPACK uses a data parallel model of computation where each processor
owns a number of rows of the Arnoldi vectors.

2.3 Aztec

Aztec [9] is a parallel iterative library for solving linear systems of equations.
A globally distributed matrix allows a user to specify pieces (different rows for
different processors) of the application matrix. Issues such as local numbering,
ghost variables, and messages that are crucial for parallelizing an application can
be ignored by the user and are instead computed by an automated transforma-
tion function. Efficiency is achieved by using standard distributed memory tech-
niques; locally numbered sub-matrices, ghost variables, and message information
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computed by the transformation function are maintained by each processor so
that local calculations and communication of data dependencies is fast. Addi-
tionally, Aztec takes advantage of advanced partitioning techniques (Chaco [7])
and utilizes efficient dense matrix algorithms when solving block sparse matrices.

Aztec allows the user to choose between several Krylov-based iterative so-
lution techniques as well as several algebraic preconditioners. In this work, we
have exclusively used the GMRES algorithm [17] with a sufficiently large Krylov
space (so that no restarts were necessary) that is preconditioned using the ILU(0)
domain decomposition preconditioner. The domains for the preconditioning are
the same as the partitioning used for parallelizing the MPSalsa calculation, so
that the number of dornains is the same as the number of processors that the
application is run on.

2.4 Computer

The calculations presented here were run on the Sandia-Intel Teraflop massively
parallel supercomputer [13] (a.k.a. ASCI Red). This computer has 4,536 nodes,
each with two 200Mhz Pentium Pro Processors and 128 MBytes of memory.
The theoretical peak is 1.8 TFLOPS and over 1.0 TFLOPS has been achieved.
Node to node bandwidth is 800 MBytes/sec. More information can be found at
wwy.sandia.gov/ASCI/TFLOP/Home Page . html.

In 1997, MPSalsa-Aztec was a finalist for the Gordon Bell prize for reaching a
sustained rate of 210 Gflops on 3600 nodes of the Sandia-Intel Tflop computer [5].

3 Algorithm

We now briefly describe the algorithm used for computing several (say k) right-
most eigenvalues of (1). As we have already mentioned, the dominant cost of the
computation is that of solving the linear systems of equations associated with
the shift-invert spectral transformation. Although this transformation maps the
eigenvalues near the pole to those of largest magnitude, the transformation also
maps the eigenvalues far from the pole to zero. Hence, the spectral condition
number (absolute value of the maximum ratio of the eigenvalues) of T, can be
quite large. The resulting linear systems will be difficult to solve because the
rate of convergence with an iterative method [16],[6] depends strongly upon the
spectral condition number.

A better conditioned linear set of equations is achieved when using a gener-

- alized Cayley [14] transformation resulting in

T.x = (J —oB)~ }(J — uB)x = vx, u:i:l;._ 3)

We call u the zero of the Cayley transform. In contrast to shift-invert transform,
the Cayley transform maps any eigenvalues of (1) far from the pole close to
one. If we are able to select a pole that is to the right of all the eigenvalues (1)
along with ¢ < u, then the smallest eigenvalue of T, is no smaller than one (in
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magnitude). Moreover, by judiciously choosing the pole, we can approximately
bound the largest eigenvalue of T, (in magnitude) resulting in a modest (say
order ten) spectral condition number.

— Start P_.ARPACK with the vector v = J™'Bx where x is random vector.
Select a pole and zero for T,.
1. Compute m Arnoldi iterations for T, with starting vector v.
2. Exit if the k eigenpairs satisfy the user specified tolerance.
3. Implicitly restart the Arnoldi iteration.
4. Pick a new o and g based on the current approximate eigenvalues.

A few remarks are in order. The starting vector is chosen so that it does not
contain any components [15] in the null-space of B. The orthogonality of the m
Arnoldi vectors is maintained at machine precision. At step 2, the eigenvalues of
the m by m Hessenberg matrix are mapped back to the system defined by (1) via
the inverse Cayley transformation. The eigen-computation is terminated when
these k rightmost approximate eigenvalues satisfy the user specified tolerance.
The check that must be satisfied is equivalent to computing ||J% — AB%|| where
% and ) are the approximate eigenvector and eigenvalue computed. By implic-
itly restarting the Arnoldi iteration, we compute a new starting vector for the
subsequent run (step 1). Finally, at step 4, the new pole and zero for the next
Cayley transformation are selected so that the spectral condition number of T,
is of order ten. ‘

4 Numerical Experiments and Discussion

The flow and heat transfer in a rotating disk CVD reactor is chosen as the tar-
geted test problem for the linear stability analysis. It is an important engineer-
ing application where transitions from stable to unstable (and undesirable) flows
have been seen experimentally [2]. The flow stability problem is complex because
of competing flow effects due to forced convection at the inlet of the reactor,
rotationally-driven convection at a spinning disk in the reactor, and buocyancy-
driven flow due to large temperature gradients. The system—geometry, equa-
tions, and boundary conditions—is axisymmetric, but an understanding of the
bifurcations to three-dimensional solutions is crucial for successful design of the
next generation CVD reactor.

A three-dimensional, unstructured finite element mesh consisting of 43520
elements is used to discretize the 5 coupled PDEs that govern the flow and
heat transfer in this system. The total number of unknowns in the problem, and
correspondingly the rank of the eigenvalue problem, is 233925.

For the calculations presented, GMRES was the iterative solver used for all
the linear systems along with an overlapping Schwarz domain decomposition
preconditioner with ILU(0) on each sub-domain. All computations were done
using double precision floating point arithmetic.

Since P_ARPACK is matrix-free (no specified storage format is assumed for
the matrices), the VBR (variable block row) storage format provided by Aztec
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is used for the matrices. A node based distribution of the problem is used hence
there are repeated elements (ghost nodes). All the necessary processor commu-
nication and associated work is done by Aztec.

The MPSalsa calculation of the steady solution from a trivial initial guess on
200 Processors required 7 Newton iterations and 305 seconds, 90% of which was
spent in the linear solver. Each linear solve was required to reduce the residual
by 10~* and required Krylov subspaces ranging from 215 to 289, and used 40
seconds on average.

A calculation of 7 leading eigenvalues of this system was performed with
the algorithm described above. The total time for the eigenvalue calculation
was 1800 seconds. The following discussion presents the times for each step in
the algorithm as well as some of the choices in parameters that were made. A
tolerance of 10~ used for P.ARPACK.

Only 3 seconds were required to calculate the matrices J and B. The initial
guess of v = J~!Bx for a random vector x was computed where the linear solver
decreased the residual by 10~!2 in 58 seconds. Using ¢ = 100 and p = 1000
for the initial Cayley transformation, m = 24 Arnoldi iterations were computed.
The preconditioner was calculated in 10 seconds and and reused in each of linear
solves. GMRES required on average 20 seconds and a Krylov subspace size of
175 (without restarts) to reduce the residual by a factor of 10~10.

At this point, none of the computed eigenvalues satisfied the desired toler-
ance, and a new shift and pole were chosen as ¢ = —6.86 and p = 63.5. Another
m = 24 Arnoldi iterations were computed and each linear system required 51
seconds and a Krylov subspace size of 345 to reduce the residual by a factor
of 107'%. The 7 converged eigenvalues and residuals are listed in Table 1. The
numbers listed in the third and fourth columns are ||JX—ABX%||/||Bx|| (Residual)
and |XHJ%/%"Bx — )| (Rayleigh Quotient Error) where % (||&]| = 1) and X are
the approximate eigenvector and eigenvalue computed. In the case of complex
conjugate pairs of eigenvalues, the successive rows list the real and imaginary
parts of the vector and scalar quantities.

Table 1. The 7 leading eigenvalues and the residuals are presented. The calculation
for a system of rank 233925 required 1800 seconds on 200 Processors. The tolerance
used for the eigensolver was 107°.

Eeal(A\)] Im()\)|ResiduallRQ errors
—13.867] 0.0000] 9.3¢ — 5] 2.le — 7
~15.008] 10.144| 2.4e — 5| 3.0e —7
~15.908|]—10.144] 3.7¢ — 5| 1.3e — 6
23685 4.513| 4.8¢ — 4| 3.7¢ — 6
—23.685| —4.513| 1.7¢ — 4] 5.2¢ — 6
—24.137| 21.809] 5.8c — 5| 7.5¢ — 6
24.137]—21.809| 2.2¢ — 4] 7.2¢ — 6
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Calculations on this and similar systems showed that the residual reduction
in the linear solver had to be near or below 10710 to get accurate eigenvalues.
Considering that the linear solves in the steady state calculation required over
200 GMRES iterations (no restarting) just to reach a 10™* residual reduction,
it was a concern that requiring 10710 of the linear solver in the eigenvalue cal-
culations was going to severely limit the algorithm. However, solving the Cayley
systems proved to be much easier than solving the untransformed system for the
steady state. This is seen in the above results, where it took 40 seconds to invert
J to a tolerance of 10~* in the steady state calculation and only 20 seconds to
get 10710 reduction when ¢ = 100 and g = 1000. As explained in Section 3
the Cayley transformed system maps most of the eigenvalues near 1, so that
the spectral condition number of the matrix is bounded. It turns out that the
spectral condition number of the system (J — oB)~!(J — uB) is just 8.9 for the
initial Cayley transform and 11.0 for the second.

20000 L T T T T T L ] S i
o, I 60— C(lassical G.S. =
Z @--8 Modified G.S.
* ’O'
| OE) 15000 | L .
g 10000 | Pt -
o .’
N i M |
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g 5000 F o .
E | Number of GMRES iterations (same for CGS and MGS)
— (268) (298) (290) (257) (234) - (234) (245)
0 " i 1 I 2 1 1 1 . 1
0 100 200 300 400 500

N, (Number of Processors)

Fig. 1. Comparing the parallel efficiency of orthogonalization schemes used for GM-
RES. The number of GMRES iterations needed to to solve the linear systems to the
specified tolerance using the given number of processors is shown in parenthesis.

Another interesting algorithmic detail that proved important was the choice
of orthogonalization used in the GMRES algorithm. Originally, a classical Gram-
Schmidt scheme was used, but the lack of numerical stability prevented the GM-
RES algorithm from reaching the required 1071° tolerance. Two alternative or-
thogonalization schemes were used successfully: two-step classical Gram-Schmidt
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(CGS) and a modified Gram-Schmidt (MGS). The CGS method uses two steps
of orthogonalization (the second step is the correction for loss of orthogonality
for the Arnoldi basis vectors) but the number of global communication points
remains fixed (at two) independent of the GMRES iteration. On the other hand,
the MGS scheme requires ¢ communications to orthogonalize i vectors (at GM-
RES iteration ¢) but no additional floating point operations (flops). Both schemes
reached the 10710 tolerance and provided identical results in terms of the number
of GMRES iterations needed.

There was a significant difference in the scalability of the two algorithms as
the number of processors was changed. The time required to perform a single
linear solve (using a pre-calculated preconditioner) was recorded for the same
problem as above for the case of ¢ = 10 and p = 50, with the number of
processors being varied from 50 to 500. The results of this calculation are most
clear when presenting the total CPU time (calculated as the wall clock time
multiplied by the number of processors) as shown in Figure 1. When the problem
was run on 50 processors, the extra communications required by MGS were less
expensive than the extra flops required by the CGS algorithm. However, as the
number of processors is increased up to 500, it is seen that the communication
time in MGS starts to dominate, while the total CGS time remains relatively
flat. At 500 processors, the CGS routine uses less than half of the time of the
MGS method.

The results in Figure 1 show that the two-step classical Gram-Schmidt (CGS)
scheme scales much better than the modified Gram-Schmidt (MGS) scheme. It
should be pointed out that the inter-processor communication rate of the Sandia-
Intel THlop computer is very fast compared to more loosely coupled parallel
machines, where we would expect the crossover point to be at significantly fewer
than 100 processors as seen here.

In each case, the number of GMRES iterations is shown. The surprising result
is that the number of GMRES iterations does not increase monotonically with
the number of processors (and hence domains in the ILU(0) preconditioner).
This is currently not understood.

5 Conclusions

The preliminary results presented here show that the algorithms can be used to
successfully perform linear stability analysis on reacting flow systems of O(10°)
on massively parallel computers.

Our results showed that a judicious choice of a Cayley transformation along
with a preconditioned GMRES iterative solver for the resulting linear systems
allowed the P_.ARPACK to compute accurate eigenvalues. Also crucial for the
scalability of GMRES was the use of a two-step classical Gram-Schmidt scheme
for the necessary orthogonalizations.
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