
The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

BioPig: Developing Cloud Computing Applications for
Next-Generation Sequence Analysis

Karan Bhatia, Zhong Wang
Joint Genomics Institute

Lawrence Berkeley National Laboratory

Next Generation sequencing is producing ever larger data sizes with a growth rate
outpacing Moore's Law. The data deluge has made many of the current sequence
analysis tools obsolete because they do not scale with data. Here we present BioPig,
a collection of cloud computing tools to scale data analysis and management. Pig is a
flexible data scripting language that uses Apache's Hadoop data structure and map
reduce framework to process very large data files in parallel and combine the results.
BioPig extends Pig with capability with sequence analysis. We will show the
performance of BioPig on a variety of bioinformatics tasks, including screening
sequence contaminants, Illumina QA/QC, and gene discovery from metagenome data
sets using the Rumen metagenome as an example.

Base Compute Nodes
• 560 nodes
• 2 quad-core Intel Nehalem 2.67 GHz processors per node
• 8 cores per node (4,480 total cores)
• 24 GB DDR3 1333 MHz memory per node

Expanded Compute Nodes
• 160 nodes - all being used for Magellan research
• 2 quad-core Intel Nehalem 2.67 GHz processors per node
• 8 cores per node (1,280 total cores)
• 48 GB DDR3 1066 MHz memory per node
• 1 TB (local) SATA disk per node

Login/Network Service Nodes
• 18 nodes
• 2 quad-core Intel Nehalem 2.67 GHz processors per node
• 8 cores per node (144 total cores)
• 48 GB DDR3 1066 MHz memory per node

High Performance Interconnect
• 4X QDR InfiniBand, fibre optic cables
• Local fat-trees with a global 2D mesh

Cooling
• Liquid Cooled

Application

Kmers (also sometimes called ngrams) represent a
sliding window of fixed length (k) across the
sequence. Kmers are quite versatile and are the
basis for a variety of analytics. A Kmer Histogram is a
plot of the frequencies of kmers across a dataset that
is an indicator for coverage, the existance of
metagenomes or sequencing errors. The below plot
shows typical metagenomic kmer frequencies for one
lane of Ilumina HiSeq with k=20.

Computationally, Kmer histograms require significant
memory to maintain a hash table of counts.
However, kmer generation and counting is easily
parallelized using Hadoop MapReduce.

Running 1000-way parallelism generates 300GB of
intermediate data, 5 Billion kmers, and completes in
15 min.

Performance scales linearly with size of sequences,
and linearly with cluster size. Double the data,
double the nodes.

Amazon Elastic MapReduce provides similar
performance with new CC.Large nodes (@$2/hr
each)

kmer histograms

--
-- generates kmer statistics from a fasta file
--

A = load '/users/kbhatia/cloud/HiSeq_10000M.fas' using
 gov.jgi.meta.pig.storage.FastaStorage as
 (id: chararray, d: int, seq: bytearray, header: chararray);
B = foreach A generate FLATTEN(KmerGenerator(seq,
20)) as (kmer:bytearray);
C = group B by kmer PARALLEL 300;
D = foreach C generate group, COUNT(B);
E = group D by $1 PARALLEL 300;
F = foreach E generate group, COUNT(D);

store F into '/users/kbhatia/tutorial/kmerstats2';

Application

Metagenomic sequence data can represent a
multitude of individual species found at the sample
site, as well as species introduced in the sequencing
process. Especially valuable for Single-Cell
sequencing, kmer-based pairwise matching to the NT
database can identifiy contaminants, as shown here.

Screening

Magellan Cloud Testbed

Cloud Technology

HDFS MapReduce Pig

BioPig

human
contamination

A = load '$reads' using
gov.jgi.meta.pig.storage.FastaStorage as (readid:
chararray, d: int, seq: bytearray, header: chararray);
B = foreach A generate readid, FLATTEN
(gov.jgi.meta.pig.eval.KmerGenerator(seq, 30)) as
(kmer:bytearray);
C = distinct B PARALLEL $p;

W = load '/users/kbhatia/SAG_Screening/ntindex' as
(dataid: chararray, kmer:bytearray) ;

L = join W by kmer, C by kmer PARALLEL 300;
M = foreach L generate W::dataid, C::readid;
N = group M by (W::dataid, C::readid) PARALLEL 300;
O = foreach N generate group.C::readid, group.W::dataid,
COUNT(M) as numhits;
P = group O by C::readid ;
R = foreach P {
 R1 = order O by numhits DESC ;
 R2 = limit R1 1;
 generate FLATTEN(R2);
};

features
- Custom data loaders for FASTA and
 FASTQ data files
- Wrapped many external Bioinformatics
 applications: Blast, Velvet, Newbler,
 CAP3
- native support for KMER generation
- supports paired and unpaired sequences
- Additional functions for N50, subsequence
 sequence neighbors

- leverage all the existing capabilities of Pig
 including data joins, filters, aggregate, etc.

rumen pipeline
dereplication

gene-based
assembly

contig
extension

biopig

rumen pipeline

http://codaset.com/zhongwang/meta

Wednesday, March 23, 2011

http://codaset.com/zhongwang/meta
http://codaset.com/zhongwang/meta

