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1. FRACTURE CHARACTERIZATION USING PRODUCTION DATA 

This research project was conducted by Research Assistant Egill Juliusson, Senior Research 

Engineer Kewen Li and Professor Roland Horne. The objective of this project was to investigate 

ways to characterize fractured geothermal reservoirs using production data. 

1.1 SUMMARY 

This report highlights the work that was done to characterize fractured geothermal reservoirs 

using production data. That includes methods that were developed to infer characteristic 

functions from production data and models that were designed to optimize reinjection scheduling 

into geothermal reservoirs, based on these characteristic functions. 

 

The characterization method provides a robust way of interpreting tracer and flow rate data from 

fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which 

describes how injected fluids are divided between producers in the reservoir. The tracer data are 

used to find the tracer kernel for each injector-producer connection. The tracer kernel describes 

the volume and dispersive properties of the interwell flow path. A combination of parametric and 

nonparametric regression methods were developed to estimate the tracer kernels for situations 

where data is collected at variable flow-rate or variable injected concentration conditions. 

 

The characteristic functions can be used to calibrate thermal transport models, which can in turn 

be used to predict the productivity of geothermal systems. This predictive model can be used to 

optimize injection scheduling in a geothermal reservoir, as is illustrated in this report. 

1.2 INTRODUCTION 

Robust methods to characterize fractured reservoirs are crucial for successful development of 

geothermal fields, both conventional and EGS. Large faults and fractures can sometimes be 

mapped with seismic surveys but in severely fractured systems it becomes increasingly difficult 

to interpret the seismic data. This fact elevates the importance of utilizing well production data to 

characterize these systems to the furthest possible extent. 

 

Well-to-well connections in fractured fields are famously hard to predict as illustrated in the 

classic Wairakei tracer tests reported by McCabe et al. (1983). Figure 1.1 shows that the 

distances between wells were in no way indicative of tracer-determined well connectivity, nor 

could the surface fault traces be used to determine which wells were best connected. The 

importance of understanding how fracture networks govern the flow in a geothermal system was 

demonstrated clearly by Yahara and Tokita (2010), as they reported on problems with the 

expansion of the Hatchobaru geothermal field in Japan. In that case it took about five years to 

understand the subsurface flow mechanisms and make the relevant modifications to bring the 

power production up to full capacity. 
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Figure 1.1: Graphical summary of tracer returns in the Wairakei geothermal field. Continuous 

arrowed lines indicate tracer returns of more than 1%; dashed lines indicate 0.1% to 

1% returns; dotted lines indicate returns of less than 0.1% (from McCabe et al., 1983). 

 

Full-physics flow simulation models are often used to characterize the subsurface, in geothermal, 

groundwater and oil and gas applications. Characterizing fractures with such models has proven 

difficult because; a) simulating fractures is very inefficient computationally, and; b) the 

stochastic nature of fractured reservoirs makes history matching subject to very high uncertainty.  

 

An important aspect of developing a geothermal field is the design of an efficient injection 

schedule. A forward model that can estimate the field performance at various injection schedules 

is required to solve this design problem properly. The forward model must be run multiple times 

to find the optimal schedule and therefore it is desirable that the model can run fast and be robust 

computationally. This is seldom the case when full-physics flow simulation models are used to 

characterize a geothermal system. 

 

In this work a systems analysis approach was used to characterize fractured reservoirs. The 

approach was designed to be data-driven with an emphasis on efficiency and capturing the 

effects of fractures. Part of the challenge was to find which data would be best suited for the task, 

and how multiple data sources could be interpreted jointly to yield an informative 

characterization of the reservoir.  

 

The characterization method was used to calibrate a well-to-well thermal transport model. The 

thermal and flow rate transport models were used jointly to predict the performance of the 

resource at a given injection schedule. A formulation for the optimal injection scheduling 

problem was designed and solved in a robust and efficient manner, as illustrated in this report. 
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1.3 CHARACTERIZATION BASED ON FLOW-RATE AND TRACER DATA 

At the conclusion of this study it was found that flow-rate (or bottomhole-pressure) data and 

tracer data could be used very efficiently to characterize fractured reservoirs. The flow-rate data 

were essential for defining the fractional amount of injected water that goes towards each 

producer. The tracer data were used to describe the transport properties of each injector-producer 

flow path in more detail by a function referred to as the tracer kernel.  

 

This section describes the details of how flow-rate and tracer data were used to characterize the 

reservoir. The handling of flow-rate data follows the method of Lee (2010). A new model that 

relies on a combination of injected flow-rate and tracer concentration was developed to describe 

variations in produced tracer concentration. Central to this model is the definition of the tracer 

kernel, which was derived with reference to the advection-dispersion equation. 

1.3.1 Flow-Rate Models 

Interwell connectivity (IWC) models have been discussed by several researchers over the past 

decade (Albertoni and Lake, 2002; Dinh, 2009; Juliusson, 2012; Lee, 2010; Yousef et al., 2005). 

These models are applicable in reservoirs with low compressibility when production wells run at 

constant bottomhole pressure conditions (the Interwell Transmissibility Model (Juliusson, 2012) 

is an exception). The IWC's are particularly useful for mapping highly conductive flow paths 

between wells. The method outlined by Dinh (2009) relies on bottomhole pressure data, the 

Interwell Transmissibility method presented in the Quarterly Report from Spring 2012 requires 

both bottomhole pressure and flow-rate data, but the methods developed by Albertoni and Lake 

(2002), Yousef et al. (2005), and Lee (2010) depend only on flow-rate data. A recent flow-rate 

based method, referred to as the M-ARX method Lee (2010), was used to compute IWC in this 

work. The M-ARX method will be described briefly in this section to introduce the nomenclature 

and lay the foundation for the tracer kernel method described in the next section. 

 

The M-ARX interwell connectivity method is derived from a set of volume balances: 

 

       

  
 ∑

   

  
      

  

   

 ∑
   

  
      

  

   

 (2.1) 

 

where   denotes time,    and    are the injection and production rates, respectively,    and    

are the number of injection and production wells, respectively,   and   are proportionality 

coefficients and   is a constant that governs the time lag of the response in the producers. 

 

The set of volume balances defined by Equation (2.1) can be represented in matrix form as: 

      

  
                 (2.2) 

 

where: 
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The following analytical solution exists for Equation (2.2): 

 

            
     ∫          

      

 

 

 (2.5) 

 

The main advantage that the M-ARX model has over those derived by Albertoni and Lake 

(2002) and Yousef et al. (2005) is that the producer-producer interactions are taken into account, 

in addition to the injector-producer interactions. For practical applications it is more convenient 

to deal with the discrete form of Equation (2.2): 

 

                       (2.6) 

 

where   is a time-like discrete variable, and   and   are the discrete counterparts of    and   , 

respectively. Equation (2.6) defines a Multivariate AutoRegressive model for determining    

with eXogenous inputs,    (hence the abbreviation M-ARX). A set of     measurements 

yields   equations which can be solved together to find the elements of   and  : 

 

[             ]  [    ] [
           

           
] (2.7) 

 

The solution to Equation (2.6) is stable, as long as              (elementwise). It can be 

shown via the Z-transform (discrete analog of Laplace transform) that if the injection rates are 

kept constant, the production rates will stabilize at: 

 

                  (2.8) 

 

The elements of the matrix            then define the interwell connectivity for each of 

the injector-producer pairs in terms of flow-rate. With this definition of   the portion of flow 

leaving injector   arriving at producer   will be: 
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               (2.9) 

 

If the total compressibility is small, the flow-rates stabilize relatively quickly, i.e., within a few 

hours. This would be the case for production from most liquid-dominated systems, and thus the 

M-ARX model would be suitable, e.g., for optimizing injection scheduling (Juliusson, 2012; 

Liang et al., 2007; Sayarpour et al., 2006). 

 

M-ARX is a very useful and robust method that can be applied easily to large amounts of flow-

rate data from liquid-dominated reservoirs. By inspection of the IWCs computed by the M-ARX 

model one can already gain much insight into the layout of flow paths in the reservoir. A slight 

drawback to the M-ARX model is that it is based on the assumption that the bottomhole pressure 

at the producers will remain constant over time. Thus, it is not suited for cases where both 

injection and production rates are controlled directly. A transmissibility based model that is 

designed to handle controlled flow-rates at both the injectors and the producers was presented in 

the Quarterly Report from Spring 2011. 

1.3.2 Tracer Models 

A myriad of tracer transport models can be found in the literature. Many different models have 

been developed because a large number of assumptions must be made about the nature of the 

tracer, the medium through which it flows and the fluid flow pattern. Most of these models are 

based on some form of the Advection-Dispersion Equation (ADE). One of the main goals of this 

work was to develop a tracer transport model that could be applied at variable flow rate 

conditions. This led to the consideration of the ADE with time varying coefficients: 

 

  

  
     

  

  
     

   

   
         (2.10) 

 

where   is distance along the flow path,   is tracer concentration,   is the retardation factor,      

is the (interstitial) flow velocity,      is the diffusion coefficient and      is the decay factor. By 

assuming a linear dispersion model,            , which is commonly used in hydrological 

studies (Bear, 1972), the following change of variables can be made: 

 

        ∫       
 

 

   (2.11) 

         (2.12) 

         (2.13) 

        (2.14) 

 

where   is the cross-sectional area of the flow path perpendicular to the x-direction, and   is the 

porosity of the flow path. With these variables, the ADE can be rewritten as: 
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This form of the ADE has all coefficients constant other than the decay factor. The solutions to 

Equation (2.15) for a unit impulse injection are presented in Table 1.1 for the various 

combinations flux and resident fluid boundary conditions. A similar table and the meaning of the 

boundary conditions are discussed in more detail in Kreft and Zuber (1978). The solutions are 

denoted by   to emphasize that they are specific to a unit impulse injection and depend on the 

cumulative flow,  . These solutions are referred to as tracer kernels.  

 

Table 1.1: Tracer kernels for various boundary conditions. 
Description Initial and boundary conditions Tracer kernel 

Infinite bed, injection 

and detection in resident 

fluid 
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Semi-infinite bed, 

injection and detection in 

flux  

              

                         

                   
    

  

√      
 
 

       

      ∫     ̃   ̃
 
   

 

The tracer kernels can be used as basis functions to compute the tracer response at variable flow-

rate and variable injected tracer concentration conditions. Having an analytical model of this type 

is useful both for prediction and inference based on data that has been collected at variable flow-

rate and concentration conditions. In interwell tracer testing the tracer concentration is usually 

measured in flux, both at the injection well and production well. Therefore the flux-flux (  ) 

tracer kernel from Table 1.1 can be used to compute the response in the production well as: 

 

                 ∫   (      ̃)   ( ̃)  ̃
    

 

  (2.16) 

 

where    and    are the injected and produced tracer concentration, respectively. 

 

The representation given by Equation (2.16) was expanded to multiwell systems by accounting 

for the mixing of the various injection streams at each producer with the mixing weight: 

 

         ∫
        

      

 
 
   
 

 
  

 

 

 (2.17) 

 



7 

 

where       is the IWC-dependent flow-rate shown in Equation (2.9), and   is a factor that 

accounts for the mixing time of the two fluids. 

 

With this, the produced concentration in well   can be computed as: 

 

        ∑          (              )

  

   

  (2.18) 

 

where     denotes the convolution given by Equation (2.16) and        ∫          
 

 
. To 

simplify the notation, the subscript      was reduced to    and the subscript    for the tracer 

kernel was left out, but implied. 

1.3.3 Tracer Kernel Estimation 

In order to apply Equation (2.18), the tracer kernels,    , need to be estimated from tracer return 

data. Given impulse tracer test data, the tracer kernel can be estimated from: 

 

   (   )  
   
       (   )

      
  (2.19) 

 

where     denotes the tracer from injector   that is recovered in producer  . Ideally, the integral 

of Equation (2.19) should equal one, but this would not always be the case in practice and 

therefore the kernel integral is defined as the dimensionless factor that accounts for the 

difference between the IWC and the fractional tracer returns: 

 

    ∫         
 

 

 (2.20) 

 

A traditional multiwell tracer test will have different types of tracer going into each injection 

well, so as not to create any confusion about the origins of each tracer. However, there are 

situations where the same tracer, e.g. a recirculating chemical compound (CO2, Cl
-
), could be 

going into all of the injection wells at once. In such cases both the injection rates and injected 

concentrations will often vary and inferring the underlying tracer kernels involves solving a 

multiple input deconvolution problem, i.e. a highly under-determined inverse problem. Methods 

for solving this problem with both parametric and nonparametric tracer kernel models were 

developed as part of this work. 

1.3.3.1 Parametric Deconvolution 

A parametric model for the multiwell flux-flux (  ) tracer kernel could be defined as: 
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    (         )

 

          (2.21) 

 

where the three unknown parameters are      ,                  , and    . Note that the 

correction factor,  , has been added to the definition of the tracer kernel to allow more flexibility 

in the model. The unknown parameters are grouped into the vector       [              ], for 

notational convenience. 

 

Nonlinear regression methods were used find those parameters which provide the best match 

between the observed data and the model. This was achieved based on the following constrained 

least-squares problem: 

 

   
  

                (         (  ))
 

(         (  )) (2.22) 

                           (2.23) 

                              (2.24) 

 

Several of the variables appearing in this problem need further definition. The matrix    

represents an approximation of the sum and integration of the kernels in Equation (2.18), i.e.: 

 

           (  ) (2.25) 

 

where: 

 

  (  )  [

   (   )

 
    (    )

] (2.26) 

 

and each vector    (   ) represents a vector of kernel values at each point chosen for the 

discretization of the kernel. Similarly, the matrix    is a matrix of matrices, i.e.: 

 

     [         ] (2.27) 

 

Each submatrix,    , represents the convolution integral which computes the response at each of 

the measurement times defined in  . If there are   time measurements   discretization points for 

each kernel, then the size of     is    . The structure of     depends on which discretization 

rule is used for the integration. A detailed description of the structure of     for a trapezoidal 

discretization rule is given in Juliusson (2012). 
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The nonlinear least-squares problem (2.22) can be solved more efficiently by supplying the 

analytical formulation for the gradient and the Hessian matrix to the numerical solver. Therefore, 

the gradient was derived and computed as: 
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(         (  )) 

   
     

(2.28) 

 

The Hessian was approximated using only the first derivative terms. Thus, it could be computed 

from the Jacobian as: 

 

   (  )

   
 

   
    (2.29) 

 

The full structure of the Hessian, i.e. with the second derivative terms included, is given in the 

Quarterly Report from Spring 2010. However, the second derivative terms are often left out 

(Gauss-Newton method), and that proved computationally efficient in this case. 

 

The analytical equations for the derivatives of the kernel functions with respect to   ,    and  , 

were computed automatically using the Symbolic Toolbox in MATLAB, and will not be 

recounted here. The MATLAB function fmincon was then used to solve problem (2.22), using 

the trust-region-reflective algorithm. The objective function had a number of local minima and 

therefore it was often necessary to try a few different initial guesses to achieve convergence to 

the “true” solution. A Genetic Algorithm was applied to provide a structured approach to finding 

a good initial guess for    .  

 

In practice, tracer breakthrough usually occurs only in some of the production wells. Solving the 

multiwell tracer deconvolution problem when this is the case becomes a bit more challenging 

because in the model it is assumed that all injectors influence each producer. But by looking at 

the sensitivity of the production data to the injection data it was often possible to find out which 

kernels were reproduced with strong dependence on the data and which ones were highly 

susceptible to random noise. Obtaining this information was valuable because it provided further 

understanding of which injector-producer pairs had a significant connection. Rigorous methods 

to test hypotheses of whether or not a parameter is significant are well known for unconstrained 

linear regression models. Problem (2.22), however, is nonlinear and constrained. Therefore a 

heuristic method was devised to determine which kernel estimates were the most significant, 
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although the method was based on principles similar to those used in hypothesis testing with 

linear regression models. 

 

The test statistic used to determine the influence of each kernel was based on parameter 

uncertainties. These were based on the values of the Hessian matrix at the final solution. The 

covariance matrix for the kernel parameters,    was computed as: 

 

 ̂ 
    ̂  

  ( ̂ 
  ̂ )

  
 (2.30) 

 

where  ̂ 
  denotes the sample variance of the residuals: 

 

 ̂  
    (     ̂  )

 
(     ̂  )         (2.31) 

 

and the ̂  denotes the best estimate. 

 

To test the influence of each kernel on the output it was logical to focus on the multipliers    , as 

they represented a linear scaling of the kernel function. If the influence of a kernel was small, or 

zero, solutions with small     would be favored. Moreover, if there was a poor connection 

between injector   and producer  , the uncertainty in the corresponding kernel parameters would 

should be large, because there were few data to constrain that kernel estimate. Finally the IWCs 

are good indicators of the influence of a particular injector-producer connection. Thus, the 

following test statistic was computed: 

 

       
        ̂   

∑         ̂   

  
    

 (2.32) 

 

where  ̂   

  denotes the variance of    . The measure    ranges between   and  , and those values 

were used to determine which kernels to include, for example by applying some threshold value 

or by including a certain number of the most influential connections for each producer. 

 

Example applications of parametric kernel estimation are given in Sections 1.4 and 1.5. The 

parameter constraints that were used for those examples were                    [m
3
], 

         and        . 

1.3.3.2 Nonparametric Deconvolution 

Nonparametric models are preferable to parametric when there is considerable uncertainty in the 

formulation of the parametric function. The nonparametric kernel function is a set of points 

which represent the value of the kernel at discrete points of cumulative flow. The tracer kernel is 

then defined by some interpolation between these points. 
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In the same way as for the parametric problem, the model relating the input and output 

concentrations is given by Equation (2.18). For the nonparametric model, this equation was 

approximated with the trapezoidal discretization rule: 

 

∫    (      ̃) ( ̃)  ̃
    

 

 
 

 
∑[   (      ̃   ) ( ̃   )     (      ̃ ) ( ̃ )]( ̃     ̃ )

 

   

 
       (    )     (      ̃ ) ( ̃ )

 
(      ̃ ) 

(2.33) 

 

where   is the number of the largest discretization element which is smaller than     . 
 

Special attention has to be given to  (    ) in the last term in Equation (2.33). When      

 ̃  the following interpolation was used for the last term: 

 

 (    )   ( ̃ )
 ̃        

 ̃     ̃ 

  ( ̃   )
      ̃ 

 ̃     ̃ 

 (2.34) 

 

but for       ̃  it was assumed that  (    )   . 

 

Each submatrix     was based on this discretization rule which lead to the produced tracer 

concentration which was computed similarly as in Equation (2.25): 

 

             (2.35) 

 

Note that here the vector     represents the combination of the nonparametric kernels: 

 

   [

   

 
    

] (2.36) 

 

and each nonparametric kernel is represented by the   discretization points as: 

 

    [   (     )     (     )]
 
 (2.37) 

 

The matrix    is given by Equation (2.27). 

 

Estimates of nonparametric curves are somewhat susceptible to noise and therefore a 

regularization term is usually added to nonparametric estimation problems, to enforce a degree of 
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smoothness on the kernel estimates. This has been done in the following regularized linear least-

squares problem which was formulated to determine the value of   : 

 

   
  

      (2.38) 

            (2.39) 

 

where: 

 

 (  )  
 

 
(        )

 
(        )  

 

 
(           )

 
(           )  (2.40) 

 

The regularization (or roughness penalty) matrix is a block diagonal matrix: 
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     ]

 
 
 

 (2.41) 

 

and a general formulation that was used for element       of the block matrices is as follows: 

 

   
    

    ∑       (
 

   
)        (

 
   

)

   

   

 (2.42) 

where: 

 

(
 
 
)                       (2.43) 

 

The regularization term adds a penalty to the objective function if the kernel estimate deviates 

from the prior. It does this by adding or subtracting the deviations from one discretization point 

to the next with a given rule. The span of this smoothing scheme depends on the parameter  . 

For example, with    , the regularization term becomes: 

 

 

 
(        )

 
 (        )  

 

 
∑[(               )   (           )  (               )]

   

   

 (2.44) 

 

The regularization weight     usually had to be tuned manually to find an acceptable balance 

between reproduction of the data and reproduction of the prior kernel estimates. For the 

examples given in this paper, the parametric kernel estimates were used as priors and the 

regularization weights ranged between     and     .  
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The gradient and Hessian for the objective function were used to help the optimization 

algorithm. The gradient for problem (2.38) is: 

 

  (  )

   
    

 (        )    (           ) (2.45) 

 

and the Hessian is: 

 

   (  )

   
 

    
       (2.46) 

 

A practical approach was needed for determining the discretization interval for the 

nonparametric kernels. In an effort to divide the kernels into parts that would contribute evenly 

to the production signal, a discretization scheme was devised based on the reasoning that 

follows. The integral of the parametric kernel should equal  . With a trapezoidal integration 

scheme, with   points, the kernel could be divided into     sections, each with area      
  . Therefore a practical set of discretization points could be found by solving (starting from 

    ): 

 

             

 
           

 

   
 (2.47) 

 

for     . The solution was found using the MATLAB routine fminbnd which is based on a 

golden section search and parabolic interpolation. To ensure that        ,    was used as a 

lower bound on each search. The upper bound was given by      . Theoretically, the last 

value in the discretization should tend to infinity. However, as a result of the upper bound 

estimate required for the initial guess, the last point would have some limited value. An example 

discretization based on this method is shown in Figure 1.2. 

 

Confidence intervals for the nonparametric kernels were estimated with the parametric bootstrap 

method. A parametric bootstrap is a simple way of inferring the noise in a set of data from a 

model fitted to that same set of data. The distribution of errors is estimated by collecting the 

residuals in a vector: 

 

          ̂   (2.48) 
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Figure 1.2: Example of a kernel discretization with 100 points found using the equal area rule 

given by Equation (2.47). 

 

Then a new tracer production signal,    
   , could be created by drawing   samples, randomly 

with replacement, from the residual,   , and adding them to the modeled response,  ̂   . This was 

done a large number of times (say 1000 times) and a new fit was found for each new set of 

simulated production data. The resulting fits were used to infer the median value of the kernel 

estimates and 95% confindence bounds.  

1.3.4 Example I 

In this section an example application of the tracer kernel model will be presented with data 

generated from a relatively simple discrete fracture model, referred to as Reservoir Model I. The 

main purpose with this example is to illustrate the tracer kernel inference procedure with a 

simple conceptual model. Synthetic data was generated for this case where both the flow-rates 

and injected concentrations varied simultaneously. 
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Figure 1.3: Computational grid for Reservoir Model I. 

 

Reservoir Model I, shown in Figure 1.3, was built using the FEFLOW groundwater simulation 

software FEFLOW (DHI-WASY, 2010) and the computational gridding software Triangle 

(Shewchuk, 1996). The main properties of the model are summarized in Table 1.2. 

 

Table 1.2: Properties for Reservoir Model I. 

General  

Dimensions 1000x1000x500 m
3
 

Longitudinal dispersivity 50 m 

Transverse dispersivity 5 m 

Rock heat capacity 2520 kJ/m
3
/C 

Rock heat conductivity 3 J/m/s/C 

Fractures  

Number of fractures 3 

Discrete fractures Yes 

Porosity 0.05 

Hydraulic conductivity 0.01 m/s 

Total compressibility 10
-10

 1/Pa 

Matrix  

Porosity 0.001 

Hydraulic conductivity 2 x 10
-9

 m/s 

Total compressibility 10
-11

 1/Pa 
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Figure 1.4: Flow-rate history for example I. 

 

The injection- and production-rate data generated with Model I are shown in Figure 1.4 and the 

tracer concentration data are shown in Figure 1.5. These data were used to infer the IWCs and 

the tracer kernels.  
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Figure 1.5: Concentration history for example I. 

 

The IWCs were obtained by applying the M-ARX method to the flow-rate data. The resulting 

IWC parameters are listed in Table 1.3. The tracer kernels were first estimated with a parametric 

inversion approach, and then a nonparametric approach. 

 

Table 1.3: Interwell connectivity for Reservoir Model I. 

  P1 P2 

I1 0.5477 0.4486 

I2 0.0024 0.9871 
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1.3.4.1 Parametric Kernel Estimate 

A parametric kernel estimate was carried out with the data obtained during the first 350 days of 

production. The solution yielded the fit shown in Figure 1.6. The time factor for the mixing 

weight (  in Equation (2.17)) was tuned a bit manually to improve the agreement between the 

model and the data. Figure 1.6 also shows how the kernel estimates could be used to predict the 

tracer concentration over the last 50 days.  

 

 

Figure 1.6: Reproduction of the tracer data with parametric kernels for example I. The true data 

are shown as blue solid lines and the reproduced data are given by green dashed lines. 

The vertical black dashed line divides the estimation and prediction periods. 

 

The tracer kernel estimates were compared to kernels computed from simulations of impulse 

injection tracer returns (Equation (2.19)). The comparison is shown in Figure 1.7. The kernel 

estimate for the three fracture dominated connections were all quite good, but not perfect. One 
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reason for this was that the transient in the concentration data series was generated by a nonlinear 

source (i.e. the flow rate). This made the problem harder to solve than it would have been if only 

the tracer concentration had been varied. In addition to that, the details of the tracer kernel might 

have varied a bit with the flow configuration. In other words, the “true” kernel may not have 

been completely representative for all flow configurations. Finally, the inverse of the multiple 

input tracer kernel model is an under-determined problem, which means that multiple solutions 

are possible. The space of feasible solutions was certainly restricted by using a parametric model 

for the kernels and mixing weights, but there seems to have been some room for variation, as is 

indicated by the exceptionally good fit seen in Figure 1.6. 

 

 

Figure 1.7: Parametric kernel estimates for example I. The “true” kernels, obtained from a 

constant injection rate (2500 m
3
/day) case, are plotted with blue solid lines. Parametric 

estimates are given by green dashed lines. 

 

The parametric estimates for the tracer kernels are given in Table 1.4. Note that       was given 

the smallest allowable pore volume,   , and a large correction factor  . This assignment was 

somewhat random because the tracer from I2 never broke through in P1. In other words, because 

this kernel did not impact the signal in P1 in any significant manner, its estimate was more-or-

less arbitrary. 
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Table 1.4: Kernel parameter estimates for example I. 

   P1 P2 

I1 14,425 17,598 

I2 1,000 14,986 

      

I1 22.91 16.75 

I2 1.00 19.99 

     

I1 1.001 0.997 

I2 1.351 0.999 

 

The test statistic    indicated that all wells were connected other than I2 and P1 (Table 1.5), 

given a threshold value of 0.01. This was to be expected as there was no fracture connecting 

wells I2 and P1. 

 

Table 1.5: Test statistic to determine the influence of each kernel for example I. 

   P1 P2 

I1 0.9974 0.3350 

I2 0.0026 0.6650 

1.3.4.2 Nonparametric Kernel Estimate 

Nonparametric kernel estimates were also obtained for the data shown in Figure 1.4 and Figure 

1.5. The statistically valid parametric kernels shown in Figure 1.7 were used as priors and the  's 

were tuned to find an acceptable balance between matching the priors and the data. 

 

The time scale for the mixing weights,   in Equation (2.17), was also tuned manually to improve 

the fit. Otherwise the problem was solved by a straight forward application of the nonparametric 

estimation method outlined in Section 1.3.3.2. The resulting data fit is shown in Figure 1.8, 

where data from the first 350 days were used to calibrate the kernels, and the rest of the data 

were predicted based on the kernel estimates.  
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Figure 1.8: Reproduction of the tracer data with nonparametric kernels for example I. The true 

data are shown as blue solid lines and the reproduced data are given by green dashed 

lines. The vertical black dashed line divides the estimation and prediction periods. 

 

The estimated kernels with uncertainty bounds obtained from bootstrapping are illustrated in 

Figure 1.9. The estimated kernel for the I1P1 connection turned out to be a bit less dispersive 

than the actual kernel. The reason for this was probably that the time scale for the mixing 

weights was tuned to a relatively large value to improve the fit. The large time scale acted as a 

smoother on the response, thus incentivizing a slightly less dispersive kernel estimate. Another 

way to fix this was to reduce the interwell connectivity parameter for I1P2 to a very small 

number, i.e. 10
-4

 or less. In either case the best estimate for      , would not be perfect, most 

likely because the tracer kernel model did not describe the given scenario perfectly. 
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Figure 1.9: Nonparametric kernel estimates and 95% confidence bounds obtained from 

parametric bootstrapping for those kernels deemed significant for example I. 

 

Estimates of pore volume and correction factor based on the nonparametric kernels are given in 

Table 1.6. 

 

Table 1.6: Pore volume and correction factor computed from nonparametric kernels for example 

I. 

   P1 P2 

I1 13,492 17,238 

I2  14,505 

     

I1 0.996 0.996 

I2  0.998 

1.3.5 Example II 

The reservoir model used for the second example was based partially on the structure of the 

fractured Soultz-sous-Forets enhanced geothermal system in France. A three-dimensional map of 

the main fractures was obtained from Place et al. (2011). The fractures were imported into the 
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discrete fracture generation software FRACMAN. Additional fractures were generated based on 

data from Massart et al. (2010), and then a two-dimensional slice, 3000x1000 m
2
, of fracture 

traces was extracted from a region of interest. The computational grid for the two-dimensional 

slice is shown in Figure 1.10 and the main properties of the FEFLOW reservoir model are given 

in Table 1.7. 

 

 

Figure 1.10: Computational grid for Reservoir Model II. 
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Table 1.7: Summary of properties for Reservoir Model II. 

General  

Dimensions 3000x1000x500 m
3
 

Longitudinal dispersivity 50 m 

Transverse dispersivity 5 m 

Rock heat capacity 2520 kJ/m
3
/C 

Rock heat conductivity 3 J/m/s/C 

Fractures  

Number of fractures 19 

Discrete fractures Yes 

Porosity 0.03 

Hydraulic conductivity        m/s 

Total compressibility 10
-10

 1/Pa 

Matrix  

Porosity 0.001 

Hydraulic conductivity 10
-10

 m/s 

Total compressibility 10
-11

 1/Pa 

 

In this example it was assumed that the flow-rate data to determine the IWCs were collected first 

and then the injection rates were held constant (at 3000 m
3
/day for each well) for a period while 

the injected concentration was varied. The variable flow-rate data that were used to infer the 

IWCs are shown in Figure 1.11 and the IWC estimates are given in Table 1.8. The injected and 

produced concentration histories that were obtained are shown in Figure 1.12. 
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Figure 1.11: Flow-rate history for example II. 

 

Table 1.8: Interwell connectivity for Reservoir Model II. 

  P1 P2 P3 

I1 0.3015 0.5846 0.1060 

I2 0.7362 0.1967 0.0606 

I3 0.0358 0.0900 0.8764 

I4 0.0583 0.8497 0.0939 
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Figure 1.12: Concentration history for example II. 

1.3.5.1 Parametric Kernel Estimation 

The parametric kernel estimation algorithm usually yielded a result for example II within about 

half an hour (running on a PC Desktop with 8 GB of RAM and an Intel Core i7 processor), 

depending on the progress of the genetic algorithm. The fitted data is compared to the actual data 

set for each producer in Figure 1.13. 
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Figure 1.13: Reproduction of the tracer data with parametric kernels for example II. The true 

data are shown as blue solid lines and the reproduced data are given by green dashed 

lines. The vertical black dashed line divides the estimation and prediction periods. 

 

The best estimate that the algorithm yielded for each of the 12 kernels is shown in Figure 1.14, 

along with the “true” kernels which were obtained by simulating a unit step injection test with 

the same numerical reservoir model. The parameter estimates are given in Table 1.9.  
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Table 1.9: Kernel parameter estimates for example II. 

   P1 P2 P3 

I1 32,330 15,759 29,737 

I2 18,748 26,487 47,999 

I3 79,027 35,261 49,699 

I4 22,112 29,847 19,343 

       

I1 4.09 2.40 1.00 

I2 12.42 1.00 1.00 

I3 100.00 1.00 25.52 

I4 1.00 6.36 18.35 

      

I1 0.500 1.273 0.500 

I2 1.306 0.500 0.500 

I3 0.500 0.500 1.165 

I4 0.500 0.979 0.500 

 

Figure 1.14 shows that six of the 12 kernels were reproduced quite accurately. These were the 

kernels that influenced the production signals the most. This result could have been anticipated 

by looking at the IWCs, perhaps with the exception of the I1P3 kernel which seems to have been 

poorly captured, as compared to the I4P3 kernel which was captured relatively well. The values 

of the influence statistic,   , for this case are listed in Table 1.10. 

 

 

Table 1.10: Test statistic to determine the influence of each kernel in example II. 

   P1 P2 P3 

I1 0.0521 0.3391 0.0048 

I2 0.9435 0.0067 0.0016 

I3 0.0000 0.0016 0.9747 

I4 0.0044 0.6526 0.0189 

 

 

Table 1.11: List of valid injector-producer connections for example II based on the test statistic 

  . 

 P1 P2 P3 

I1 True True False 

I2 True False False 

I3 False False True 

I4 False True True 
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Figure 1.14: Parametric kernel estimates for example II. The “true” kernels, obtained from a 

tracer impulse simulation with constant injection rates (3000 m
3
/day), are plotted with 

blue solid lines. Parametric estimates are given by green dashed lines. 

A 0.01 threshold on   , gave the Boolean matrix shown in Table 1.11 for whether there was a 

meaningful connection between wells or not. 

 

1.3.5.2 Nonparametric Kernel Estimation 

It was clear from the parametric example that the fit for producer P2 could be improved (Figure 

1.13). The reason for this was apparent when looking at the kernel estimates for the two best 

connections for P2. The parametric model could not describe those kernels very well. This 

problem was solved by using a nonparametric kernel model. 
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As noted earlier, the parametric kernel estimates were used as priors,       . Given a good prior, 

it was relatively straight forward to get a good fit to the production data, as shown in Figure 1.15.  

 

 

Figure 1.15: Reproduction of the tracer data with nonparametric kernels for example II. The 

true data are shown as blue solid lines and the reproduced data are given by green 

dashed lines. The vertical black dashed line divides the estimation and prediction 

periods. 
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The MATLAB algorithm fmincon was used to solve the problem, with the trust-region-reflective 

algorithm. Considerable tightening of the default convergence criteria for fmincon was required 

to get a good solution, i.e. by allowing more iterations, and lowering tolerances on the minimum 

step size and function change.   

 

The weighting parameters for the regularization term,    , were also tuned individually to 

enforce smoothness in the kernel estimates. These estimates were centered around 10
10

 with an 

order of magnitude higher value for those kernels that had little influence, and vice versa for 

those that had much influence, on the production signal. The resulting kernel estimates and 

confidence intervals are shown in Figure 1.16. The 95% confidence intervals were very large for 

some of the kernels. This occurred mostly near the tail end of the less significant kernels, 

because the contribution of these parts to the production signal was very small, leaving the tail 

estimates particularly susceptible to noise. 

 

 

Figure 1.16: Nonparametric kernel estimates and 95% confidence bounds obtained from 

parametric bootstrapping for those kernels deemed significant for example II. 

 

The pore volume and correction factor based on the kernels in Figure 1.16 are given in Table 

1.12. 

 

1.3.6 Discussion 

The M-ARX method (Lee, 2010) describes the bulk division of injection streams in the reservoir. 

The tracer kernel adds information about the breakthrough curve, which is representative of the 

geometry of the fluid flow path. Combined, these two pieces of information yield an informative 

field map, as represented in Figure 1.17. 
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Table 1.12: Pore volume and correction factor computed from nonparametric kernels for 

example II. 

   P1 P2 P3 

I1 30,715 16,890  

I2 21,115   

I3   50,123 

I4  38,215 24,579 

      

I1 0.454 1.396  

I2 1.399   

I3   1.224 

I4  1.078 0.677 

 

 

 

Figure 1.17: A map of the reservoir from example I using only the interwell connectivity (green 

triangles) and tracer kernels to describe the field. Injection and production rates are 

illustrated with rectangular columns next the wells. 

 

The tracer kernel method works as well as reported in this work because the streamlines in the 

model are strongly constrained by the fractures in the reservoir. In other words, the injector-

producer flow paths are effectively fixed and are therefore well described by the tracer kernels.  

 

It should be noted that the streamlines can be forced to leave the fractures by controlling both the 

injection and production rates, and in such cases the tracer kernel method would be much less 

effective. In practical field applications, however, it would seldom be feasible to force the 
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injection and production rates such that the streamlines would go through the matrix, because 

that would cost too much energy for pumping. Thus, the tracer kernel method should be 

reasonably applicable in many practical scenarios, even when the production rates are being 

controlled within the extent of feasible bottomhole pressure conditions. 

 

One practical application of interest with the tracer kernel method is to optimize reinjection 

scheduling in geothermal reservoirs (Juliusson and Horne, 2011). In this case, IWCs can be used 

in quantify the division of the injection streams, and the tracer kernels can be used to calibrate a 

thermal transport model for the injector-producer connections. This would be particularly 

interesting for early stage optimization of injection rates in Enhanced Geothermal Systems or 

other fractured liquid-dominated geothermal systems. The largest remaining uncertainty with the 

use of this method lies in efficient quantification of the effective heat transfer area (or effective 

aperture) of the flow path. A few methods have been proposed to resolve this uncertainty, e.g. by 

Kocabas (2005) and Williams et al. (2010). 

 

As the description of the inversion process and the example applications indicate, it is necessary 

to have both flow-rate and concentration (saturation) data recorded quite frequently for proper 

inversion. For the flow-rate data, it would in most cases be sufficient to have one or two 

measurements per day. The required measurement interval for the concentration data depends on 

the travel time of the fluid. A recommended interval for recording the concentrations would be 

around one fifth of the shortest expected travel time of the peak tracer concentration. Of course 

this interval may be hard to determine a-priori, but it would likely be smaller than what is 

considered standard practice in current field applications. Thus, it would probably be best if an 

automated recording device for measuring concentration were put in place. 

1.4 OPTIMIZATION OF INJECTION SCHEDULING 

Determining how to allocate water to injection wells in geothermal fields is an important and 

challenging task. Conceptually, the objective of the injection scheduling problem is to delay 

thermal breakthrough as long as possible, while maintaining as much pressure support for the 

production wells as possible. With more advanced models it is possible to aim towards 

maximizing thermal recovery from the geothermal resource, or the net present value of 

production from the reservoir. The same requirement applies to both enhanced geothermal 

systems (EGS) and conventional hydrothermal resources. 

 

Lovekin and Horne (1989) discussed methods for optimizing injection schedules in geothermal 

reservoirs based on tracer return data. They posed the problem as either, a linear program where 

only the injection rates were adjusted, or a quadratic program where both injection and 

production rates were adjusted. The objective functions depended on interwell connectivity 

(IWC) parameters (or arc costs) that were inferred from tracer test. The IWC parameters were 

computed in an empirical manner and their value was independent of the injection and 

production rates. 

 

Whether tracer returns vary much with injection and production rates has been debated. In cases 

where the flow rates being circulated by the power plant are small in comparison to a large 

ground water current flowing through the reservoir, it seems reasonable to assume that the tracer 

returns would be insensitive to the particular injection and production rates. In hot dry rock 
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systems, on the other hand, the natural ground water current should be negligible and thus the 

tracer returns would vary more significantly with the injection and production rates. This 

observation led our research efforts towards defining methods to predict tracer returns under 

variable flow rate conditions, as discussed in Section 1.3. 

 

One of the key reasons for the success of the tracer kernel method was that the fractures limited 

the variability in the streamlines between wells as the injection and production rates changed. As 

a result the well-to-well connections could be described by a small number of parameters that 

represent each flow path. We take advantage of this fact in solving the injection scheduling 

problem. An objective function is suggested and the results verified by comparison to results 

from numerical simulation. Besides presenting a practical method for optimizing field 

management, working through the problem revealed the challenges involved in solving the 

problem efficiently. This should help focus further research on ways to overcome those 

particular challenges. 

1.4.1 Objective Function 

Utilizing tracer data to optimize injection strategies in geothermal reservoirs was discussed by 

Lovekin and Horne (1989). Several publications by Shook (2001, 2003, 2004) also discuss the 

potential application of tracer data to infer reservoir properties that could be used to optimize 

injection schedules. Other publications with reference to the topic usually take an approach of 

comparing a small number of preconceived options. For example, Barelli et al. (1995) 

investigated whether it would be better to produce at constant flow rate or constant reservoir 

pressure from the Laderello geothermal field in Italy. More recently, Ganefianto et al. (2010) 

presented a paper on optimizing injection in the Salak geothermal field in Indonesia. Their work 

entailed a comparison of six injection scenarios, which were based on full numerical reservoir 

simulations. Some of those scenarios also included alternative locations for reinjection. Juliusson 

et al. (2011) looked at the broader problem of optimizing how much energy to extract from a 

geothermal resource over time. 

 

Methods for predicting thermal breakthrough in fractured reservoirs based on information 

interpretable from tracer tests have also been discussed, e.g., by Lauwerier (1955), Gringarten 

and Witherspoon (1975), Bodvarsson and Pruess (1984), Kocabas (2005), and Wu et al. (2008). 

The work of these authors inspired our method for optimizing injection schedules. 

 

The objective function was designed to maximize the net present value of production from the 

reservoir, which was computed as: 
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 (2.49) 

 

where      denotes the unit price of energy and   denotes the discount rate for the investment. 

An empirical correlation was used to compute the specific power output,  , as a function of the 

injection and production temperature. The correlation, presented by Bennett and Horne (2011), 

was based on results presented in the well-known MIT report on the Future of Geothermal 



35 

 

Energy in the United States (Tester et al., 2006). The specific power output, in units of 

kW/(m
3
/day), was: 
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with: 

 

                (2.51) 

 

and temperatures taken in degrees Celcius. Water density was assumed to be 900 kg/m
3
 when 

converting the correlations to volumetric units. 

 

In practice, power plants are designed to work at a given temperature range. To include this 

consideration, a minimum temperature threshold was added to the power output correlation. This 

threshold was modeled by a smooth function to avoid complications in the optimization 

procedure. Thus, the specific power output was defined as: 
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where     denotes the error function and        denotes the minimum design temperature 

threshold. The specific power output curve is plotted as a function of production and injection 

temperature, with a design threshold of 120 C, in Figure 1.18. 

 

The production temperature for the multiwell case was computed as: 
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The parameter     denotes the mixing weight given by Equation (2.2).    was the initial 

temperature in the reservoir and       represented a function of dimensionless temperature 

change as reported by most authors that have discussed thermal breakthrough in fractured 

reservoirs. For example, using Lauwerier’s (1955) formulation: 
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Figure 1.18: Specific power output correlation as a function of injection and production 

temperature. A minimum design temperature threshold of 120 C was applied in this 

case. 

In this formula      denotes the complementary error function and   is the unit step function. 

The dimensionless variables  ,   and   are defined as: 
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where     denotes the fracture half aperture,    is the fracture porosity,    is the thermal 

conductivity of the rock,                 is the tracer retardation factor with    

representing the matrix porosity. The groups 

 

                         (2.58) 
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and 

 

                         (2.59) 

 

represent the average volumetric heat capacity for the fracture and the surrounding rock matrix, 

respectively. 

 

The thermodynamic parameters needed in Equation (2.54) can be estimated fairly accurately 

based on existing knowledge of the petrology and reservoir fluid. The largest uncertainties are 

usually related to the geometry of the flow paths. The production rates can be estimated based on 

Equation (2.9) and the pore volume can be estimated by the first moment of the tracer kernels: 
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or a slug tracer return curve:  
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Methods to determine   ,    or the group    , which will appear upon simplification of 

Equation (2.54), have not been well established. Thermally reactive tracer methods like those 

being proposed by Reimus et al. (2011) may make it possible to determine the effective fracture 

aperture at an early stage of development, in the near future. It should also be noted that the 

Lauwerier solution assumes flow through a single fracture surrounded by a matrix of infinite 

size. Thus, this solution will tend to give optimistic results, especially at late times when thermal 

interaction between parallel flow paths has become significant. 

 

With these definitions, the optimization problem for injection rate scheduling was presented as: 
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Two examples that illustrate the application of this optimization method follow. In each of the 

examples, the initial temperature was assumed to be 150 C and the injected temperature was 50 

C. As an initial guess the flow rates were assumed to be distributed evenly between the injectors, 

such that the maximum allowable rate,       , was reached. The producers would produce at a 

constant bottomhole pressure. The porosity was assumed to be known (e.g. determined by core 

sampling) as well as the thermodynamic properties of the rock and water. The unknown 

variables, that needed to be determined from production data, were the interwell connectivities, 

 , the correction factors,  , the fracture pore volumes   , and the fracture apertures,  . 

 

The problem was solved with MATLAB's built-in optimization package fmincon. The solution 

times were minimal, on the order of a few seconds. Nothing conclusive will be stated about the 

regions of convexity for the problem. However, based on contour plots of the objective function 

for the cases investigated, the objective function seemed to be nonconvex in general, but convex 

in the area of interest, i.e., an area of reasonable initial guesses for the solution. This made the 

problem easy to solve computationally. 

1.4.2 Example I 

We begin by illustrating the application of the injection scheduling method on the simple 

reservoir model introduced in Section 1.3.4. The model has two injectors and two producers and 

the aim is to determine those injection rates that maximize the net present value of production 

over a 30 year period.  

 

The interwell connectivity parameters and pore volumes given in Table 1.3 and Table 1.6, 

respectively, were used to calibrate the objective function. It was also assumed that the aperture-

porosity,    , was known. Of course the apertures would not be known in practice, but they 

were assumed to be known to illustrate the applicability of the optimization method.  

 

In the case illustrated here, the injection rates were constrained to be below 4000 m
3
/day for well 

I1 and 3000 m
3
/day for well I2. Moreover, the total injection rate was constrained to be less than 

or equal to 3000 m
3
/day. As an initial guess, it was assumed that 2500 m

3
/day were being 

injected into each well. Solving the problem yielded an optimal allocation rate of 1652 m
3
/day 

(64%) for I1 and 844 m
3
/day (36%) for I2. The objective function and constraints are shown in 

Figure 1.19. 
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Figure 1.19: A contour plot of the objective function based on net present value of production. A 

maximum total injection constraint of 5000 m
3
/day is illustrated by the blue diagonal 

line. Maximum injection constraints of 4000 and 3000 m
3
/day for injectors I1 and I2, 

respectively, are shown by the green dashed lines. The optimum feasible point is shown 

by the blue star. 

 

The success of the optimization method depended on how well the thermal breakthrough could 

be predicted by the analytical heat transfer equations. To investigate this, the thermal drawdown 

         , predicted by Equation (2.53), was compared to the simulated values. Comparisons 

were made with equal injection into each injector (Figure 1.20) and at the optimal injection 

configuration (Figure 1.21). As the figures show, the Lauwerier solution provided a relatively 

accurate estimate of the thermal breakthrough curve. 
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Figure 1.20: Comparison of simulated thermal breakthrough and thermal breakthrough as 

predicted by the Lauwerier (1955) analytical model. For this case water at 50 C was 

injected at 2500 m
3
day into each of the two injectors. 

 

The optimal solution in this case was well below the maximum allowable injection rate. This was 

because the power output would drop significantly if the production temperature fell below 120 

C. Figure 1.21 shows how the predicted temperature converged to a value close to 120 C near the 

end of the production period for producer P2. The temperature in producer P1, however, was 

allowed to fall below the 120 C threshold at an earlier time. This shows that the relative benefit 

of keeping P2 at a high production rate at the late stages outweighed the benefit of maintaining 

production in P1 at late stages. Comparison to the simulated thermal returns shows that the actual 

decline in production would occur earlier than predicted by the analytical model. 
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Figure 1.21: Simulated thermal breakthrough and thermal breakthrough as predicted by the 

Lauwerier (1955) analytical model. For this case water at 50 C was injected at the 

optimal allocation of 1652 m
3
/day into injector I1 and 844 m

3
/day into I2. 

 

The increase in the objective function over the initial guess (where all injection rates were equal) 

was quite significant, or about 91%. This number can be deceiving though because it is given 

relative to an arbitrary initial guess for the flow rates. The number does not, however, include the 

savings that could be made by building a smaller power plant, if one knew from the beginning 

that a smaller total flow rate would actually yield higher returns over a 30 year period. Taking 

the plant size into consideration in the objective should lead to even smaller optimal flow rates. 

1.4.3 Example II 

In this section, the application of the injection optimization method to Reservoir Model II is 

described. The model, which is based on data obtained from the Soultz-sous-Forêts enhanced 

geothermal system in France, included four injection wells and three production wells. Further 

description is given in Section 1.3.5. 

 

The required estimates for  , and    are presented in Table 1.8 and Table 1.12, respectively. 

 

The upper bound on the injection for individual wells was 4500 m
3
/day, and a 12000 m

3
/day 

upper limit was set on the total injection rate. The initial guess for the injection rates was 2500 

m
3
/day for each injector. The optimal injection rates, based on these parameters, are shown in 

Table 1.13. 
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Table 1.13: Optimal injection rates for Example II. 

    [m
3
/day]    ∑    

I1 1375 19% 

I2 1574 21% 

I3 2617 35% 

I4 1821 25% 

∑    7380 100% 

 

The objective function could not be plotted in this case, as it was four-dimensional. However, 

slices of the objective function could be viewed, with two of the decision variables fixed at the 

optimal values. Figure 1.22 shows a    -    slice of the objective function with     and     fixed 

at the optimal values. These plots were useful to verify that the optimization algorithm had not 

become trapped in some local maximum. 

 

 

Figure 1.22: A contour plot of a slice through the objective function based on net present value 

of production. The slice is taken with          m
3
/day and          m

3
/day, 

which are the optimum values. A maximum total injection constraint of 12000 m
3
/day is 

illustrated by the blue diagonal line. Maximum injection constraints of 4500 m
3
/day for 

injectors I1 and I2 are shown by the green dashed lines. The optimum feasible point is 

shown as a blue star. 
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Based on the analytical temperature estimates, the value of the objective function increased by 

14% compared to the initial allocation of 2500 m
3
/day per well. However, it is more meaningful 

to look at the improvement based on the simulations, since they were meant to represent the 

actual outcome of the injection strategy. The simulation based net present value for the initial 

allocation was $21.6 million, while the optimized allocation yielded $33.6 million. Thus, a 55% 

increase was obtained over the initial allocation. Again, the fractional increase in the objective 

function was quite arbitrary because it was measured against an arbitrary initial allocation, which 

in this case was quite close to the optimal allocation. Importantly, however, the actual reservoir 

response behaved in a manner similar to that predicted by the analytical equations which resulted 

in a significant increase in the objective function, for both cases. 

 

The predicted and simulated thermal breakthrough curves are shown in Figure 1.23 for the case 

when the flow was distributed evenly at 2500 m
3
/day to each injector. The same curves for the 

optimal injection rates are shown in Figure 1.24. As the figures show, the predicted breakthrough 

lags a bit behind the simulated breakthrough. A possible way to fix this might be to reestimate 

the fracture apertures at the predicted optimal flow rate (say with a thermally degrading tracer 

method). Thus a couple of iterations of testing and readjusting the flow rates should quickly 

converge to a more accurate prediction. 

 

 

Figure 1.23: Comparison of simulated thermal breakthrough and thermal breakthrough as 

predicted by the Lauwerier (1955) analytical model. For this case water at 50 C was 

injected at 2500 m
3
/day into each of the four injectors. 
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Figure 1.24: Comparison of simulated thermal breakthrough and thermal breakthrough as 

predicted by the Lauwerier (1955) analytical model. For this case water at 50 C was 

injected at the optimal flow rates given in Table 1.13. 

1.4.4 Discussion 

The example applications showed that the flow rate scheduling problem is reasonably well suited 

for optimization, i.e. it is not strongly nonconvex, and it was solved in a matter of seconds. The 

quality of the results depended greatly on the accuracy of the characterization methods, and as 

such the results in Example I were more accurate. The optimal flow rate configuration for 

Example II also yielded quite satisfactory results. Preliminary tests illustrated in Juliusson (2012) 

showed that the thermal drawdown model was not as well suited for characterizing three-

dimensional fractured reservoirs. More research into analytical or semi-analytical ways to model 

such functions would be useful. 

 

A slightly different topic of interest would be the application and modeling of thermally 

degrading tracer to determine the effective aperture or heat transfer area. Reimus et al. (2011) 

have made considerable progress on that front but their work is still in development. There seems 

to be room for improvement in the analytical modeling, and verification with data from full scale 

numerical simulations or laboratory experiments is still missing. 

 

Injection and production scheduling models have been studied more thoroughly for oil and gas 

reservoirs. Researchers at the Stanford Department of Energy Resources Engineering are actively 

working on the topic, specifically within the Smart Fields Consortium. A few publications of 
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interest are those by Sarma et al. (2006), Cardoso et al. (2009) and Echeverria Ciaurri et al. 

(2011). Professor Jan-Dirk Jansen at the Delft University of Technology also runs an active 

research group with an interest in production optimization. 

 

Much of the latest work on in the field of oil and gas has been focused on closed-loop 

optimization problems. In these problems, an objective function based on the net present value of 

production is usually defined, and then constrained by the arbitrarily complex discretized 

differential equations which represent the mass and energy balances that form the basis of a full 

scale numerical reservoir model. Further discussion of such problems is beyond the scope of this 

dissertation but interested readers are referred to Jansen (2011). 

1.5 CONCLUSION 

A novel method for utilizing tracer and flow-rate data to characterize flow paths in fractured 

medium has been developed. The method is useful for understanding well-to-well interactions, 

mapping and characterizing major flow paths, and designing injection schedules. Two major 

strengths of the method are that it can be applied to multiwell tracer transport scenarios and it 

works under variable flow-rate conditions. 

 

The crux of the method is to: a) obtain the interwell connectivity (IWC) which describes how the 

injected fluids are distributed to each of the producers; b) obtain tracer kernels which are 

functions that describe how the geometry of the flow path affects the tracer return curve. The 

best way to obtain the tracer kernels is to perform tracer tests at constant flow-rate conditions. 

Advanced methods for inferring the tracer kernels are introduced for situations where well 

designed tracer test data is not available. This inverse problem can be quite challenging e.g. 

when both the tracer concentration and the flow-rate vary simultaneously, or when a large 

number of injection wells contribute to the concentration signal in a given production well. 

 

The tracer kernel method was tested and validated with synthetic production data from discrete 

fracture reservoir models generated by the ground water simulator FEFLOW. The example 

applications showed that the inverse problem could be solved successfully for situations with a 

moderate number of wells (4-7 wells) where the fluid flow paths are strongly constrained by 

fractures. 

 

A method for optimizing injection scheduling for geothermal reservoirs was developed. The 

method relies on information gathered from tracer and flow-rate data. These data are used to 

calibrate a thermal transport model for each injector-producer connection. The model was shown 

to be very efficient for optimizing flow-rates in strongly fracture-dominate reservoirs. 

 

Table 1.14: Notation. 

Symbol Description, unit. 

   Dispersivity, m/day. 

   Cross-sectional area of flow path, m
2
. 

   Discrete producer-producer coefficient matrix, day
-1

. 

    Continuous producer-producer coefficient matrix, day
-1

. 

   Fracture half aperture, m. 

   Discrete injector-producer coefficient matrix, 1/day. 
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    Continuous injector-producer coefficient matrix, 1/day. 

   Specific heat capacity,  J/(kg C). 

   Dispersion coefficient, m
2
/day. 

   Interwell connectivity matrix. 

   Matrix that maps tracer kernel into produced concentration, g. 

   Jacobian matrix. 

   Length of fracture. 

   Number of discretization points. 

   Number of measurements. 

    Total number of injection wells in a field, wells. 

    Total number of injection wells in a field, wells. 

   Objective function. 

   Electricity price, $/MWh. 

    Peclet number. 

     Injection rate for well  , m3
/day. 

     Production rate for well  , m3
/day. 

   Residual vector, g/m
3
. 

   Retardation factor. 

   Regularization matrix, g m
3
. 

    Test statistic for significance of injector-producer connection. 

   Time, days. 

   Temperature, C. 

   Interstitial flow velocity, m/day. 

   Mixing weight. 

   Distance, m. 

   Specific power output function, kW/m
3
/day. 

     Weight for influence of producer   on producer  . 

     Weight for influence of injector   on producer  . 

    Response time constant for producer  , days. 

   Tracer kernel, m
-3

. 

   Vector of unknown variables in parametric regression. 

   Discrete time variable, days. 

   Porosity. 

   Density, kg/m
3
. 

 ̂ 
   Sample variance of residuals, (g/m

3
)
2
. 

 ̂   

   Estimate of variance for parameter    . 

 ̂   Estimate of covariance matrix for  . 

   Time factor for fluid mixing weight, days. 

   Dimensionless time. 

   Tuning parameter for regularization matrix, g m
3
. 

   Dimensionless ratio of heat capacities. 

   Dimensionless distance or pore volume. 

Subscript Description 

   Average. 

   Fracture. 
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   Counter, often associated with injector. 

   Injector. 

   Counter, often associated with producer. 

   Matrix. 

   Producer. 

   Rock. 

   Water. 
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2. FRACTURE CHARACTERIZATION USING NANOPARTICLES 

This research project has been conducted by Research Assistants Mohammed Alaskar and 

Morgan Ames, Senior Research Engineer Kewen Li and Professor Roland Horne. The objective 

of this study was to develop in-situ multifunction nanosensors for the characterization of 

Enhanced Geothermal Systems (EGS).  The primary idea was to develop nanoparticles that 

undergo a specific, irreversible and detectable change at a specific temperature, and to use them 

as nanosensors to detect reservoir temperature during transport through the fractures of an EGS.  

By knowing where the nanosensors reached the specific temperature, it was shown to be feasible 

to infer the time of thermal breakthrough before it actually occurs. 

2.1 SUMMARY 

The principal findings of this study were that spherically shaped nanoparticles of certain size and 

surface charge compatible with that expected in porous media are most likely to be transported 

successfully through formation rock, without being trapped due to physical straining, chemical or 

electrostatic effects. We found that tin-bismuth nanoparticles of 200 nm and smaller were 

transported successfully through Berea sandstone. Larger particles were trapped at the inlet of 

the core, indicating that there was an optimum particle size range. We also found that the 

entrapment of silver nanowires was primarily due to their shape. This conclusion was supported 

by the recovery of the spherical silver nanoparticles with the same surface characteristics through 

the same porous medium used during the silver nanowires injection. The entrapment of hematite 

nanorice was attributed to its affinity to the porous medium caused by surface charge. The 

hematite coated with surfactant (which modified its surface charge to one compatible with the 

porous medium) flowed through the glass beads, emphasizing the importance of particles surface 

charge. 
 

Preliminary investigation of the flow mechanism of nanoparticles through a naturally fractured 

greywacke core was conducted by injecting fluorescent silica microspheres. We found that silica 

microspheres of different sizes (smaller than fracture opening) could be transported through the 

fracture. We demonstrated the possibility of using microspheres to estimate fracture aperture by 

injecting a polydisperse microsphere sample. It was observed that only spheres of 20 µm and 

smaller were transported. This result agreed reasonably well with the measurement of hydraulic 

fracture aperture (27 μm) as determined by the cubic law.  

 

Flow experiments were also carried out in a fractured Berea sandstone core plug using 2 µm and 

5 µm fluorescent microparticles, to determine the effect of suspension concentration and fluid 

velocities. The recovery of 2 µm particles was found to be sensitive to suspension concentration, 

while that of the 5 µm was found to be sensitive to the fluid velocity (i.e. pressure gradient). The 

sensitivity of the recovery of 2 µm particles to concentration was likely due to a higher 

susceptibility of 2 µm particles to aggregation than that of 5 µm particles, leading to more 

aggregation at high concentrations and, subsequently, more trapping via straining. Meanwhile, 

the sensitivity of the recovery of 5 µm particles to fluid velocity was likely due to the larger 

gravitational forces and fluid drag forces acting on the larger particles and the fact that higher 

fluid drag forces corresponding to higher fluid velocities can directly offset gravitational forces. 

This explanation is in agreement with quantitative analysis using particle filtration theory, 
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Derjaguin-Landau-Verwey-Overbeek (DLVO), and metrics related to pore and grain size 

heterogeneity found in the literature. 

 

The hypothesis that the reason for the large influence of concentration on the recovery of 2 µm 

particles was due to a susceptibility to aggregation is supported by observations of permeability 

reduction during these experiments (with both a higher degree and rate of reduction occurring at 

higher concentration). Flow experiments were also carried out in a silicon micromodel of a Berea 

sandstone pore space using 2 µm fluorescent microparticles as well as silica nanoparticles, in 

which the 2 µm particle straining at high concentrations was confirmed visually. 

 

Two types of functional particles were also investigated: melting tin-bismuth nanoparticles and 

silica nanoparticles with attached dye. Tin-bismuth nanoparticles are attractive due to the fact 

that their melting point can be tuned anywhere from 139°C to 271°C, which encompasses a wide 

range of geothermal temperatures. The temperature sensing mechanism for such particles is 

size/shape change due to melting. Silica nanoparticles with a temperature sensitive linkage to 

fluorescent dye molecules could be used with a dye release sensing mechanism. An analytical 

model was constructed to demonstrate that such a sensing mechanism could potentially be used 

not only to measure temperature, but also to estimate the location of the measurement. Both tin-

bismuth and dye-attached silica nanoparticles were synthesized, characterized, and used in 

heating experiments in order to evaluate their potential temperature sensitivity. The tin-bismuth 

nanoparticles experienced coarsening of their size distribution due to melting, demonstrating 

melting induced size change as a temperature sensing mechanism. The dye-attached silica 

nanoparticles experienced an irreversible shift in their fluorescence spectrum, indicating their 

promise as temperature sensors. The tin-bismuth nanoparticles were also used in a flow 

experiment in a Berea sandstone core plug, which resulted in limited recovery and permeability 

reduction. Particles were detected in the effluent using Scanning Electron Microscopy (SEM), 

but only at very low concentration. Only particles with diameters of 200 nm and smaller were 

recovered in the effluent. This indicates that larger particles experienced deposition due to some 

combination of straining, gravitational settling, interception, and an affinity of the particles to the 

rock surfaces. Tin-bismuth nanoparticles were also injected into a slim-tube packed with glass 

beads, which resulted in better recovery (including particles larger than 200 nm), possibly due to 

larger pore spaces. 

 

Of the two types of functional particles investigated, dye-attached silica nanoparticles appear to 

have more promise due to their potential capability to estimate measurement location. The tin-

bismuth nanoparticles have the advantage of easily tunable sensing temperature, but the sensing 

mechanism of particle growth due to melting can enhance deposition due to straining and 

gravitational settling. Because tin-bismuth nanoparticles are already denser than water by 

roughly one order of magnitude, gravitational settling could be particularly sensitive to particle 

growth induced by melting. 

2.2 INTRODUCTION 

In the development of enhanced geothermal systems (EGS), the characterization of the size, 

shape and connectivity of fractures is crucial. Unlike conventional geothermal systems, EGS do 

not require natural convective hydrothermal resources, but rather can be created in a hot, dry and 
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impermeable volume of rock. Hydraulic stimulation of fractures is the primary means of 

generating functional EGS reservoirs to allow economical heat recovery. The energy extraction 

rate is dependent on the creation of a fracture network within the targeted hot rock volume. 

However, existing tools and analysis methods are insufficient to characterize the fracture 

network that has been created. Temperature measurement can be obtained only in the near-

wellbore region. Currently, there are no effective means to measure temperature far into the rock 

formation as a way to determine the efficacy of the fracture treatment. Thus, the objectives of 

this research are to provide new tools (nanosensors in the form of active nanoparticles or 

microparticles) and to develop reservoir engineering approaches to characterize fracture 

networks based on the measurements from these tools. This involves novel material syntheses to 

functionalize these particles and deep understanding of their transport mechanisms at macro- and 

microscale.   

 

An initial investigation of the feasibility of synthesizing silica nanoparticles with dyes attached 

using a temperature-sensitive covalent linkage was performed (Alaskar et al., 2011). We 

demonstrated temperature sensitivity based on an observable change in the fluorescence 

spectrum of the dye upon heating. This work focused on the transport of inert particles, as a 

precursor for the transport of the functional nano- and/or microsensor. As an EGS reservoir is 

fracture-dominated, the transport of particles was conducted on porous as well as fractured rock 

cores.   

 

The purpose of the study was to investigate the transport of particles in porous or fracture-matrix 

media. For this purpose, core-flooding experiments were conducted using porous and fractured 

sandstone core plugs and slim tubes packed with glass beads. Influences of particle size, shape, 

surface chemistry or surface charge, suspension concentration and fluid velocity on particle 

transport were investigated. Particle transport was assessed by measuring breakthrough curves, 

and results were discussed in light of physical transport mechanisms such as diffusion, 

interception, gravitational deposition and straining. Micromodels were also used. The main 

purpose of these microscale experiments was to visualize particle transport processes, especially 

straining, and to help explain findings from the core-flooding experiments.  

 

The physical and chemical transport processes that determine the fate of particles flowing 

through saturated and unsaturated porous media have been studied extensively in colloid science. 

These processes affecting particle transport are the same as those that influence solute transport, 

i.e., advection, diffusion, dispersion, and adsorption (Bradford et al., 2002). Particle motion 

along fluid streamlines is advection. Due to heterogeneity of the fluid velocity field and 

tortuosity of paths within porous media, particle dispersion can occur, which may lead to earlier 

breakthrough for particles than for solutes. Investigators suggested that particle dispersion is 

partly caused by size exclusion or straining (Bales et al., 1989; Harter et al., 2000; Dong et al., 

2002; Sirivithayapakorn and Keller, 2003). Straining is the trapping of particles of diameter 

larger than or equal to the pore throats to be entered. Because larger particles are excluded from 

smaller pore throats, they will travel through fewer pathways which in turn will reduce their 

travel time. Also, large particles tend to travel along higher velocity streamlines (excluded from 

lower velocity regions near pore walls), thus increasing particle velocity compared to 

conservative tracers (Auset and Keller, 2004). Interaction among particles (Brownian motion) 

will result in diffusion of particles, with large particles experiencing less diffusion than small 
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ones (Keller and Auset, 2006). Adsorption processes, which are commonly referred to as 

attachment through interactions (chemisorbed or physisorbed) leading to a filtration effect, are 

assumed to be the main processes that limit particle transport. Particle attachment is the removal 

of particles from solution by collision with and deposition onto a pore or fracture surface 

(Bradford et al., 2002). Particle removal by physical mechanisms includes Brownian diffusion, 

interception, and gravitational sedimentation. Interception occurs when a particle moving along a 

streamline comes in contact with a collector (grain) due to its finite size. Particles with densities 

greater than suspension fluid may experience settling or gravitational deposition onto the 

collector surface. Diffusion of particles into porous media can result in more contact with the 

grains (Tufenkji and Elimelech, 2004). Bradford et al. (2002) suggested that smaller particles are 

primarily removed by diffusive transport, while larger ones are removed by interception and 

sedimentation. 

 

Filtration theory has been used to describe the transport of particles in porous media by 

predicting the single-collector contact efficiency     , which is defined as the ratio of the 

number of collisions between particles and a filter medium grain to the total number of potential 

collisions in the projected cross-sectional area of the medium grain. The single-collector contact 

efficiency represents the sum of contributions of the individual physical transport mechanisms, 

i.e., diffusion, interception and gravitational sedimentation (Auset and Keller, 2006). The 

classical water filtration model was first presented by Yao et al. (1971) and modified by other 

authors (e.g., Rajagopalan and Tien, 1976; Rajagopalan et al., 1982). However, the model does 

not consider the influence of hydrodynamic (viscous) interactions and the universal van der 

Waals attractive forces. Colloid filtration was predicted accurately by solving the convective-

diffusion equation numerically (Elimelech et al., 1995; Prieve and Ruckenstein, 1976), revealing 

the importance of the hydrodynamic interactions on colloid filtration. Tufenkji and Elimelech 

(2004) have proposed new correlation equation (Equation 2.1) based on a numerical solution of 

the governing convective-diffusion equation that incorporates the effect of hydrodynamic 

interactions and van der Waals attractive forces. 
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where    is the aspect ratio,     is the Peclet number characterizing ratio of convective to 

diffusive transport,      is the van der Waals number characterizing ratio of van der Waals 
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interaction energy to colloid thermal energy,    is the attraction number which represents the 

combined influence of van der Waals attraction forces and fluid velocity on particle deposition 

rate due to interception and    is the gravity number which is the ratio of the Stokes particle 

settling velocity to the fluid velocity.    is a porosity-dependent parameter of Happel flow 

sphere-in-cell model and   is the porosity (Happel, 1958). The parameters in these dimensionless 

numbers are as follows:   and    are the particle and collector diameters in meters, respectively, 

  is the fluid approach velocity in meters per second,   is Hamaker constant in Joules,   is the 

Boltzmann constant in Joules per degree Kelvin,   is absolute temperature in degrees Kelvin,    

and    are particle and fluid densities in kilograms per cubic meter, respectively,   is the 

absolute fluid viscosity in kilograms per meter-second and   is gravitational acceleration in 

meters per square second.    is the particle bulk diffusion coefficient, which can be estimated 

from the Stokes-Einstein equation (Russel et al., 1989), given as: 

 

         (   ⁄ )⁄  (2.2) 

 

Under practical conditions, the single-collector contact efficiency      is overestimated. The 

actual single-collector removal efficiency     is frequently expressed as a product of an 

empirical attachment efficiency   , or sticking efficiency, and the single-collector contact 

efficiency: 

       (2.3) 

 

The attachment efficiency     is defined as the probability that successful collisions between 

particles and collector grains will result in attachment (Auset and Keller, 2006). The attachment 

efficiency is usually determined using experimental data for given physiochemical conditions 

(i.e. normalized concentration of the breakthrough curve) (Elimelech et al., 1995). The 

attachment efficiency is expressed as (Tufenkji and Elimelech, 2004): 
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where   is the filter medium packed length and    ⁄  is the ratio of effluent (outlet) 

concentration to the influent (inlet) concentration.  

 

Interactions between particles and the surface of a porous medium are usually evaluated using 

the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (Derjaguin and Landau, 1941; 

Verwey and Overbeek, 1948). According to this theory, the total interaction energy is the sum of 

Lifshitz-van der Waals (LW) and electrostatic interactions (EL).  The LW interactions are 

usually attractive and decay according to the square of the distance separating two infinitely long 

flat plates.  Derjaguin’s approximation of the LW interaction energy between a flat surface and 

spherical particle can be expressed as (Gregory, 1981): 
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where   is the surface to surface separation distance in meters,   is the characteristic wavelength 

of the dielectric, usually assumed to be equal to 100 nm,   is Hamaker constant in joules and    

is particle diameter in meters. The EL interaction energy (which decays with the separation 

distance) can be approximated from an expression derived by Hogg et al. (1966): 
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where      is the dielectric permittivity of the suspending fluid J/V
2
-m,   is the Debye constant 

in 1/m and is given as 1/  = 3.05×10
-10 

I
-0.5

, I is the ionic strength (in pure water I  10
-6

), and 

     are surface potentials of interacting surface in Volts (usually replaced by zeta potentials). 

The total interaction energy, when plotted as function separation distance, demonstrates the 

magnitude and type of interactions (repulsive or attractive). Knowledge of interaction energy is 

of a particular interest when studying the transport of particles because it provides insight 

regarding what conditions are favorable for aggregation, attachment, and detachment of particles.  

 

Experimental data of the transport of colloids and filtration theory are not always in agreement. 

Discrepancies have been attributed to soil surface roughness (Kretzschmar et al., 1997; Redman 

et al., 2001), charge heterogeneity (Johnson and Elimelech, 1995), and underestimation of 

attachment coefficients due to the existence of repulsive forces between particles and porous 

medium (Ryan and Elimelech, 1996). Bradford et al. (2002) attributed such discrepancies to the 

fact that filtration theory does not account for straining. The degree at which particles are 

excluded by straining is function of porous medium characteristics and particle size and/or 

concentration. Complete straining occurs when particles are excluded from all pore throats 

(McDowell-Boyer et al., 1986), resulting in a filter cake that may reduce the porous medium 

permeability (Willis and Tosun, 1980). Incomplete straining, on the other hand, occurs when 

particles are rejected from pore throats smaller than the critical size, resulting in permeability 

reduction that is less pronounced (Bradford et al., 2002).  

 

Some studies have been conducted to investigate the relation between the size of particle and 

pore size distribution and its influence on particle straining. Sakthivadivel (1966 and 1969) 

proposed that particles larger than 5% of the median grain diameter were subjected to exclusion 

by straining. Matthess and Pekdeger (1985) extended this rule to include porous media consisting 

of a distribution of grain sizes. Their theoretical criteria suggested that particle to median grain 

size ratio should be greater than 18% for straining to occur in uniform sand. Experimental data 

by Harvey et al. (1993), however, was not in agreement with the criterion suggested by Matthess 

and Pekdeger (1985). Other researchers (e.g., Auset and Keller, 2006) studied the mechanisms of 

particle removal, including straining, by examining the relative particle size (i.e. throat to particle 

ratio T/C) using polystyrene beads (3-7 µm in diameter and particle density of 1.05 g/cm
3
). They 

reported that straining was the primary attachment mechanism for T/C less than 1.8. For T/C 

greater than 2.5, only interception was observed for particles larger than or equal to 3 µm. For 

T/C ratios in between above values, straining and interception were the removal mechanism. 

Note that removal mechanism by gravity was not considered because the density of the 

polystyrene was similar to that of suspension fluid (i.e. water). 
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2.3 MATERIALS AND METHODS 

2.3.1 Requirements for nanomaterials and characterization methods  

Nanoparticles used in this study and ultimately in the reservoir must be safe to handle and 

environmentally benign. The optimum particle size should be verified to ensure particles are 

stable in suspension and disperse in solution. Moreover, the affinity of such particles to the 

reservoir formation should be verified and the particles must not interact with rock matrix (Kanj 

et al., 2009). 

 

The quantity of the nanotracer produced at the sampling point should be sufficient to be 

recognizable and at concentrations greater than the lower detection limit of the devices used to 

analyze the effluent. In our experiments, characterization of the nanofluid prior to and after 

injection was carried out using various techniques. Dynamic Light Scattering (DLS), 

Fluorescence Spectrometry and Ultraviolet-visible Spectroscopy (UV-vis) were used to detect 

the nanomaterial particulates. Scanning Electron Microscopy (SEM) and Optical Microscopy 

were also used to confirm the findings. 

 

Characterization of the rock pore spaces following the injection was carried out to study the 

nanoparticle dissemination inside the rock sample. The objective was to understand the particle 

size distribution and how the nanoparticles arranged themselves within the porous medium (Kanj 

et al., 2009).  

2.3.2 Nanoparticle and microparticle 

Fluorescent silica microspheres, silver nanowires, silver nanoparticles, tin-bismuth (Sn-Bi) alloy 

nanoparticles, iron oxide Fe2O3 nanoparticles (commonly known as hematite nanorice) and 

polyvinyl pyrrolidone (PVP) coated iron oxide nanoparticles were selected for initial 

experimentation with nanofluid injection. 

 

Fluorescent silica microparticles were used as model particles in this experimental study, using 

three different sizes and colors (blue, green and red fluorescence particles). The blue and green 

microsphere particles had a narrow size distribution with an average diameter of 2 and 5 µm, 

respectively.  The red silica spheres were polydisperse or polysized. The red silica sample had 

spheres with diameters ranging from 5 to 31 μm. The excitation and emission of the blue, green 

and red fluorescent dyes were at wavelengths of 360/430 nm, 480/530 nm and 550/580, 

respectively. These microspheres had a density in the range between 2.0 to 2.2 g/cm
3
. The 

microspheres were negatively charged as specified by the manufacturer. Five different 

measurements of zeta potential (ζ) (i.e. conversion of electrophoretic mobility to zeta potential 

using the Smoluchowski equation, Bradford et al., 2002) were performed and the average zeta 

potentials were found to be -40.2 mV (standard deviation: 0.4 mV), -80.23 mV (standard 

deviation: 1.77 mV) and -56.30 mV (standard deviation: 1.32 mV) for particle size 2 µm, 5 µm 

and the polydisperse red spheres, respectively. All silica suspensions were diluted to three 

concentrations (C=0.5, 2C=1 and 4C=2 mg/cm
3
). 

 

In addition to silica microparticles, silica nanoparticles were also used in this study. The average 

particle size (350 nm) was determined by Dynamic Light Scattering (DLS) and confirmed by 
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SEM. The nanoparticles were negatively charged with zeta potential of -73.4 mV. The conditions 

for the preparation of monodisperse silica particles followed the study done by Bogush et al. 

(1988). The nanoparticle preparation was accomplished by the hydrolysis of tetraethyl 

orthosilicate (TEOS) in aqueous ethanol solutions containing ammonia. The details of the 

synthesis are well described in Bogush et al. (1988). 

 

The study also investigated silver nanowires with diameters in the range of 50-100 nm, and 

lengths in the range of 5-10 µm. Silver nanoparticles can be made in different shapes allowing 

for the investigation of shape-related constraints to nanoparticle flow within porous media. In 

fact, our initial ideas of temperature-sensitive nanoparticles revolved around particles that change 

shape as their characteristic of temperature measurement. For example, a rod-like nanoparticle 

can transform to sphere once exposed to a certain temperature, hence the motivation for studying 

the flow of rod-like particles. The conditions for preparing uniform silver nanowires followed, 

for the most part, the study by Sun et al. (2002). The formation of silver nanowires was 

accomplished by reducing silver nitrate (AgNO3) with ethylene glycol (EG) in the presence of 

silver (Ag) seeds. PVP was then added to direct the growth of silver into uniform nanowires. The 

longitudinal and lateral dimensions of the silver nanowires were controlled by changing the 

reaction conditions. Sun et al. (2002) reported that increasing the reaction temperature resulted in 

the formation of shorter nanowires. This synthetic method provided uniform nanowires with high 

yield (mass production) at relatively low temperature. The spherical silver nanoparticles 

synthesis is a protocol adapted from Kim et al. (2006). 

 

Monodisperse hematite nanorice particles were synthesized using forced hydrolysis of solutions 

of ferric chloride, as suggested by Ozaki (1984). This hydrothermal synthesis was carried out by 

preparing 100 ml of aqueous solution of 2.0 x 10
-2

 M FeCl3 and 4.0 x 10
-4

 M KH2PO4 and 

holding it at 100 ºC for 72 hours (Wang, 2006). The precipitated nanoparticles were centrifuged 

and washed several times, then dispersed in 100 ml of water. These nanoparticles were found to 

be roughly 500 nm in length and 100 nm in diameter, with 5:1 aspect ratio. Hematite was chosen 

for a number of reasons. First, it furthers the investigation of the feasibility of transporting 

nonspherical nanoparticles through porous media. Second, the particles can be made using a 

relatively simple synthesis. The surface chemistry and surface charge of these nanoparticles can 

be modified, and there are known processes for coating hematite nanorice with other materials, 

which makes it a valuable candidate for functional nanotracers (Connor, 2010). Hematite is also 

stable at reservoir conditions, and can be detected by its optical and magnetic signals. Finally, 

due to its unique geometry, nanorice can be distinguished visually from natural minerals that 

may be present in the geofluid, using SEM imaging. To coat the iron oxide with surfactant 

polyvinylpyrrolidone (PVP), a 0.1 M solution of PVP in ethanol was prepared. Iron oxide 

nanofluid was then added, sonicated for 1 hour, and soaked overnight. The coated particles were 

cleaned by centrifugation three times at 6.5 krpm to remove excess surfactant. 

 

The tin-bismuth alloy nanoparticles were selected because of their potential to be used as 

temperature sensors due to their tunable melting temperature spanning a broad range of 

temperatures of geothermal interest. One promising idea is a core-shell particle with an inert, 

magnetic core and a shell that undergoes decomposition or phase change. One of the reasons 

hematite has been investigated is because of its behavior under an applied magnetic field. This 

would make it an ideal material for the inert core while the shell could be a metal alloy with a 
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low melting point such as Sn-Bi alloy. Sn-Bi alloys could be used as sensors in the temperature 

range between eutectic melting point of the alloy (139°C) and the pure melting points of Bi and 

Sn (271°C and 232°C, respectively). To perform the synthesis, Sn and Bi were melted together at 

the eutectic composition (~60 wt % Bi and ~40 wt % Sn). After the alloy was cooled to room 

temperature, 100 mg was sonicated in 10 ml of mineral oil, a slight variation of the sonochemical 

method suggested by Chen (2005). The VC-505 ultrasonic processor manufactured by Sonics & 

Materials, Inc. with a 0.75 in. diameter high gain solid probe was used. The sonicator was 

operated at 200 W (~95% amplitude) with a pulse setting of 20 s on, 10 s off. The mixture was 

cooled to room temperature. The particles were washed and centrifuged several times with a 1:1 

mixture of hexane and acetone, rinsed in a solution of 0.1 M polyvinyl pyrrolidone (PVP) in 

ethanol, and finally suspended in ethanol. The centrifuge setting was 6000 rpm for 15 minutes 

each time.  

 

Having proven silica particles to have been transported successfully through sandstone core, we 

further changed their surface properties to explore their temperature response. According to the 

report by Wu et al. (2008), when free fluorescent dye molecule was attached to the surface of 

silica nanoparticles, through energy transfer, the fluorescent properties of these molecules were 

changed. Therefore, when the covalent bond between fluorescent dye molecule and surface 

modified silica nanoparticle is broken under high temperature; the difference of fluorescent 

behavior before and after heating would be detected. First, silica nanoparticles (Nanogiant, LLC) 

were prepared by surface modification. In a typical reaction, 0.5ml of 3-

Aminopropyltriethoxysilane (APTS) was added to 100mg silica nanoparticle suspended in 25 ml 

of toluene under nitrogen and heating to ~95 °C for 4 hours. The resulting particles were washed 

by centrifugation in ethanol and acetone (10min at 4,400 rpm). Then the particles were dried at 

~95°C overnight. After that, we attached dye molecules (Oregon 488, Invitrogen) to the surface 

of the modified silica nanoparticles. A suspension of 1.0 mg of the amino-modified Silica 

nanoparticles in a mixture of 1ml of ethanol and 15 l of a 10mmol/L phosphate buffer (pH 7.3) 

was reacted with 12.7 l of dye molecule solution (1mg/ml water solution) in dark for 3 hours at 

room temperature. The resulting particles were washed by centrifugation (10min at 4,400 rpm) in 

ethanol and acetone. We also performed surface modification and dye attachment reaction on a 

monolayer of silica nanoparticles on quartz substrate using the same experiment parameters. 

2.3.3 Rock core sample and slim tube characterizations 

This section describes the measurements of the porosity, permeability and pore volume of Berea 

sandstone, fractured greywacke core and slim tube packed with glass beads. 

2.3.3.1 Berea cores  

The porosity was measured by mercury intrusion and confirmed by resaturation of the core 

samples with testing fluid (i.e. deionized water). The gas and liquid permeabilities were 

determined. The gas permeability was measured by introducing nitrogen at different flow rates 

and inlet pressures, and calculated by applying Darcy’s law for compressible fluids. The 

Klinkenberg (gas slippage) effect was considered to evaluate the equivalent liquid permeability. 

After saturation, the liquid permeability for the same core samples was carried out. Darcy’s law 

for horizontal flow was used to compute the water permeability. Porosity, permeability, pore 

volume and core dimensions are summarized in Table 2.1. Note that the nanofluid injection 

experiment for which the specific core was used is indicated in the table. 
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Table 2.1: Core characterization data 
Property Measurement Berea I 

Silver 

nanowires 

Berea II 

Sn-Bi 

nanoparticle 

Berea III 

Hematite 

nanorice 

Berea IV 

Silver 

nanoparticle 

Core dimensions 

(cm) 

Diameter 3.8 3.8 3.8 3.8 

Length 5.8 5.8 4.9 4.1 

Porosity (%) Hg intrusion 19.0 N/A N/A N/A 

Resaturation 18.2 17.5 17.1 17.1 

Permeability (md) Gas permeability  131 N/A 152 152 

Water permeability 94 125.4 60.7 60.7 

Pore size (µm)  Mean pore size 10 10 10 10 

Pore volume (cm
3
) Resaturation 12.0 10 9.1 8 

2.3.3.2 Polypropylene slim tube packed with glass beads 

To investigate the mobility of nanoparticles in the absence of the rock materials (such as clays), 

iron oxides and tin-bismuth nanoparticles were injected into two separate slim tubes packed with 

glass beads. The 30 cm long polypropylene tubes were packed with glass beads (Glasperlen 1 

mm in diameter from B. Braun Biotech International) and fitted with screens and valves at each 

end. The porosity was measured by the saturation method. The water permeability was 

determined by the application of Darcy’s law of horizontal flow. The dimensions, porosity, 

permeability and pore volume of the slim tubes are summarized in Table 2.2. 

 

Table 2.2: Slim tube characterization data 
Property Measurement Tube I 

Sn-Bi nanoparticles 

Tube II 

Hematite nanorice 

Tube dimensions (cm) Inner diameter 0.4318 0.4318 

 Length 30 30 

Porosity (%) Resaturation  58 48 

Permeability (darcy) Water permeability  18.1 19 

Pore volume (cm3) Resaturation 2.6 2.1 

2.3.3.3 Fractured greywacke core characterization  

The core sample tested was a fractured greywacke from The Geysers geothermal field, with 5.08 

cm diameter and 3.01 cm length. The core sample was fitted between the two end-pieces and 

wrapped with Teflon shrink tube. An electric heating gun was used to bond the assembly 

together. To achieve proper sealing, the heat was applied evenly starting bottom up in a round 

motion. The assembly was positioned horizontally and polyethylene tubes (0.3175 cm in 

diameter) and fittings were used to connect the water pump and pressure manometer to the core 

assembly. As only a very low differential pressure was required to flow fluid through the 
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fractured core, the inlet pressure was measured using a manometer tube rather than a transducer. 

The flow rate was measured using a balance and stop watch. 

 

Prior to saturation, the core was dried at 75°C under vacuum pressure of 0.09 MPa for about 3 

days, using a vacuum oven. Then, the core and related system were saturated with dionized 

water. Initially, the system was evacuated using a vacuum pump under vacuum pressure of about 

13 millitorr for about 4 hours. The vacuum pump was connected to the system from the inlet side 

of the core. A water column used to saturate the system was attached at the outlet side of the core 

assembly. The water column was positioned on a scale to observe the weight change and hence 

the water volume entered the system. 

 

The pore volume of the fractured core sample was determined by subtracting the dead volume of 

connecting tubes, fittings and end pieces from the total volume displaced from the saturation 

water column. The dead volume of tubes and pore volume were calculated as follows: 

 
dtotalp VVV 

 
(2.7) 
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where pV  and dV   are the pore and dead volumes in cubic centimeters, respectively. totalV  is the 

total volume of water entering the system in cubic centimeters, totalW  is the total weight of water 

entering the system in grams, w  is the density of water in grams per cubic centimeters, l and r  

are the length and inner radius of tubes, respectively, in centimeters. 

 

Based on the pore volume estimation, the porosity of the core sample was calculated as the ratio 

of the pore volume to the core bulk volume. 
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where   is the porosity in percentage, BV  is the bulk volume in cubic centimeter, r  and l  are 

the radius and length of the core in centimeter, respectively. The core sample was found to have 

a pore volume of 1.8 cm
3
 and porosity of 2.9%.  

 

The hydraulic aperture of the fracture was determined using the cubic law. The cubic law is 

given as:  
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where Q is the flow rate in cubic meters per second, b is the fracture aperture in meter, D is the 

fracture width in meter, p is the pressure drop across the core sample in Pascal, L is the length 

of the fracture in meter,  is the test fluid viscosity in Pascal second and k is the permeability in 

square meters. The average of the hydraulic aperture of the fracture was found to be 

approximately 27 μm. The average permeability of the rock was found to be 60 darcy. The 

fracture hydraulic aperture and permeability, total volume of water entering the system, dead 

volume of tubes, dead volume of end pieces, pore volume and porosity are summarized in Table 

2.3. The pore size distribution (Figure 2.1) was obtained from the capillary pressure-saturation 

curve measured by mercury intrusion and Laplace’s equation of capillarity. According to this 

approach, the greywacke sandstone has pores in the range from few nanometers (5 nm) to 200 

nm in diameter. The average pore size was approximately 60 nm. 

 

Figure 2.1: Pore size distribution of greywacke sandstone obtained by mercury intrusion, 

indicating an average pore diameter of about 60 nm. 

2.3.3.4 Fractured Berea sandstone core preparation and characterization  

The Berea sandstone core plug used this experimental study was 3.78 and 2.56 cm in diameter 

and length (Table 2.3), respectively. The core plug was fired at 700ºC for 2 hours. This firing 
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process was implemented because it stabilizes the indigenous fines and produces strongly water-

wet conditions (Syndansk, 1980; Shaw et al., 1989). Prior to saturation, the core plug was dried 

under vacuum pressure of 0.09 MPa at 70ºC for 24 hours. The core was then saturated with 

testing fluid (i.e. ultrapure water prepared using Q-Millipore) inside the core-holder. The 

saturation was accomplished by evacuating the system (core plug and connecting tubing) to 

vacuum pressure below 50 millitorr. The system was left under vacuum for about 4 hours to 

ensure complete evacuation. The pure water was then introduced and the remaining vacuum was 

released to aid the process of saturation.  

 

The rock sample was characterized in terms of its porosity, matrix permeability, grain density 

and pore size distribution. The porosity of the core plug was measured using by resaturation of 

the core (weight difference before and after saturation with testing fluid of known density), 

Helium expansion (gas pycnometer) and mercury intrusion methods and found to be 22%, 21.4% 

and 20.3%, respectively. The grain density measured by the gas pycnometer was 2.67 g/cm
3
 and 

that by mercury intrusion was 2.57 g/cm
3
. Matrix permeability was measured by introducing 

flow at different flow rates. The average matrix permeability was approximately 0.51 darcy. The 

pore size distribution (Figure 2.2) was obtained from the capillary pressure-saturation curve 

measured by mercury intrusion and Laplace’s equation of capillarity. According to this approach, 

the Berea sandstone has pores in the range from few nanometers (5 nm) to as large as 50 µm in 

diameter, with the majority below 25 µm (d90). The average pore size (d50) or (d50) was 

approximately 15.5 µm. The pore distribution also indicated that 10% of the total pores are 

smaller than 8 µm (d10). 

 

Figure 2.2: Pore size distribution of Berea sandstone obtained by mercury intrusion, indicating 

an average pore diameter of about 15.5 µm, 90% of pores are smaller than 25 µm and 

10% are smaller than 8 µm. 
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Figure 2.3: Schematic of the sandstone core plug with the location of the fracture. The fracture 

extends from the inlet to the outlet. 

 

The fracture was initiated by saw-cutting the core plug into two pieces at the center. A schematic 

of the core showing the location of the fracture can be seen in Figure 2.3. The two pieces were 

then brought together using heat-shrink tubing. The hydraulic aperture of the fracture was 

estimated by considering the flow in parallel layers. Under conditions of flow in parallel layers, 

the pressure drop across each layer is the same. The total flow rate is the sum of flow rate in each 

layer. That is:  

 

             (2.14) 

 

using Darcy’s Law of incompressible horizontal fluid flow           ⁄ , 

 

                     (2.15) 

Because          and assuming             ,        ⁄  (cubic law) and 

      , then Equation 2.15 becomes: 

 

   √          
 

  (2.16) 

 

where r is the radius of the core plug in meter, kt and km are the total and matrix permeability in 

square meters, respectively. Note that the matrix permeability (km) was determined before 

introducing the fracture. The hydraulic aperture of the fracture varied between 17.9 to 62.4 µm at 

different confining pressure ranging from 8.5 to 50 atmospheres. All particles injections were 

performed under confining pressure of 8.5 atmospheres. The maximum hydraulic aperture in 

these experiments was estimated to be 62.4 µm (kt=1.20 darcy) using flow in parallel layers 

(Equation 2.16). The minimum aperture was approximated to be 3.79 µm by assuming the 

fracture permeability to be equal to the total permeability (1.2 darcy). 

2.3.4 Micromodels Fabrication and Characterization  

Micromodels have been developed to allow for flow visualization at the pore scale (Buckley, 

1991). Micromodels are transparent networks of porous structures and channels. The porous 

structures can be an artificial pattern such as straight or staggered cylinders to simulate grains, or 

images based on real pore network found in natural rocks. Micromodels are two-dimensional 

systems and care must be taken when extrapolating the results to three-dimensional systems. 
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The etched silicon wafer micromodels used in this work were of the type described by Sagar and 

Castanier (1997). A pore network of a repeated pattern obtained from an SEM image of a Berea 

sandstone thin section (Figure 2.4a) was used. Continuity of repeated patterns was ensured by 

manipulating the image digitally (Figure 2.4b). 

 

 

Figure 2.4: Berea sandstone thin section (a) SEM, and (b) digitally manipulated images 

(Rangel-Germán, 2002). 

 

The micromodels we used are made of 4-inch silicon wafers, K Prime, 4P <100> B S42565. The 

micromodels in this study are etched pore patterns with two flow channels (fractures) (Rangel-

Germán, 2002). Each pattern is about 490 µm by 400 µm repeated more than 100 times across 

each side of the 5 cm by 5 cm matrix region (Table 2.3). A schematic of the micromodel is 

shown in Figure 2.5. Grain sizes range from 30 to 300 µm and porosity of about 47% (Inwood, 

2008). The absolute permeability was measured and found to be approximately 1 darcy (Inwood, 

2008). The absolute permeability was remeasured and further details can be found later in this 

section. 

  

Figure 2.5: Schematic of the micromodel showing the repeated pattern and fracture channels 

(Rangel-Germán, 2002). Note that inlet and outlet port location were modified. 

 

The fabrication of a micromodel begins with construction of a mask. The pore network image is 

reproduced as chrome on glass substrate. The grains on the glass replica are opaque while pores 

spaces are transparent. The image on the mask is transferred to the silicon wafer using a 

photoresist material (Hornbrook, 1991). Prior to the photoresist coating, the silicon wafer is 

dehydrated in an oven at 150ºC for about 30 minutes. Dehydration involves priming the wafer 
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with hexamethyldisilazane (HMDS) to improve the photoresist adhesion to the wafer (Alshehri, 

2009). 

 

A coating of the photoresist (Shipley 3612) is spun onto the wafer, resulting in 1.6 µm thick 

photoresist layer. The wafer is then baked at 90ºC for 2 minutes until dry. The wafer is exposed 

to the mask using Karlsuss MA-6 contact mask aligner. During exposure, ultraviolet light is 

passed through the mask, leaving only the photoresist coating at grains. Soft contact program 

with 2.6 seconds exposure time and 40-µm gap width is selected. The silicon wafer is developed 

using Shipley MF-26A surfactant to remove unexposed photoresist, and then baked at 110ºC for 

2 minutes. After developing, the image transfer is completed and the wafer is removed from the 

photolithography area and is ready for etching.  

 

The pore network image is dry etched using an inductive charged plasma deep reactive ion 

etcher. The etch process alternates between the passivating C4F8 plasma and the silicon etching 

SF6 plasma. The wafer is etched to a desired depth of approximately 25 µm. To isolate the 

individual flow channels, a borofloat glass wafer of 10.16 cm diameter and 0.1 cm thick is 

anodically bonded to the silicon wafer. In this work, 0.1 cm inlet and outlet ports were drilled, in 

the Stanford crystal shop, into the bonded glass substrate. Prior to bonding, wafers are cleaned in 

sulfuric acid/hydrogen peroxide (9:1 H2SO4:H2O2) solution bath at 120ºC for 20 minutes, 

followed by 6-cycle deionized water rinse and spin dry. 

The anodic bonding forms an irreversible bond between the glass and unetched portions of the 

silicon wafer. The bonding process involves hotplate, electrodes and power supply. The 

materials are arranged from bottom up: anode, etched silicon wafer, glass wafer and cathode 

(Hornbrook, 1991). The bonding process starts by placing a clean silicon wafer (etched face up) 

on a hotplate preheated to 350ºC for about 30 minutes. The wafer is dusted using compressed 

ultrapure air to ensure that the etched side is particle-free. A clean glass wafer is then placed 

carefully on top of the silicon wafer. An aluminum plate wrapped with a copper mesh is 

positioned above the wafers. The hotplate is connected to one electrode (anode) of the power 

supply, while the positive electrode (cathode) is connected to the aluminum plate. The power 

supply is brought to 1000 volts and left for about 45 minutes (Rangel-Germán, 2002). The 

bonding is observed as gradual change in color of the wafer, bonded areas appear black whereas 

unbounded regions appear light gray (Hornbrook, 1991). 

 

The permeability of the micromodel was measured at various flow rates ranging from 0.001 to 

0.3 cm
3
/min. Higher flow rates were avoided to avoid overpressurizing the micromodel. Initially, 

the micromodel and connecting tubes were all saturated fully with ultrapure water. Complete 

saturation of the micromodel was confirmed via image analysis. Darcy’s Law of incompressible 

horizontal fluid flow was used to calculate the absolute permeability. Validity of Darcy’s Law 

was confirmed by linearity between flow rates and measured pressure drop across the 

micromodel. The area used was the cross-sectional area at the fracture-matrix interface (i.e. 5 cm 

by 0.0025 cm, length and depth of micromodel). The average absolute permeability was found to 

be approximately 1.09 darcy, in agreement with previous measurements carried out by Inwood 

(2008), who used the same pore image mask. 
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Table 2.3: Summary of fractured Berea and Greywacke sandstones and micromodel properties.  
Fractured Berea sandstone 

Diamete

r (cm) 

Length 

(cm) 

Porosity 

(saturation

) 

Pore 

volume 

(cm
3
) 

Matrix 

perm. 

(darcy) 

Total 

perm. 

(darcy) 

Aperture 

(µm) 

Mean 

grain size 

(µm) 

Mean 

pore size 

(µm) 

      Max. Min.   

3.78 2.56 0.22 6.3 0.51 1.2 62.4 3.79 150 15.5 

Fractured Greywacke sandstone 

Diameter 

(cm) 

Length 

(cm) 

Porosity 

(saturation) 

Bulk volume 

(cm
3
) 

Pore volume 

(cm
3
) 

Fracture 

perm. 

(darcy) 

Aperture (µm) 

5.08 3.01 0.029 61.1 1.8 60 27 

Silicon micromodel 

Matrix  

area (cm
2
) 

Fracture 

area (cm
2
) 

Porosity (image 

analysis) 

Pore volume 

(cm
3
) 

Permeability 

(darcy) 

Grain size 

range (µm) 

Channel depth 

(µm) 

5x5 5x0.1 0.47 0.029 1.09 30-300 25 

2.4 RESULTS 

This section provides the results of the initial nanofluid injection experiments conducted on 

Berea sandstone, fractured Berea sandstone core and fractured greywacke core as well as slim 

tubes packed with glass beads, with different particle suspensions. We investigated the effect of 

the particle size and/or size distribution, shape and surface charge on their transport through 

various porous media. The effect of particle size, suspension concentration, fluid velocity and 

straining on particle recovery were investigated by injecting silica microspheres into the 

fractured Berea sandstone. Hypotheses made in relation to the specific experiment objective 

were also verified as applicable. The effect of the shape of the particles was explored through the 

injection of silver nanowires. The results were supported by injecting the same material of 

identical surface characteristics but with different shape (i.e. spherical silver nanoparticles). The 

surface charge was studied by injecting uncoated and PVP coated hematite nanorice. The affinity 

of nanoparticles to flow media was explored through the injection of tin-bismuth alloy 

nanoparticles. The effect of the particle size was investigated further by injecting polydisperse 

silica sample into fractured greywacke rock. Relation between recovered particles and fracture 

aperture was evaluated. Note that the influences of flow velocity, solution pH and ionic strength 

were not part of this study.  

2.4.1 Silver nanowire and nanosphere injection  

The objective of this experiment was to investigate the transport of rod-like nanoparticles 

through reservoir rock. We specifically explored the implication that the shape might impose on 

particle recovery. The silver nanowires injected had diameters in the range of 50-100 nm, and 

lengths in the range of 5-10 µm. Their surface charge was negative (i.e. same as the sandstone 

charge). 
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Silver nanowires were injected through the Berea sandstone core, however were not detected in 

the effluent. The effluent samples were analyzed and/or characterized using UV-visible 

spectrophotometry. Figure 2.6 shows the optical density measurements of the influent and 

selected effluent sample collected during injection. The influent had an optical signature (red 

curve) similar to typical silver nanowires reported in the literature (Sun et al., 2001). The optical 

density of selected effluent sample did not show any sign of silver nanowires. The spectrum of 

all effluent samples exhibited the behavior of pure water (flat lines). Note that effluent samples 

curves contain no further details than being flat lines, indicating that these effluent samples are 

free of any silver nanowires. This suggested that the silver nanowires were not transported, but 

rather trapped within the pore network of the sandstone core plug. The drop in the matrix 

permeability, as depicted in Figure 2.7, also suggested that flow paths were blocked by the silver 

nanowires. There was a drop in the permeability from approximately 94 to 51 md, or about 45% 

reduction. This drop began during the injection of the nanofluid and stabilized through the post-

injection of the fifth pore volume. The core was backflushed by the injection of 11 pore volumes 

of pure water. The optical densities of representative backflushing samples of every pore volume 

were measured (not shown here). All exhibited the behavior of pure water, similar to that 

depicted earlier in Figure 2.6, indicating that the nanowires remained in the core and were not 

backflushed out. 

 

Figure 2.6: Optical density of silver nanowires influent (red curve) and selected effluent 

samples. Optical densities of effluent samples were flat lines indicating these samples 

are free of silver nanowires. 
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Figure 2.7: Permeability measurement during the silver nanowires injection experiment. 

Permeability dropped during the injection of the nanofluid until stabilized (plateau) at 

about 45% of initial permeability. 

 

To investigate the hypothesis made regarding the entrapment of the silver nanowires, a 3 

millimeter slice was cut at the inlet section of the core. The gas permeability was remeasured to 

assess the effect of the nanowires on the core after removing the few millimeters slice. The 

original gas and equivalent liquid permeabilities of the core were restored by cutting off that 

slice. 

 

These findings suggested that the nanowires had been trapped within the removed slice. SEM 

imaging confirmed this unambiguously. The analysis was performed on the front and back sides 

of the slice. Figure 2.8 is SEM images of the front sides. The silver nanowires were clearly 

trapped at the front side. SEM micrographs (not shown) of the back side of the slice showed no 

sign of nanowires. This demonstrated that the nanowires could not pass through the pores of the 

core even for a couple of millimeters. It has been concluded that their geometry (longitudinal 

length) may have imposed constraint on their transport through the core. To verify this 

hypothesis, an injection of spherical silver nanoparticles into the same Berea sandstone (after 

removing the slice) was conducted.  
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Figure 2.8: SEM imaging on the front side of the slice at different magnifications. 

 

The spherically shaped silver nanoparticle size was around 40 nm ±10 with an average zeta 

potential of approximately negative 17 mV at pH of 7.9. The zeta potential for Berea sandstone 

saturated with pure water (ionic strength of 10
-6

) was assumed to be -76.3 mV as suggested by 

Alkafeef et al. (1999). Pore size distribution measurement using mercury intrusion showed that 

Berea sandstone has pore sizes in the range of 0.1 to 50 µm. Note that the size of these 

nanoparticles was within the size of the pore spaces available for their flow. As the goal was to 

determine if nanoparticle shape would inhibit their flow, the main difference over the silver 

nanowires was the shape of the particles. 
 

The spherical silver nanoparticles were transported through the pore spaces of the rock and were 

detected in the effluent. The concentration of the nanoparticles in the effluent samples was 

determined by measuring and correlating their absorbance to concentration using a calibration 

curve. The calibration curve was constructed by making few dilutions, each with accurately 

known concentration. For each dilution, the absorbance was measured and plotted against the 

sample concentration. This is the calibration curve. Following the determination of the effluent 

samples concentration, the production history curve of the silver nanoparticles was estimated as 

depicted in Figure 2.9. The initial breakthrough of nanoparticles occurred at about 30% of the 

first post injected pore volume and they were produced continuously until the bulk of the 

particles were displaced through the second pore volume. 

 

Figure 2.9: Production history (return curve) of silver nanoparticles. 
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The quantity of nanoparticles recovered was about 25%, calculated by integrating the area under 

the return curve. The low recovery was attributed to particle aggregation. Large aggregates or 

clusters can be physically trapped at small pore throats. Estimation of total interaction energy 

(Figure 2.10) indicated that the repulsive energy barrier is very shallow. When particles come at 

close proximity to each other, the energy barrier may be overcome by the attractive forces at the 

primary energy minimum. This would result in particle aggregation and the formation of large 

clusters. Clusters moving through narrow pore throats will be excluded from the flow by 

physical entrapment due to their size, and thus low recovery. The permeability of the core was 

not affected because entrapment of nanoparticles at pores would still allow water to flow. 

Despite the modest recovery of these nanoparticles, it was clear that the shape was an important 

factor for their transport through the pores of the sandstone core. 

 

Figure 2.10: Total interaction energy between silver nanoparticles. The interaction energy is 

normalized to the thermal energy (Boltzmann constant and absolute temperature). 

Hamaker constant used is 28.2×10
-20

 J as per Israelachvili (1992) for silver-silver 

nanoparticle in water. 

2.4.2 Hematite nanorice injection  

Injection of hematite nanorice was conducted to investigate their mobility within the pore spaces 

of Berea sandstone. The purpose was to investigate the constraint imposed by the surface charge 

of nanoparticles. The nanoparticle size was roughly 500 nm in length and 100 nm in diameter, 

resulting in an aspect ratio of 5:1. By comparison, the hematite nanorice was at least an order of 

magnitude shorter than the silver nanowires injected previously, and was carrying a positive 

charge of 59.3 mV with pH of 3.3. Thus, the nanorice was also used to test the hypothesis made 

regarding the entrapment of the silver nanowires due to their geometry (length).  
 

Hematite nanorice was not identified in the effluent. Light scattering, UV-visible spectroscopy 

and scanning electron microscopy were used to examine the effluent samples, in which no 

nanoparticles were detected. The hematite nanorice was, however, observed within the pores at 

the inlet side of the core as illustrated by SEM micrographs in Figure 2.11. 
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Figure 2.11: SEM imaging of hematite nanorice in Berea sandstone at (A) front side, (B) back 

side of the slice (free of nanorice).  

 

Similar to the analysis for the silver nanowires, a thin slice of the core at the inlet was cut and 

SEM imaging was performed on both sides. Hematite nanorice were observed on the front face 

but not on the back face. We speculated that the entrapment of the nanorice resulted from 

interaction with core material due to either incompatibility of surface charges or chemical 

interaction of hematite with core constituents. The size of the nanorice (aspect ratio) and 

complexity of pore connectivity of Berea sandstone might have contributed to their entrapment, 

however, results of the nanorice injections into glass beads (explained later) suggested that 

surface charge effect was dominating. Poulton and Raiswell (2005) reported that the natural 

spherical iron oxides nanoparticles (10-20 nm) in sediments tend to aggregate at the edges of 

clay grains, most likely because of their surface charge characteristics. Tipping (1981) and 

Tipping and Cooke (1982) observed that iron oxides were negatively charged in fresh water 

while the edge of clay has positive charge which may explain the particle aggregation at that 

location. The micrographs in Figure 2.11 do not provide conclusive evidence of this interaction 

between the sandstone clays and the hematite nanorice. Nevertheless, this result suggested that 

there was interaction between hematite nanorice and the sandstone core materials and/or among 

the nanorice in the form of particle aggregation. To investigate the interaction of hematite with 

core materials, the hematite nanorice was injected into a porous medium that consisted of a tube 

packed with glass beads (in the absence of core materials). The glass beads were negatively 

charged, so the incompatibility of surface charges still exists.  
 

An extremely low particle count was observed using SEM imagery of several effluent samples at 

different post-injected pore volumes. The particles were mostly found aggregated on the surface 

or within the surface defects of the glass beads themselves (Figure 2.12). The optical density of 

the hematite suspension during this injection could not be measured due to their low 

concentrations, and thus the concentration of hematite nanorice in the effluent relative to the 

concentration in the influent could not be determined. However, it was determined that in the 

absence of the clays (during hematite nanorice injection into glass beads), the nanorice exhibited 

very low mobility and thus interaction with core materials was not the main factor behind the 

nanorice entrapment within pore spaces of the Berea sandstone. Despite that fact that the pore 

connectivity in packed glass beads is less complex than that of Berea sandstone and the pore 

sizes in packed glass beads are expected to be larger, the recovery of the hematite nanorice was 
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negligible. This suggests that the entrapment of the nanorice was not due to the particle size or 

aspect ratio. Therefore, it was concluded that the incompatibility of surface charges was limiting 

the transportation of the hematite nanorice through the sandstone and glass beads.  

 
Figure 2.12: Hematite nanorice aggregation on the surface of glass beads at (A) & (B) inlet and 

(C) & (D) outlet side of the flow apparatus. 

To confirm this conclusion, the hematite nanorice was coated with the surfactant (PVP) to 

modify its surface charge. The coated with PVP surfactant carried a negative charge of 9.5 mV 

with pH 4.8) compared to the uncoated nanorice (positive 59.3 mV, pH of 3.3). The coated 

hematite nanorice was then injected into a clean tube packed with glass beads. The nanorice was 

transported through the glass beads and was detected in the effluent. The recovery of coated 

hematite nanorice amounted to about 23% of influent concentration (Figure 2.13). The low 

recovery was attributed to size exclusion (particle removal by physical entrapment due to size) 

due to aggregation. As can be observed in Figure 2.7, the anisotropic hematite particles have a 

tendency to aggregate in clusters. Lu et al. (2002) reported that hematite nanorice often aggregate 

in large clusters as a result of anisotropic dipolar forces. This aggregation would limit the 

transport of the nanorice through pore networks, due to bridging of the pores. Because the 

nonspherical particles are anisotropic with respect to curvature, they are also anisotropic with 

respect to chemical potential, which is highest where the radius is smallest. Thus, nonspherical 

particles are more prone to aggregation than spherical ones with isotropic curvature. 

Furthermore, the aggregation can be expected to occur most where the radius of curvature is 

small in order to cover parts of the surface with high free energy. This can be observed in Figure 

2.12. As a result of aggregation, large cluster forms. If the cluster flows along a streamline that 
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passes through pore throats smaller than the size of the cluster, it will be excluded from the flow 

based on its physical size. 
 

While the recovery was not high, it was substantially higher than that achieved during the 

injection of the uncoated (positively charged) hematite, which confirms the influence of surface 

charge on the transport of nanoparticles (the objective of these experiments). This also confirms 

that the recovery was less sensitive to aspect ratio of nanorice because the coating of nanorice 

did not alter the size but only their surface charge. Based on this finding, it was concluded that 

the surface charge plays an important role on the transport of nanoparticles through porous 

media. 
 

 

Figure 2.13: Production history (return curve) of PVP-coated hematite nanorice. 

2.4.3 Tin-Bismuth alloy nanoparticles injection 

The objective of the tin-bismuth injection experiment was investigate their transport through 

porous media. The affinity of nanoparticles to the flow medium was also addressed. The 

nanoparticle suspensions were injected into a slim tube packed with glass beads and into a Berea 

sandstone core. Alaskar et al. (2010) showed that spherically shaped silicon dioxide 

nanoparticles with narrow size distribution and surface charge similar to that of the porous 

medium can be transported and recovered. The synthesized tin-bismuth nanoparticles had 

comparable specification (spherically shaped and negatively charged, 30 mV), except that the 

influent contained a wider size distribution of particles from 50 to 600 nm. 
 

Tin-bismuth nanoparticles were identified in a few effluent samples with very low 

concentrations. It was observed that only nanoparticles with diameters 200 nm and smaller were 

transported within the pore spaces of the rock, as shown in the SEM image in Figure 2.14A. Note 

that the influent sample contained nanoparticles as large as 600 nm. It was speculated that larger 

particles (greater than 200 nm) were trapped at the inlet of the core. In fact, SEM imaging of the 

backflushing effluents showed that there was entrapment of various nanoparticle sizes, including 
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the sizes greater than 200 nm (Figure 2.14B). The rock filtered the injected nanofluid allowing 

only a certain particle sizes to flow through it. It should be noted that this is a qualitative analysis 

in which the determination of the relative number of particles recovered was not attempted. 

 

 

Figure 2.14: SEM imaging showing the tin-bismuth nanoparticles at the effluent during (A) 

injection and (B) backflushing of the Berea sandstone. Only particles smaller than 200 

nm transported through pore spaces while larger particles trapped at the inlet of the 

core and mobilized during backflushing. 

 

The permeability measurements during the injection agree with this finding. The permeability as 

a function of the injected volume is depicted in Figure 2.15. There was a sudden drop in 

permeability to about 56% of the original value, after which the permeability remained at that 

level during the first post-injected pore volume, indicating the partial plugging of the pores. 

Then, permeability started to increase until it reached a plateau at approximately 82% of its value 

prior to the nanofluid injection. At this time, only nanoparticles of 200 nm and smaller were 

observed in the effluent, using SEM imaging (Figure 2.14A). As mentioned earlier, the 

backflushing of the core mobilized some particles (but not all) and as a result the permeability of 

the rock improved slightly by 8% (i.e. back to 90% of its original value). 

 

However, permeability improvement (from 56% to 90% of original value) does not imply a good 

recovery of the injected nanoparticles. If the injected nanofluid has a visible color, it is possible 

to observe the nanoparticles in the effluent visually. In the case of the tin-bismuth injection, the 

influent had a dark gray color that was characterized by being highly concentrated with 

nanoparticles. All effluent samples appeared colorless and transparent, so it was concluded that 

many of these nanoparticles were trapped within the rock pores, most likely at the inlet of the 

core.  
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Figure 2.15: Permeability measurements during the injection of the tin-bismuth nanoparticles. 

 

Further evaluation using SEM imaging (Figure 2.16) of the rock pore spaces demonstrated the 

bridging and plugging of the tin-bismuth nanoparticles in the pore throat entry. Kanj et al. (2009) 

suggested that small particles at high concentrations might bridge across the pore throat. The 

authors also added that large particles could result in direct plugging of the pore entry. Both 

phenomena would impact the rock permeability negatively. Particles shown in Figure 2.10 could 

not be mobilized either by increasing the injection flow rate or by backflushing and were 

probably responsible for the permanent reduction in the rock permeability. The SEM analysis did 

not provide conclusive evidence of the mechanism of particle entrapment. However, it was 

realized that the polydisperse nanofluid sample was more effective in plugging the pores. One 

could observe how smaller particles aggregate around larger ones to fill the tinier spaces and 

hence effectively plug the pore spaces. 

 

Figure 2.16: SEM images from within the pore spaces of the Berea sandstone. They demonstrate 
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the bridging and plugging phenomena. 
 

Alaskar et al. (2010) reported that the spherical silicon dioxide (SiO2) nanoparticles with narrow 

size distribution and surface charge compatible to that of the rock were transported successfully 

through the pore spaces of Berea sandstone. The tin-bismuth nanoparticles exhibit similar 

properties in terms of shape and surface charge (negatively charged), except that the tin-bismuth 

nanoparticles had a wider distribution of sizes between 50 to 600 nm. Thus, particle shape and 

surface charge should not impose flow constraints. The testing program suggested by Kanj et al. 

(2009) for nanoparticle flow in porous media emphasizes particle size, influent concentration and 

affinity of particles to rock matrix. In the case of tin-bismuth injection, although the influent 

sample had wide distribution of particle sizes that might have introduced difficulty for their 

delivery, the tin-bismuth nanoparticles affinity and/or concentration may be the primary cause of 

their entrapment.  

 

Further investigation of particle affinity to Berea sandstone was carried out by injecting the same 

influent sample of the same concentration into a slim tube packed with glass beads. This allowed 

testing the transport of the tin-bismuth nanoparticles in the absence of the core material. One 

pore volume of the nanofluid was injected at the rate of 0.5 cm
3
/min followed by continuous 

injection of pure water at the same rate. Several effluent samples were collected and analyzed by 

SEM imaging. It was found that the tin-bismuth nanoparticles of all sizes flowed through the 

slim tube. The increasing concentration of the nanoparticles in the effluent was observed visually 

through the injection of the first post-injected pore volume.  
 

Thus, it has been demonstrated that the spherically shaped tin-bismuth nanoparticles can be 

recovered following their injection into glass beads without being trapped within the flow 

conduits, but not through the pore network of the rock (which has much smaller pores). This 

might be attributed to an affinity of these nanoparticles to the sandstone rock matrix and the wide 

size distribution imposing constraints to their flow. The complexity of the rock pore network 

compared to the large pores in the glass beads was not taken into consideration during this 

analysis. It should be noted that the pore network in glass beads is expected to be less complex 

compared to that of a natural rock such as Berea sandstone. The pore sizes are also larger than 

those in real rocks. This would aid the transport of large particle during the glass bead injection. 

2.4.4 Fluorescent silica microspheres injection into fractured greywacke core 

The objectives of this experiment were to investigate the transport and recovery of silica 

microspheres through fractured greywacke core sample, and study the relationship between the 

size of recovered microparticles and fracture aperture. Based on the previous experiments 

discussed earlier with regard to the transport of particles of various nanomaterials with different 

size, shape and surface charge, it has been found that spherically shaped particles of certain size 

and surface charge compatible to that of the flow medium are more likely to be transported. The 

fluorescent silica microspheres used during the fractured greywacke satisfy these conditions (i.e. 

spherically shaped with surface charge similar to that of fractured media). To investigate the 

optimum particle size and its relation to fracture aperture, silica microspheres of different sizes 

were injected. 
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The sequence by which the transport of the silica microspheres through the fractured greywacke 

core was investigated was as follows. Initially, the blue and green microsphere suspensions of 

concentration (C) were injected, followed by the injection of the blue and green microsphere 

suspensions of double the concentration (2C). Following each injection, effluent samples were 

collected. Due to the polydisperse nature of the red silica microspheres and concerns regarding 

plugging of the fracture by large spheres, particle suspensions (C and 2C) were injected at the 

end. 

 

The fluorescent silica microspheres were transported through the fractured greywacke core 

successfully. As mentioned earlier, the silica microspheres influent samples of the same 

concentration (but different size) were consecutively injected. The silica microspheres were 

identified in the effluent samples using optical microscopy and fluorescence spectroscopy, 

confirming their delivery through the fracture. 

 

The recovery of the silica microspheres was determined by measuring the emission spectrum and 

correlating it to the effluent concentration using a calibration curve. The samples were excited at 

a wavelength of 350 nm and the emission spectrum was measured between 350 to 600 nm, with 

a peak or maximum emission at a wavelength of about 434 nm. To construct the calibration 

curve, the emission spectra of a few samples of known concentrations were acquired. The 

concentrations of effluent samples were determined based on the maximum emission intensity at 

the peak. The return curves of the blue microspheres were then estimated as depicted in Figure 

2.17. It was found that about 54% of the injected blue suspension at concentration (C) was 

recovered. The microspheres were produced throughout the post injection at roughly constant 

level (±1.5×10
-5

 g/cm
3
), with no clear or identifiable peak. On the other hand, only 19% of the 

(2C) blue suspension was recovered, mostly during the post injection of the first five pore 

volumes.  

 

 

Figure 2.17: Blue silica microspheres return curves. 
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The return curves for the blue silica microspheres showed a very fast arrival. The first arrival of 

the particles occurred within 0.09 to 0.2 pore volume from the start of their injection. This 

suggests that the recovered particles were moving through the fracture, not the core matrix. The 

pore size distribution of greywacke sandstone (see Figure 2.1) indicated that the core has pores in 

the range of 5 to 200 nm. The largest pore is significantly smaller than the blue silica 

microsphere (2 µm), and thus trapped particles were most likely retained at the small pore spaces 

(at the inlet) in core matrix and fracture walls in regions with small apertures. It was observed 

that the recovery of the silica microspheres is inversely proportional to the particle suspension 

concentration. The recovery of the microspheres decreased with increasing particle suspension. 

This may suggest that there was particle-particle interaction, causing the microspheres to 

aggregate. As the suspension concentration increases, more particles are present, resulting in 

larger aggregates or clusters. When these clusters flow through areas of narrower aperture (areas 

where fracture surfaces are closer to each other), they will be trapped because of their physical 

size, and thus low recovery. The particle-particle interaction energy estimated for the blue silica 

microspheres, as depicted in Figure 2.18, shows low repulsive energy barrier, which might be 

overcome by the attractive forces at the primary energy minimum at small separation distances. 

This is consistent with the fact that the blue microspheres experienced lower recovery with 

increasing concentration (i.e. higher concentration resulted in larger clusters, due to aggregation, 

that led to further plugging and thus low recovery). 

 

Figure 2.18: Total interaction energy between particle-particle of the blue, green and red 

microspheres. The interaction energy is normalized to the thermal energy (Boltzmann 

constant and absolute temperature). Hamaker constant used is 6×10
-21

 J as per Grabbe 

and Horn (1993) for silica-water-silica system. Note that an average particle size of 10 

µm was used in the case of the red particles. 
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Estimating the recovery of the green silica microspheres based on concentration was not feasible 

due to discrepancies in the emission spectra measurement during the construction of the 

calibration curve. Instead, we attempt to estimate the average recovery of the green spheres by 

calculating the cumulative ratio of emission intensity of effluent (Ee) to emission intensity of 

influent (Ei), as shown in Figure 2.19. The effluent and backflushing samples were excited at 

wavelength 480 nm and the emission spectrum was acquired between 480 to 700 nm, with 

maximum emission at wavelength of about 525 nm. The transport of the green silica 

microspheres was mainly through the fracture as indicated by their early arrival. The recovery of 

the green microspheres was improved with increasing concentration. The influence of the green 

microsphere suspension concentration was totally opposite to that of the blue microsphere 

concentration (recovery decreasing with increasing concentration). The estimation of the total 

interaction energy (Figure 2.18) among the green microspheres suggests a high repulsive energy 

barrier, which would prevent the particles from aggregation. Instead, the particles will repel from 

fracture surfaces and from each other and remain disperse in solution. Therefore, increasing 

suspension concentration of the green microspheres may not cause in aggregation that often 

result in low recovery. We speculated that the low recovery of the green microspheres was 

related to transport by gravitational sedimentation. Note that the density of the silica 

microspheres is more than twice that of injected water (i.e. 2.2 g/cm
3
). During transport by 

sedimentation, particle moves across streamlines, due to gravity forces and associated settling 

velocity, until it collides with fracture surface. The particle may attach to the surface if 

attachment conditions are favorable. In the case of the green microsphere injections, the 

attachment conditions are unfavorable (pure water and compatible surface charge between 

particles and flow medium). In fact, even if the microspheres collide with the fracture surface, 

the repulsive energy barrier should prevent them from attaching. Therefore, it was concluded that 

the low recovery of the green silica microspheres was primarily due to gravity settling. The drag 

forces at fluid velocity used during injection was not sufficient to offset gravity forces. The effect 

of fluid velocity was not assessed since the objectives of the fracture experiments were only to 

investigate the influence of the particle size and its relation to fracture aperture.   
 

Owing to the existence of surface irregularities in fractures, it is very possible that a flow channel 

in the fracture at or below the size of injected microspheres exists along a preferential flow path. 

Consequently, entrapment of particles due to their physical size will result in their accumulation 

at narrow aperture areas and, therefore, the blockage of that flow path. Blocked flow paths are a 

dead-end for subsequent particles, which eventually results in reduction of particle recovery. The 

permeability measurements (i.e. pressure data) support the fact that the number of conductive 

flow paths available to particles decreased due to blockage. Figure 2.20 shows the permeability 

measurements conducted prior and during the injection of the blue and green silica particles at 

two different suspension concentrations. The permeability continued to decrease as more 

particles injected. The permeability decreased to approximately 22 darcy by the end of the green 

microsphere (of concentration C) injection. This reduction in permeability indicates a degree of 

blockage, supporting the argument that blockage occurred in some of the preferential flow paths. 

After that, the permeability decreased slightly as more particles were injected (during the 

injection of blue and green silica microspheres at concentration of 2C). The slight decrease in 

permeability following the injection of concentrated suspensions can be explained by the fact 

that small flow paths were already plugged during previous injections (injection of blue and 
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green suspensions at concentration C), and the flow of subsequently injected particles was 

redirected to areas of wider apertures where trapping by particle size is expected to be less.  

 

Figure 2.19: Green silica spheres cumulative ratio of emission intensity of effluent (Ee) to 

influent (Ei) as function of pore volumes injection. The backflushing samples start at 

about the seventh pore volume in this graph. 

 

 

Figure 2.20: Permeability measurement prior and during the injection of the blue and green 

silica microspheres at different concentrations. The permeability is decreasing as more 

microspheres injected.  
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We have demonstrated the feasibility of transporting nanoparticles and/or microparticles through 

a fractured greywacke core. In terms of characterizing the fractures in the rock, which is a 

primary objective of the project, the preliminary experiments showed promise. The preliminary 

testing involved injection of silicon dioxide (SiO2) nanoparticles through Berea sandstone.  The 

details for the preliminary experimental work can be found in Alaskar et al. (2010). It was found 

that the nanoparticles passed through pores of sizes larger than themselves, but were unable to 

pass into the smaller natural fractures that existed within the rock structure. A smaller 

nanoparticle could have entered the fracture providing a direct correlation between the recovered 

particle size and fracture aperture. Therefore, it may be possible to use nanoparticles as a fracture 

aperture caliper. 

 

Investigation into the idea of using particles to measure the fracture aperture was carried out by 

injecting the polydisperse red silica microspheres (diameter ranging from 5 to 31 μm) into the 

fractured greywacke core. It was found that only microspheres with diameters smaller than 20 

μm were transported through the fracture. This suggested that the fracture has an aperture of at 

least 20 μm, but not as large as 31 μm. This result was in agreement with the hydraulic fracture 

aperture measurement (i.e. 27 μm as determined by the cubic law), and demonstrates the 

possibility of using particles to estimate the size of the fracture opening.  
 

The recovery of the red silica microspheres was determined by calculating the ratio of 

fluorescence emission intensity of effluent to that of the influent. Two influent samples of 

different concentration of red spheres were injected one after the other. Note that the fractured 

core was flushed with many pore volumes prior to the injection of the red spheres; in attempt to 

mobilize remaining microspheres from previous injections (blue and green silica spheres). The 

core was also dried and resaturated again. The return curves based on the cumulative emission 

intensity ratio as function of pore volume injected were similar to those of obtained during the 

green silica microspheres injection. The particle recovery was dependent on the influent 

concentration. . The recovery of the most dilute influent was around 15.7%. Acquiring the 

emission spectrum of some effluent and backflushing samples was not possible, because 

fluorescence levels in these samples were below detection limit of the instrument. The recovery 

was improved to 47.5% when the concentration of influent was doubled (i.e. concentration 2C). 

 

Similar to the blue and green silica microspheres, the red microspheres were transported through 

the fracture, as indicated by the very fast initial breakthrough. The recovery of the red 

microspheres was proportional to the suspension concentration. The particle recovery was 

increased by about a factor of three (from 15.7 to 47.5%). Conclusions with regard to the 

entrapment of the red microspheres were similar to those concluded for the green microspheres. 

To be specific, the transport of the red microspheres was dominated by gravitational 

sedimentation due to their density. Note that the red silica sample is polydisperse with diameter 

between 5 to 31 µm. Large particles are more susceptible to settling by gravitational forces, and 

hence sedimentation was prominent during the flow of the red microspheres through the fracture. 

Gravitational forces were higher than drag forces at injection flow rate or fluid velocity, which 

caused the particles to settle resulting in lower recovery. Interaction among particles was highly 

repulsive (Figure 2.12). The repulsive energy barrier would prevent particle aggregation that 

might result in trapping. However, a single particle can be trapped based on its size (not 
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aggregate size). This is consistent with the fracture caliper results where particles larger than 20 

µm were not detected in the effluent samples. Large particles may have flowed along streamlines 

that pass through areas of narrow aperture between fracture surfaces. If the particle has 

comparable or larger diameter than the flow channel, it will be physically trapped. 

2.4.5 Fluorescent silica microspheres injection into fractured Berea core and silicon 

micromodel 

2.4.5.1 Silica injection into fractured Berea sandstone core 

The transport of silica particles was investigated by flow experiments in the fractured Berea 

sandstone core plug. For this purpose, the particle suspension concentration, particle size and 

fluid velocity were varied. The effluent breakthrough curves are presented in Figure 2.21.  

 

Figure 2.21: Breakthrough curves for silica microspheres with diameter of 2 µm (left) and 5 µm 

(right), at different flow rates and particle suspension concentration. Removal of particle is 

enhanced as particle size increase, which is indicative of straining.  

 

Several observations can be made based on these breakthrough curves. The breakthrough time 

for both particle sizes was very similar. The return curves for both particle sizes showed a very 

fast arrival followed by gradually increasing (in the case of the 2 µm particles) or constant (for 

the 5 µm particles) concentrations. The first arrival of the 2 and 5 µm particles occurred within 

0.02 to 0.04 and 0.03 to 0.08 pore volume from the start of their injection. This suggests that the 

recovered particles were, at least initially, moving through the fracture and large pores. Trapped 

particles were most likely retained in the small pore spaces in the core matrix and fracture walls 

in regions with small apertures. It was concluded that gravitational sedimentation, aggregation at 

the primary energy minimum (only for the 2 µm particles) and straining due to particle size were 

the main particle trapping mechanisms. Aggregation and straining mechanisms of the 2 µm 

particle were evident based on visual observation during micromodel experiments (details can be 

found later in the micromodel result section). For the 5 µm particles, the role of the balance 

between fluid drag and gravitational forces was apparent. The particle cumulative recovery 

decreases with increasing particle size at the same experimental conditions, which is indicative 

of straining. This finding is consistent with the observation made by Bradford et al. (2002) 

through the injection of fluorescent latex particles into saturated sand columns. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.5 1 1.5 2 2.5 3

C
u

m
u

la
ti

ve
 C

/C
o

PV

C at 1 ml/min

C at 3 ml/min

2C at 1 ml/min

2C at 3 ml/min

4C at 1 ml/min

4C at 3 ml/min

C at 10 ml/min

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

C
u

m
u

la
ti

ve
 C

/C
o

PV

C at 1 ml/min

C at 3 ml/min

2C at 1 ml/min

2C at 3 ml/min

4C at 1 ml/min

4C at 3 ml/min



82 

 

 

For the 2 µm silica particles (Figure 2.21, left), the recovery was inversely proportional to 

particle suspension concentration, and directly proportional to fluid velocity. Recovery was 

strongly sensitive to concentration, and slightly sensitive to fluid velocity. Detachment of 

particles by rolling, sliding or lifting was considered insignificant because increasing fluid 

velocity (drag forces) did not result in considerable recovery enhancement.  

 

Similarly, with the larger particle size (5 µm), the recovery was also increasing with increasing 

fluid velocity and decreasing with increasing concentration. The degree by which the recovery 

was influenced by these parameters (fluid velocity and suspension concentration) was 

completely different at this particle size – it was observed that recovery is more sensitive to fluid 

velocity than concentration. In general, the particle recovery (Figure 2.21, right) was found to 

have a linear relationship with the fluid velocity used during injection. For example, the recovery 

of the 5 µm diameter particle particles had increased from below 20% to higher than 64% (about 

three times higher by increasing fluid velocity by factor of three). Further increase in fluid 

velocity had resulted in complete recovery of the 5 µm diameter silica particles (Figure 2.21, 

right). Large particles follow fast-moving streamlines (central streamlines) and therefore they are 

held away from grain or fracture walls. As fluid velocity decreases, the drag force exerted on 

particles by moving fluid also decreases, allowing gravity to play a larger role. Particles may also 

diffuse away from fast-moving streamlines toward the fracture walls, or near grains at the 

fracture-matrix interface, but this is not expected to play a dominant role in the transport of 

micron-scale particles. Based on all experimental data, it was hypothesized that gravitational 

sedimentation was playing an important role in the particle transport.  

 

Based on the refined correlation for single-collector contact efficiency     , the probability of 

collision of the silica particles with a grain can be estimated using Equation 2.1. Figure 2.22 

represents the total single-collector contact efficiency, and the magnitude of individual collision 

mechanisms (diffusion, interception and sedimentation), calculated for the silica particles used in 

this study, with particle density of 2.2 g/cm
3
, average grain size for Berea sandstone of 150 µm 

(Churcher et al., 1991) with porosity of 21%, fluid velocity of 1.5×10
-5

 m/s (corresponds to 1 

cm
3
/min), temperature of 21 ºC, Hamaker   constant for silica-water-silica system in the order of 

6×10
-21

 J (Grabbe and Horn, 1993) and particle size ranging from 0.01 to 10 µm. At particle size 

of 2 µm, the total probability of collision was approximately 15%, of which gravitational 

sedimentation contributed around 9%. The diffusion and interception had equal effect (about 3% 

each). In contrast, the transport mechanism (predicated by the single-collector efficiency) of the 

5 µm diameter particles was dominated by the gravitational sedimentation. The probabilities of 

collision based on gravity and interception mounted for 56% and 13% of the overall probability 

(70%), respectively, while diffusion was considered to be negligible. 

 

Recall that the silica particles have density of about 2.2 g/cm
3
, more than twice that of the 

suspension water, meaning that these particles are subject to a force due to gravity. The 

gravitational force on a particle is directly proportional to particle mass (and thus the cube of the 

particle diameter), so the 5 µm particles are more greatly affected by gravitational settling than 

the 2 µm particles. This helps to explain why the recovery of 5 µm particles is much more 

sensitive to fluid velocity than the 2 µm particles. Because the trapping of 5 µm particles is likely 
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to be dominated by gravitational sedimentation (which can be offset by increasing fluid velocity) 

and the trapping of the 2 µm particles is likely to be dominated by aggregation (which cannot 

necessarily be offset by increasing fluid velocity), it makes sense that the recovery of the 5 µm 

particles is more sensitive to fluid velocity than that of the 2 µm particles. Furthermore, the fluid 

drag force acting on a spherical particle (Figure 2.23) is directly proportional to the fluid velocity 

and the diameter of particle. Larger particles will be experience greater drag forces, and thus, 

they will be mobilized or detached more effectively from contact surface as velocity increases 

(Ryan and Elimelech, 1995). The lift force that also counters the adhesive force is also function 

of the fluid velocity. The combined effect of fluid velocity on those forces causes larger particles 

to be more sensitive to fluid velocity. Finally, as a result of increasing fluid velocity, the volume 

of low velocity regions (referred to as stagnant flow regions) will decrease, which will limit 

collision of particles between fracture surface crevasses or at the pore walls.  

 

Figure 2.22: Semilog plot of single-collector contact efficiency, with respective contribution of 

each transport mechanism, calculated for all silica particles used in this study. 

Hamaker constant   =6×10
-21

 J, T= 21 ºC,    = 2.2 g/cm
3
,   = 150 µm,  = 21%,  = 

1.5×10
-5

 m/s. 

 

 

 

Figure 2.23: Illustration of forces acting on a particle attached to a rough surface. 
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Keller and Auset (2006), when studying the transport of polystyrene of various sizes (0.05, 1, 2.5 

and 5 µm) through micromodels, estimated the relative importance of the contributing transport 

mechanisms as function of fluid velocity using Equation 2.1. Due to the fact that their 

polystyrene beads had density similar to that of the injected water (1.05 g/cm
3
), the probability of 

collision based on gravity for all particle sizes was assumed to be insignificant. The transport 

mechanisms were predicted to be due to diffusion and interception, with interception being the 

dominant controlling mechanism. In the case of the silica particles used in this study, the effect 

of gravitational sedimentation is very prominent, especially at lower fluid velocities, as depicted 

in Figure 2.24. For the 2 µm particles, the collision probability as a result of gravity and 

diffusion decreases by an order of magnitude as Darcy velocity increases from 1.48×10
-5 

to 

2.1×10
-4 

m/s (corresponding to flow rates of 1 and 3 cm
3
/min), while probability of interception 

remained relatively the same (1% difference). For the 5 µm particles, collision probability due to 

gravity, at the highest fluid velocity of 7.1×10
-4

 m/s, diminished from 56% to 0.7%. Diffusion 

had no role in their transport at that fluid velocity, but collision by interception with grain or 

crevasses in fracture wall was probable. By comparison, fluid velocity played a more important 

role in offsetting gravity sedimentation for larger particles than smaller ones (from 56% to 0.7% 

for 5 µm and 9% to 0.4% for 2 µm, i.e. a factor of 6). This is consistent with the fact that larger 

particles are more susceptible to gravitational and fluid drag forces than smaller particles. 

 

Figure 2.24: A log-log plot of the effect of fluid velocity on the physical transport mechanisms of 

diffusion, interception and gravitational sedimentation for both silica particle size 2 

and 5 µm. Parameters used here are the same as those used in Figure 2.22. 

 

The values of the attachment efficiency    , the probability that collisions of a particle with a 

grain collector (or fracture wall in this study) will result in attachment, were calculated using 

Equation (2.4) and values are listed in Table 2.4. The calculation results indicated that the 

attachment efficiency values, for all experiments with changing particle sizes, concentrations and 

fluid velocities varied from 0.0077 to 0.08 with the majority of values in the range of 0.011 to 

0.024.  Other studies conducted in sand columns (Keller and Sirivithayapakorn, 2004; Bradford 

et al., 2002 and 2006) or sediment cores (Dong et al., 2002) reported values comparable to the 

values found in this study. The attachment efficiency in this study generally increased with 

increasing concentration of the particle suspension and fluid velocity. The values of actual-

collector removal efficiency   , also listed in Table 2.4, behaved somewhat differently. The 

actual efficiency values increased with concentrations (the larger the number of particles, the 
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higher the probability of collision) and decreased with increasing fluid velocities (except for one 

data point). This was anticipated because the silica particles at sizes of 2 and 5 µm are expected 

not to diffuse much but rather follow the higher velocity streamlines, and thus the probability to 

collide with the fracture or grain walls is lower. Filtration theory accounts for the dependency of 

particle and grain sizes in the actual-collector removal efficiency and that of surface chemistry in 

the attachment efficiency. It should be mentioned that all experiments were conducted under 

unfavorable attachment conditions (i.e. at low ionic strength, I=10
-6

, using pure water) to 

minimize the physicochemical factors that determine particle immobilization. According to 

filtration theory, the attachment efficiency should not change with varying particle and grain 

sizes for experiments conducted at the same set of chemical conditions. Deviation from this 

condition suggests that significant straining may be occurring (Bradford et al., 2006). In this 

work, variability of the attachment efficiency values was observed.  

 

Table 2.4: Summary of attachment, single-collector contact and actual efficiencies calculated for 

all experiments. 
Particle size  
   (µm) 

Concentration 

(g/L) 

Fluid velocity 

(m/s) 
     ×10

2
   ×10

3
 C/Co 

2 1.92 1.48×10
-5

 0.16 0 0 1.00 

2 0.98 1.48×10
-5

 0.16 0.77 1.22 0.78 

2 0.49 1.48×10
-5

 0.16 2.34 3.73 0.47 

2 1.92 2.1×10
-4

 0.04 0 0 1.00 

2 0.98 2.1×10
-4

 0.04 2.10 0.78 0.85 

2 0.49 2.1×10
-4

 0.04 8.80 3.19 0.53 

5 1.92 1.48×10
-5

 0.74 1.37 10.05 0.17 

5 0.98 1.48×10
-5

 0.74 1.10 8.00 0.19 

5 0.49 1.48×10
-5

 0.74 1.63 11.90 0.09 

5 1.92 2.1×10
-4

 0.13 1.65 2.20 0.64 

5 0.98 2.1×10
-4

 0.13 2.00 2.60 0.58 

5 0.49 2.1×10
-4

 0.13 2.40 3.20 0.52 

5 1.92 7.1×10
-4

 0.09 0 0 1.00 

 

Ryan and Elimelech (1996) reported that the existence of repulsive forces between particles and 

surfaces of porous media would result in inaccurate prediction of attachment efficiency. The total 

interaction energy between particle-surface (particle-Berea sandstone and particle-micromodel) 

was calculated using Equations 2.5 and 2.6 and plotted in Figure 2.13. In this calculation, the 

measured zeta potentials of -40.2 and -80.23 mV for 2 and 5 µm particles were used. The zeta 

potential for Berea sandstone and the silicon micromodel saturated with pure water (ionic 

strength of 10
-6

) were assumed respectively to be -76.3 mV as suggested by Alkafeef et al. 

(1999), and -30 mV as per Baumann and Werth (2004). The estimation of the total interaction 

energy indicated that the attractive forces of van der Waals were negligible. This was indicative 

that the silica particles did not interact with Berea sandstone or silicon micromodel surfaces via 

the secondary energy minimum. Both particle sizes showed a repulsive energy barrier, 
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considerably higher for the 5 µm diameter particles. Unless these forces are overcome by 

gravitational forces, particle attachment would be unfavorable. For the 2 µm particle, the height 

of the energy barrier was much shallower and might be overcome by attractive forces at the 

primary energy minimum at shorter separation distance resulting in attachment (consistent with 

the micromodel observations).  This may also explain the variability of attachment efficiency 

when calculated for different particle sizes under the same set of chemical conditions.  

 

Figure 2.25: Classical DLVO interaction energy between particles and Berea sandstone grain as 

well as particles and silicon micromodel. The interaction energy is normalized to the 

thermal energy (   ) of suspension. Magnitude of parameters used in the calculation 

can be found in the text. 

 

Surface chemistry or functional groups on the particle surface may result in acid-base energy 

interactions. These acid-base interactions (not accounted for by classical DLVO theory) describe 

the hydrogen bonding properties of interacting surfaces with water. Water molecules structure 

themselves by hydrogen bonding upon interaction, resulting in attractive particle-surface and 

particle-particle interactions for hydrophobic particles and repulsive particle-surface and particle-

particle interactions for hydrophilic particles. Silica microspheres used in this study have no 

functional groups in their surfaces and retain hydrophilic properties as provided by the 

manufacturer, and thus repulsive hydrophilic interactions are expected. The particle-particle total 

interaction energy (van der Waals attractive and electrostatic repulsive interactions) was 

calculated and plotted as depicted in Figure 2.18. Note that the particle-particle interaction 

energies are similar to those of the particle-surface (Figure 2.25), because the surface potentials 

were very comparable to those of particles. Specifically, the 5 µm particle-particle interaction 
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curve is similar to that of the 5 µm particle-grain, and the 2 µm particle-particle curve is similar 

to that of the particle-micromodel. The 5 µm particles may have had a sufficiently large 

repulsive energy barrier to hinder particle aggregation. When particles are at close proximity to 

each other while entering a pore throat or near a fracture wall, they may repel each other until 

one or the other flows through or physically strain based on their size. Therefore, due to the 

resistance of the 5 µm particles to aggregation, the suspension concentration had a smaller effect 

on their recovery compared to the 2 µm particles. In the case of the 2 µm particles, the attractive 

interactions at the primary energy minimum are large compared to the repulsive energy barrier. 

This suggested that there could be an attractive interaction between particles at this size and 

separation distance. As a result, particle aggregation is favored. The relative sensitivity of 

recovery of 2 µm particles to concentration compared to 5 µm particles may be explained on this 

basis. When aggregation is occurring, particles attach to each other to form a cluster. The size the 

cluster is dependent on number of particles forming that cluster: the more particles available, the 

larger the cluster size. Thus, size exclusion may occur not based on the size of the individual 

particle but the size of the cluster. The cluster would be excluded from all pores smaller than its 

own size. Evidence of increasing straining as a function of increasing concentration of the 2 µm 

particles was confirmed visually during the micromodel flow experiments which are discussed 

later in the micromodel section. Clustering was observed visually in the micromodel 

experiments, despite the fact that very low ionic strength water (pure water) was used. Keller and 

Auset (2006) observed particle clustering at the same conditions. 

 

Unlike attachment, where a particle requires one solid-water interface to attach to surface, 

straining involves at least two solid-water interfaces or surface roughness (Bradford et al., 2006). 

Straining or size exclusion inside the fracture may be present, either in areas between fracture 

surfaces or at the fracture-matrix interface. When fracture surfaces come into contact, 

irregularities of those surfaces (crevasses) result in a fracture with varying aperture. Areas where 

surfaces are further apart are candidate sites for particle attachment (one solid-water interface), 

while closer surfaces (two solid-water interfaces) promote straining. The removal mechanisms 

by collision with attachment to fracture walls or straining between fracture surfaces are 

analogous to those occurring within a pore throat. We shall discuss some of the criteria suggested 

by other authors with regard to particle straining inside pore structure and employ whichever 

applicable to assess straining occurring in the fracture area. In this discussion, the fracture is 

treated as a single pore with a maximum width of 62.4 µm as calculated from flow in parallel 

layers using Equation 2.9 or a minimum width of 3.79 µm as estimated by the cubic law 

assuming that the fracture permeability is equal to the total permeability. This is a conservative 

estimate because matrix permeability is high (approximately 0.51 darcy). 

 

As mentioned earlier, the general disagreement between prediction of filtration theory and 

experimental work (Bradford et al., 2002) was attributed to the fact that the filtration theory does 

not take into account the influence of pore structure on particle removal by straining.  Xu et al. 

(2006) studied the effect of straining on the mobility of particles within groundwater aquifers and 

granular filters. They suggested that accurate description of particle mobility requires 

considering the effects of straining when the ratio of particle diameter to the median grain size 

(      ) exceeds 0.008. Bradford et al. (2007) investigated the influence of (      ) on the 

recovery of latex microspheres on the basis of straining under unfavorable attachment 
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conditions. They reported that as (     ⁄ ) ratio increased, the recovery declined and more 

particles were deposited, especially adjacent to the sand column inlet. For example, for the 

(     ⁄ ) ratio of 0.007, 0.008, 0.013 and 0.020 (at fluid velocity of 0.1 cm/min), the peaks of 

the return curves were approximately at 100%, 70%, 20% and 10%, respectively. It is well 

understood that smaller grain size corresponds to smaller pore size for certain types of grain 

packing. For the Berea sandstone used in this study, an average grain size of 150 µm was 

assumed, based on Churcher et al. (1991). Considering the silica particles of 2 and 5 µm, the 

ratio of (     ⁄ ) would be 0.013 and 0.033, respectively. This suggested that the silica particles 

which entered the pore network at the inlet or fracture-matrix interface were likely to be trapped 

due to straining, especially larger particles. Additionally, the pore network in sedimentary rocks 

such as Berea sandstone would have far more complex pore connectivity which might lead to 

additional reduction in effective pore size at pore junctions. In other words, this criterion is 

regarded as conservative when applied to sedimentary rocks. 

 

The ratio of throat size to particle size (T/C) was used as a criterion by Auset and Keller (2006). 

They performed experiments in micromodels, the results of which suggested that the T/C of 1.8 

and smaller would result in particle removal solely by straining. For T/C ratios between 1.8 and 

2.5, interception and straining were observed. For higher T/C, straining was not observed. For 

Berea sandstone, we apply the T/C criteria based on the pore size distribution range obtained 

from capillary pressure data (Figure 2.2) and particle sizes (2 and 5 µm) used in this study. 

Recall that the Berea sandstone has pore sizes in the range of 0.005 to 50 µm. According to this 

criterion, the threshold pore size for the straining of 2 µm particles is 5 µm, and that of 5 µm 

particles is 12.5 µm. In other words, in pores that are smaller than this threshold size, the 

particles will be trapped within the porous medium primarily due to straining. Similarly, the T/C 

criteria can be applied to evaluate straining within a fracture by treating the fracture regions with 

small apertures as pore throats. Our estimate of the fracture hydraulic aperture indicated that the 

apertures could be as small as 3.79 µm in areas of closely matching fracture surfaces. This 

aperture size (or throat) would result in T/C ratio of 1.9 and 0.8 for particle sizes of 2 and 5 µm, 

respectively, suggesting a high probability of straining. Owing to the complexity of the pore 

network and the existence of surface irregularities in fractures, it is very possible that a pore 

throat (or a flow channel in the fracture) at or below the threshold size exists along a preferential 

flow path. Consequently, straining of particles will result in their accumulation at pore junctions 

and, therefore, the total blockage of the connecting pore. Blocked pores are a dead end for 

subsequent particles, which eventually results in reduction of particle recovery. The permeability 

measurements (i.e. pressure data) support the fact that the number of conductive flow paths 

available to particles decreased due to blockage. Figure 2.26 shows an example of the 

permeability measurements conducted during the injection of the 2 µm silica particles at flow 

rate of 3 cm
3
/min using three different suspension concentrations. The permeability continued to 

decrease as particle concentration increased. Although there was only a slight decrease, the result 

indicates a certain degree of blockage (i.e. incomplete straining). Bradford et al. (2002) reported 

that incomplete straining would have less pronounced reduction in permeability because it 

occurred in part of the pore network. This supports the argument that the blockage occurred in 

some of the preferential flow paths. The decrease in permeability was consistent with the decline 

in recovery (the rock is less permeable with as more particles retained inside). Also, the rate of 

reduction in permeability (from initial values to the end of injection) was closely related to the 

amount of recovered particles. This means the permeability decreased faster as more particles 
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were introduced to the porous medium, possibly due to blockage by aggregation and straining. 

The rate of reduction was the largest (from 1.2 to 0.92 darcy) during the injection of particle 

suspension with the highest concentration, the experiment in which only 53% of the influent 

concentration was recovered. The reduction rate was shallower (from 1.02 to 0.97) during the 

injection of particle concentration of (2C), where recovery was 85%. For the injection of the 

most dilute suspension (C), the permeability remained almost constant with an average value of 

about 1.10 darcy, after a slight decrease at the beginning of the experiment. 

 

Figure 2.26: Permeability measurements during the injection of the 2 µm silica particles at 

different suspension concentrations, C, 2C and 4C. Flow rate was 3 cm
3
/min. 

2.4.5.2 Silica injection into silicon micromodel 

Micromodels were used to assess the flow mechanism of silica particles, at the pore scale, within 

the fracture and fracture-matrix interface. Particles of 2 µm in diameter at two different 

concentrations (        ) were injected at flow rate of 0.001 cm
3
/min (1.33×10

-5
 m/s). The 

particles were transported through the fracture, but trapped along the fracture-matrix interface 

(Figure 2.27). The particles were not able to infiltrate through the matrix for more than few 

grains downstream of the fracture-matrix interface, depending on the concentration. Note that 

straining was more pronounced with increasing concentration. This was consistent with the 

recovery measurements (i.e. the recovery of the 2 µm particles was decreasing with increasing 

particle concentration during core-flooding experiments). The total recovery of particles was 

observed based on concentration measurements of effluent samples using the fluorimeter.  SEM 

micrographs obtained for effluent samples confirmed this finding. Further investigation of 

particle straining was carried out by injecting silica nanoparticles of an average size of 350 nm 

(about six times smaller than the 2 µm particles). The silica nanoparticles were negatively 

charged (zeta potential of -73.4 mV) with surface chemistry similar to the 2 µm particles. The 

existence of the silica nanoparticles in the effluent was confirmed by SEM. The recovery of 

nanoparticles was not determined because the influent concentration was unknown and because 

the nanoparticles were not fluorescent. Visual observation of the nanoparticles was not possible 

due to the physical limitation imposed by the light optics to resolve particles at that size. This 

injection was conducted as a precursor of straining only, so further details are omitted.  
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Figure 2.27: Schematic of micromodel showing the general region of particles entrapment along 

the fracture-matrix interface. Image (a) showing particle-particle interaction 

(aggregation), particle attachment to grain surface and straining. Images (b) and (c) 

showing straining during the injection of most diluted (denoted as C) and concentrated 

(denoted as 4C) particle concentrations, respectively. Note that in images (a and c), the 

particles represented by dark dots were attaching to the fracture wall. 

 

By visual observation (Figure 2.27), it was evident that significant straining had occurred, with 

some attachment. Attachment aided straining because particle attachment decreased the effective 

pore throat size for subsequent particles to flow for a given pore throat. The particles attachment 

to fracture walls was also observed (Figure 2.27 a and c). The collision of the particle with the 

wall was attributed to gravitational sedimentation, and the actual attachment to the fracture wall 

was attributed to the attractive interaction at the primary energy minimum. Hydrodynamic forces 

represented mainly by fluid drag may have not been sufficient to overcome gravity and adhesion 

forces, and hence particle attachment. Note that the fracture walls in the micromodel (silicon-

glass walls) are smoother and more uniform compared to the fracture in the real rock (e.g. 

fractured Berea sandstone). In fractured rocks, fracture walls are expected to have some degree 

of surface roughness. Rougher grain surfaces are expected to be more efficient particle 

collectors. Auset and Keller (2006) observed significant influence of rough grain surface in 

particle capturing. Irregularities in matching fracture surfaces would result in varying size and 

orientation of flow paths, resulting in a larger collision probability, and a higher overall 
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probability of attachment to fracture walls. Thus, the particle attachments to the fracture walls in 

Berea core were expected to be more pronounced than in the micromodel. Filtration theory, 

using single-collector contact efficiency, suggested that the probability collision of the 2 µm 

particles (density of 2.2 g/cm
3
) with varying collector (grain) size from 30 to 300 µm (as per the 

fabrication of the micromodel) is below 20% (Figure 2.28). Note that under these experimental 

conditions, the probability of collision changed only slightly with the grain size in this range 

(from 14% to 20%) at the same fluid velocity. According to filtration theory, gravitational 

sedimentation dominates the transport of particles for the majority of the grain size distribution 

of the micromodel. Transport by interception and diffusion was estimated to decrease with 

increasing grain size, with the former decreasing more rapidly with increasing grain size. 

 

Figure 2.28: A log-log plot of the effect of grain size on the physical transport mechanisms of 

diffusion, interception and gravitational sedimentation for silica of particle size 2 µm in 

the micromodel. 

 

In this work, most of the micromodel inlet pore throats are about 8 to 12 µm, corresponding to 

T/C ratios higher than 4. Keller and Auset (2006) showed experimentally that filtration theory is 

appropriate for T/C ratios greater than 2.5, but not at lower T/C ratios where straining was 

occurring. Sedimentation and interception of particles were observed visually in our micromodel 

experiments. Some silica particles strayed from the central streamlines toward grain walls, 

indicating gravitational sedimentation, while others flowing near grain walls were intercepted. 

This was consistent with the filtration theory prediction. Within the fracture region of the 

micromodel, the T/C ratio was estimated to be about 12.5 (the ratio of the aperture to particle 

size), suggesting that particle entrapment would be a result of particle interception or 

gravitational settling. This was also consistent with visual observations (Figure 2.15 A and C). 

 

The ratio of particle to grain size is in the range of 0.0067 to 0.067. At grain sizes of 250 µm and 

smaller, the particle to grain size ratio exceeded the value of 0.008, threshold proposed by Xu et 

al. (2006), above which straining affects particle mobility. This implies that straining dominated 

the transport in the micromodel. This is also consistent with the findings of Bradford et al. (2007) 
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in their study of transport of latex microspheres through sand columns, each packed with single 

grain size sand (ratios in the range of 0.007 to 0.02 with respective recovery diminishing from 

100% to 10%). Thus, heterogeneity of the pore network in our micromodel, represented by the 

mixture of grain sizes, augmented the effect of straining. In order to predict of particle recovery 

successfully, the influence of the spatial distribution of pore or grain size must be included. 

2.4.6 Tin-bimuth nanoparticle heating experiment  

The tin-bismuth alloy nanoparticles were characterized in terms of size and shape using DLS and 

SEM imaging. It was determined from three consecutive DLS measurements that there was a 

wide distribution of the particle hydrodynamic diameter, as shown in Figure 2.29. 

 

Figure 2.29: Logarithmic particle size distribution based on hydrodynamic diameter for original 

tin-bismuth nanoparticle sample. (Three consecutive measurements.) 

 

The three measurements are in reasonable agreement, with an average modal value of 235 nm. 

The hydrodynamic diameter ranged from ~100 nm to ~600 nm, with one measurement showing 

a small peak at ~5500 nm. This indicates that there may have been large particles in the sample, 

either due to aggregation or from the original synthesis. 

 

The SEM images of the sample show good agreement with the DLS measurements, as shown in 

Figure 2.30. It is apparent from Figure 2.30 that the tin-bismuth nanoparticles range from 50 nm 

to less than 600 nm. Furthermore, although many of the nanoparticles seem to be spherical as 

expected, the presence of nonspherical crystalline structures indicates that the sonochemical 

synthesis did not reach completion. Aggregation on the substrate is observed in both figures, but 

it is unclear whether this aggregation occurs in solution or upon drying on the substrate. The 

DLS results suggest that the latter may be the case. 
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Figure 2.30: SEM image showing the wide range of tin-bismuth nanoparticle sizes. 

   

To begin investigating the melting behavior of tin-bismuth nanoparticles within the temperature 

range of interest, a sample of the nanofluid (tin-bismuth in mineral oil) was subjected to a 

preliminary heating experiment. Although ultimately we are interested in the melting behavior of 

the tin-bismuth nanoparticles in water, the heating experiments were performed in oil due to the 

complications associated with the boiling of water at experimental conditions. From the phase 

diagram, at the eutectic composition, the tin-bismuth alloy melts at 139°C. In fact, the 

nanoparticles likely melt at a slightly lower temperature than this due to melting point depression 

due to their size. 

 

The sample was heated using a heating mantle connected to a temperature controller with a 

feedback thermometer, as shown in Figure 2.31. 

 

 

Figure 2.31: Experimental apparatus for tin-bismuth heating experiment 

 

The flask containing the tin-bismuth nanoparticles in oil was placed in the heating mantle, which 

was connected to the temperature controller. The temperature controller was also connected to a 

thermometer, the feedback from which affected whether the mantle was heated, cooled, or 

maintained and the rate at which this was done. The thermometer was positioned in port A. 
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The sample was heated in steps to the expected melting point of 139°C. The sample was 

monitored for a color change near the expected melting point, and when none occurred, the 

sample was heated in steps to 210°C. No color change ever occurred, but the heating was 

stopped to prevent the mineral oil from burning. It is apparent that melting occurred regardless of 

the absence of color change. Finally, when the apparatus was at room temperature, the sample 

was removed from the flask. 

 

The sample was then washed and centrifuged several times with a 1:1 mixture of hexane and 

acetone, rinsed in a solution of 0.1 M PVP in ethanol, and finally suspended in ethanol. The 

centrifuge setting was 6000 rpm for 15 minutes each time. This sample was characterized using 

DLS and SEM imaging. The DLS results of the sample subjected to heating are shown in Figure 

2.32. 

 

Figure 2.32: Logarithmic particle size distribution based on hydrodynamic diameter for heated 

tin-bismuth nanoparticle sample. 

 

The three measurements are in relatively close agreement, with an average modal value of 321 

nm. The hydrodynamic diameter ranged from ~100 nm to ~1000 nm. Appreciable secondary 

peaks in the range of ~4100 nm to ~6400 nm were observed for all runs. This indicates that there 

are large particles in the sample, most likely due to aggregation and fusion of the particles. 

Selected particle size distribution curves for comparison of the original and heated samples are 

shown in Figure 2.33. 

 

As shown in the figure, the particle size distribution peak shifted noticeably to a larger size. 

Also, the secondary peak in the micron scale is noticeably larger, indicating that there are more 

large aggregates. SEM images of the heated sample are shown in Figures 34 and 35. 
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Figure 2.33: Comparison of logarithmic particle size distribution based on hydrodynamic 

diameter for original and heated tin-bismuth nanoparticle samples. 

 

 

Figure 2.34: SEM image showing heated tin-bismuth nanoparticles. 

 

 

Figure 2.35: SEM image showing large aggregate of heated tin-bismuth nanoparticles. 
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Fusion of melted particles can be observed in both figures, and the sizes of both particles and 

large aggregates are within the range suggested by DLS results. While the fusion of melted 

particles could account for the shift in particle size distribution, it is difficult to reach any definite 

conclusions from the SEM results due to the very wide particle size distributions of both the 

heated and unheated samples.  

2.4.7 Dye-attached silica nanoparticle heating experiment  

Dye-attached silica nanoparticles (Figure 2.36) were subjected to a heating experiment, and 

fluorescence spectra of the particles were measured before and after heating. 

 

Figure 2.36: Schematic representation of silica nanoparticle surface modification and dye 

attachment by Saleh, et al. (2010). 

 

We used Fluorescent Microscopy, SEM and Fluorescent Spectrum to characterize the dye-

attached silica nanoparticles. Fluorescent microscopy characterization as shown in Figure 2.37 

was done using the substrate base dye-attached silica nanoparticle sample. We can see clearly 

that the dye molecules were attached successfully to the surface of silica nanoparticles. The 

whole substrate was fluorescent although not uniformly (some spots were brighter with more 

fluorescent molecules attached). 

 

Figure 2.37: Fluorescent microscopy image of dye-attached silica nanoparticles on quartz 

substrate. 
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We also measured the fluorescence spectra of free dye molecule solution, silica nanoparticle 

suspension, dye-attached silica nanoparticles both on substrate and in solution. We used 400nm 

as the excitation wave length. We could see from the fluorescence spectrum of Oregon 488 

solution that its emission peak is at ~530nm, shown in Figure 2.38. As control, we measured the 

fluorescence spectrum of silica nanoparticles in water without dye attachment. We also measured 

the fluorescence spectra of dye-attached silica nanoparticles in water and on substrate. We used 

400nm as excitation wavelength, shown in Figure 2.39. The results showed that, without dye 

attachment, there was no fluorescence response of the silica nanoparticles and after dye 

attachment, two peaks at ~425nm and ~530nm were observed in the spectrum. 
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Figure 2.38: Fluorescence spectrum of Oregon 488 dye molecule solution (excitation wavelength 

400nm). 
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Figure 2.39: Fluorescence spectrum (excitation wavelength 400nm): (A) Silica nanoparticle 

without dye attachment as control; (B) Dye-attached silica nanoparticles in water; (C) 

Dye-attached silica nanoparticles on quartz substrate. 
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A heating experiment was conducted using the sample of dye-attached silica nanoparticles on 

quartz substrate. We heated the substrate on a hot plate at 200°C for 15min. Then we soaked the 

substrate in ethanol and acetone respectively and washed the substrate both with ethanol and 

acetone. The substrate was dried in air. We used Fluorescence Spectrum to characterize this 

sample.  

 

The fluorescence spectrum of the particles was measured after the heating experiment, shown in 

Figure 2.40. We used an excitation wavelength of ~360nm. We can observe a wide peak at 

~425nm of the heated sample which was obviously different from the sample before heating. 

Besides that, we observed at ~380nm and ~475nm there were two shoulder peaks and at ~575nm 

there was a small peak in both spectra. Hence, a clearly identifiable property change 

(fluorescence) is available as a temperature indicator using this kind of nanoparticle. 
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Figure 2.40: Fluorescence spectrum (excitation wavelength 360nm): (a) Dye-attached silica 

nanoparticle after heating experiment at 200°C for 15min; (b) Dye-attached silica 

nanoparticle without heating experiment. 

 

2.4.8 Using dye-releasing nanoparticles to estimate measurement location  

Simply knowing that some region of the reservoir has a certain temperature without knowing the 

location of the measurement is of limited use to reservoir engineers. If this location could be 

estimated accurately, the reservoir temperature distribution could be mapped. This could make it 

possible to predict thermal breakthrough in a reservoir and would allow reservoir engineers to 

make more informed decisions. The potential capability of nanosensors with a dye-release 

sensing mechanism to estimate measurement location via analysis of the return curve of released 

dye is addressed in this section. 

 

2.4.8.1 Simple Analytical Model for Return Curve Analysis 

A thought experiment was conceived consisting of two hypothetical tracer tests performed in a 

well doublet: one with a conservative solute tracer and one with dye-releasing nanosensors. 
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Synthetic tracer return curves for these hypothetical tests were generated using an analytical 

solution to the advection-dispersion equation, which is often used to describe tracer flow in 

porous and fractured media. Juliusson and Horne (2011) expressed the one-dimensional form of 

this equation as: 
2

2

C C C
R u u

t x x


  
 

  
                                                  (2.17) 

where C is tracer concentration, x is the spatial coordinate, t is time, u is the flux velocity, and α 

is the dispersion length, and R is the tracer retardation factor. For this initial investigation, the 

simple case with a constant flux velocity v (i.e. constant flow rate) was considered, and it was 

assumed that R is constant with respect to t, x, and C for both the solute tracer and the 

nanoparticles. It may be more realistic to assume that R varies spatially, as is suggested by 

Chrysikopoulos (1993), and that nanoparticle flow likely requires even more complex treatment. 

With these caveats in mind, it was decided to first examine the simplest possible case. 

 

Kreft and Zuber (1978) provided a solution to the advection-dispersion equation with flux 

injection and detection boundary conditions, and Juliusson and Horne (2011) rewrote this 

solution to include the retardation factor R: 

 
2

exp
44

xx
qt VmV

C
V qtqt V qt 

 
  
 
 

                                          (2.18) 

xV RA x                                                           (2.19) 

V RA                                                           (2.20) 

where m is the mass injected, q is the volumetric flowrate, t is time, Vx is the pore volume 

modified by the retardation factor R, Vα is the dispersion volume modified by R, A is cross-

sectional area,   is porosity, and α is the dispersion length. 

 

Consider a flow-path in a geothermal reservoir between a well doublet that consists of a 

fractured zone with length L, cross-sectional area A, and porosity  . Before the beginning of heat 

extraction, the reservoir had a uniform temperature distribution with a temperature of T1. Some 

years after the onset of extraction, the thermal front has advanced to the position xf, and the 

portion of the reservoir behind the front has cooled to temperature T2, as shown in Figure 2.41. 

Note the implicit assumption that cooling advances as a sharp front rather than the more gradual 

temperature distribution associated with the cooling of a single isolated fracture. Suppose a 

nanosensor has been designed to release a fluorescent dye at the threshold temperature T1, and 

assume that this release occurs almost instantaneously upon exposure to this threshold. 
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Figure 2.41: Cartoon of temperature distribution in a geothermal reservoir with a thermal front 

at position xf . 

 

Suppose that two tracer tests are performed. In one test, a mass mc of a conservative tracer with a 

retardation factor Rc is injected into the reservoir. The tracer is sampled at the production well 

(i.e. x = L), and the return curve can be described by Equations 2.21 through 2.23. 
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 
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                                      (2.21) 

,x c cV R A L                                                           (2.22) 

,c cV R A                                                            (2.23) 

where the subscript c denotes the conservative solute tracer. 

 

In the second test, a slug of the dye-releasing nanosensors with retardation factor Rn is injected 

into the reservoir. Upon reaching exposure to the threshold temperature T1 at position xf, the 

nanosensors release a mass mr of the attached dye, which itself behaves like the conservative 

solute tracer in the previous tracer test, and has a retardation factor Rc. The released dye is 

sampled at the production well. The return curve of the released dye is influenced by both Rn and 

Rc, because it travels with the nanosensor retardation factor Rn from x = 0 to x = xf and the solute 

retardation factor Rc from x = xf  to x = L. Thus, the return curve of the released dye can be 

described by convolution, as shown in Equations 2.24 through 2.27. 
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,n nV R A                                                          (2.26) 

 ,x r c fV R A L x                                                    (2.27) 

where the subscript n denotes the nanosensors and the subscript r denotes the released dye. Note 

that Vx,r can be rewritten as: 

,

, , ,
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x r x c x n
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V
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



                                                     (2.28) 

Thus, the return curves for the conservative tracer can be fit to Equation 2.21 by adjusting the 

values of unknowns Vx,c and Vα,  (i.e. minimizing the norm of the differences between the return 

curve data and the model with the unknowns as decision variables). Subsequently, the return 

curves for the released dye can be fit to Equation 2.24 by adjusting the values unknowns Vx,n and 

Vα,n. Note that Vx,r is not explicitly adjusted here because it can be expressed in terms of the other 

unknowns (Equation 2.28). Once the values of the unknowns have been determined, one can 

calculate the location of the thermal front using Equation 2.29: 

, ,

,

,

f x c x r

f d

x c

x V V
x

L V


                                                   (2.29) 

where xf,d is the dimensionless position of the thermal front. 

2.4.8.2 Example Problem 

This analysis was demonstrated successfully in an example problem with the parameter values 

shown in Table 2.5. 

 

These values were chosen somewhat arbitrarily for the purposes of this demonstration. However, 

values of Rc and Rn were used such that the nanosensors experience no retardation and the solute 

tracer does experience retardation. This is based on studies of colloid transport in fractures which 

showed that nonadsorbing colloids exhibit breakthrough more rapidly than solute tracers because 

they tend to stay in fluid streamlines and do not experience matrix diffusion (Reimus 1995). 

Also, the volumetric flow rate q and the masses of the tracer mc and mr were based on values 

reported by Gentier et al. (2010) for the 2005 tracer test performed in the Soultz-sous-Forets 

reservoir. 

 

Synthetic return curve data for the conservative tracer and the nanosensors were generated for 

various values of xf using Equations 2.21 and 2.24, and Gaussian noise was added for the sake of 

realism. An optimization solver was then used to find the best fit to Equations 2.21 and 2.24 by 

adjusting the unknowns. The results are tabulated in Table 2.6, and select return curves are 

plotted in Figure 2.42. 
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Table 2.5: Parameter values used in return curve analysis demonstration problem 
Parameter Value 

Rc 2 

Rn 1 

A 200 m
2
 

φ 0.10 

L 1000 m 

α 25 m 

Pe = L / α 40 

mc 123.75 kg 

mr 123.75 kg 

q 43.2 m
3
/hr 

 

Table 2.6: Estimates of temperature measurement locations in demonstration problem for 

various true values of xf,d. 
xf,d true xf,d estimate Error 

0.05 0.037 26% 

0.15 0.155 3.2% 

0.25 0.248 0.8% 

0.35 0.382 9.1% 

0.45 0.431 4.3% 

0.55 0.517 5.9% 

0.65 0.632 2.7% 

0.75 0.746 0.6% 

0.85 0.852 0.2% 

0.95 0.925 2.7% 

 

Reasonably good estimates of the location of the thermal front were obtained for all scenarios 

except for xf = 0.05. This is physically intuitive, because the return curves for the conservative 

tracer and the released dye are almost identical when the thermal front is still close to the 

injection well, making it difficult to estimate the front location quantitatively. The poor fit of the 

return curve of the released dye can be attributed mathematically to the problematic nature of the 

optimization surface for this scenario, which is shown in Figure 2.43. 
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Figure 2.42: Return curve data and fits for (A) xf = 50 m, (B) xf = 350 m, (C) xf = 650 m, and 

(D) xf = 950 m. Note that released dye experiences breakthrough first because it is 

carried a distance xf by the nanosensor, which has a retardation factor of 1, while the 

conservative tracer has a retardation factor of 2. 

 

 

Figure 2.43: Objective function surface for fitting the return curve of the reactive tracer when 

xf = 50 m (A) for entire parameter range of optimization and (B) zoomed in near the 

minimum of (Vx,n = 1000 m
3
, Vα,n = 500 m

3
). Note that the point chosen by the solver 

was (Vx,n = 268.3 m
3
, Vα,n = 180.8 m

3
). 
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The large trough along the Vα,n axis in Figure 2.43A indicates that for large initial guesses of Vα,n, 

the solver might get stuck far from the minimum (since change in the objective function is the 

termination criteria). Moreover, the values of the objective function vary very little near the 

minimum, as shown in Figure 2.43B. This explains why the solver terminated at the point 

(Vx,n = 268.3 m
3
, Vα,n = 180.8 m

3
) and resulted in a poor fit. 

2.5 CONCLUSION  

To investigate the feasibility of using nanosensors to determine reservoir properties in general 

and fracture network properties in particular, it was essential to verify their transport through 

typical formation rock. Initial testing with nanoparticles was also required to develop the 

understanding of best injection procedures, sampling strategies and characterization techniques. 

Accordingly, various laboratory-scaled core-flooding and micromodel experiments with inert 

nanoparticle and microsphere suspensions were conducted. 

 

Functional tin-bismuth nanoparticles and dye-attached silica nanoparticles were synthesized, 

characterized, and used in heating experiments. Tin-bismuth nanoparticles experienced size 

distribution coarsening due to melting, and dye-attached silica nanoparticles exhibited a 

permanent fluorescence change, possibly due to dye release. The potential capability of a dye-

releasing nanoparticle to estimate location of temperature measurement and thus map the 

temperature distribution in geothermal reservoirs was explored using an analytical model. Dye-

attached silica nanoparticles show more promise as temperature sensors than tin-bismuth 

nanoparticles due to their potential capability to estimate measurement location and the fact that 

the growth of tin-bismuth nanoparticles due to melting and colliding could enhance deposition 

by straining and gravitational settling. 
 

This study has shown that the particles size and/or size distribution, shape, surface charge, 

suspension concentration and fluid velocity were influential parameters governing the transport 

of nanoparticles through porous and fractured media.  
 

1. Shape: We explored the significance of the nanoparticle shape by flowing silver nanowires 

through the pore spaces of Berea sandstone. The silver nanowires were trapped at the inlet of 

the core and could not flow through. Subsequently, spherically shaped silver nanoparticles 

with the same surface characteristics were injected into the sandstone. It was found that the 

silver nanospheres were able to flow with 25% recovery. The low recovery was attributed to 

the aggregation of the particles that resulted in entrapment due to their physical size.  

 

2. Surface charge: The surface charge effect on the transport of nanoparticles was studied by 

injecting hematite nanorice into sandstone. Initially the hematite nanorice sample had surface 

charge opposite that found in the sandstone. Analysis of the effluent and pore spaces showed 

that the nanorice was trapped within the pores and was not detected in the effluent. Testing 

on a tube packed with glass beads (in the absence of core materials) revealed that nanorice 

still experienced low mobility. We modified the hematite surface charge by surfactant 

coating. As a result, the hematite nanorice flowed with approximately 23% recovery. Despite 

the modest recovery, it was concluded that the affinity of the nanorice to the porous medium 

was primarily related to its surface charge.  
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3. Particle size: This study has also shown that there is an optimum particle size for the 

transport of tin-bismuth alloy nanoparticles through Berea sandstone. The rock filtered the 

injected nanofluid allowing only certain particle sizes to flow across it, as opposed to the 

glass bead injection where tin-bismuth particles of all sizes were produced. Testing with 

glass beads has also confirmed that the tin-bismuth nanoparticles had affinity to the rock 

materials. 

 

4. Suspension concentration: It was observed that the recovery of the 2 µm particles was 

affected adversely by suspension concentrations (decreasing recovery with increasing 

suspension concentration). It was found that the increasing concentration of the 2 µm 

particles had resulted in more pronounced aggregation, which led to trapping by straining. 

This conclusion was supported by the degree and rate of reduction in permeability occurring 

at higher concentration, and visual observations during micromodel flow experiments. This 

finding would be significant in the design of a tracer test using these particles as nanosensors. 

 

5. Fluid velocity: In the micromodel, the recovery of the 5 µm particles was influenced more 

by fluid velocity than by suspension concentration. This effect was attributed to the degree 

by which larger particles are influenced by the hydrodynamics of the system (drag and 

gravitational forces) compared to smaller particles. This observation was in agreement with 

quantitative analysis using particle filtration and DLVO theory, and metrics related to pore 

and grain size heterogeneity found in the literature. 

 

6. Fracture caliper: Investigation of the transport of microspheres through fractures was 

carried out. We demonstrated the transport and recovery of fluorescent silica microspheres of 

different sizes through a naturally fractured greywacke core. We also demonstrated the 

feasibility of estimating the fracture aperture by correlating the size of largest recovered 

spheres to fracture opening, through the injection of a polydisperse sample with a range of 

particle sizes. 
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3. FRACTURE CHARACTERIZATION USING RESISTIVITY 

This research project was conducted by Research Assistant Lilja Magnusdottir and Professor 

Roland Horne. The objective of this project was to investigate ways to use resistivity to infer 

fracture properties in geothermal reservoirs. 

3.1 SUMMARY 

In this project, the aim was to use Electrical Resistivity Tomography (ERT) to characterize 

fracture properties in geothermal fields. The resistivity distribution of a field can be estimated by 

measuring potential differences between various points while injecting an electric current into 

the ground and resistivity data can be used to infer fracture properties due to the large contrast in 

resistivity between water and rock. The contrast between rock and fractures can be increased 

further by injecting a conductive tracer into the reservoir, thereby decreasing the resistivity of the 

fractures. In this project, the potential difference has been calculated between wells as 

conductive fluid flows through fracture networks. The time history of the potential field depends 

on the fracture network and can therefore be used to estimate where fractures are located and the 

character of their distribution. 

 

A two-dimensional resistivity model was developed to calculate a potential field due to point 

sources of excitation for a nonuniform rectangular grid. The resistivity model was used with flow 

simulations of a conductive tracer to study how the time history of the electric potential 

difference between wells depends on the fracture paths in the reservoir. Then, the possibility of 

using flow simulator TOUGH2 to not only simulate the tracer flow through the reservoirs but to 

also solve the electric potential was studied, due to the analogy between Ohm’s law that 

describes electrical flow and Darcy’s law describing fluid flow. The EOS9 module in TOUGH2 

was used successfully to solve the electric field because it allows for the viscosity, density and 

compressibility to be independent of pressure, unlike the EOS1 module used for tracer flow. 

However, it was also shown that the EOS1 module was capable of calculating the electric 

potential with sufficient accuracy. Using TOUGH2 to solve the electric field increases the 

efficiency by allowing for the same nonrectangular grid to be used for all simulations. Next, a 

discrete-fracture model introduced by Karimi-Fard et al. (2003) was used to create discrete-

fracture networks with fractures of realistic dimensions and the time-dependent potential 

difference between two or more wells was analyzed for different networks. One of the fracture 

networks was modeled as an electric circuit to verify that the electric field calculations from 

TOUGH2 were accurate for the discrete-fracture network. Finally, some preliminary work was 

done in finding ways to use the electric potential with inverse modeling to characterize fracture 

patterns. Geometric fractal dimensions were determined for two fracture networks using inverse 

analysis but more examination needs to be done to test and improve the accuracy of the method. 

3.2 INTRODUCTION 

Fracture characterization in Enhanced Geothermal Systems (EGS) is crucial to ensure adequate 

supply of geothermal fluids and efficient thermal operation of the wells. The flow path 

characteristics control mass and heat transport in the system and inappropriate placing of 

injection or production wells can lead to premature thermal breakthrough. Such premature 

thermal breakthroughs have occurred in numerous geothermal reservoirs, as described by Horne 

(1982), and observed in The Geysers (Beal et al., 1994).  
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The goal of this study was to find ways to use direct current resistivity measurements to 

characterize fractures in geothermal reservoirs. Pritchett (2004) demonstrated based on a 

theoretical study that hidden geothermal resources can be explored by electrical resistivity 

surveys because geothermal reservoirs are usually characterized by substantially reduced 

electrical resistivity relative to their surroundings. The rock is normally a good insulator so the 

electrical current moving through the reservoir passes mainly through fluid-filled fractures and 

pore spaces. In these surveys, a direct current is sent into the ground through electrodes and the 

voltage differences between them are recorded. The input current and measured voltage 

difference give information about the subsurface resistivity, which can then be used to infer 

fracture locations. Other geophysical surveys commonly used to find hidden geothermal 

resources are self-potential and magnetotelluric surveys. Garg et al. (2007) described how self-

potential, magnetotelluric and direct current surveys were all used to explore the Beowawe 

geothermal field in the Basin and Range Province of western USA. However, these surveys are 

usually performed on the surface with very low resolution when exploring deeper portions of the 

reservoirs, making it impossible to characterize fractures that are small-scaled compared to the 

size of the reservoir.  Therefore, the possibility of placing the electrodes inside geothermal wells 

has been considered in this study, in order to measure the resistivity more accurately in the 

deeper parts of the reservoir. Due to the limited number of wells (i.e. measurement points), the 

study includes investigating ways to enhance the process of characterizing fractures from sparse 

resistivity data.  

 

In order to increase the contrast in resistivity between the rock and fracture zones, a conductive 

tracer could be injected into the reservoir and the time-dependent potential difference is 

measured as the tracer distributes through the fracture network. Slater et al. (2000), and Singha 

and Gorelick (2005) have shown a way of using tracer injection with Electrical Resistivity 

Tomography (ERT) to observe tracer migration in experimental tanks with cross-borehole 

electrical imaging. In previous work, usually many electrodes were used to obtain the resistivity 

distribution for the whole tank at each time step. The resistivity distribution was then compared 

to the background distribution (without any tracer) to see resistivity changes in each block 

visually. These resistivity changes helped locate the saline tracer and thereby the fractures. Using 

this method for a whole reservoir would require a gigantic parameter space, and the inverse 

problem would likely not be solvable, except at very low resolution. However, in the approach 

considered in this study, the electrodes would be placed inside two or more geothermal wells and 

the potential differences between them studied. The potential difference between the wells which 

corresponds to changes in apparent resistivity would be measured and plotted as a function of 

time while the conductive tracer flows through the fracture network. The goal is to find ways to 

use that response, i.e. potential difference vs. time, with the tracer return curves in an inverse 

modeling process to characterize fracture patterns. 

 

In this report, a two-dimensional resistivity model used to calculate a potential field due to point 

sources of excitation is described and examples shown where two different fracture networks 

give different time histories of the potential difference between wells. The analogy between 

water flow and electrical flow is also defined and the possibility of using EOS9 and EOS1 

modules in TOUGH2 to calculate the electric potential is explored. Next, the resistivity of a 

saline tracer is interpreted and the time history of the electric potential difference is studied for 
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discrete-fracture networks to illustrate further how the potential difference response corresponds 

to realistic fracture networks. A discrete-fracture network is also modeled as an electric circuit 

and the analytical results compared to results from TOUGH2. Then, some preliminary work to 

find ways to use inverse analysis to characterize fracture networks is described and geometric 

fractal dimensions are determined using inverse analysis.  

 

3.3 RESISTIVITY MODEL 

A two-dimensional resistivity model was developed to calculate a potential field due to point 

sources of excitation. In resistivity modeling, one of the main problems is to solve the Poisson 

equation that describes the potential field and to complete the inversion iteration efficiently. The 

Poisson equation can be derived from basic electrical relationships as described by Dey and 

Morrison (1979). Ohm’s Law defines the relationship between current density, J, conductivity of 

the medium, σ, and the electric field, E, as: 

EJ        (3.1) 

The stationary electric fields are conservative, so the electric field at a point is equal to the 

negative gradient of the electric potential there, i.e.: 

E       (3.2) 

where   is the scalar field representing the electric potential at the given point. Hence, 

J       (3.3) 

Current density is the movement of charge density, so according to the continuity equation, the 

divergence of the current density is equal to the rate of change of charge density, 

),,(
),,(

zyxq
t

zyxQ
J 




     (3.4) 

where q is the current density. Combining equations (3.3) and (3.4) gives the following Poisson 

equation which describes the potential distribution due to a point source of excitation, 

  ),,( zyxq 
   

    (3.5) 

This partial differential equation can then be solved numerically for the resistivity problem. 

 

3.3.1 Finite difference equations in two dimensions 

Finite difference method is used to approximate the solution to the partial differential equation 

(3.5) using a point-discretization of the subsurface (Mufti, 1976). The computational domain is 

discretized into NyNx  blocks and the distance between two adjacent points is h in x-direction 

and l in y-direction, as shown in Figure 3.1. 
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Figure 3.1: Computational domain, discretized into blocks. 

The grid used is rectangular and nonuniform so the fracture elements can be modeled smaller 

than the elements for the rest of the reservoir, in order to decrease the total number of elements. 

Taylor series expansion is used to approximate the derivatives of equation (3.5) about a point 

(j,k) on the grid, 
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The point (j,k) represents the shaded area in Figure 3.1 (area = hl) so the current density due to 

an electrode at that point is given by, 

hl

I
kjq ),(      (3.8) 

where I [A] is the current injected at point (j,k). Combining Equations (3.5)-(3.8) and solving for 

the electric potential   [V] at point (j,k) gives, 
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The parameters ci represent the conductivity averaged between two adjacent blocks, i.e.    
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where ρ(j,k) is the resistivity
 
[Ωm] of the node at grid coordinates j,k.  

3.3.2 Iteration method 

In order to solve Equation (3.9) numerically and obtain the results for electrical potential   at 

each point on the grid, the iteration method called Successive Over-Relaxation was used 

(Spencer and Ware, 2009). At first, a guess is made for  (j,k) across the whole grid, for example 

 (j,k)=0 for all j,k. That guess is then used to calculate the right hand side of equation (3.9) 

(Rhs) for each point and the new set of values for  (j,k) is calculated using the following 

iteration scheme, 

nn Rhs  )1(1      (3.14) 

The multiplier ω is used to shift the eigenvalues so the iteration converges better than simple 

relaxation. The number ω is between 1 and 2, and when the computing region is rectangular the 

following equation can be used to get a reasonable good value for ω, 

211

2

R
     (3.15) 

where 

2

coscos 































NyNx

R



    (3.16) 

The natural Neumann boundary conditions are used on the outer boundaries, i.e. 0




n


. 

3.3.3 Time-dependent potential difference simulated for two reservoirs 

A flow simulation was first performed using TOUGH2 reservoir simulator to see how a tracer, 

which increases the conductivity of the fluid, distributes after being injected into a reservoir. The 

simulation was carried out on a two-dimensional grid with dimensions 1000 × 1000 × 10 m
3 

with 

fractured rock modeled as a squared area (green blocks), first in the lower right corner and then 

in the upper left corner, as shown in Figure 3.2.  

 

The goal was to study the difference in potential field between these two cases as conductive 

fluid is injected into the reservoir. The reservoir was modeled with porosity 0.4 and permeability 

10
5
 md (10

-10
 m

2
) while the fractured rock had porosity 0.65 and permeability 5 × 10

10
 md (5 × 

10
-5

 m
2
). 

 

No-flow boundary conditions were used and 100 kg/s of water was injected in the upper left 

corner with enthalpy 100 kJ/kg, and 0.1 kg/s of tracer with enthalpy 100 kJ/kg. The production 

well was set to produce at a constant pressure, 8 bar. The initial pressure was set to 9.6 bar, 
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temperature to 150°C and initial tracer mass fraction to 10
-9

 because the simulator could not 

solve the problem with zero initial tracer mass fraction. 

 

 

Figure 3.2: Fractured rock (green blocks) modeled in the lower right corner of the reservoir (to 

the left) and in the upper left corner (to the right). 

 

The following equation was used to calculate the electrical conductivity, 1/ρw, of a NaCl water 

solution (Crain, 2010),  
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32
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000,400


     (3.17) 

in order to define conductivity values in the resistivity model as NaCl tracer flows through the 

reservoir. T is the formation temperature (assumed to be 150°C) and Ws is the water salinity 

[ppm NaCl].  

 

The resistivity for the rock before fluid had been injected was set as 100 Ωm for the fractured 

area (assuming fractures were filled with water) and as 2000 Ωm for the rest of the reservoir. 

Figure 3.3 shows how the potential difference between the injector and the producer changes 

with time for the reservoirs shown in Figure 3.2. 

 

The potential difference in the graph on the left in Figure 3.3 drops very rapidly for the first 10 

days, but then decreases more slowly when the tracer front has reached the fractured area. On the 

graph to the right in Figure 3.3, the potential difference drops more slowly, as the conductive 

fluid first fills up the fractured rock, modeled with much higher porosity then the rest of the 

reservoir. These preliminary results indicated that different fracture properties give different 

potential difference histories between two wells, and could therefore be used to indicate fracture 

characteristics. 
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Figure 3.3: Potential difference between injection and production wells for reservoirs in Figure 

3.2. 

 

3.4 THE ELECTRIC FIELD SOLVED USING TOUGH2  

In the previous case, flow simulator TOUGH2 was used to calculate the flow of conductive fluid 

and the resistivity model used to calculate the electric field at each time step while the fluid 

distributed through the reservoir. This section describes how the flow simulator can also be used 

to solve Ohm’s law describing the flow of an electric current due to the analogy between Darcy’s 

law and Ohm’s law (Muskat, 1932). The potential distribution in steady-state flow through a 

porous medium is exactly the same as the potential distribution in an electrically conducting 

medium. Therefore, the efficiency could be increased by using TOUGH2 for both the fluid flow 

simulations and to simulate the electric current. That way, the same grid could be used when 

calculating the distribution of a conductive tracer in the reservoir as well as when solving the 

electric difference between the wells at each time step. 

3.4.1 Water flow analogy of electrical flow 

The steady-state flow of an electric current through a conducting medium due to differences in 

energy potential is analogous to the steady-state flow of a fluid through porous medium. Darcy's 

law is an empirical relationship similar to Ohm’s law (equation 3.3) but instead of describing 

electrical flow Darcy’s law describes fluid flow through a porous medium,  

 

p
k

q 


     (3.18) 

 

where q is the flow rate [m/s], k is permeability [m
2
], µ is viscosity of the fluid [kg/ms] and p is 

pressure [Pa]. Table 3.1 presents the relations between the variables of Darcy’s law and Ohm’s 

law. 

 

 

 



114 

 

Table 3.1:  Analogy between electric current flow and water flow.  

 Darcy’s law: 
 

Ohm’s law: 
 

Flux of: Water q [m/s]
 

Charge J [A/m
3
] 

Potential:  Pressure p [Pa]
 

 Voltage φ [V] 
 

Medium 

property:
 

Hydraulic conductivity 



k  [m
2
/Pa·s]

 

Electrical conductivity 

σ [1/Ωm] 

 

The similarities between these two equations show that it is possible to use a flow simulator like 

TOUGH2 to solve an electric field due to flow of an electric current. Then, the pressure results 

from TOUGH2 correspond to the electric voltage, the current density to the flow of water and 

the electrical conductivity corresponds to the hydraulic conductivity, i.e. 




k
       (3.19) 

Consequently, the permeability written in the TOUGH2 input file is defined as the conductivity 

of the field under study, multiplied by the appropriate viscosity which corresponds to the 

pressure (i.e. electric potential) conditions existing in the TOUGH2 simulation. However, it must 

be recognized that viscosity depends on pressure while conductivity of a reservoir does not 

depend on the electric voltage used. Also, some of the electric parameters need to be scaled when 

using TOUGH2 in this way. 

 

Figure 3.4: Viscosity [Pa∙s] as a function of pressure [MPa]. 

3.4.2 Pressure dependence of viscosity 

When the EOS1 module in TOUGH2 is used the viscosity of the fluid is pressure dependent. For 

example, Figure 3.4 shows how viscosity of water at 150°C changes with pressure. The electric 

conductivity which corresponds to the permeability divided by viscosity does however not 
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depend on the electric potential corresponding to the pressure, so the EOS1 module might not 

give accurate results when calculating the electric potential. 

 

In order to take the pressure dependence into account EOS9 module in TOUGH2 was studied. It 

considers flow of a single aqueous phase consisting of a single water component. The conditions 

are assumed to be isothermal so only a single water mass balance equation is solved for each grid 

block and the thermal properties of water can be overwritten. Therefore, liquid viscosity, density 

and compressibility can be defined constant and reference pressure and temperature can be 

overwritten, making the imitation of electric flow possible. 

 

In TOUGH2, Darcy’s law is solved using the following discretization, 
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where ρ is density and gnm is gravity in direction from m to n. Suitable averaging are used at the 

interface between grid blocks n and m, and Dnm is the distance between the nodal points n and m 

(see Figure 3.5).  

 

 
Figure 3.5: Space discretization, grid blocks n and m. 

 

In order to calculate the flow simulation the following equation is solved using Newton/Raphson 

iteration: 

 1,1,,1,1,  
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MMR   (3.21) 

where 
1, KK

nR are residuals between time step t
k
 and t

k+1 
= t

k
 + Δt, M is mass accumulation, A is 

the surface area of the grid block, V is the volume and q denotes sinks and sources.  

 

The electric field was calculated for a 3 × 3 block matrix, see Figure 3.6, using EOS9 and the 

results compared to the resistivity model described in section 3.3 (Resistivity Model) and an 

analytical solution. The resistivity of the middle block (green) was set as 0.0025 Ωm and the 

resistivity of the blue blocks was set as 0.005 Ωm and the initial electric potential was defined as 

zero.  
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Figure 3.6: Inhomogeneous electric model with the current set as 3 A in the upper left corner 

and as -3 A in the lower right corner. 

 

The analytical solution and the solution from the resistivity model were the same as when EOS9 

was used. Results are shown in Table 3.2. Therefore, it was shown that EOS9 module in 

TOUGH2 can be used to calculate the electric field accurately by defining the water density and 

viscosity constant. 

 

Table 3.2: Electric potential calculated using the resistivity model, EOS9 module in TOUGH2 

and the analytical solution. 

0.0107 V 0.0032 V 0 V 

0.0032 V 0 V -0.0032 V 

0 V -0.0032 V -0.0107 V 

 

In order to study further the effects of pressure dependence on the simulated electric potential, 

EOS1 and EOS9 were both used to calculate the electric field for a simple inhomogeneous 9 × 9 

grid shown in Figure 3.7. 

 

 

Figure 3.7: Inhomogeneous 9 × 9 grid. 



117 

 

The two-dimensional grid was modeled with dimensions 100 × 100 × 1 m
3
 and  permeability 1 × 

10
-13 

m
2
 (blue blocks) and with a fracture in the middle with permeability 1 × 10

-8 
m

2 
(green 

blocks). The initial pressure was set as 10
6 

Pa and the temperature as 150°C. Equation 3.19 

shows how the conductivity of the field was defined as the permeability divided by the viscosity, 

so when EOS1 was used the conductivity changed by a small amount as the viscosity changed 

with pressure. In EOS9 the viscosity, density and compressibility were defined constant making 

it possible to model constant conductivity values for the reservoir. Figure 3.8 shows the electric 

potential for the grid blocks calculated using EOS1 and EOS9 in TOUGH2. 

 

Figure 3.8: Electric potential for the reservoir calculated using EOS1 and EOS9  

 

The electric potential calculated using EOS1 is almost the same as the electric potential 

calculated using EOS9 with μ = 1.84 × 10
-4 

Pa·s. However, if the viscosity is set as 1.7 × 10
-4 

Pa·s the electric potential results are slightly different from the EOS1 results because EOS1 uses 

the viscosity of water at the appropriate pressure and temperature conditions. In this case, the 

pressure is ranging from 0.996-1.0 × 10
6 

Pa and the temperature is 150°C so the viscosity is 

ranging from 1.85-1.83 × 10
-4 

Pa·s. Therefore, it has been shown that EOS1 module in TOUGH2 

can be used to calculate the electric field instead of using EOS9 as long as the permeability is 

defined as the conductivity multiplied with the appropriate viscosity that corresponds to the 

pressure and temperature conditions in the simulation. The EOS9 module was used when 

possible but problems occurred when using EOS9 with a Discrete-Fracture Method (DFN) by 

Karimi-Fard et al. (2003) so in those cases EOS1 module was used instead.   
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3.4.3 Two simple fracture networks studied 

Two simple fracture networks were studied to examine the difference in the time histories of the 

potential field between these two cases as conductive fluid was injected into the reservoir. First, 

flow simulations were performed using the EOS1 module in TOUGH2 to see how a conductive 

tracer, distributes after being injected into different reservoirs. The simulations were carried out 

on two-dimensional grids with dimensions 2000 × 2000 × 1 m
3 

with fractures first modeled as a 

long path from the injector to the producer as shown in Figure 3.9 and then as a path straight 

from the injector to the producer, shown in Figure 3.10.  

 

Figure 3.9: Reservoir with a fracture from the injector, around the reservoir and to the 

producer.  

 

Figure 3.10: Reservoir with a fracture straight from the injector to the producer. 

The reservoir was modeled with a porosity of 0.2 and a permeability of 10
6
 md (10

-9
 m

2
) while 

the fractures have a permeability of 10
11

 md (10
-4

 m
2
). No-flow boundary conditions were used 
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and 100 kg/s of water was injected in the lower right corner with enthalpy 100 kJ/kg, and 0.1 

kg/s of tracer with enthalpy 100 kJ/kg. The initial pressure was set to 10
6
 Pa, temperature to 

150°C and initial tracer mass fraction to 10
-9

. 

 

The tracer injected into the reservoir is a NaCl solution whose resistivity changes with 

temperature and concentration. Ucok et al. (1980) have established experimentally the resistivity 

of saline fluids over the temperature range 20-350°C and their results for resistivity of NaCl 

solution calculated using a three-dimensional regression formula is shown in Figure 3.11. 

 

 

Figure 3.11: Resistivity of NaCl solution as a function of temperature and concentration (Ucok 

et al., 1980). 

 

Ucok et al. (1980) calculated that the dependence of resistivity is best represented by the 

formula: 
3

4

2

32

1

10 TbTbTbTbbw  
    

(3.22) 

where T is temperature and b are coefficients found empirically. The best fit for the 

concentration dependence was found to be: 

)/(10 cw 
     (3.23) 

where: 

termsorderhigherccBcBB  ln2

2/1

10   
(3.24) 

Coefficients B depend on the solution chemistry and c is the molar concentration.  
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In this project, the tracer concentration resulting from the flow simulation is changed into molar 

concentration and the following B coefficient matrix for the three-dimensional regression 

analysis of the data studied by Ucok et al. (1980) is used to calculate the resistivity of the NaCl 

solution, 

 

          3.470           -6.650               2.633 

                    -59.23            198.1             -64.80 

B =         0.4551         -0.2058        0.005799 

  -0.346E-5       7.368E-5         6.741E-5 

   -1.766E-6      8.787E-7        -2.136E-7 

 

Then, the resistivity of water saturated rock, ρ, is calculated using Archie’s law (Archie, 1942), 

w

ba  
     

(3.25) 

where 
 
is the porosity of the rock and a and b are empirical constants, here a is set as 1 and b as 

2. The resistivity value of each block therefore depends on the tracer concentration in that block 

and the value decreases as more tracer flows into the block.  

 

The EOS9 module in TOUGH2 was used to calculate the electric potential distribution for the 

reservoirs in Figures 3.9 and 3.10. A current was set equal to 1 A at the injector and as -1 A at 

the producer and the potential field calculated based on the resistivity of the field at each time 

step. Figure 3.12 shows how the potential difference, which corresponds to the changes in 

resistivity, between the injector and the producer changed with time for the reservoirs in Figure 

3.9 and Figure 3.10. 

 

Figure 3.12: Potential difference between wells for reservoirs in Figure 3.9 (green) and Figure 

3.10 (blue).  

Figure 3.12 illustrates clearly that the electric potential history is different for the two fracture 

networks. After 0.239 days the potential difference plotted in green drops from 3000 V to 2000 
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V but the potential difference plotted in blue drops the same amount much earlier, or after 0.074 

days. Therefore, these histories of the potential differences show that the conductive tracer flows 

faster through the fracture network in Figure 3.10 than in Figure 3.9 which tells us that the 

fracture path from the injector to the producer is shorter for that fracture network. In these 

examples, it is assumed that the reservoir does not have any water until the conductive water is 

injected into the reservoir. The resistivity between the injector and the producer is therefore very 

high until the tracer reaches the production well, allowing the current to flow easily between the 

wells. When the tracer has gone fully through the fracture networks for both cases the potential 

differences are the same. For realistic fracture networks, defining fractures by high permeability 

values in course-scale grid blocks would not be feasible so a discrete approach was explored.  

3.5 DISCRETE-FRACTURE NETWORKS 

A Discrete-Fracture Network (DFN) approach introduced by Karimi-Fard et al. (2003) was used 

to create realistic fracture networks by treating the fractures discretely. The method is based on 

an unstructured control volume finite-difference formulation where the element connections are 

assigned using a connectivity list. A MATLAB code written by Juliusson (2009) was used to 

generate a two-dimensional stochastic fracture network, run flow simulations on the network 

with TOUGH2, and plot the tracer flow results. In these cases, EOS1 module in TOUGH2 was 

used to solve the tracer flow as well as the electric flow. Figure 3.13 shows the fracture network 

generated, where the computational grid was formed using the triangular mesh generator 

Triangle, developed by Shewchuk (1996). 

 

Figure 3.13: A two-dimensional discrete-fracture network. 

 

The dimensions of the two-dimensional grid were 30 × 30 × 1 m
3
 and closed (no-flow) boundary 

conditions were used. The porosity of the fractures was set to 0.9 and the width, w, was assigned 

as a function of the fracture length L, 
410 Lw       (3.26) 

The corresponding permeability was determined by:  
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12

2w
k        (3.27) 

The matrix blocks were given a porosity value of 0.1 and a very low permeability value so the 

conductive fluid only flows through the fractures. 

 

By using the DFN approach every element (both triangles and fracture segments) was given a 

transmissibility value which is related to the flow between two adjoining elements as,  

)( ijijij ppTQ 
    (3.28) 

where Q is the flow rate between gridblocks i and j, T is the transmissibility and p is the pressure. 

More details on the approach can be found in the reference by Karimi-Fard et al. (2003). 

 

In Figure 3.13 an injection well was placed at the top of the figure and a production well at the 

bottom. Water was injected at the rate of 5.6 × 10
-2

 kg/s with enthalpy 3.14 × 10
5
 kJ/kg and the 

tracer injected was 0.1% of the water injected. The production well was modeled to deliver 

against a bottomhole pressure of 10
6
 Pa with productivity index of 4 × 10

-12
 m

3
 (as specified for 

TOUGH2). The initial pressure was set to 10
6
 Pa and the temperature to 25°C and the initial 

tracer mass fraction was set to 5.42 × 10
-3

, which corresponds to ground-water. For the resistivity 

calculations the pores and fractures were modeled to be filled with ground-water before any 

tracer was injected into reservoir. The tracer was assumed to be a NaCl solution and the 

resistivity calculated using the three-dimensional regression formula as before (equations (3.22)-

(3.24)) and the resistivity of water saturated rock was calculated using Archie’s law, see equation 

(3.25). Archie (1942) concluded that for typical sandstones of oil reservoirs the coefficient a is 

approximately 1 and b is approximately 2 but Keller and Frischknecht (1996) showed that this 

power law is valid with varying coefficients based on the rock type. In this case, a was set as 3.5 

and b as 1.4. 

 

Figure 3.14 shows how the tracer concentration in the producer (green) changed with time as 

more tracer was injected into the reservoir. 

 

The electrical resistivity method was used to examine how the potential difference history, which 

corresponds to the changes in resistivity, relates to the fracture network. The current was set as 1 

A at the injector and as -1 A at the producer and the potential field calculated using EOS1 

module in TOUGH2, see Figure 3.15. 

 

The potential difference drops relatively quickly until about 0.25 days when it starts decreasing 

more slowly as a result of the entire fracture path from the injector to the producer becoming 

saturated with tracer. The relationship between the fractures and the time history of the electric 

potential can be made more visible by looking at the derivative of the potential difference, see 

Figure 3.16.  
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Figure 3.14: Tracer history at the injector (blue) and at the producer (green). 

 

 

Figure 3.15: Potential difference between the injector and the producer. 
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Figure 3.16: Derivative of the potential difference between the wells. 

 

The first peak is after about 0.02 days when the conductive tracer reaches the production well. 

Figure 3.14 shows that the tracer concentration at the production well starts increasing at 0.02 

days causing the resistivity to decrease and a low conductivity path to form between the injector 

and the producer, shown in Figure 3.17a). The electric current therefore flows through the low 

conductivity path, causing the electric potential difference between the wells to drop. Other 

peaks can be seen in Figure 3.16, for example after approximately 0.08 days and approximately 

0.18 days. The peak after 0.08 days corresponds to a new low conductivity path formed to the 

left of the producer, see Figure 3.17c), and another path has been formed to the right after 0.18 

days, see Figure 3.17d). The peaks of the derivative of the potential difference therefore 

correspond to the fracture network which verifies that the history of the electric potential could 

be used for fracture characterization. 
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Figure 3.17: Resistivity of the field after a) 0.01 days, b) 0.02 days, c) 0.08 days and d) 0.18 

days. 

 

3.5.1 Fracture network analyzed as an electric circuit 

The reservoir in Figure 3.13 acts in many ways like an electric circuit because the fractures form 

low-resistivity paths from the injector to the producer. The electric current travels mainly 

through these paths due to the high resistivity of the reservoir. Figure 3.19 demonstrates the 

electric circuit that corresponds to the fracture network in Figure 3.18 which is the same network 

previously studied (Figure 3.13) except the width of the fractures was set as 2 × 10
-3

 m. All the 

fractures are assumed to be filled with ground-water with NaCl concentration equal to 5.42 × 10
-

3
 and no conductive tracer has been injected into the reservoir. 
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Figure 3.18: A fracture network with water-filled fractures. 

 

Figure 3.19: An electric circuit that corresponds to the fracture network in Figure 3.18. 

 

The resistance, R [ohm], of the resistors in the electric circuit was calculated using the following 

relationship, 

A

L
R




      
(3.29) 

where L [m] is the length and A [m
2
] is the cross sectional area of the corresponding water-filled 

fracture. The Y-Δ transformation theory published by Kennelly (1899) was used to simplify the 

resistors into a single equivalent resistor equal to R = 1.2 × 10
4
 ohm. The electric current at one 

end of the resistor was set as -1 A and as 1 A at the other end to simulate the current flow 

through the fractures between the injector and the producer. The voltage drop in the electric 
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circuit was calculated using Ohm’s law (Equation 3.1) and compared to the voltage drop for the 

fracture network computed using module EOS1 in TOUGH2, see results in Table 3.3. 

 

Table 3.3: Voltage drop for a fracture network and corresponding electric circuit. 

 

Voltage drop 

[V] 

Electric circuit 1.1964 × 10
4
 

TOUGH2 1.1980 × 10
4
 

 

The voltage drop calculated for the electric circuit is equivalent to the voltage drop computed 

using TOUGH2, so the EOS1 module in TOUGH2 can successfully be used to calculate the 

electric potential for discrete-fracture networks with sufficient accuracy for the procedure in this 

project. The difference is likely due to the pressure dependency of the viscosity, density and 

compressibility in EOS1, as previously analyzed, but should not affect the overall results of the 

fracture characterization. 

3.5.2 Fracture network with multiple production wells 

Another Discrete-Fracture Network (DFN) was modeled, this time with one injection well and 

three production wells, and the apparent resistivity between them was studied. The width of the 

fractures was set as 10
-2

 m and the grid dimensions were 1000 × 1000 × 1 m
3
, see Figure 3.20.  

  

Figure 3.20: A discrete-fracture network with one injector and three producers. 

 

A NaCl solution of 0.9 wt% was injected at the rate of 1.1 × 10
-2

 kg/s with enthalpy 3.14 × 10
5
 

kJ/kg and the production wells modeled to deliver against a bottom hole pressure of 10
6
 Pa with 

productivity index of 4 × 10
-12

 m
3
. The initial pressure was set to 10

6
 Pa and the temperature to 

25°C. Closed (no-flow) boundary conditions were used and the fractures were initially assumed 
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to be filled with ground-water with 5 × 10
-4

 NaCl concentration. The electric potential 

differences between the wells were calculated and the apparent resistivity, ρa [ohm-m], solved 

using Ohm’s law, 

k
I

a







     
(3.30) 

where 
 
[V] is the potential difference between the wells, I [A] is the intensity of the current 

flowing through the network and k [m] is a geometric factor. In resistivity studies in geophysics, 

the total current is assumed to flow away from or toward each electrode across the surface of a 

half sphere, or a whole sphere if electrodes are placed underground. Here, the current flow is 

significantly different, because the rock is a good insulator so the current only flows through the 

thin fractures. Therefore, if a conventional geometric factor which only depends on the electrode 

spacing is used, the apparent resistivity values calculated would be very different from the true 

resistivity values. The volume considered for electrodes placed far apart (i.e. defined by the 

sphere shaped flow paths) would be much larger than for electrodes placed closer to each other, 

while the true increase in fracture flow path volume because of a larger distance between 

electrodes would be relatively small. Finding the true geometric factor is a very difficult task 

because the fracture characteristics are unknown, but in order to find a suitable geometric factor 

the potential differences between the wells before any tracer has been injected is used. It is 

assumed that all the wells are connected with fractures and that the resistivity of the fractures is ρ 

= 36.59 ohm-m, corresponding to fractures with porosity 0.9 and filled with 9 ohm-m ground-

water. Therefore, all the current flows through the fractures because of the high resistivity of the 

rock. The geometric factor, k [m], between each well pair is then calculated using Equation 3.30 

as well as the assumed resistivity of the water-filled fractures, the known injected current, and 

the measured potential differences between the wells. If the fracture network was expressed as a 

simplified electric circuit, this geometric factor would represent the cross-sectional area of the 

wire, divided by its length, i.e. the length of the current path. Therefore, it corresponds to the 

current flow path and could possibly be used to gain information about the fracture network. 

Here, it is used to calculate the apparent resistivity for the fractures, which is used for 

comparison at different time steps to locate where the conductive fluid is flowing. 

 

The apparent resistivity was mapped by kriging and the general exponential-Bessel variogram 

was used to fit the data. Kriging is an optimal method for estimation of unknown values within 

known data points and was developed by Krige (1951). In this case, very few data points are 

known because of the few numbers of measurement points, i.e. few wells, but mapping by 

kriging helps illustrate the changes in resistivity as conductive tracer is injected into the 

reservoir. A test well is assumed to be located in a fracture in the middle of the reservoir, 

between all the wells to get more measurement points. First, the flow simulator TOUGH2 was 

used to calculate the flow of the tracer for 450 days and then to solve the electric field at 

different times as the tracer distributes through the network. Figure 3.21 shows the tracer return 

curves at the producers and the injected tracer concentration. 



129 

 

 

Figure 3.21: Tracer return curves. 

 

The conductive fluid travels fastest towards producer 1 because of the relatively straight path 

between the injector and producer 1, see Figure 3.20. The tracer return curves indicate more 

tortuous flow paths between the injector and producers 2 and 3. Figure 3.22 illustrates the 

changes in the apparent resistivity between the wells, mapped by kriging, as the conductive fluid 

flows through the fracture network. At the beginning, all the fractures are filled with ground-

water and therefore have the same resistivity, equal to 36.59 ohm-m. After 24 days of injection, 

the apparent resistivity has decreased in the upper part of the figure. Then, after 200 days of 

injection, as well as after 450 days, the upper right corner has the lowest resistivity and it has 

changed significantly in the lower right corner as well. These changes in resistivity indicate good 

fracture connection from the injector to producer 2, then from producer 2 to producer 3, but 

lower connection towards producer 3.  

 

Figure 3.23 shows the true resistivity distribution after 70 days, which is in accordance with 

previous results. The fracture path between producer 2 and producer 3 is the last one to fill up 

with conductive tracer, which causes high potential difference between these producers and 

therefore high apparent resistivity in Figure 3.22.  
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Figure 3.22: Apparent resistivity [ohm-m] calculated from potential measurements between 

wells after a) 24 days, b) 70 days, c) 200 days and d) 450 days.  

 

 

Figure 3.23: Resistivity [ohm-m] after 70 days of injection. 
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In reality, the produced fluid is likely to be reinjected into the reservoir, causing the injected fluid 

to be elevated in NaCl concentration with time due to the separation of steam. Therefore, the 

same case was studied but with the injected tracer concentration increasing in steps after 100 

days. Figure 3.24 shows the injected tracer concentration and the tracer return curves for the 

three producers.  

 

 

Figure 3.24: Tracer return curves with increasing tracer injection. 

 

The tracer return curves indicate good connection between the injector and producer 1, but due to 

a weaker connection towards producers 2 and 3 the tracer concentration in these wells does not 

reach the injected concentration. As a result, the contrast in resistivity between the strongest and 

the weakest connections remains high, see Figure 3.25, because the majority of the tracer will 

always be flowing through the best connected flow path from the injector to the producers. In the 

previous case, where the injected water had a constant NaCl concentration, the weaker connected 

paths became greatly saturated as well once all the stronger connected paths were fully saturated 

with tracer. Therefore, the connection between injector 1 and producer 2 could be observed after 

about 200 days of injection, while the mapped apparent resistivity at the same time for the 

reinjection case does not indicate the same connection, see Figure 3.25 (left). However, both 

examples gave some good information about the fracture connections between the wells and 

indicated that the time histories of the apparent resistivity between the wells could be used for 

fracture characterization. 
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Figure 3.25: Apparent resistivity [ohm-m] for reinjected fluid with elevated NaCl concentration, 

calculated from potential measurements between wells after 200 days (to the left) and 

450 days (to the right). 

 

3.6 INVERSE ANALYSIS 

One of the goals of this project is to use the tracer concentration simulations and electrical 

potential calculations from TOUGH2 with inverse modeling to estimate the dimensions and 

topology of a fracture network. In inverse modeling the results of actual observations are used to 

infer the values of the parameters characterizing the system under investigation. In this study, the 

output parameters would be the tracer return curves at the producer and the potential differences 

between wells as a function of time while the input parameters would include the dimensions and 

orientations of the fractures between the wells. The objective function measures the difference 

between the model calculation (the calculated voltage difference between the wells and tracer 

return) and the observed data (measured potential field between actual wells and actual tracer 

return), as illustrated in Figure 3.26, and a minimization algorithm proposes new parameter sets 

that improve the match iteratively. 
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Figure 3.26: The inverse analysis. 

 

3.6.1 Inverse analysis studied for four discrete-fracture networks 

Among optimization algorithms in inverse analysis, a genetic algorithm has the advantage that it 

can search the global minimum value and it can be modified to handle both discrete and 

continuous variables. Genetic algorithm was proposed by Holland (1975) as an optimization 

method that imitates natural evolution. A solution to the inverse problem is represented as a 

chromosome and the genetic algorithm creates a population of chromosomes that evolve through 

mutation and crossover in order to find the best one.  

 

The possibility of using a genetic algorithm to characterize fracture patterns was explored by 

performing a very simple inverse analysis using a genetic algorithm to identify a given fracture 
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network from four possible networks. The four networks have dimensions 30 × 30 m
2
 and are 

shown in Figure 3.27. 

 

 
Figure 3.27: Discrete-fracture networks. 

 

The reservoir and injection/production properties were the same as for the fracture network 

decribed in Section 3.5 except that the width of the fractures was defined as, 
41033.3  Lw      (3.31) 

First, a flow simulation of a NaCl tracer was carried out and the resistivity of the reservoir 

defined from the tracer distribution. Next, the electric field was calculated for different timesteps, 

from before any tracer had been injected into the reservoir and up to 3 days of injection. The 

tracer production histories and the electric potential differences for the four cases in Figure 3.27 

are shown in Figure 3.28 and Figure 3.29. 
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Figure 3.28: Tracer production history for Cases 1-4. 

 
Figure 3.29: Potential difference between wells for Cases 1-4. 

 

The conductive tracer reaches the production well fastest through the fracture network in Case 2 

but the potential difference drops the most in Case 3. These differences in the histories of the 

tracer production and of the potential difference are due to the previous conclusion that the 

electric potential and tracer production depend on the fracture networks and can therefore give 

information about the fracture characteristics. The objective function of the inverse analysis was 

defined as the sum of the difference between the tracer production histories and the difference 

between the histories of the potential difference between the injector and the producer. The 

genetic algorithm was modified to force the chromosomes to be integers between 1 and 4, where 

the integer corresponds to Cases 1-4. One of the four cases was chosen and the inverse analysis 

used to identify the chosen fracture pattern. The genetic algorithm was able to identify the 

correct fracture patterns in all cases. However, because the variable being optimized is an integer 
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corresponding to different fracture networks, the genetic algorithm acts like a grid search 

algorithm where each fracture network needs to be tested unless a perfect match has been found. 

An increase in the variable, i.e. the case number, does not indicate a certain change in the 

fracture pattern because all the patterns were randomly generated. Therefore, it can be 

impossible to find the best fitted fracture network without checking all the possible networks. In 

reality, it would not be applicable to use grid search to try all networks because of the gigantic 

number of possible fracture patterns, so a relationship needs to exist between a certain change in 

the integer being optimized and the equivalent change in the corresponding fracture network. 

Therefore, the possibility of using inverse analysis with fractal geometry was explored. 

3.6.2 Inverse analysis using fractal geometry 

Several field studies performed on fault systems at different length scales have demonstrated that 

fracture populations follow a power-law length distribution (Shaw and Gartner, 1986, and Main 

et al., 1990). Therefore, the relationship between a fracture length r and the number of fractures 

N with lengths equal to or larger than r can be represented by a fractal equation, 
DCrN         (3.32) 

where D is the fractal dimension and C is a fracture density parameter. A method described by 

Watanabe and Takahashi (1995) was used to create discrete-fracture networks with fractal 

dimensions ranging from D = 1.0 to 1.7 with 0.1 increments. The fracture locations were 

randomly determined and the angles normal to the fractures were randomly chosen to be either 

100° or 135° with a standard deviation of 5°. The length of the fractures must satisfy equation 

(3.32) so r was determined from, 
D

i iCr /1)/(       (3.33) 

and the total number of fractures n was determined using, 

D
r

C
n

min

        (3.34) 

where rmin is the smallest length of the fractures observed, here set as 0.05 m. The fracture 

density C can be determined from actual field data by looking at the number of fractures 

observed per unit length or depth, here it was set as 2 fractures per meter. The aperture was 

defined by 

 erKd max
      (3.35) 

where dmax is the aperture and K is a constant. Olson (2003) describes how this power law 

equation was used to fit various fracture datasets of different sizes, usually with e = 0.4. Here, e 

was set as 0.4, K as 0.002 m
3/5

 and the size of the reservoir was set as 1000 × 1000 m
2
. Ten 

different fracture networks were created for each fractal dimension D, ranging from D = 1.0 to 

1.7 and a similar method as described in Section 3.6.1 used to try to find the fractal dimension of 

a certain fracture network using inverse analysis. Now, if the integer variable being optimized is 

increased enough, the corresponding fractal dimension is increased as well. Therefore, the 

genetic algorithm does not act as a grid search as in the previous case. Figure 3.30 shows an 

example of a fracture network created with D = 1.5, the corresponding tracer injection and 

production history, the potential difference between the wells, and the derivative of the potential 

difference. 
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Figure 3.30: A fracture network with D = 1.5 and a producer in lower left corner and an 

injector in upper right corner, a tracer injection and production history, potential 

difference between the wells, and the derivative of the potential difference. 

 

The objective function consisted of the sum of the differences in the tracer production, potential 

differences, and the normalized potential differences, between the network in Figure 3.30 and the 

other fracture networks. Genetic algorithm was used to find the network with the most similar 

characteristics, seen in Figure 3.31.  
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Figure 3.31: A fracture network with D = 1.5 and a producer in lower left corner and an 

injector in upper right corner, a tracer injection and production history, potential 

difference between the wells, and the derivative of the potential difference. 

 

The fracture network in Figure 3.31 is different from the fracture network in Figure 3.30 but also 

has fractal dimension D = 1.5. Therefore, the inverse analysis was used successfully to predict 

the fractal dimension of the fracture network in Figure 3.30. The potential difference curves for 

the two networks are very similar and both start at around 1240 V. The starting point can give 

some information about the network because the fractures are assumed to be filled with water in 

the beginning so lower potential difference corresponds to more fractures/fracture paths between 

the wells. Also, the faster the potential difference drops, the better path between the wells 

because the potential difference drops significantly when a high conductivity path has been 

formed between the injector and the producer as previously studied, and also when new paths are 

formed. Another example is seen in Figure 3.32 with D = 1.2.  
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Figure 3.32: A fracture network with D = 1.2 and a producer in lower left corner and an 

injector in upper right corner, a tracer injection and production history, potential 

difference between the wells, and the derivative of the potential difference. 

 

The best fit for this fracture network determined by the inverse analysis is the fracture network in 

Figure 3.33, which has D = 1.1. The networks are somewhat similar and the potential difference 

curves show similar behavior, which can be seen more clearly when the derivatives are studied. 

The magnitude of the derivatives for these cases are much lower than for previous cases with D 

= 1.5, because of fewer fractures so the potential difference does not drop as fast. The different 

networks were also run for different amount of time, depending on for how long TOUGH2 could 

simulate the conductive tracer flow, so it is important to take that into account when comparing 

the graphs. In the inverse analysis, the objective function is divided by the total number of points 

being compared each time, and the number of points depends on the network with shorter time 

simulated out of the two networks being compared each time.   
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Figure 3.33: A fracture network with D = 1.1 and a producer in lower left corner and an 

injector in upper right corner, a tracer injection and production history, potential 

difference between the wells, and the derivative of the potential difference. 

 

Although in many cases the inverse analysis was used successfully to determine the right fractal 

dimension, the fractal dimension was also often slightly different, especially when studying 

networks with lower fractal dimension. That is likely because there is a smaller number of 

fractures when the fractal dimension is lower and many completely different fracture patterns are 

possible with the same fractal dimension. Therefore, it might not always be possible to find a 

similar network out of the ten cases for each fractal dimension and a fracture network with a 

different fractal dimension might give a better fit. The defined fractal dimension might also not 

be correct because when the networks are created some of the long fractures that intersect the 

reservoir boundaries are made smaller to fit inside the reservoir. This method has shown some 

possibilities for fracture characterization but needs to be studied further to test and increase the 

accuracy of determining the fractal dimension.  

 

It is important to recognize that the meaning of the fractal dimension D used so far is different 

from the fractal dimension calculated by the box-counting method, DB, where, 
BD

BB rCN


       (3.36) 
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Here NB signifies the number of boxes with edge length R that are entered by fractures and CB is 

a constant. Therefore, the fractal dimension in equation 3.32 is a measure of the geometry of the 

fractures (length distribution) while the fractal dimension calculated by the box-counting method 

is a measure of the spatial distribution of the fractures. When Equation 3.36 holds for natural 

fracture systems the fractal dimension DB represents the spatial distribution of fractures ranging 

between 1 and 2 (Watanabe and Takahashi, 1995). When DB = 1, the fractures cluster in a 

narrow band and if DB = 2, they completely fill the area being studied. Therefore, this fractal 

dimension provides valuable information regarding the fracture system and it is of interest to 

study whether it can be determined using the same approach previously used to determine D.  

 

3.7 FUTURE WORK 

Future work could include investigation of further ways to use inverse analysis with tracer 

concentration simulations and electric potential calculations from TOUGH2 to characterize 

fractures. The possibility of defining the reservoirs using fractal dimensions as a measure of the 

spatial distribution seems promising. Other future paths could be to study the use of nanotracers 

and different chemical tracer as well as to explore the influence of injecting varying tracer 

concentration. Different well arrangements could be studied to estimate the minimum number of 

measurement locations necessary to solve the inverse problem efficiently. The objective would 

be to develop a method which can be used to find the character of the fracture distribution. 
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4. FRACTURE CHARACTERIZATION USING THERMAL AND TRACER 

DATA 

This research project was conducted by Research Assistant Carla Kathryn Co and Professor 

Roland Horne. The overall objective of this study was to develop a methodology to estimate 

fracture dimensions.  Our focus was on utilizing temperature, tracer, and borehole imaging data 

to determine relevant fracture parameters.  

4.1 SUMMARY 

This study aimed to describe interwell connections through characterization of permeable zones 

in geothermal wells.  Several model configurations were described and investigated.    A single 

fracture model was used to represent the connectivity between injection and production well 

pairs. An analytical model derived by Gringarten and Sauty (1975) was used to estimate the 

fracture aperture from thermal breakthrough time and mean tracer arrival time.  Estimated 

effective fracture aperture values were from 2.1 cm to 42.6 cm.   

 

To further understand the characterization of fractures, a literature review was undertaken.  

Fields included in this study were: Desert Peak, Nevada; Dixie Valley, Nevada; Soultz, France; 

The Geysers, California; and Wairakei, New Zealand.  Fracture properties were determined from 

acoustic imaging techniques.  Feed zone locations identified through Pressure, Temperature, and 

Spinner (PTS) data were then correlated to these properties.  Results showed that feed zone 

locations correspond to depths with higher apertures.  Fracture density, however, was not found 

to be relevant to fluid entry zones. 

 

An extensive literature review was undertaken to investigate the possibility of integrating scaling 

relationships with heat and mass transport to improve the single effective fracture model.  The 

main goal was to model fracture networks that were more consistent with the observed patterns 

in the field.  Scaling relationships between relevant fracture properties such as aperture, length, 

and density were envisioned to become useful in constraining the possible models derived from 

tracer analysis and temperature matching.  Field studies revealed that scaling had been observed 

in numerous geothermal fields in various scales ranging from thin sections to aerial photographs.  

Furthermore, stratigraphy was found to be important mainly for shallow permeable zones only.  

Moreover, fractures most relevant to flow were optimally-oriented and critically-stressed.  In 

addition, either high fracture aperture or high fracture density values could be used to identify 

permeable zones depending on the degree of fracture overlap in the borehole image logs.  

 

This study also investigated using coupled tracer and temperature nonlinear least squares 

optimization to determine unknown parameters from a porous model.  Five main parameters for 

the porous channel model were: channel half-aperture ( ), channel height ( ), porosity ( ), 

saturated pore diffusivity ( ), and equivalent injection temperature (    ).  There were several 

scenarios simulated for this model.  The five parameter scenario did not take scaling correlations 

into account.  In the six parameter scenario, the half-aperture ( ) was correlated to the channel 

length ( ) using the scaling coefficient ( ) and the scaling exponent or the fractal dimension ( ).  

For four parameter scenarios, both   and   were specified using data from literature.  Three 



144 

 

scaling correlations were available.  The scaling correlations were:          ;           ; 

and             . 

 

Overall, the coupling of thermal and tracer response analyses resulted in the detailed 

characterization of interwell connectivity which could be used to predict future thermal response 

to injection.  Models derived from tracer analysis alone consistently gave the most pessimistic 

results for both high and low injection cases.  The most optimistic model was the configuration 

with the lowest aperture.  For the injection case tested, the different models gave a wide range of 

thermal drawdown forecasts.   

 

4.2 INTRODUCTION 

Injection of spent brine and condensate is widely practiced in geothermal fields for pressure 

support and wastewater disposal (Horne, 1996).  However, premature thermal breakthrough can 

occur if this is not managed properly.  Therefore, determination of interwell connectivity is 

important for proper reservoir management.  Connectivity between production and injection 

wells can be represented by different permeable zone configurations with their corresponding 

tracer and heat transport analytical models.  Figure 4.1a describes a single fracture connection 

model (Co and Horne, 2011; Horne, 1996).  The second model (Figure 4.1b) uses a well-

developed major fault with an impermeable core and permeable damage zones (Massart et al., 

2010; Paul et al., 2009, Paul et al., 2011; Johri et al., 2012).  A third model, shown in Figure 

4.1c, utilizes sheared fracture planes or porous channels (Bullivant and O’Sullivan, 1985; 

Lauwerier, 1955; Gringarten and Sauty, 1975) that can be attributed to secondary structures 

subparallel to major faults.  In addition, horizontal sheared fracture planes can be used to model 

lithological boundaries.  Lastly, the fourth model (Figure 4.1d) describes the intersection of 

cross-cutting sheared fracture planes as possible geothermal permeable zones.  These could be 

represented by parallel plate models (Gringarten et al., 1975, Rivera et al., 1987).  The focus of 

this report will be on the first two models. 

 
Figure 4.1 Interwell connectivity configurations: (a) single fracture connection; (b) well-

developed fault with damage zone with a low permeability core; (c) secondary 

structures subparallel to faults or stratigraphy based connections; (d) cross-cutting 

sheared fracture planes. 

 

Fracture aperture is an important parameter in geothermal reservoirs.  Aperture influences 

transport and thermal behavior of the reservoir, both in EGS and in conventional hydrothermal 
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systems.  An important application is the determination of the degree of interwell connectivity.  

Of critical importance is the prevention of thermal breakthrough from injection wells to 

production wells.   

 

During the 1980s, several unsuccessful attempts were made to estimate fracture aperture by 

matching tracer test data.  This was because the parameter estimation problem had multiple 

degrees of freedom, which made it difficult to separate fracture aperture from other unknown 

reservoir parameters.  To constrain the degrees of freedom, thermal response data could be used.  

This was proposed in the 1980s; however at the time no data existed that provided both tracer 

and thermal responses.  Now that several EGS and fractured reservoirs have been monitored to 

provide these data, the possibility exists to estimate fracture aperture in those fields.  A single 

fracture model was used to describe the connectivity of an injection and production well pair.  

Tracer and thermal data were used to estimate the fracture width for this simplified model.   

 

The objective of the initial work done was to determine whether it would be feasible to derive 

reasonable estimates for the fracture aperture using both temperature data and tracer test results.  

Another objective was to document existing analytical models and field data available in 

literature.  Calculated fracture width values were compared to those derived from other datasets 

to check for consistency.   

 

Focus last year has been on understanding the significance of the fracture aperture in predicting 

possible fracture network models.  A comprehensive literature review of the scaling of fracture 

properties in geothermal reservoirs was undertaken to define the relationships among fracture 

properties such as aperture, length, and density.  Moreover, acoustic imaging data was used to 

correlate these fracture properties to feed zone locations.  Furthermore, the influence of fracture 

orientation and lithology on feed zone locations was investigated.  In addition, scaling 

correlations for damage zone fracture density were used to derive an effective permeability for 

faults. 

 

There were two analytical models included in this study.  One was a single fracture connection 

model which was the focus of research efforts last year.  The second model consisted of a 

sheared fracture plane or a brecciated porous channel.  For the first model, an analytical model 

was derived to relate both the thermal breakthrough and mean tracer arrival times to the effective 

fracture aperture.  The second model was a porous model that used a combination of thermal and 

tracer response analyses to determine unknown parameters using nonlinear least squares 

optimization.  There were two scenarios simulated for the porous model.  The first scenario did 

not take scaling correlations into account.  In the second scenario, scaling correlations used were: 

          ;           ; and             . 
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4.3 COMBINED TRACER AND TEMPERATURE ANALYTICAL MODELS 

4.3.1 Single Fracture Model  

Fracture Aperture 

Gringarten and Sauty (1975) derived a solution that can be used for unsteady-state one-

dimensional heat transfer through a fracture as shown in Figure 4.2.  The solution was similar to 

that for a porous medium, derived by Lauwerier (1955).  The solution assumes a thin, uniform 

reservoir with an adiabatic boundary.  Heat is transferred by conduction from the rock layers and 

the entering fluid.  As no mixing is assumed, the result is a stream-like channel flow.   

 

 
Figure 4.2 Model schematic for the Gringarten and Sauty (1975) derivation 

 

Horne (1996) derived the resulting analytical solution for this model as Equation 4.1 where tc is 

the tracer front arrival time, tth is the thermal breakthrough time, and b is the fracture aperture.  

On the left hand side of Equation 4.1 is the relative temperature ratio Tratio.  Here, To is the 

original reservoir temperature, Tw is the reservoir temperature at x, and Tinj is the injected fluid 

temperature.  Thus, the fracture aperture can be determined using the thermal and tracer 

breakthrough data.  Knowledge of the fracture aperture can then be used to predict temperature 

drawdown in producing wells.   
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These are the analytical expressions used to model a single fracture connection between an 

injector and producer well pair.  Equation 4.2 calculates the effective fracture aperture from the 

thermal arrival time tth; tracer front arrival time tc; and relative temperature ratio Tratio.   
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Cooling Rate Predictions 
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The general equation for temperature versus time as derived by Gringarten and Sauty (1975) is 

shown in Equation 4.3.  Here, x  is the distance between the injection well and producer well.  

Thus, once the aperture b  is determined, this equation describes the cooling of producing feed 

zones due to injection with constant volumetric rate ( q ) and temperature (
injT ).  Note that q

specified here is not the total injection rate.  It is the rate of effective injected volume that goes to 

a particular producer.  This is approximated by getting the ratio of the area derived from tracer 

analysis to the maximum area based on the total injection rate and the observed mean velocity 

from tracer data.  Equations 4.5 to 4.7 illustrate these in more detail. 

4.3.2 Porous Channel with Heat Loss Model: Cooling Rate Predictions   

Maturgo et al. (2010) use tracer analysis to determine the effective area (
tracerA ) for two injector 

and producer well pairs.  These are NJ3D-SG2RD and NJ2RD-NJ5D.  Using parameters from 

the general equation and the effective cross sectional area, thermal velocity without heat loss (
thv

) can be defined as shown in Equation 4.8.  From this definition, Equation 4.3 can be rearranged 

to get Equation 4.9 which describes the cooling effect of injection for a porous connection 

model.   As explained in the previous section, q  is the effective volumetric injection rate.   
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4.3.3 Single Porous Channel 

Nonlinear Optimization 

In order to couple both the tracer returns concentration and temperature responses for the 

analytical models, the measured data were scaled to have the same order of magnitude.  This was 

to ensure that both tracer and temperature responses would be given equal weights in the 

optimization.  Scaling was done by using the normalized concentration ( ̅) and temperature ( ̅) 

data vectors as described in Equations 4.10 and 4.11, respectively.  Here, the maximum and 

minimum subscripts referred to the maximum and minimum values for the tracer concentration 

and temperature datasets.  Thus, both normalized data vectors had values that ranged from 0 to 1.  

The same scaling was done with the calculated values of the model.   

 

Nonlinear least squares optimization was used to determine the relevant geometric and fluid flow 

parameters defined as the y vector in Equation 4.12.  Parameters included were: channel half 

width ( ), channel height ( ), channel porosity ( ), saturated rock pore diffusivity ( ), and 

equivalent injection temperature in the porous channel (    ).  The total residual error 

vector,  ⃑  ⃑ , was a combination of the error vectors for the normalized concentration and 

temperature as shown in Equation 4.13.  Error was defined as the absolute difference between 

the calculated values from the model and the measured data points.  Using the square of the 2-

norm of the vector  ⃑ as the objective function or the residual norm (  , nonlinear least squares 

optimization was used to determine the parameter vector ( ⃑) that minimized  as defined by 

Equation 4.14.  Levenberg-Marquardt and Trust-Region-Reflective algorithms were applied.  

These minimized the objective function that was bounded.  A first-order optimality measure was 

used as the stopping criterion (Equation 4.15). Iterations were done until the change in value of 

the objective function during an iteration step (   ) was less than      .  This method was 

applied to field data as will be described in the next section. 
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|   ⃑      ⃑    |                                                  (4.15) 

 

Tracer and Heat Transport Equations 

From the governing advection-dispersion equation for the impulse boundary condition on the left 

side and a semi-infinite plane boundary in the x-axis, the well-known solution of tracer 
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concentration dependency on distance ( ) and time ( ) can be derived (Equation 4.16).  This 

solution has also been derived in previous studies (Bullivant and O’Sullivan, 1985; Kreft and 

Zuber, 1978).  Another form of Equation 4.16 can be derived in terms of the Peclet number ( ), 

which is the dimensionless ratio of the advection and diffusion terms; as well as the mean tracer 

arrival time (  ) (Equation 4.17).  Definitions of these two parameters are shown in Equations 

4.18 and 4.19 with volumetric injection rate ( ), the cross-sectional area ( ), and porosity ( ).  

For tracer analysis alone, the Peclet number and mean tracer arrival time are used to obtain a 

match for Equation 4.17.  This implies that the parameters are lumped together, which makes it 

difficult to isolate individual values.  Hence, coupling the tracer and temperature data analyses 

will yield a better match by constraining the possible geometric configurations and providing 

more data calibration points.  This can then be used to generate more reliable temperature 

response predictions for different injection schemes. 
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Several studies have modeled the temperature drawdown caused by constant cold water injection 

into a porous channel in hot geothermal systems (Lauwerier, 1955; Gringarten and Sauty, 1975).  

The temperature of the low permeability matrix or host rock is (  ) and the temperature of the 

fluid saturated rock is (  ).  Specific heat capacities (by mass) for the fluid saturated rock and 

water are    and   , respectively.  Densities of the fluid saturated rock and water are    and    

such that (    ) is the saturated rock specific heat capacity by volume as defined in Equation 

4.20.    is the rock thermal conductivity and the other variables related to geometry have the 

same definition as described in the tracer transport section.   

 

Heat is transported by the convection within the porous zone in the x direction and conduction 

from the rock matrix to this permeable zone in the z direction.  One important assumption of this 

model is the instantaneous thermal equilibrium between the rock matrix and the fluid saturated 

rock.  Another assumption is that the rock and fluid properties are constant.  The first boundary 

condition is instantaneous thermal equilibrium and the second boundary condition is constant 

injection temperature on the left side.  Initial conditions for these systems are the same initial 

temperature for the rock matrix and saturated rock (  ) as well as the constant injection 

temperature on the left (    ).  Using iterative Laplace transform, the solution to these two partial 

differential equations can be derived as shown in Equation 4.21.  Typically, the temperature 

drawdown at the producer is defined in terms of the temperature ratio (      ) of the resulting 

temperature decrease due to injection (     ) and the difference between the injection and 

initial temperatures (       ).  In the next section, the results will be discussed. 

                                                    (4.20) 
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4.4 RESULTS FROM COMBINED TRACER AND TEMPERATURE ANALYSIS  

4.4.1 Single Fracture Model 

Available Data 

Results from tracer tests in EGS and conventional fractured geothermal reservoirs have been 

reported frequently in the literature.  However, thermal breakthrough data are not as widely 

published.  For EGS fields, thermal data are obtained usually from long-term circulation tests, as 

for example in Hijiori, Matsunaga et al. (2002) and Matsunaga et al. (2005).  Historic silica 

geothermometer data are used from Palinpinon field which is a conventional liquid-dominated 

reservoir, Maturgo et al. (2010).  Matsukawa is a conventional vapor-dominated field, Fukuda et 

al. (2006).  Table 4.1 provides a summary of the field data used in this study.  The thermal 

breakthrough time tth here corresponds to the time it takes to reach a Tratio of 0.5.   

 

Table 4.1: Thermal and tracer breakthrough times from field data. 

Field Injector Producer tc tth Source 

Days days 

Hijiori HDR-1 HDR-2A 1 175 Matsunaga et al. (2002) 

Matsunaga et al. (2005) HDR-1 HDR-3 4 266 

Palinpinon NJ2RD NJ5D 15 730
1
 Maturgo et al. (2010) 

SG2RD NJ3D 28 365 

Matsukawa M-6 M-8 1.5 146 Fukuda et al. (2006) 

 

As described in the previous section, fracture aperture can be estimated directly from the thermal 

and tracer breakthrough times.  Assumptions for the values of the other parameters are listed in 

Table 4.2.  These are the values assigned to these properties in the estimation of fracture 

aperture.  Actual temperature ratios for the injector-producer pairs derived from long term 

circulation test results are shown in Table 4.3.  Estimated fracture aperture values are given in 

the same table.   

 

Table 4.2: Assumptions used in calculations. 

Rock thermal conductivity Kr 2 W/m-C 

Rock density ρr 2200 kg/m
3
 

Water density ρw 900 kg/m
3
 

Rock heat capacity Cr 0.712 kJ/kg-C 

Water heat capacity Cw 4.342 kJ/kg-C 

                                                 
1
 Assumed that injection in NJ2RD started in 1998 or 1 year before the start of drawdown in NJ5D based on the 

Palinpinon injection and production history discussed by Bayon and Ogena (2005). 
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Results 

To determine the relative temperature for M-6 and M-8 in Matsukawa, a 60
o
C injection 

temperature was assumed.  Estimates of effective fracture aperture b varied from 2.1 cm to 42.6 

cm.  Though the HDR-1 and HDR-2A well pair in Hijiori exhibited the shortest mean tracer 

arrival time, it had the lowest calculated effective aperture value because of the long thermal 

breakthrough time.  This observation demonstrated the value of using both tracer and thermal 

results to constrain the effective aperture.  Using this analytical solution also provided an 

alternative method to characterize the flow path between wells.   

 

Results from finite element heat and mass transfer modeling (FEHM) of the Hijiori field 

demonstrates fracture aperture values of about 2 mm (Tenma et al., 2005).  This is significantly 

lower than the calculated aperture values.  Further investigation of results from aperture 

estimates from numerical modeling will be undertaken.  However, effective fracture aperture 

derived from acoustic imaging logs show a range of values consistent with those calculated.  The 

next section will describe these studies in detail. 

 

Table 4.3: Relative temperature ratios and calculated fracture aperture from thermal and tracer 

breakthrough times. 

Field Injector Producer Tratio 

Calculated b 

cm 

Hijiori 

HDR-1 HDR-2A 0.46 2.1 

HDR-1 HDR-3 0.14 6.9 

Palinpinon 

NJ2RD NJ5D 0.17 15.7 

SG2RD NJ3D 0.07 42.6 

Matsukawa M-6 M-8 0.29
2
 3.5 

 

4.4.2 Porous Channel Model 

Available Data 

Table Table 4.4 lists the injection and production well pairs with tracer and temperature data 

available in published literature. All were used in this study.  Hijiori is an EGS field while 

Palinpinon is a conventional liquid-dominated reservoir.  Tracers test results are often readily 

available in literature; however thermal breakthrough data are infrequent.  In Hijiori, temperature 

data were derived from long-term circulation tests (Matsunaga et al., 2002; Matsunaga et al., 

2005).  Reservoir temperatures for the Palinpinon field were reported by Maturgo et al. (2010).  

Rock and fluid thermal transport properties and fluid densities are assumed to be constant with 

values from Table 4.2. 

 

                                                 
2
 Assumed an injection temperature of 60⁰C 
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Table 4.4: Injection-production well pairs analyzed. 

 

Results 

Results from the nonlinear optimization are shown in Table 4.5.  This nonlinear least squares 

optimization for the coupled tracer and temperature data analysis is a five parameter scenario 

run.  Channel geometry related parameters are the following: half-aperture ( ), height ( ), and 

porosity ( ).  The channel half-aperture ( ) described the degree of heat transfer from the matrix 

to the porous channel.  The total channel pore volume represents the strength of connectivity of a 

well pair.  Saturated pore diffusivity ( ) and equivalent channel injection temperature (    ) are 

related to transport.  Pore diffusivity ( ) is an indication of the amount of diffusion within the 

channel.  Lastly, the equivalent injection temperature (    ) at the channel models the amount of 

fluid mixing with other permeable zones.   

Because it is an EGS reservoir, the Hijiori well pair (HDR-1 and HDR-3) is expected to have a 

lower injection temperature as calculated.  Both Palinpinon field well pairs have high      values 

because they are from a conventional geothermal reservoir, where there are multiple high 

enthalpy feed zones expected.  In terms of pore diffusivity, the Hijiori well pair value is smaller 

by an order of magnitude compared to the other two at 0.01 m
2
/s.  This can be attributed as well 

to the nature of the EGS reservoir, where a few flow paths are present and advective transport 

dominates.  In contrast, relative values of porosities and channel heights are similar for the three 

well pairs.  Porosity values range from 0.15 to 0.19, which is consistent with either secondary 

damage zone or brecciated zone models.  Channel half-aperture values for HDR1-HDR-3 and 

SG2RD-NJ3D well pairs have the same order of magnitude.  On the other hand, NJ2RD-NJ5D 

has the largest half-aperture at 5.64m.  This well pair likewise has the largest pore diffusivity of 

0.230 m
2
/s.  Therefore, one can conclude that this well pair has the greatest connectivity among 

the three. 

 

Table 4.6 shows the parameters derived by Maturgo et al. (2010) from tracer analysis of the same 

Palinpinon field data.  There is significant difference for all the parameters when compared to 

those derived from the nonlinear least squares optimization.  Because it is based solely on tracer 

analysis, one would not be able to match the thermal response using these values.  This illustrates 

the importance of constraining the possible configurations of the porous model.   

 

Field Injector Producer Source 

Hijiori HDR-1 HDR-3 Matsunaga et al. (2002) 

Matsunaga et al. (2005) 
Palinpinon NJ2RD NJ5D Maturgo et al. (2010) 

SG2RD NJ3D 
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Table 4.5: Geometric and fluid flow parameters derived from the five parameter scenario 

analysis. 

 
 

Table 4.6: Geometric and fluid flow parameters from tracer analysis (Maturgo et al., 2010). 

 
Table 4.7 shows the 95 percent confidence intervals of the five parameters used in the nonlinear 

least squares fitting for the HDR-1 (injector) and HDR-3 (producer) well pair using the porous 

model.  The equivalent residual norm ( ) for this case is 0.6745 while the average error is 114 

percent.  Residual norm ( ) is defined as the square of the 2-norm of the residual error vector 

 ⃑  ⃑ .  The results show that both the half-aperture ( ), equivalent injection temperature (    ), 

and channel height ( ) exhibit the highest error percentages.  A high error percent signifies a 

higher uncertainty on the value of the parameter.  Looking at the confidence intervals for  , the 

minimum and maximum values are -1.3m and 2.76m, respectively.  Though the parameters 

values are bounded for the nonlinear optimization, the nonphysical negative values are obtained 

from the high percent errors. The high error percent values can be attributed to the limited 

number of data points in the measured temperature and tracer values as can be observed from the 

residual plot for HDR1-HDR3 (Figure 4.3).   

 

Table 4.7: Confidence interval and percent error values for HDR1(Injector)-HDR3(Producer) 

for the five parameter scenario analysis. 

 

Injector Producer b H ϕ D Tinj 

m m m
2
/s C 

HDR-1 HDR-3 0.73 1246 0.23 0.010 100 

NJ2RD NJ5D 5.64 1296 0.15 0.230 236 

SG2RD NJ3D 0.51 1127 0.19 0.138 259 

 

Injector Producer b H ϕ Tinj 

m m C 

NJ2RD NJ5D 2.44 104 0.10 160 

SG2RD NJ3D 2.18 91 0.10 160 

 

Parameter Minimum Value Maximum % Error

-1.30 0.73 2.76 277

-262 1264 2790 121

0.19 0.23 0.28 20

0.008 0.010 0.011 15

-36 100 236 136
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Figure 4.3 Residual Plot for HDR1(Injector)-HDR3(Producer) for the five parameter scenario. 

 

On the other hand, Table 4.8 shows the 95 percent confidence interval and percent error values 

for the NJ2RD(Injector)-NJ5D(Producer) well pair.  The residual norm ( ) value is 0.5595 and 

the average error is 36 percent.  Compared to the Hijiori case, this well pair exhibits lower errors 

and smaller confidence interval values.  In this scenario, the half-aperture ( ) value ranges from 

0.17m to 11.11m with an average value of 5.64m.  Similar to the HDR1-HDR3 case, the half-

aperture ( ) and height ( ) have the highest error percent values.  Thus, both   and   can take 

on a wide range of values that will satisfy the both the tracer and temperature data sets given.  

However, the injection temperature (    ) for the NJ2RD-NJ5D porous model run has a low error 

of 10 percent.  Aside from     , porosity ( ) and saturated pore diffusivity ( ) values have a 

narrow confidence interval and low error values.  Low error values indicate that the calculated 

parameters are unique.  The residual plot (Figure 4.4) shows higher residual errors for 

temperature values as compared to tracer values.  This trend is expected because temperature 

measurements have higher measurement error ranges than tracer concentration data. 
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Table 4.8: Confidence interval and percent error values for NJ2RD(Injector)-NJ5D(Producer) 

for the five parameter scenario analysis, 

  

 
Figure 4.4 Residual plot for NJ2RD(Injector)-NJ5D(Producer) for the five parameter scenario. 

 

For the SG2RD-NJ3D well pair from the Palinpinon geothermal field, the confidence interval 

and error values are shown in Error! Reference source not found.Table 4.9.  The residual norm 

is 2.2260 and the average error is 133 percent.  Consistent with the other two well pairs, the half-

aperture ( ) value had the highest percent error.  Moreover, the channel height ( ) had the 

second highest error value.  Conversely, the porosity error value of 93 percent is higher than that 

from the other well pairs.  As expected, the residual plot for the SG2RD-NJ3D well pair (Figure 

4.5) also showed significant residual error values.  From this plot, it can be observed that the 

temperature value residual errors values are significantly higher than for the tracer ones.     

 

Parameter Minimum Value Maximum % Error

0.17 5.64 11.11 97

563 1296 2029 57

0.14 0.15 0.16 8

0.213 0.230 0.246 7
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Table 4.9: Confidence interval and percent error values for SG2RD(Injector)-NJ3D(Producer) 

for the five parameter scenario analysis. 

 

 

 

Figure 4.5 Residual plot for SG2RD(Injector)-NJ3D(Producer) for the five parameter scenario. 

 

Figure 4.6 shows the normalized tracer response (      ) curve fit versus time using the 

parameters for the HDR-1 and HDR-3 well pair.  The tracer response curve is flat with no sharp 

peaks.  On the other hand, Figure 4.7 shows the thermal response curve fit.  Red circles are the 

measured data points while the blue line represents the optimized curve.  Overall, a good match 

can be observed.  However, because all the data points are honored by the optimization, outliers 

force the match towards the middle of all the data.  This is more pronounced in the temperature 

data because they are generally more scattered.  The same phenomenon can be observed for the 

normalized tracer concentration (Figure 4.8) and temperature response (Figure 4.9) curve fit for 

the NJ2RD-NJ5D well pair.  For this case, the typical single peak tracer returns behavior with a 

tail can be observed.  Aside from meeting the objective function tolerance per step, the tracer 

return curve fit should match the peak concentration time effectively.  Measured thermal 

response data for this well pair are also slightly scattered but a sufficient match is obtained.  

Similarly, a standard tracer return profile can be noticed for the SG2RD-NJ3D well pair (Figure 

Parameter Minimum Value Maximum % Error

-1.65 0.51 2.68 422

-333 1127 2587 130

0.01 0.19 0.36 93

0.113 0.138 0.163 18

250 259 269 4
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4.10).  The resulting model matches this extremely well.  Equivalent thermal response curve fit is 

shown in Figure 4.11.  There is significant scattering of measured data but the model still 

matches them adequately.  

 

 

Figure 4.6 Normalized tracer response curve fit for HDR1(Injector)-HDR3(Producer) for the 

five parameter scenario. Measured data points are in red while the analytical model 

result is represented by the blue line. 
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Figure 4.7 Thermal response curve fit for HDR1(Injector)-HDR3(Producer) for the five 

parameter scenario  

 

Figure 4.8 Normalized tracer response curve fit for NJ2RD(Injector)-NJ5D(Producer) for the 

five parameter scenario. 
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Figure 4.9 Thermal response curve fit for NJ2RD(Injector)-NJ5D(Producer) for the five 

parameter scenario. 

 

Figure 4.10 Normalized tracer response curve fit for SG2RD(Injector)-NJ3D(Producer) for the 

five parameter scenario. 
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Figure 4.11 Thermal response curve fit for SG2RD(Injector)-NJ3D(Producer) for the five 

parameter scenario. 

4.4.3 Porous Channel Model with Scaling Correlations 

Scaling Correlations 

Table 4.10 describes the scaling correlation coefficient values derived from literature.  These are 

values derived from fitting of data for opening mode joints across various length scales. The 

expression found in literature follows the form given in Equation 4.22.    In Equation 4.22,      

is the maximum total aperture of the fracture which is equivalent to twice the maximum half-

aperture value (    ).    and   are the scaling constant coefficient and scaling exponent or 

fractal dimension, respectively.  To convert these scaling coefficients from literature to the 

standard form, the ratio of the measured half-aperture ( ) to the maximum value (    ) must be 

taken into account as shown in Equation 4.23.  Hence, the equivalent definition of the scaling 

constant coefficient ( ) is given in Equation 4.24. 

 

                                                                 (4.22) 

  
 

 
      

 

 
                                                   (4.23) 

  
 

 
                                                         (4.24) 

 

Table 4.10: Scaling correlation coefficients found in literature 
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These scaling coefficients were used as an additional constraint in the nonlinear least squares 

optimization of the coupled tracer and temperature data analysis.  Each scaling coefficients 

combination was treated as a separate scenario run.  Aside from scaling correlation scenarios, the 

equivalent value of   and   were determined using nonlinear least squares optimization.  The 

half-aperture ( ) can be replaced by the scaling coefficients (  and  ).  Hence, the six 

parameters during optimization include the following: channel height ( ); porosity ( ); saturated 

pore diffusivity ( ); equivalent injection temperature (    ); scaling constant coefficient ( ); and 

scaling exponent ( ).  In other words, this six parameter scenario depicts the determination of the 

relationship between the half-aperture ( ) and the channel height ( ) by obtaining the equivalent 

scaling coefficients   and  .   

 

Table 4.11 shows the equivalent values of the scaling coefficients determined from the nonlinear 

least squares optimization of the coupled tracer and thermal data analysis with bounded 

parameters.  The scaling exponent or fractal dimension ( ) value ranges from 0.64 to 1.00 which 

is within the range of values obtained from literature described in the previous subsection.  

Furthermore, the scaling coefficient ( ) is also within the specified range from literature. 

 

Table 4.11: Equivalent scaling coefficients from nonlinear optimization. 

 

Results 

This subsection describes the use of scaling correlations to relate the fracture half-aperture ( ) to 

the channel length (L).  Scaling correlation coefficients were obtained from reported values 

empirically determined in literature as described in the previous subsection.  Thus, the number of 

fitting parameters to be determined reduced from six parameters to four parameters in total.  

These model fitting parameters are the following: channel height ( ); porosity ( ); saturated 

pore diffusivity ( ); and equivalent injection temperature (    ).  For each of the three well pairs, 

three scenarios with different sets of scaling coefficients were used (  and  ).   

 

Table 4.12 shows the 95 percent confidence interval and percent error values for the HDR1-

HDR3 well pair using            (Scholz, 2010).  Percent error values for this case are lower 

than that of the five- parameter model.  The residual norm for this scenario is 0.8219 and the 

average error is 24.85 percent.  The maximum residual error values for both tracer and 

temperature data sets are lower for            (Scholz, 2010) as shown in Table 4.13.  

Average error for this scenario is slightly higher than for            at 28.7 percent.  On the 

other hand, the residual norm is lower at 0.6889.  Finally, the last scaling correlation is   
            from Olson (2003).  Table 4.14 lists the confidence interval estimates and percent 

error values for each of the matching parameter.  The average error value for this scenario is 22.7 

percent which is less than the values for the other two scaling correlation scenarios. 

 

α    β Well Pair 

0.0117 0.85 HDR1-HDR3 

0.0039 1.00 NJ2RD-NJ5D 

0.0011 0.64 SG2RD-NJ3D 
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All three scaling correlations used for the four parameter model fitting for the HDR1-HDR3 well 

pair showed the same value of the saturated pore diffusivity ( ) at           and equivalent 

injection temperature (    ) at 100C.  Moreover, there was also a narrow range for the 

determined porosity ( ) values from 0.13 to 0.23.  In contrast, the channel height ( ) values 

adjusted with the scaling correlation.  For scaling correlations with low scaling constant 

coefficient ( ), the channel height values were higher as can be seen from the            

case.   

 

Table 4.12: Confidence interval and percent error values for HDR1(Injector)-HDR3(Producer) 

using                 (Scholz, 2010). 

 

Table 4.13: Confidence interval and percent error values for HDR1(Injector)-HDR3(Producer) 

using                 (Scholz, 2010). 

 

Table 4.14: Confidence interval and percent error values for HDR1(Injector)-HDR3(Producer) 

using                    (Olson, 2003). 

 

Average error is 11.30 percent while the residual norm is 0.5597 for the NJ2RD-NJ5D well pair 

using            (Scholz, 2010).  All of the parameters have error values less than or equal to 

15 percent as shown in Table 4.15.  The narrow range of parameter values for the 95 percent 

confidence intervals show the uniqueness of the values.  Using            from Scholz 

(2010), has a lower average error value of 7.43 percent with a residual norm of 0.5979.  

Confidence interval estimates and error values are shown in Table 4.16.  For this scenario, the 

equivalent injection temperature (    ) has the lowest average error of two percent.  The Olson 

(2003) scaling correlation is             .  Table 4.17 lists the confidence interval estimates 

and error values for this scenario with an average error value of 8.64 percent.   

 

Similar to the HDR1-HDR2 well pair, both the saturated pore diffusivity ( ) and equivalent 

injection temperature (    ) values remained the same for all scenarios.  Diffusivity value from 

Parameter Minimum Value Maximum % Error

1023 1367 1712 25

0.19 0.23 0.27 17

0.008 0.010 0.011 15

58 100 142 42

     

 

        

         

Parameter Minimum Value Maximum % Error

2171 2668 3164 19

0.11 0.13 0.16 19

0.008 0.009 0.011 17

40 100 160 60

     

 

        

         

Parameter Minimum Value Maximum % Error

849 1120 1391 24

0.19 0.23 0.28 18

0.008 0.010 0.011 15

67 100 133 33
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optimization was 0.229 m/s
2
 to 0.230 m/s

2
 and the      was 197C to 244C.  Additionally, the 

porosity ( ) also remained relatively constant for all three scenarios with a value of 0.14 to 0.15.  

There was also a close correspondence between the channel height ( ) and the resulting half-

aperture ( ).  Higher equivalent half-aperture ( ) values lead to higher channel height values ( ). 

 

Table 4.15: Confidence interval and percent error values for NJ2RD(Injector)-NJ5D(Producer) 

using                 (Scholz, 2010). 

 

Table 4.16: Confidence interval and percent error values for NJ2RD(Injector)-NJ5D(Producer) 

using                 (Scholz, 2010). 

 

Table 4.17: Confidence interval and percent error values for NJ2RD(Injector)-NJ5D(Producer) 

using              (Olson, 2003). 

 

The average error curve fit using            (Scholz, 2010) for the SG2RD-NJ3D well pair is 

still acceptable at 13.46 percent but the residual norm can be considered high at 2.2265.  

Confidence interval ranges and the average error values for the parameters are listed in Table 

4.18. A narrow range of values can be observed for all parameters with the equivalent injection 

temperature (    ) having the smallest average error.  For the            case (Scholz, 2010), 

the average error is lower at 12.78 percent and the residual norm is slightly higher at 2.8291.  

Despite the relatively high error values for temperature, narrow confidence intervals can be 

observed from Table 4.19.  Looking at the              (Olson, 2003) scenario, the average 

error for this scenario is 14.07 percent and the residual norm is 2.3025.  Table 4.20 describes the 

confidence intervals as well as the average error values for this run.  Overall, the average error 

values of the parameters for this scenario are higher than that of the other scaling correlations 

except for the equivalent injection rate (    ).   

 

Because the calculated channel height ( ) is significantly less than the distance between wells 

( ), three additional scaling correlations scenarios are done using   instead of  .  The first 

Parameter Minimum Value Maximum % Error

2122 2507 2892 15

0.13 0.14 0.15 8

0.212 0.229 0.246 7

169 197 226 15

     

 

        

         

 

Parameter Minimum Value Maximum % Error

793 904 1014 12

0.14 0.15 0.17 8

0.213 0.229 0.246 7

239 244 250 2

     

 

        

         

 

Parameter Minimum Value Maximum % Error

1455 1684 1914 14

0.14 0.15 0.16 8

0.213 0.230 0.246 7

211 224 237 6
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scenario is            from Scholz (2010).  The average error is 12.22 percent and the 

residual norm is 2.2264.  Confidence intervals and average error values are shown in Table 4.21.  

Scenario two uses            (Scholz, 2010).  In this scenario, the average error is 12.05 

percent and the residual norm is 2.2838.  Table 4.22 shows the confidence intervals and average 

error values of the matching parameters.  The third scenario employs              (Olson, 

2003).  Confidence intervals and error values for all the parameters are given in Table 4.23 with 

an average error value of 13.15 percent and a residual norm of 2.2779. 

 

Overall, the average error values were significantly less for the scaling correlations related to the 

channel height ( ) than from the channel length ( ).  There is also a narrow range of values 

across all the scenarios for the saturated pore diffusivity ( ), porosity ( ) and equivalent 

injection temperature (    ) as evidenced by the consistent small error percent for these.  

Consistent with the other well pairs, the value for the half-aperture ( ) and channel height ( ) 

are closely related.  Scaling correlations which lead to lower half-aperture ( ) values also have 

higher channel height values ( ).  Thus, the channel height ( ) compensates for the adjustments 

in the half-aperture ( ) value. 

 

Table 4.18: Confidence interval and percent error values for SG2RD(Injector)-NJ3D(Producer) 

using                 (Scholz, 2010). 

 

Table 4.19: Confidence interval and percent error values for SG2RD(Injector)-NJ3D(Producer) 

using                 (Scholz, 2010). 

 

Table 4.20: Confidence interval and percent error values for SG2RD(Injector)-NJ3D(Producer) 

using                    (Olson, 2003). 

 

Parameter Minimum Value Maximum % Error

795 1075 1356 26

0.17 0.19 0.22 13

0.121 0.139 0.156 12

253 260 267 3

     

 

        

         

 

Parameter Minimum Value Maximum % Error

609 768 926 21

0.20 0.24 0.27 14

0.121 0.140 0.160 14

249 256 262 3

     

 

        

         

 

Parameter Minimum Value Maximum % Error

390 559 729 30

0.20 0.23 0.25 12

0.123 0.140 0.158 13

262 266 269 1
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Table 4.21: Confidence interval and percent error values for SG2RD(Injector)-NJ3D(Producer) 

using           (Scholz, 2010). 

 

Table 4.22: Confidence interval and percent error values for SG2RD(Injector)-NJ3D(Producer) 

using           (Scholz, 2010). 

 

Table 4.23: Confidence interval and percent error values for SG2RD(Injector)-NJ3D(Producer) 

using              (Olson, 2003) 

 

4.4.3 Predicted Thermal Drawdown Comparison 

Figure 4.12 shows the comparison of the HDR1-HDR3 well pair thermal drawdown predictions 

over ten years for the different model configurations.  Here, the low injection case scenario is 

used with an injection rate ( ) of   
  

 
 or      

  

 
.  Equivalent injection temperature is 150C 

and the initial temperature is 250C.  The most optimistic model is the            (Scholz, 

2010) case because it results to the smallest value of the half-aperture ( ).  This small value 

improves the heat conduction from the hot matrix rock towards the porous channel or fracture.  

Among the porous channel models, the              (Olson, 2003) case gives the most 

pessimistic thermal drawdown forecast.  This can likewise be attributed to the higher half-

aperture ( ) value for this run.  Overall, the fracture model has the lowest predicted temperature 

drawdown.  For this model, the total temperature decline is 70C over a period of ten years.  

Having all the different model configurations enables one to cover the uncertainty range in the 

expected temperature decline caused by a particular injector to a producer.   

 

Parameter Minimum Value Maximum % Error

0.37 0.46 0.55 19

954 1174 1394 19

0.16 0.18 0.21 14

0.120 0.138 0.155 13

252 259 267 3

     

 

        

         

     

Parameter Minimum Value Maximum % Error

1.89 2.44 2.99 22

482 621 761 22

0.20 0.22 0.25 12

0.122 0.140 0.157 12

262 265 268 1

     

 

        

         

     

Parameter Minimum Value Maximum % Error

1.99 2.26 2.48 10

480 653 827 27

0.20 0.22 0.25 12

0.123 0.140 0.157 12

261 264 268 1
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Figure 4.12: Temperature drawdown curves for HDR1(Producer)-HDR3(Injector): low injection 

case (q=0.020 m
3
/s; Tinj=150C; To=250C). 

 

For the NJ2RD-NJ5D well pair case, there is another porous channel model derived from tracer 

tests alone (Maturgo et al., 2010).  Figure 4.13 shows the results for the low injection case 

scenario using the same set-up as in the HDR1-HDR3 case.  Contrary to the result for HDR1-

HDR3, the fracture model has the most optimistic thermal drawdown prediction with just a 10C 

temperature drop in ten years.  The fracture model has the smallest fracture aperture which 

increases heat transfer through conduction from the rock to the fluid in the fracture.  Among the 

porous channel models, the            (Scholz, 2010) case has the most optimistic thermal 

drawdown prediction.  This model has a 40C temperature decline in ten years.   

 

As expected, the model based on tracer data alone gave the most pessimistic temperature 

drawdown forecast.  The temperature drops drastically from 250C to 160C after four months of 

150C injection.  This demonstrates the value of using more than one data set to constrain the 

model dimensions further.  Coupled analysis of tracer and temperature data sets allows one to 

obtain a more robust model that can be used to predict future well response more effectively.       

 

0 1 2 3 4 5 6 7 8 9 10
170

180

190

200

210

220

230

240

250

time, years

T
, 
C

Temperature drawdown curve for HDR1(Inj)-HDR3(Prd)

 

 

Porous Model (nonlinear optimization)

Scaling Correlation: b=0.0004 L1 (Scholz,2010)

Scaling Correlation: b=0.0039 L1 (Scholz,2010)

Scaling Correlation: b=0.1689 L0.40 (Olson,2003)

Fracture Model



167 

 

 

Figure 4.13: Temperature drawdown curves for NJ2RD(Producer)-NJ5D(Injector): low 

injection case (q=0.020 m
3
/s; Tinj=150C; To=250C). 

 

Figure 4.14 shows the temperature drawdown curve for SG2RD-NJ3D using the different model 

configurations in this study for the low injection rate case.  This plot also includes the tracer-

derived model by Maturgo et al. (2010).  The low injection rate case has an injection rate ( ) of 

  
  

 
 or      

  

 
, injection temperature (    ) of 150C, and initial reservoir temperature (  ) of 

250C.  Dotted lines represent model configurations that use the channel height ( ) instead of the 

channel length ( ) for the scaling correlations.  Among all the models, the fracture model has the 

least amount of temperature drop of 4C after ten years of injection.  On the other hand, the model 

derived solely from tracer data (Maturgo et al., 2010) exhibited the fastest temperature decline.  

This behavior is similar to the observations for the NJ2RD-NJ5D well pair.  All the porous 

models have endpoint temperature predictions within 172C to 190C.  For this group, the most 

pessimistic model is            (Scholz, 2010) because it has the highest aperture value. 
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Figure 4.14: Temperature drawdown curves for SG2RD(Producer)-NJ3D(Injector): low 

injection case(q=0.020 m
3
/s; Tinj=150C; To=250C). 

4.5 SCALING CORRELATIONS AND GEOMECHANICS CONCEPTS 

4.5.1. Aperture Related Scaling Correlations  

Olson (2003) describes the different mechanisms that lead to linear and sublinear scaling of 

aperture versus length for opening mode cracks.  The two most relevant linear elastic fracture 

mechanics (LEFM) equations are the following: 
    

 
   

 (    )

 
 [     ]

 (    )

 
   (4.25) 

 

   
  

√
  

 

  (4.26) 

Equation 4.25 describes the relationship of the aperture (      to the fracture length ( ) for non-

interacting opening mode fractures under plane strain conditions (Pollard and Segall, 1987).  The 

other relevant parameters are: opening mode driving stress (  ), Poisson’s ratio ( ), and 

Young’s modulus (  .  Another definition for the driving stress is  (     ) where,    is the 
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internal fluid pressure and    is the remote normal compressive stress perpendicular to the crack.  

Furthermore, the driving stress (  ) for a uniformly loaded fracture can be expressed in terms of 

the stress intensity factor at the crack tip (  ) and fracture length ( ) as shown in Equation 4.26. 

 

       
 (    )

 
       (4.27) 

 

Linear scaling can be derived from Equation 4.10 assuming a constant driving stress condition 

(Equation 4.27).  Additionally,   is a constant representing material properties and external 

stress conditions.  The possibility of reaching an unstable dynamic crack growth condition 

increases as the crack propagates.  This is because at constant driving stress, the stress intensity 

factor (  ) is proportional to the fracture length ( ) (Equation 4.26).  Moreover, the minimum 

requirement for crack propagation is for    to be equal to the intrinsic fracture toughness of the 

material (   ).  Therefore, extensive crack tip branching behavior should be observed where 

linear scaling is applicable.  Olson (2003) states that this is only possible when there is relaxed 

loading such as after propagation.  In contrast, Scholz (2010) argues that this is the predominant 

mode of scaling based on the reanalysis of data.  Calculated ( ) values range from 0.1 to 0.001 

(Scholz, 2010). 

           

     
   (    )

 √ 
 ⁄

 √   (4.28) 

 

On the other hand, Olson (2003) claims that sublinear scaling is considered to be the most 

prevalent mechanism for most geologic conditions.  Furthermore, Olson and Schultz (2011) 

insist that square root scaling provides the best fit for each data set.  Sublinear or square root 

scaling can be derived from the assumption of constant stress intensity factor (  ) equal to the 

intrinsic fracture toughness of the material (   ) for critical crack propagation as presented in 

Equation 4.28 (Olson, 2003).   Fracture arrest will occur once the internal fluid pressure goes 

down or the remote stresses are relieved due to propagation.  In addition, sublinear scaling can 

also happen for subcritical crack growth where the rock has less resistance to failure due to 

corrosive fluids and long-term loading.   

                      

         (4.29) 

     
 

 
          (4.30) 

 

Fracture data from various fields across multiple length scales (1 cm to 2 km) were fitted to a 

power law equation (Equation 4.29).  The maximum aperture (    ) can be derived from the 

measured aperture (         ) using Equation 4.30 for an elliptical opening distribution.  Here, 

  was the scaling exponent and   was a constant.  Values calculated by Olson (2003) for   

ranged from 0.38 to 0.41.  The deviation from the predicted exponent value of 0.5 could be due 

to several other interfering factors.  One example of this was the mechanical interaction of 

multisegment features.  Thus, overlapping multisegment fractures would behave like one long 

fracture.  Another was the presence of strata boundaries such that the aperture scales with the 

fracture height ( ) instead of length ( ).   
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Renshaw and Park (1997) examined data from the Krafla fissure swarm in Iceland and observed 

a break in slope for the aperture ( ) versus length ( ) when   reaches the maximum value.  They 

postulated that this threshold value was the length at which the smaller apertures were affected 

by stress perturbations of larger fractures.  Superlinear scaling was observed for smaller fractures 

while linear scaling was observed for larger ones. 

 

Ishibashi et al. (2012) evaluated the scale dependency of various parameters such as: tortuosity, 

permeability, fraction of area contacted by fluid, and the geometric mean of the aperture.  This 

was done using confined pressure flow experiments and subsequent numerical modeling of 

sheared versus mated fracture planes in multiple scales (37.5 cm
2
, 150 cm

2
, and 600 cm

2
).   

These fracture planes were created in a cube of Inada granite from Ibaraki, Japan using a wedge 

with a shear displacement of 5 mm in the radial direction for the sheared fracture.  Their results 

showed that for the mated fracture, there was a scaling effect only for tortuosity and the mean 

aperture.  On the other hand, sheared fractures planes exhibited sublinear scaling for all the 

parameters examined except for the fluid contacted area fraction.  Moreover, channeling flow 

within the fracture plane was observed due to a log-normal distribution of aperture within it.  

Therefore, high aperture connections would be the dominant flow paths such that the contacted 

area fraction would not depend on the scale.  Another important finding of this study was that 

sheared fractures had calculated permeability values that were three orders of magnitude higher 

than the equivalent mated one even though the shear displacement was just 5mm.    This was 

consistent with the notion that sheared fracture planes models were more appropriate than 

opening mode ones for fractures obtained through borehole imaging. 

4.5.2. Density Related Scaling Correlations  

Density-Aperture Scaling 

Statistical analysis of borehole imaging data from the Soultz Geothermal Field revealed an 

inverse linear scaling of fracture density and mean width across scales ranging from 1 to 1000 

cm with a fractal dimension of 1.04 (Massart et al., 2010).  Strong clustering was inferred from 

the low fractal dimension value.    This result was consistent with Marrett et al. (1999), which 

analyzed data sets from natural faults and extension fractures and validated that the data follow 

power-law scaling in multiple-observational scales.  Results from their study showed that the 

power-law scaling applied across six ranges of scale within reasonable uncertainty limits.  

Therefore, zones with higher fracture aperture values would have smaller fracture density values.  

Based on this, regions with fluid entry zones should have lower fracture densities. 

 

Sammis et al. (1991) observed the same behavior at the Geysers Geothermal Field where it was 

found that fracture patterns in shear zones exhibited fractal geometry.  Fracture networks on an 

outcrop from a freshly cut vertical wall (dm scale) were mapped and analyzed for the fractal 

dimension using the box counting method.  The calculated fractal dimensions had values that 

ranged from 1.87 to 1.926 (Sammis et al., 1991).  Two additional maps from larger scales were 

analyzed for self-similarity (Sammis et al., 1992).  One was from a road-cut outcrop (m scale) 

and the other was from a regional map of the area (km scale).  Density versus fracture length 

scaling was likewise observed in all length scales.  It was observed from core analysis that most 

of the small fractures were sealed.  One conclusion was that transport occurred through large 

shear fractures.   
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Damage Zone Fracture Density-Perpendicular Fault Distance Scaling 

Fracture density scaling in damage zones of the San Andreas Fault and faults in the Suban Gas 

Field were investigated by Johri et al. (2012).  Image and geophysical logs were used to ascertain 

properties of the damage zones at depth.  It was found that the damage zone fracture density (F) 

versus perpendicular distance from the fault (r) followed an inverse power-law scaling behavior 

(Equation 4.31).  Fo was the fault constant and n was the fractal dimension.  Based on the data, n 

had values from 0.68 to 1 with an average value of 0.8.  This fractal dimension was dependent on 

the lithology.   

 
n

orFF 
 (4.31) 

 

Paul et al. (2009) used dynamic-rupture propagation modeling to calculate the scope of damage 

zone along a fault for the CS field located between Australia and Indonesia.  Secondary faults 

developed were oriented parallel to the major fault with higher dip angles.  These faults, 

therefore, were at an optimal orientation for failure.  This meant that they would be conduits for 

flow as described by Barton et al. (1995).  Similar to Johri et al. (2010), this study found that 

damage intensity decreases with distance from the fault plane.   Higher permeability values 

would be expected in the direction parallel to the strike of the major fault.  In contrast, the 

direction perpendicular to the fault strike would have lower permeability if the fault were sealing 

due to a well-developed core.  This would create field-scale permeability anisotropy that must be 

taken into account for reservoir simulation as modeled by Paul et al. (2011).  Inclusion of fault 

damage zones in reservoir simulation led to a better history match and the uncertainty in 

simulation was investigated using multiple equally probable models (Paul et al., 2011). 

  

Figure 4.15 describes the schematic for the parallel network configuration of porous channels to 

model this anisotropy.  An equivalent inverse power-law scaling of the damage zone 

permeability with distance is shown in Equation 4.32.  kD is the damage zone permeability at a 

distance (y) away from the fault, ko is the permeability right outside the core, and km is the low 

fault core permeability.   To characterize the field-scale anisotropy, an approximate equivalent 

permeability for flow in the x (
xk ) and y ( yk ) directions can be derived (Equations 4.33 and 

4.34) where, u is the velocity, µ is the fluid viscosity, and p is the pressure.  Assuming that c is 

very small compared to the total width of the damage zone, equivalent parallel (x direction) and 

series (y direction) permeability values are defined by Equations 4.35 and 4.36, respectively.  

Expressing these two equations in integral form and substituting the inverse power-law scaling 

correlation, Equations 4.37 and 4.38 can be derived.  For the x direction or flow parallel to the 

strike of the fault, the permeability increases with damage zone width (WT) and decreases with 

core width (c).  In addition, the matrix permeability has little effect on the overall permeability 

because flow in this direction can go through the other more permeable zones.  However, flow in 

the y direction perpendicular to the fault plane exhibits a possible sealing effect when the fault 

core permeability (km) is very small.   
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Figure 4.15 Schematic for a fault damage zone model. 
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4.5.3. Fractal Dimension Determination 

Sammis et al. (1991) also observed that fracture patterns in shear zones were self-similar which 

meant that they could be characterized using fractal geometry.  This rendered classical 

differential equations of transport for non-fractal media as inadequate.  Hence, fracture networks 

on an outcrop from a freshly cut vertical wall (dm scale) were mapped and analyzed for the 

fractal dimension using the box counting method.  Results confirmed self-similarity with the 

calculated fractal dimensions ranging from 1.87 to 1.926 (Sammis et al., 1991).   

 

On a follow-up study (Sammis et al., 1992), similarity was investigated for other scales by 

analyzing two additional maps from larger scales.  The first was from a road-cut outcrop (m 

scale) and the other was from a regional map of the area (km scale).  Density versus fracture 

length scaling was observed in all length scales.  Core observations were also performed.  It was 

observed that most of the small fractures are sealed so a tentative conclusion was that transport 

occurs through large shear fractures.  Using statistical analysis of the steam zone distributions, it 

was determined that the spacing of the relevant fractures was between 300 and 900 m (Sammis et 

al., 1992).  Lastly, depths with high rate of penetration (ROP) over short distances in drilling logs 

were consistent with steam feed zone locations because they represent highly sheared rocks. 

 

Different fractal analysis methods on various scales for two geothermal reservoirs, Germencik 

and Kizildere, in southwestern Turkey were done by Babadagli (2000).  Analysis was done on 

four scales.  Aerial photographs were used for the km scales and the calculated fractal 

dimensions were 1.575 and 1.583.  Similarly, outcrop photos were used for the m scale and 

fractal dimensions ranged from 1.07 to 2.  Furthermore, rock samples were analyzed for the cm 

scale which resulted to a fractal dimension range of 1.161 to 1.257.  Lastly, thin sections were 

examined for the micrometer scale and the fractal dimension ranged from 1.011 to 1.039.  

Overall, linear scaling was consistently observed across all scales.   

 

Tateno et al. (1995) studied cores from the Kakkonda geothermal field and also concluded that 

the fractures can be described by fractals.  Another conclusion was that fractal dimensions varied 

with the fracture type and location due to the difference in fracture formation processes.  

Calculated fractal dimensions ranged from 0.38 to 0.53. 

4.5.4. Critically-Stressed Fault Identification 

Equation 4.39 describes the critical shear stress magnitude for frictional sliding of faults using 

the Coulomb failure criterion (Zoback, 2007).  Here, µ is the coefficient of friction along the 

plane and S is the cohesion.  Normal and shear stresses on the plane are σN and τ, respectively.  

Pp is the pore pressure within the fault.  Faults are optimally oriented when the stress ratio of 

shear and effective normal stresses   pN P /  is at a maximum.  Assuming that there is no 

cohesion and using a normal faulting regime (applicable to all the field cases in this study), 

sliding will occur at a critical minimum horizontal compressive stress value (
crithS min

) shown in 
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Equation 4.40.  Here, µ is the coefficient of friction of preexisting faults.  For conjugate normal 

faults, the critical stress orientation has a strike parallel to the maximum horizontal principal 

stress (SHmax) and a dip of 60 degrees for µ=0.6 (Zoback, 2007).       
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Pore pressure versus depth can be calculated from the water density versus depth logs.   Typical 

values used for µ range from 0.6 to 1.0 (Zoback, 2007; Hickman et al., 1997).  The magnitude of 

the minimum horizontal compressive stress (Shmin) can be determined from the instantaneous 

shut-in pressure (ISIP) (Hickman et al., 1997; Zoback, 2007).  It is the pressure, after the well is 

shut-in during hydraulic fracture tests, at which the pressure drawdown curve deviates from the 

initial linear behavior.  Contrary to this, the magnitude of SHmax is harder to obtain.  SHmax values 

can be constrained using a stress polygon with the following information: presence or absence of 

wellbore breakouts and tensile fractures; rock strength; and faulting regime (Zoback, 2007).  

Overburden stress (Sv) can be derived from geophysical density logs and laboratory 

measurement of surface rock density (Hickman et al., 1997).  In terms of orientation, drilling-

induced tensile fractures along the borehole wall occur when the stress concentration around the 

wellbore becomes greater the tensile strength of the rock (Barton et al., 2009).  These will 

propagate parallel to the direction of SHmax and perpendicular to Shmin (Zoback, 2007; Barton et 

al., 2009; Hickman et al., 1997).   

4.6 CORRELATION OF FRACTURE PROPERTIES AND LITHOLOGY TO 

PERMEABLE ZONE LOCATIONS  

Characterization of fluid flow in fractures is an important area of study in geothermal reservoir 

engineering.  Overall permeability in these reservoirs is fault-dominated (Massart et al., 2010).  

Relevant fracture parameters to fluid flow are: orientation, aperture, extension, and density.  

These parameters influence transport and thermal behavior of the reservoir, both in enhanced 

geothermal systems (EGS) and in conventional hydrothermal systems.  Recent advances in 

borehole imaging technology have made it possible to measure fracture properties with greater 

accuracy.   

 

For the Wairakei geothermal field, McLean and McNamara (2011) used a high temperature 

acoustic formation imaging tool (AFIT) to collect fracture data.  Confidence, azimuth, and 

amplitude filters were applied to the data prior to analysis.  A borehole televiewer (BHTV) 

similar to AFIT was used in the Desert Peak EGS project.  In addition, formation microscanner 

(FMS) image logs were utilized (Devatzes, 2009).  Published fracture data from various 

geothermal fields were collected and analyzed.  Data sets examined for this study were fracture 

aperture, density, and orientation.  These were then compared to locations of feed zones to 

determine their correlation with fluid flow properties.   
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4.6.1 Fracture Aperture 

Fracture data from the various geothermal fields showed consistent correspondence between 

fracture apertures and feed zone locations for most of the data points.  In Wairakei, fracture 

apertures for the feed zones ranged from 10 to 60 cm in wells WK-404, WK-318, and WK-407 

(McLean and McNamara, 2011) as shown in Figures 4.16 to 4.18.  Moreover, it was found that 

the narrower azimuth filter yielded a better match of large fractures to permeable zones.  There 

were some cases, however, where the depths of the permeable zones from completions testing 

did not align perfectly with the large aperture fractures.  Minor depth discrepancies can be 

attributed to wireline stretching and slight depth measurement errors between logging runs.   

 

A similar trend was observed from the Desert Peak data.  Collected data included the following: 

permeable zone locations, PTS data, and fracture apertures from borehole imaging data.  Because 

the injection rate used was small and the well diameter was large, spinner data could not be 

interpreted (Devatzes and Hickman, 2009).  Thus, temperature gradient anomalies were used to 

identify permeable zones.  Data for well 27-15 (Figure 4.19) had aperture values from 1 to 10 cm 

at fluid entry zones (Devatzes and Hickman, 2009).   

 

There are two possible explanations for this observation.  Using a parallel-plate model, fracture 

permeability is proportional to b
2
, where b is the fracture aperture (Jourde et al., 2002).  Fluid 

entry, associated to fractures in geothermal reservoirs, occurs at depths with high permeability.  

Therefore, permeable zone locations will be at depths with high apertures.  Another rationale is 

the power-law scaling between joint length and width described by Scholz (2010).  He argues 

that for opening mode in rocks, fracture toughness scales linearly with √L and b scales linearly 

with L, where L is the length.  Therefore, a larger fracture width will correspond to a longer 

fracture which implies a farther reach for the fluid source.   

 
Figure 4.16 Fracture aperture (red) and temperature versus depth for well WK-404 in the 

Wairakei Geothermal Field (McLean and McNamara, 2011) 
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Figure 4.17 Fracture aperture (red), temperature, and spinner velocity (blue) versus depth log 

for well WK-317 in the Wairakei Geothermal Field (McLean and McNamara, 2011) 

 
Figure 4.18 Aperture (red) and spinner velocity (blue) versus depth log for well WK-407 in the 

Wairakei Geothermal Field (McLean and McNamara, 2011) 
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Figure 4.19 Well Log data for well 27-15 in the Desert Peak Geothermal Field, Nevada.   Yellow 

diamonds indicate feed zones derived from temperature anomalies and spinner 

velocities (Devatzes and Hickman, 2009)  

4.6.2 Fracture Orientation 

For the Wairakei Geothermal Field (McLean and McNamara, 2011), two additional azimuth 

filters were employed to include only fractures at optimal orientations.  Here, structures were 

controlled by normal faulting so the optimal fault orientation was parallel or subparallel to SHmax.  

Based on the direction of drilling induced tensile fractures, the SHmax orientation ranged from 035 

to 045 degrees strike. Azimuth filters utilized were 45 degrees and 30 degrees from this SHmax 

direction.  This filtering narrowed the fault orientations to those that were critically-stressed in 

the current stress regime and would therefore be most likely slip.  Permeable zones in this study 

followed the dominant SHmax direction within 30 degrees with steep average dips ranging from 

66 to 84 degrees.      

 

Hickman et al. (1997) investigated the relationship between permeable zones from temperature 

gradient anomalies and fracture properties from borehole imaging for the Dixie Valley 

Geothermal Field.  The SHmax direction was N33
o
E which was subparallel to the Stillwater fault.  

It was ascertained that most of the hydraulically conductive faults were critically-stressed and 

optimally-oriented with respect to the current stress field striking northeast with varying dips 

ranging from 15 to 70 degrees.  Furthermore, spinner logs showed that only six fractures 

dominated fluid flow in well 73B-7 and they occurred at a narrow depth range of 2.5 to 2.7 km.  

Isolated spinner flow meter and pressure logs at two depths (2.614 and 2.637 km) revealed high 

permeability values of 21 and 48 darcys, respectively.  These were inferred to be part of the 

damage zone of the Stillwater fault.  A follow-up study by Barton et al. (1998) used the same 

analysis for six wells to compare the orientations of fractures in productive and nonproductive 
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geothermal wells.  Hydraulically conductive fractures for good producers and segments of the 

Stillwater fault zone were critically-stressed.  On the other hand, hydraulically conductive faults 

of poor producers were below the Coulomb failure line for µ=0.6 in the Mohr circle.   

 

A similar analysis was done for well 27-15 from the Desert Peak Geothermal Field which was a 

candidate for hydraulic fracturing (Devatzes and Hickman, 2009; Hickman and Devatzes, 2010).  

The azimuth of Shmin was 114 ± 17
o 

which was consistent with the E-SE and W-NW striking 

orientation of the Rhyolite Ridge normal fault zone in the area with a stress magnitude of 1995 ± 

60 psi.  However, normal faulting regime in the well was not confirmed but was assumed based 

on the regional stress regimes.  Hydraulic fracturing was planned for intervals that had a 

significant number of critically-stressed faults.     

 

A previous study on the Cajon Pass scientific drill hole data demonstrated that optimally oriented 

faults control the overall permeability for reservoirs with low rock matrix permeability such as 

granite (Barton et al., 1995).  Additionally, it was found that relatively few fracture planes 

dominated flow.  Several reasons were given by various studies to explain this correlation for 

brittle rocks.  First, the permeability increase in critically-stressed faults was due to brecciation 

and damage formation (Zoback, 2007).  Second, dilatancy of sheared fracture planes from pore-

volume expansion of microcracks would improve both porosity and permeability along the plane 

(Barton et al., 1995).    Third, majority of geologic process such as precipitation, cementation, 

pressure solution formation, and mineral alteration led to fracture closure.  Hence, slip would be 

needed to keep fractures open (Zoback, 2007; Hickman et al., 1997).   

4.6.3 Fracture Density 

McLean and McNamara (2011), in their investigation of data from the Wairakei Geothermal 

Field, concluded that there was no correlation observed for fracture density and permeable zone 

depths.  However, the number of interpreted fractures was highly dependent on the image 

quality.  The same problem was encountered for the data of well 27-15 of the Desert Peak 

Geothermal Field as shown in Figure 4.9 (Devatzes and Hickman, 2009).  No direct 

correspondence between fracture density and permeable zones locations was observed.  Thus, 

this lack of correlation implied that fracture density was not an effective indicator of permeable 

zones because it was extremely difficult to obtain good quality image logs in highly fractured 

reservoirs.  Another issue was the overlapping of fractures which led to two interpretations.  

First, a large fracture aperture reading could be made when overlapping fractures have consistent 

orientations.  Second, the whole fracture set could be discarded in confidence filtering of the data 

because the aggregate set would not exhibit the typical sinusoidal shape that was expected.  

Thus, a high aperture fracture plane could also be interpreted as a high density cluster of 

fractures with smaller apertures.  Therefore, both high density and high aperture values could be 

used to identify permeable zones.  Other possible sources of errors were data binning 

inaccuracies and tool measurement uncertainties.     

4.6.4 Lithology 

Glynn-Morris et al. (2011) investigated the characteristics of feed zones of wells in the Wairakei 

and Tauhara Geothermal Fields in New Zealand.  They sought to evaluate whether the 

permeability was derived from lithology or structures.  Feedzone locations were identified from 

PTS logs and completions tests.  The characteristic signature of primary permeability from 
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lithology was a diffuse change in temperature with depth.  In contrast, structurally based 

secondary permeability demonstrated sharp variations in PTS logs.  Other measured properties 

from drilled cores included the following: lithology, rock-quality designation (RQD), core 

recovery factor, loss circulation zones, porosity, smectite presence, rock strength, and core 

photos.  It was concluded that secondary permeability from structures becomes more important 

as the feed zone depth increases (Glynn-Morris et al., 2011; McLean and McNamara, 2011).    

 

Permeable zones for well 27-15 in the Desert Peak Geothermal Field exhibited some correlation 

among temperature anomaly locations, stratigraphic boundaries, and mineral content (Devatzes 

and Hickman, 2009).  One significant feed zone at 4720 ft MD was found just above the 

boundary between a shale and diorite region.  Aside from this, increased illite-chlorite and quartz 

alteration were observed at this section.  Data from the Soultz Geothermal Field study found that 

there was high potassium content due to granite alteration in high permeability regions (Sausse et 

al., 2008).  This was claimed to be due to the dissolution of minerals as the fluid flows through 

the rock matrix thereby increasing the permeability and porosity even further.  These altered 

granite zones represented high conductivity but channelized flow paths as seen in the depth 

where well GPK3 intersected the fault zone.  Lower degrees of alteration, however, resulted to a 

higher number of low conductivity paths which resulted to poor well performance such as in the 

case of GPK4.   

Massart et al. (2010) describes the fault geometry encountered in Soultz.  Figure 4.20 shows the 

lithofacies and equivalent porosity of the different zones within a major fault that intersects all 

three wells (GPK1, GPK2, and GPK3).  Three main zones are present within this fault.  First, 

there is a fault core in the middle containing quartz which has the lowest porosity.  Second, there 

are cataclased and brecciated granite zones due to shearing of the fault.  Third, hydrothermally 

altered granite zones have high porosity and serve as main conduits for flow equivalent to 75% 

of the total.  The decreasing porosity with distance of the outermost altered zone is consistent 

with the inverse fracture density scaling with distance finding of Johri et al. (2012).  

Furthermore, owing to the symmetry and consistency of the rock properties within each zone, 

these could be represented by a parallel network of porous channels satisfying tracer and 

temperature analytical equations derived. 

 

 
Figure 4.20. Zonation and porosity schematic of a hydrothermally altered fault zone at Soultz 

(from Massart et al., 2010). 
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On the other hand, steam production at The Geysers geothermal field was attributed to a network 

of fractures within a wide shear zone bounded by the right lateral Maacama and Collayomi Fault 

zones (Sammis et al., 1991).   Steam feed zones were observed to occur in a few major fractures 

hosted in a relatively impermeable greywacke rock.  Because steam feed zones were typically 

observed at shallow depths, this result contradicted the observations of the previous study 

discussed where shallow feed zones were attributed to lithology and not structures.   

 

4.7 FUTURE WORK 

The relationship between scaling properties and heat and mass transport should be investigated 

further. Analytical models for tracer and heat transport incorporating scaling correlations of 

aperture and length could be derived.  Uncertainty analysis on scaling parameters and borehole 

imaging data for analytical models should be explored.   

 

The long-term goal is to generate fracture networks using scaling properties and use this in 

reservoir simulation.   
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