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Nonequilibrium Flows with Smooth Particle Applied Mechanics

ABSTRACT

Smooth particle methods are relatively new methods for simulating solid and fluid
flows though they have a 20-year history of solving complex hydrodynamic problems in
astrophysics, such as colliding planets and stars, for which correct answers are unknown.
The results presented in this thesis evaluate the adaptability or fitness of the method for
typical hydrocode produétion problems.

For finite hydrodynamic systems, boundary conditions are important. A reflective
boundary condition with image particles is a good way to prevent a density anomaly at the
boundary and to keep the fluxes continuous there. - Boundary values of temperature and
velocity can be separately controlled. The gradient algorithm, based on differentiating the
smooth particle expressions for (up) and (Tp), does not show numerical instabilities for the
stress tensor and heat flux vector quantities which require second derivatives in space when
Fourier's heat-flow law and Newton's viscous force law are used.

Smooth particle methods show an interesting parallel linking them to molecular
dynamics. For the inviscid Euler equation, with an isentropic ideal gas equation of state,
the smooth particle algorithm generates trajectories isomorphic to those generated by
molecular dynamics. The shear moduli were evaluated based on molecular dynamics
calculations for the three weighting functions, B spline, Lucy, and Cusp functions.

The accuracy and applicability of the methods were estimated by comparing a set of

smooth particle Rayleigh-Bénard problems, all in the laminar regime, to corresponding

highly-accurate grid-based numerical solutions of continuum equations. Both transient
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and stationary smooth particle solutions reproduce the grid-based data with velocity errors
on the order of 5%. The smooth particle method still provides robust solutions at high
Rayleigh number where grid-based methods fails. Considerably fewer smooth particles
are required than atoms in a corresponding molecular dynamics simulations of Rayleigh-
Bénard convection. Nevertheless, the smooth particle trajectories are essentially
Newtonian trajectories, for particles with mass m, subject to an effective potential function
2Pn—2w(r). Accordingly, high-pressure subsonic problems, with v2 << c¢2, cannot be
reliably solved using this method. A further limitation of the method is its inability to treat
free surfaces accurately.

Not just subsonic flows can be treated. Shock waves propagate very well in
smooth particle systems. For the Richtmyer-Meshkov instability problem with a small
amplitude interface perturbation, compared to the wavelength, the interface amplitude
grows linearly and the growth rate agrees with the analytic value within 3%.

The smooth particle method promises to be of special interest whenever it is
desirable to include fluctuations. Smooth particles also provide an interesting eddy

viscosity for use in turbulence studies.
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Computer simulations describing physical many-body processes originated with
Enrico Fermi at Los Alamos during the Second World War. With J. R. Pasta and S. M.
Ulam he simulated the motion of a linear array, or "string", of atoms linked by nonlinear
"spring” forces [1,2]. In these experiments, Fermi emphasized the potential usefulness of
computer simulation to the understanding of N-body systems. Statistical mechanics makes
general statements about the diffusion of energy and equipartition amohg modes, and
Poincére's Theorem suggested that all accessible points in phase space will be approached
arbitrarily closely. Nobody before Fermi could state, without calculating it, what such a
string, started out with a pure sinusoidal displacement, would look like after a few
thousand oscillations at its fundamental frequency.

Theoretical Physics — Classical Mechanics, Thermodynamics, | Statistical
Mechanics, Electricity & Magnetism — provides a basis for the macroscopic description of
matter. However, the complexity of real problems (for example, the splendor of real
waterfalls, the violence of burning high explosives and hyper velocity impacts, the
complexity of supersonic flow around projectiles, and the changing of the weather) makes
them all hard to predict. Practical descriptions of these problems are difficult. Computer
simulation is essential to understanding physics and engineering problems with many
nonlinearly interacting degrees of freedom.

Due to the fast development of electronic technologies, computer hardware has
developed rapidly during last four decades. Now inexpensive workstations capable of
dealing with millions 0f degrees of freedom are readily available and massively—parallel
computer simulations with billions of degrees of freedom are becoming routine. Computer
simulation is now a widespread research and development tool impacting both theory and
experiment. Simulated computer experiments, both real or imagined, can be a substitute
for, or an enrichment of, true laboratory experiments. Computer simulation describes

physical processes involving real materials with a simplified conceptual model capturing the

essentials of the material behavior and revealing interesting features of the flow.
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Simulations can be carried out purely at the microscopic level, treating the motion of
individual atoms, or purely at the macroscopic level, treating the motion of a continuum.
Atomic level computer simulation, called Molecular Dynamics (MD) solves the ordinary
differential equations for the time development of particles making up the system. The
articles in the Reference[3], "Nonequilibrium Molecular Dynamics at Livermore and Los
Alamos", and "Nonequilibrium Molecular Dynamics: the first 25 years" [4], monograph,
"Molecular Dynamics” [5], and a book, "Computational Statistical Mechanics" [6], all
written by Professor William G. Hoover, include summaries of the history and state of the
art of Molecular Dynamics simulations.

Independently of microscopic simulation techniques, computers have been used to
simulate macroscopic phenomena using the Finite-Difference, Finite—Element, and Finite-
Volume methods. Description at the macroscopic level requires the solution of partial
differential equations for both the space and time dependence of the " field variables "

_(density, velocity, energy density) and their fluxes. The additional complexity of partial
differential equations for a continuum has spawned a variety of computational methods.
These methods, microscopic or macroscopic, for solving differential equations depending
upon time and space variables, are of two kinds, Eulerian (space-fixed) techniques or
Lagrangian (comoving) techniques.

Macroscopic finite—difference methods involve three kinds of errors, numerical

- diffusion, numerical dispersion and finite resolution. Resolution errors can be minimized

by improved computer speed and capacity but diffusion and dispersion errors are intrinsic
to this method. In Eulerian simulations information moves through a fixed—in—space

Eulerian grid. This approach contains information diffusion errors, poor representation of

convective terms in the equations of motion for large deformation, and the lack of accurate
tracking of interfaces separating moving materials.
On the other hand, Lagrangian methods do not have these disadvantages, but

cannot be universally applied because the material deformations are sometimes so large that
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the Lagrangian grid becomes severely distorted and the calculation breaks down. In order
to treat chaotic (turbulent) mixing phenomena in nonlinear equations of continuum
mechanics, exact interface tracking and freedom from mesh tangling are needed. One grid-
free method for treating turbulent fluid flow is the Free-Lagrangian method [7]. The main
concept of underlying the Free-Lagrangian method is that it has no actual mesh. The grid
points nominally move with the fluid velocity.

Smooth Particle Applied Mechanics (SPAM), the focus of this thesis, [8, 9] is a
grid-free Lagrangian technique which is appealing as a possible alternative to the grid-based
numerical techniques currently used to analyze high deformation impulsive loading events.
SPAM is a method designed to simulate problems in continuum mechanics with techniques
resembling molecular dynamics.

The first use of particles to solve a flow problem originated in Harlow's particle-in-
cell method. The method was developed to compensate for some deficiencies of the
Eulerian method. He could follow the moving interfaces easily with this method since
each material could be represented by an independent set of particles. This method uses
the two different grids, a moving Lagrangian particle grid and a fixed Eulerian grid to
calculate spatial derivatives using a finite difference method. Because of the inconvenience
of dealing with two different kinds of grid, this method has a disadvantage in real computer
simulations.  Smooth Particle Applied Mechanics, originally called Smooth Particle
Hydrodynamics, but applicable to solids and also to fluids other than water, developed
from two equivalent sources: J. J. Monaghan [10] developed an improved particle-in-cell
method with a truly grid-free Lagrangian method, and Lucy [11] approximated integral
(Monte-Carlo integration) representations of spatial differential equations in order to solve
the problem of rotating star bifurcation.

The basic idea of smooth particle applied mechanics is to replace the described

material by a set of distributed ("Smoothed") particles, associating a mass, density,

pressure-tensor, heat flux vector, and energy with each particle. The right hand side
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spactial derivatives in the conservation equations are converted to analytic forms using a
smoothing function so as to follow the motion of mass, momentum, and energy by solving
ordinary differential equations, equivalent to, but simpler than, the partial differential
equations of conventional Lagrangian continuum mechanics.

SPAM has already been applied successfully to a number of astrophysical
problems, and has been compared to adaptive grid techniques so that some of its strengths
and weakness are known. However, much remains to be done. It is still hard to assess
the adaptibility or fitness of this method for usual solids and fluids using complex
astrophysical results with no comparison to exact solutions. »

Here, the fitness of the smooth particle method for solid and fluid problems is
evaluated for two known problems, Rayleigh-Bénard convection and Richtmyer-Meshkov
instability. By compaﬁng a set of smooth particle Rayleigh-Bénard problems, all in the
laminarrregime, to corresponding highly-accurate grid-based numerical solutions of the
continuum equations, we find velocities within a few percent. By simulating shock waves
propagating in a perturbed two phase system, we reproduce the known linear interface
growth rate within a few percent. The role of boundary conditions is emphasized
throughout.

This thesis consists of nine chapters. In Chapter II, we introduce the basic
formulae of continuum mechanics and SPAM and compare these with the other numerical
methods from the mathematical point of view. Chapter III describes numerical methods,
including the use of image particles to model a reflecting boundary condition. In Chapter
IV, we discuss fluctuations, time reversibility, and consider different types of
hydrodynamic instabilities. We also discuss the isomorphism of microscopic molecular
dynamics and macroscopic smooth particle trajectories. Chapter V is devoted to describing
the simulation results of the Rayleigh-Bénard instability problem. In Chapter VI, we
discuss the generation of the shock waves using the Smooth Particle method as well as the

propagation properties of shock waves. In Chapter VII, we discuss the Richtmyer-
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Meshkov instability, the Rayleigh-Taylor instability induced by shock impulsive forces.
Chapter VIO treats Turbulence in homogeneous shear flows via Microscopic and
Macroscopic Smooth Particle Applied Mechanics. Finally, in Chapter IX, we conclude

with a summary and several recommendations.
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2.1 Imtroduction

Smooth Particle Applied Mechanics (SPAM) is an alternative name for
conventional Smooth Particle Hydrodynamics (SPH) suggested by W. G. Hoover, which
recognizes the inherent characteristics of the method [1,2]. There is no change in the
basic idea. The SPAM name is more appropriate for the method than the conventional
one because the method has its own characteristics which can be applied to systems more
general than "hydro" (water) problems.

We begin in Section 2.2 with a short summary of the Lagrangian form of the
conservation equations for mass, momentum, and energy. In Section 2.3, we describe
the basic idea of smooth particle applied mechanics using three different smoothing
functions: the B spline, Lucy, and Cusp weighting functions. We also derive the smooth |
particle hydrodynamic form of the conservation equations. Finally, in Section 2.4 we
compare the smooth particle method to the conventional Free-Lagrangian method and

Finite Element method.
2.2 Continuum equations of motion [3,4]

Smooth Particle Applied Mechanics is designed to solve problems in continuum
mechanics. This includes heat flow, fluid flow or hydrodynamics, and deformable solid
mechanics. Here, we review the fundamental equations of continuum mechanics which
apply to all these cases. Continuum mechanics starts with the definitions of a local
density p(r,t), velocity u(r,t), energy per unit mass e(r,t), stress tensor o(r,t), and heat flux
vector Q(r,t), that are differentiable functions of space and time. The distributions of

mass, momentum, and energy are idealized to be sufficiently smooth so that their spatial

derivatives exist and satisfy differential conservation equations.
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The continuity equation expresses the differential conservation of mass at a point

in terms of the mass flux gradient there:
ap/dt = -V-(pu), ey

where p is mass density and u is flow velocity.

The same idea can be applied to the conservation of momentum:
opu)dt = -V-(puu) + V-6 + pF, 2)

where G is the stress tensor. In the case of viscous fluid, 6 =(-p + AV-w)l + p[Vu +
(Vu)'], where p is the equilibrium pressure, I is the unit tensor, A + (2/D)p (=m,) is the
D-dimensional bulk viscosity coefficient, i is the shear viscosity coefficient, and F is the

external force per unit mass. For an elastic solid stress is expressed in terms of strain

rather than the strain rate Vu + Vu'.

For the energy balance equation, we begin with the time dependent version of the

First Law of Thermodynamics:
Ae =Aq —-Aw , 3)

where Ae is the change of the system energy, Aq is the heat rate absorbed into the
system, and Aw is the work rate done by the system.
The continuum energy conservation law, a time-dependent version of the First

Law of Thermddynamics, is

(@P)[pE + (1/2)pu?]=-V- [pug +(1/2)pu’]+V-cu-V-Q, @




Chapter 2 Basic Concepts of Smooth Particle Applied Mechanics 15

where € is the total internal energy, including potential energy due to external forces but

not including the kinetic energy due to the flow velocity u, Q is the heat flux vector

defined by Fourier's Law, Q = —x-VT, x is the heat conductivity, and T is temperature.
Using the comoving time derivative d/dt (= 9/t + u-V), we can derive the

corresponding but simpler Lagrangian forms of the conservation equations:

dp/dt =—pV-u; (mass conservation), (5)
p(du/dt) =V.c; (momentum conservation), 6)
pde/dt =c:Vu-V-Q; (energy conservation), @)

where e is purely internal energy due to the microscopic nature of material. It does not
include any external energies, for example, potential energy due to gravity, surface
energy due to surface force, or electro-magnetic energy due to electric and magnetic
field, etc. Therefore, even if we add some external forces to the momentum conservation
equation, the energy conservation equation does not need to be changed due to applied
external forces.

Adding Fick's Law for mass transport of a multicomponent system, all

macroscopic nonequilibrium effects can be described by solving these equations.

Constitutive equations depending upon material properties are required to solve them.
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2.3 Basic concepts of smooth particle applied mechanics [5-7]

The basic idea underlying Smooth Particle Applied Mechanics is the conversion
of the continuum partial differential equations to ordinary differential equations. The
spatial gradients are converted to analytic forms by using an interpolating weighting
function which allows any function to be expressed in terms of its value at a disordered
set of points — the particles. The interpolating weighting function is defined, for any

function (r),
JEG) wee-'; by dr' = f) =3 (myfp;) fx ) wir-rj b), (8)

where the integration is over the entire space. In the summation r; is 2 known point.

The interpolating weighting function, w, has the following three properties:
fw(r—r'; h) dr'=1 ; limw(r—r' ; h)=8(1-r") ; w(r—r')=0 for |r—r'|>h. | )

In theory, when the limit is taken as h — 0, the integral is replaced by a sum. It is
important that the weighting function and its first derivative be as smooth as possible to
avoid large errors in the numerical calculations. Therefore, the fundamental quantities in
this method are the weighting function and its first derivative. Figure 2.1 shows three
popular normalized weighting functions. and Figure 2.2 shows their corresponding first
derivatives. For clarity we use two space dimensions though one advantage of the
smooth particle method is its easy extension to three space dimensions.

1) The B-Spline Weighting function was introduced by J. J. Monaghan [8] and

has been much used since:

w(0.0 <x <0.5) = (c,/hP) (1 -6 x2 +6x%) ; w(0.5 <x < 1.0) = (2c /hP) (1 - x)?, (10ab)
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Figure 2.1 Three normalized weighting functions in two space dimensions: B spline,
Lucy, and Cusp weighting functions.
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where X = Ir, - 1;/h, the pair particle distance divided by smoothing length. D is the

dimension of the problem (1, 2, or 3), the normalization constant c_ is given by
¢, =4/3 D=1);¢,=40/Tn) D=2);¢c,=8/m (D=3).

2) Lucy's weighting function [6], which he used in solving a rotating star

bifurcation problem, is

w(0.0 <x < 1.0) = (c;/bP) (1 +3x) (1 -x)%, (11)
where ¢, is given by

c, =54 D=1);¢ =5Mm (D=2);c =105/(16m) (D =3).

3) The cusp weighting function [1] is

w(0.0 <x < 1.0) = (c,/hP) (1 -x)?, (12)
where ¢ is given by

c.=2 D=1;c, =10/t D=2);¢c =15/ (D=3).

Since the infinitesimal volume in the integration can be replaced by the ratio of
mass to density at that point, the integral interpolant is approximated by a summation

interpolant in numerical work:

fr) =X (mj/Pj) f(rj) w(r - I h),
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Vi) =3 (my/p;) f(r;) Vw(r— r;: h), (14)

here the summation index j includes index i. The basic assumption that the summation
points are distributed in an uncorrelated way as h approaches zero needs to be checked.
As discussed by Lucy (1977) this integration method resembles Monte-Carlo evaluation
of integral.

The concept of a "particle” in Smooth Particle Applied Mechanics can be
interpreted as an interpolation point rather an interacting point mass so that masses come
from a continuous distribution rafher than discrete points. No connectivity or spatial
relation of points is assumed. In this sense the smooth particle method resembles the
other approximate methods — Ritz, Galerkin, Petrov-Galerkin, least squares, and
collocation methods [9]. We will discuss the smooth particle integration in detail in the
next section.

Equation (14) provides a straightforward approximation for any spatial gradients
which may be required in implementing the smooth particle algorithm. However,

variants of this relation are sometimes used which start from the identities:
ViG) = (Up) [V(pD~{Vp]; V) = p[V(Elp) + (Ep2)Vpl. (15a,b)

Equation (15a) is a useful form for the calculation of gradients of physical variables, for
example, shear rate, gradient of velocity, or heat flux, temperature gradient. Equation
(15b) is a useful form of calculation of conserved quantities expressed by divergence, for
example, force and divergence of heat flux.

Replacing the function f by p in equation (13), the density is,

p() = ij w(r—rj;h). (16a)
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We can calculate the comoving time derivative of density directly from (16a) using the
chain rule. Alternatively, use equations (5) and (14), with the identity (pVu) [=(V(pu) -
uVp)], where f is replaced by u in equations (15a). Both approaches give the same

result:
dp(r)/dt = Zmj (uj—ui)-VWij , 4 (16b)

where Vwij is the gradient of w(r; — I h) taken with respect to the coordinates of
particle 1.

The smooth particle version of the continuum equation of motion (6) using (15b)
and (14) with f replaced by ¢ gives

@u/dy; = X m; [(o/p?); + (olp?)1 Vwy. (17)

To derive the conservative smooth particle energy equation, we use (15a) and (14)

in the work term ©:Vu with the identity of (o/p2):(pVu) [= (o/p?):(V(pu) — uVp)l,

(defdt); = ~(0/p?), T m; uy- Vwy + (de/dt)y . as)

Applying equations (15a) and (14) with the identity (¢/p):V u [= V- {(o/p)- u} - u -V

(o/p)] gives likewise

(de/dt); = —X m, (o‘/pz)j u; - Vwy + (de/dt),, (19)

Averaging the two equations (18) and (19) then gives the symmetric form:

(de/dt); = ~(1/2) X m, [(O'/pz)j+(cs/p2)i] ;- Vwy + (de/dD) g, (20)
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Finally, including the heat conduction term, (de/dt), .,, explicitly, the complete energy

equation is, using equations (7), (15b), and (14),

(defdt); = ~(1/2) X m; [(0lp?); +(opP)T uy- Vwyy =S m; [(Q/p?), + QD)1 Vwy. 21)

This form of energy equation conserves the total energy, 2.[e + (1/2) uz]i, exactly because

the sum over indices i and j makes the equation anti—symmetric in the indices i and j.
2.4 Comparison with free-lagrangian and finite element methods.

Grid tangling occurs often in high-deformation turbulent problems solved in
Lagrangian coordinates. Typical examples exhibiting grid tangling are hydrodynamic
instabilities and shock/interface interactions. Lagrangian coordinates must be used for
fluid flows with significant relative motion, particularly when the motion occurs across
fluid interfaces.

Because these flows are characterized by large vorticity, the mesh distortion and
grid tangling result in unacceptably large numerical errors. The Free-Lagrangian
method, a method that does not use a mesh, was developed to avoid this difficulty [10].

Smooth Particle Applied Mechanics has many features in common with the Free-
Lagrangian method.  However, the Free-Lagrangian method uses the vertex or cell
concepts made by the freely moving vertex points, which were used in conventional
Lagrangian method. The Free-Lagrangian method incorporates control volume
concepts. The control volumes are defined by sets of vertices. But Smooth Particle
Applied Mechanics follows the Lagrangian scheme for treating the convective term,
which is exactly the same method as molecular dynamics, without using grid or vertex

concepts. Instead of control volume concepts, it uses smoothed kernel functions, which

represent the local interaction range. In this sense, the vertex employed in the Free-
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Lagrangian method and sample points in Smooth Particle method play similar roles in
flows. Therefore, we can consider that Smooth Particle method has a cell centered
scheme because all physical quantities are normally defined on a set of sample points.
For example, if we pick the nearest neighbors in some way, we can use these points as
vertices in a grid.

Moreover, the Smooth Particle method uses an interpolating function which is
similiar to the Finite Element method or weak solution method [11]. J. W. Swegle
derived the time variation of smooth Particle method following the Finite Element
scheme [12]. In his derivation, he emphasizes the identity of the two methodologies.
However, they are different in the sense that weighted residual methods employ an
Eulerian scheme. From the physical or mathematical point of view, a weighted residual
form of conservation equations is minimized to form a system of equations that can be
integrated through time using the weighting function. Smooth particle equations also use
a volume weighted sum to perform the spatial integration. Therefore, the Smooth
Particle method can be viewed as a special case of the Finite Element method, where the
connectivity of the elements is formed from a search for nearest neighbors. Comparison
and rigorous derivation of these relations will help to analyze the Smooth Particle

Method analytically.
2.5 Summary

The basic physical laws governing the behavior of fluid motion are the well
known laws of mechanics - conservation of mass, Newton's equation of motion, and the
laws of thermodynamics. These laws by themselves are not a complete description of
material behavior. We use the appropriate constitutive equations - strain rate for the

stress tensor, Fourier's law for heat transport, and Fick's law for the mass transport in a
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multicomponent system. The difficulties in these laws lie in their nonlinearities and are
expressed finally in partial differential equations with respect to time and space variables.

The basic idea of Smooth Particle method is to convert the continuum partial
differential equations to ordinary differential equations with respect to time. To convert
them, we assume that all the physical variables are distributed smoothly in the s‘ystem SO
that the variables at any point in the system can be calculated by interpolation using
nearby values. Therefore we introduce a smoothly varying interpolation functions in
such a way that partial derivatives with respect to space variables are converted to
analytic forms containing the interpolation function and its first derivatives. We
introduce the popularly used interpolation functions - B spline, Lucy, and Cusp
interpolation functions.

The converted ordinary differential form of equations have the form of comoving
time derivatives so that they are similiar in form to Molecular Dynamics equations of
motion. Therefore, the time step integration corresponds to the direct movement of
particles without considering separate advective or convective terms. It makes complex
calculations very simple and easy: three dimensional problems are scarcely harder to
program than one dimensional problems.

This method includes two old ideas, Free-Lagrangian and Finite Element
methods: the Smooth Particle method is identical to Free-Lagrangian method if the given
weighting function is applied at corresponding interpolation points. The identity with
the Finite Element Scheme was derived by J. W. Swegle [12] by deriving the mass matrix
in smooth particle method using the volume weighted sum integral approximation for the
spatial integration. Smooth Particle method is thus a special case of Finite Element

method, where the connectivity of the element is constructed by a search of nearest

neighbors.
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3.1 Introduction

In Chapter 2 we showed that an important advantage of the Smooth Particle method
is the replacement of the continuum partial differential equations in space and time with
ordinary differential equations in time. For the time integration the classic fourth-order
Runge-Kutta method is a good choice because it retains good accuracy and computational
speed compared to the other methods [1]. We describe the time integration method and
computational procedures in Section 3.2.

Hydrodynamic conservation equations are not a closed set of equations until P(p,

u, e) and Q(p, u, e) are specified. The constitutive equation for the stress tensor, the heat

flux, as well as the initial and boundary condition must be specified. @ When the
constitutive equations are applied to the continuum equations, for example, Fourier's heat
flux vector to the energy equation, the continuum energy equation becomes a second order
differential equation in temperature T. In Section 3.3, we discuss a method for treating the
stress tensor and heat flux vector using the Smooth Particle method. We also describe
related numerical instabilities and provide techniques for preventing them.

When the time integration is approximated with the classic fourth-order Runge-
Kutta method, the major computational work is the search for interacting neighbor
particles. In Section 3.4, we describe the three different algorithms for identifying the
interacting neighbors. Direct searching algorithms require N(N-1)/2 number of
calculations but almost all terms vanish because of the compactness of the weighting
function. Neighbor-list algoﬁthms use lists of interacting neighbor paticles list made at
one time before calculating other physical variables.‘ Computing time for this algorithm is
proportional to NInN but a relatively large memory space is used for lists of fluctuating
neighbors. The linked-list algorithm [2] in which all neighbors in a given cell are linked in

a list with the head particle number is the best method to compute the interacting forces.

Computing time is proportional to NInN and the required memory space is reduced.
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Realistic systems are defined on a finite rather than infinite domain and contain
boundaries. Boundaries play a critical role in the solution of both linear and nonlinear
problems. The treatment of continuum boundary conditions with "particles" requires new
methods. We illustrate the boundary methods with a surface tension problem in Section
3.5. We discuss -the elastic shear modulus of the Smooth Particle method in Section 3.6.

Section 3.7 includes a summary.
3.2 Numerical algorithms for SPAM

Smooth Particle Applied Mechanics converts the partial differential equations of
continuum mechaniC_s into ordinary differential equations with respect to time. One of the
finite difference methods, thé Method of (grid) Lines, also changes partial differential
equations into ordinary differential equations. These two methods differ from each other
in treating the convective terms in flow equations: SPAM uses Lagrangian coordinates and
the Method of Lines uses Eulerian coordinates.

Numerical methods for solving ordinary differential equations are numerous and
comparatively well developed. = The most advanced methods in terms of efficiency,
obtaining the most accuracy per unit of computational effort, are a group of methods
invented by two German mathematicians, ’Runge and Kutta. The classic fourth-order
Runge-Kutta (RK) method is widely used in the computer solution of ordinary differential
equations.  With this method the local truncation error is O(dt’) and hence, with a
sufficiently smooth integrand, the global error is O(dt%) [1].

We checked the computational efficiency with our SPAM method using two
different algorithms, the second order RK method and the fourth order RK method. To
maintain the stability of the calculation we calculated the time step limit satisfying the
"Courant condition", (dx/c), the information traveling time to the nearest neighbor, and the

"diffusion time", [(dx)*/2v], together. We found that the fourth order RK method is more
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efficient than the second order RK method for time integration, even though the fourth
order method requires twice as many force calculations per unit time step, because the ratio
of allowed fnaximum time step dt, for stability, is greater than two.

Solution methods for SPAM closely resemble Molecular Dynamics techniques.
However, SPAM solves three ordinary differential equations {dr/dt, dv/dt, and de/dt}
while MD solves only two {dr/dt, and dv/dt}. _

SPAM has several additional complexities [3].  First, the form of the weighting
function and its range depends upon the judgment of the investigator. The solution can be
sensitive to these arbitrary choices. ~We discuss this point in section 3.3 along with
boundary conditions. Second, the accelerations depend upon more particle variables: the
internal energy, the velocity gradient, plastic strain, and the like. The thermal equation of
state, relating energy to temperature, and the mechanical equation of state, which gives the
pressure, must be self-consistent and satisfy a Maxwell relation 9°A/dVOT = 92A/9TaV.
A(V,T) is the Helmholtz free energy. Third, rather than being derived from interatomic
forces, the nonequilibrium constitutive properties (bulk and shear viscosity, heat
conductivity, yield strength, surface force energy, ...) must be specified in advance.
Fourth, in integrating the smooth particle equations of motion, three separate sums over
pairs (rather than just the one sum needed in MD) must be carried out:

(1) Calculation of densities and equations of state.

(2) Calculation of heat flux and viscous stresses.

(3) Calculation of time derivatives of velocity and energy.

Finally, we integrate the velocity and energy derivatives using a Runge-Kutta
method. Each step requires the completion of its predecessors. Figure 3.1 shows a
simple flow chart.  Fifth, the forms of the hydrodynamic equations underlying the

approximation also depends on judgment, and allow corresponding choices among

alternative sets of partial differential equations.
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Figure 3.1 Simple flow of calculation

For instance, the density could be calculated by integrating the continuity equation, dinp/dt
= —V.u, rather than by summing the weighting functions. Likewise the heat flux and

strain rates have several different alternative expressions [4,5].
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For the approximation of heat flux and strain or strain rate terms, many difference
forms of approximation to the differential equation are possible. Some of these forms are
suitable. Others are not. In appearance, each step sum runs over all pairs of particles but
actually it includes just a few dozen nearby interacting particles due to the imposed short
range of the weighting function. Therefore a neighbor searching method is crucial to
efficient Smooth Particle Applied Mechanics. @ We discuss the flux and neighbor

calculations in detail in the following sections.
3.3 Computing heat flux and strain rate

Strain rate in the stress tensor and heat flux in the energy equation correspond to
first derivatives in space according to Newton's viscous force law and Fourier's law
respéctively if we assume that viscosity and heat conductivity are independent of location.
Smooth particle algorithms reproduce the first derivatives well but can cause numerical
instability in second derivatives. J.J. Monaghan and L. Brookshaw used finite differente
approximations to solve this problem [4,11] and Campbell suggested a different form to
conserve the total fluxes [5]. Here we use a difference equation, equation (15a) in Chapter

2, based on differentiating the smoothed particle expressions for (up) and (Tp):

Vu=-% my [(Ui - uj)/ Pij] VWij ; VT ==X m;. [(Ti - Tj)/ Pij] VWij , (1a,b)

where the mean density py; can be chosen as the arithmetic or geometric mean of p; and p i

These difference forms of fluxes express the observation that no fluxes should occur if the
two particles are in the same states. Otherwise the flux flows from the higher (u or T) state
to the lower (u or T) state. On the other hand, if two particles are close enough to each

other, then Taylor series expansion shows the identity with the difference equations. We

applied these algorithms in our Smooth Particle Applied Mechanics and found that they are
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stable for all three different weighting functions. Numerical stability of the method is of

course fundamental to numerical work. See J. W. Swegle' analysis [6].
3.4 Interacting neighbor search.

An important part of SPAM is an efficient algorithm to determine the particles
within a specified distance of a given particle - those which give a non-zero contributions to
interpolating sums. As we already mentioned in the previous section, SPAM requires
three consecutive pair particle sums for each force calculation, twelve times for a fourth-

order Runge-Kutta cycle. The simplest algorithm for summing over particles is;

SUM

H
(@]
[eo]

DO i =1, Np-1
DO j = i+l , Np

SUM = SUM + P(i,3)
END DO

END DO

here Np is the total number of particles. This algorithm requires a long calculation with
Np(Np — 1)/2 terms, but almost all of these vanish because of the compactness of the

weighting function. One more efficient way is to make a neighbor table and to use it.

Then the sum algorithm is;
SUM = 0.0
DO i =1, Np-1

DO k =1, nbr (i)

j = inbr(i,k)
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SUM = SUM + P(i,3)
END DO

END DO

here nbr (1) is the number of neighbors of particle i and inbr (i, k) is the particle
number of kth neighbor of the patticle i. These are calculated in separate neighbor
searching algorithm. Typically the maximum number of neighbors is fewer than 50.
Most particles have fewer neighbors. Only i<j needs to be included in order to prevent a
double célculation. This algorithm requires unnecessary memory and is not efficient in
FORTRAN because FORTRAN has no flexible memory scheme. This algorithm takes a
time proportional to NInN for the fourth-order RK method, where N is the total number of
particles.

A better algorithm for searching the neighbors with a compact weighting function is
the linked list algorithm described by Hockney and Eastwood [2]. For this algorithm, we
have to define two kinds of dimensioned variables, TH (i) is the highest particle number
assigned to the cell i. LL (i) links all the particles in this cell in descending particle

number order. We accomplish this by using the following algorithm:

DO k =1, ncell

IH(k) = 0

END DO

DO j =1, Np
k =x(j)/ax + 1
LL(j) = IH(k)
IH(k) = j

END DO
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where % (3) is, for example, the x coordinate of jth particle, ncell is the total number of
cells, and dx is the cell length in the x direction. To use this algo?ithm,we first have to
divide the whole system into many small cells with a size just exceeding the weighting
function interaction range and assign the number to each cell and make a neighbor cell map

which explains which pairs of cells can interact.

Figure 3.2 Neighbor cells of the black

particle in the cell model. The black

particle has nine neighboring cells but
3 actually interacts with only five neighbor

cells, including itself, indicated by
| shading, to ~ prevent double pair
| calculation.

Figure 3.2 shows the neighbor cells of cell model in a two dimensional system for
the linked-list algorithm. In the Figure, the particle marked by black dot interacts with the
particles in the shaded cells. Finding the neighbor cells is done only once if the system

does not change size or interaction ranges. Many workers have discussed variable

smoothing lengths [7-12]. But we do not consider this problem here. With this step, we
get a neighbor map for the i-th cell, say NM(1i, k). Now we are ready to do the neighbor

sums,
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100 IF (i > 0) TﬁEN
DO n =1, nbc(k)
j = IH( NM(k,n) )
200 IF ( j > 0 ) THEN
IF ( j =1 ) GO TO 300

SUM = SUM + P(1,3)

J = LL(J)
GO TO 200

END IF

300 END DO
i = LL(4)
GO TO 100
END IF
END DO

where nbc (k) is the neighbor cell number of the kth cell. We use nbc (k) variables
because all cells do not have the same number of neighbor cells for reflective boundary
problems. The neighbor map NM (k, n) does not occupy much memory because the total
number of cells is much less than the total number of particles. Each cell has only a few
neighbor cells (for example, the maximum is nine in two dimensions). This algorithm
takes a time proportional to NInN for an N particle system.

All macroscopic systems are finite so that boundary conditions and surface tension

are important in a numerical algorithm. We discuss these in the next section.
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3.5 Boundary conditions and surface tension.

To solve the partial differential equations, both initial and boundary condition are

required.

@ ®)

Figure 3.3 Simple initial conditions for a particle method: (a) square lattice system, (b)
triangular system. In the smooth particle method, particles are not actual particles but rather
interpolation points with known properties. For fluid simulations, even if the initial
conditions are regularly spaced, all particles soon approximate the flow pattern.

_ Figure 3.3 shows simple initial spatial conditions, the square and triangular lattices.
For fluids, even if the initial conditions are regularly spaced, all particles soon follow the
flow. Boundaries are the critical link between the system of interest and the surroundings
with which it interacts. In particle methods boundaries affect the equations of motion.
Handling the boundary conditions and surface tension are important.

In the smooth particle case we have treated boundaries in three different ways. For

an infinite system, we use periodic boundary conditions, which have no surface. Periodic
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boundaries are usual in equilibrium Molecular Dynamic simulations [13].  Figure 3.4
shows three typical boundary conditions, periodic, reflective with image particles, and
reflective with fixed boundary particles [3, 14]. The density sum, equation (16a) in
Chapter 2, gives an undesirable decrease near the boundary if we have no special boundary

treatment.

-

Density , p

Figure 3.5 Density decrease in boundary regions in one dimension. The sharp decrease of
density near the boundary gives the particles near the boundary region atypical and

unphysical properties.

Figure 3.5 shows a graphical representation of the calculated density in one
dimension from a set of equal masses, with an equal spacing of 0.4h, in which every
particle within the system has four interacting neighbor particles. The boundary particles
get a contribution from particles on only one side, rather than from both sides as in the
interior, so that the calculated density decreases rapidly. The density sum (16a) in Chapter
2. thus results in boundary anomalies unless a special boundary treatment is implemented.
This figure suggests why we need extra boundary particles in a finite system. An

alternative is to solve the continuity equation directly using equation (16b) in Chapter 2.
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Our trials with this approach in the two-fluid shock wave simulation (Riemann problem)
gave disappointing results. We abandoned the continuity approach in this work.

| Reflective boundaries with fixed boundary particles have also been used in particle
methods including Molecular Dynamics. To compensate for the decreasing density near
boundaries, sufficiently many particles fixed on the boundaries can provide a high density
container capable of repelling approaching particles. These special boundary particles are
treated in the same way as system particles in the density calculation but are fixed in space
with preassigned physical variables. In this model, the physical variables are not
continuous at the boundary.

A reflective boundary with image particles is a new method to make the physical
variables continuous on the boundary in the Smooth Particle method. In this model, all the
image boundary particles have the same physical stresses and fluxes as their respective
system particles. But we control temperature and velocity fér image boundary particles.
In our work these controlled variables are assigned once and for all.

We consider the image particles as if they were real system particles (image particle
numbers are counted consecutively following the last interior system particle). First, we
calculate the density for each system particle using equation (16a) in Chapter 2. We assign
the image particle density equal to the corresponding system-particle density. The density
is thus continuous at the system boundary. Next, we calculate the interior vélocity
gradients and temperature gradients, which are needed to calculate the stress tensor and heat
flux, using equations (1a) and (1b) respectively. With these gradient values, we calculate
stress tensor and heat flux for all system particles and assign equal values to their respective
image particles. Last, we calculate the acceleration and time derivative of energy using the
same principles as before. The final time integration (Runge-Kutta algorithm) is evaluated
only for the interior particles.

The image boundary algorithm is evaluated for an inﬁnitesimal time step

integration. The boundary particle's position varies with the respective system particle's
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position. Therefore, if we take a big time step, it is desirable to compute the boundary
particle properties at each step in the Runge-Kutta integration algorithm. To calculate the
new boundary particles is not expensive. It is proportional to the system surface N2 in
two dimensions. An advantage of the smooth particle approach is that the velocities and
temperatures of the reflected boundary particles can be assigned independently of the other
particles in their vicinity (even the mirror-image particles inside the system). Another
method for handling boundary problems with the Smooth Particle algorithm can be found
in Campbell's and Japanese work [5, 20].

It is difficult to treat internal boundaries too, across which two different kinds of
material interact with each other. The surface forces and energies are important if the
materials do not mix_ 14, 15]. SPAM usually has no surface tension while Molecular
Dynamics include it automatiéally through the interatomic potential function.

From the molecular or atomic point of view, the free energy of molecules at a free
surface is increased because they are surrounded by attracting neighbors in only a half
space. Hence, the free energy of a fluid includes a term proportional to the volume and an
additional term proportional to the area of free surface. If the surface energy is Y per unit
area, 7y is the surface tension. Extending the area by dS requires a work ydS. - Thus the
tendency of surface tension is to reduce all free surfaces toward minimum area. Small
bubbles or fluid surfaces with a small radius of curvature are strongly influenced by surface
tension.

In a macroscopic hydrodynamic system, the surfaces separating fluids are subject to
forces arising from surface tension. At equilibrium, surface tension acts normal to the
surface dS separating the two fluid elements. The force difference between the two sides
is proportional to the surface tension. It is known that the pressure difference between the
two sides of a surface element dS is proportional to the surface tension divided by the
radius of the curvature. This follows from the microscopic free energy point of view [3].

In Smooth Particle Applied Mechanics, the forces are proportional to the gradient of the
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weighting function between the pair of particles. The curvature of the surface area can be
considered inversely proportional to the weighted separations of nearby particle pairs.
Therefore the surface tension of each particle has an additional force term of the form of
ZVWij/qij2 with some appropriate proportionality constant, where the sum includes all
nearest neighbors. This form of force term guarantees that interior particles far from a free
surface have no effect at all because the force term is antisymmetric in the indices i and j.
This representation of surface tension looks reasonable but it has problems in simulation.

We leave this as an open problem for the future.
3.6 Calculation of elastic constants.

In reference [16] we showed- that the smooth particle equations of motion are
equivalent to those of Molecular Dynamics for an isentropic ideal gas system, with an
equilibrium pressure proportional to the density squared. Then the weighting function of
the SPAM algorithm corresponds to a pair potential funqtion from the Molecular Dynamics
point of view. Smooth particles' trajectories are isomorphic to those of molecular
dynamics for this isentropic ideal gas system. Since Molecular Dynamics includes elastic
properties due to the potential, the Smooth Particle algorithm can have intrinsic elastic
properties. even though it has no explicit elastic constant in its stress tensor.  Elastic
properties of the system are described by the elastic constants{C}, which are the analogs of
the bulk and shear moduli for a solid, in the linear Hooke's law relation linking the stress

and strain tensors:
O < €. )

The proportionality coefficients, which have units of stress, are the elastic

constants. The adiabatic elastic constants {CS} determine the speed of propagating sound
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waves. The isothermal elastic constants {CT} describe the stresses required for isothermal

deformations of these solids. For a general two-dimensional system, each of the three

stress components {C,,, © cxy} responds to changes in the three elastic strains {¢

yy’ XX

€y exy}, requiring an array of nine elastic constants to describe the linear response. For

an isotropic system, the number of nonzero constants reduces to just four, among which

only two are independent, C,,, and C,,. These two coefficients are equivalent to two

Lame's constants, A and 1, which are related to the bulk and shear moduli, B and G: In

two space dimensions,

Oyx = C118xx T Cia€yy 3 Opy = Cpofyy + CpiEyy s (3a,b)
O,y = (1/2)(Cyy - C ey, = Mg,y s Cpy=A+2n; Cpp=A, (4a,b)

and in general, in D dimensions,
B=0P/dlnp= A+ (2D)n;G=-P, /e, =1, (5a,b)

where D is the dimensionality of the problem (2 or 3).
Two different ways of calculating the shear moduli are to calculate the change of potential
energy (in Molecular Dynamic simulation) and the change of internal energy (in SPAM)

[13]. The shear modulus due to energy change is given by
GV = 2AE/¢?, ©)

where G (=) is shear modulus, V is the volume, AE is the energy increase, and € is the

shear strain.
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On the other hand, the coefficients Cij can also be calculated indirectly from Gibbs

canonical partition function by working out the Taylor series expansion of the internal
energy or the Helmholtz free energy as a power series in the strains. The coefficients in
the strain series are then obtained as equilibrium ensemble averages in the unstrained state.

The detailed calculations are in references [17-19]. For example, at zero temperature,

&L

Figure 3.6 Numerical model of homogeneous shear with constant strain rate and periodic
boundary condition in two space dimentions. The upper and lower boundaries move with
the speed € L in opposite directions so that the overall velocity profile is linear. If one

particle moves through the system boundary it reenters at a different position. In the
moving particle reference frame (comoving frame), the particle velocity does not change

when it reenters in the system.
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G=—Cy+P,; P = Z¢'x2/r; VCy = Z(¢"x2y2/12— ¢'x2y?/r3), (7a,b)
where ¢'(= w') and ¢'(= w") are the first and second derivatives of the weighting

function respectively. In all, we have three different ways to obtain the moduli.
Our numerical model is shown in Figure 3.6. The system has a periodic boundary

with horizontal boundaries of y-axes moving at a relative velocity of € L.  The particle

velocities are linearly proportional to the end boundary velocities.
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Figure 3.7 Plane Couette flow with shearing model, Figure 3.6. (a) initial configuration
of velocity field in square lattice system (20 x 20). (b) configuration at time t = 10. The
strain rate is 0.005. We see the effect of the periodic boundary condition in the first and
last rows. The calculation is done in the laboratory frame. Our dense fluid equation of
state with the Lucy weighting function with smoothing length 3 are used. The total internal
energy is 2977.2 (7.443 per particle) and the total kinetic energy is 0.665.

For the plane Couette flow, figure 3.7 (a) shows the initial condition. Figure 3.7

(b) shows a configuration of the system after an evolution of time (t = 10) giving a strain
Ax/Ay = 0.05. We see the effect of the periodic boundary condition in Figure 3.7 (b).
The shear modulus results calculated from the three different methods described

above, equation (6) and equation(7), all agreed with each other within maximum 3%.
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Table I shows that the internal energy change does not depend on the shear rate for small
slow deformations. Figure 3.8 shows energy increase as a function of strain for a small
strain, equation (6). Table II contains the intrinsic shear moduli of SPAM for three

different weighting functions with each of
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Figure 3.8 Internal energy difference as a function of strain in the elastic region. In the
elastic region, the internal energy increase is essentially independent of the strain rate for
rates less than 0.1. Square lattice structure of the unit reduced density with B spline weight

function is used. See Table 1.
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Table I Internal energy change as a function of strain in three different strain rates €.

Square lattice system of t_hc'uni__t density with B spline weighting function is used.

€

€

0.1

0.01

0.001

0.003

0.003

0.003

0.012

0.012

0.012

0.027

0.027

0.027

0.047

0.048

0.049

0.074

0.075

0.075

0.06

0.106

0.108

0.108

0.07

0.144

0.146

0.146

0.08

0.186

0.188

0.189

Table I Shear modulus for three weighting functions and square lattice system as a

function of smoothing length. Density of the system is unity.

Smoothing
Length

Lucy B spline Cusp*

25

0.042

0.035

0.007

35

0.012

0.015

0.011

4.5

0.0032

0.0045

0.0045

55

0.0024

0.0024

0.0001

* For the Cusp weighting function, the shear modulus is 0.012 at a smoothing length 2.5
in the isosceles triangular lattice.
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four different smoothing length for the square lattice system. For the Cusp weighting
function, we calculated it also for the triangular lattice. The larger the smoothing length,
the. smaller the intﬁnsic shear modulus because we get the exact result if we include all
interactions (information) for interpolation. For the same appropriate smoothing length,
2.5 ~ 3.5, the Cusp Weighting function has the smallest shear modulus. Despite this
desirable property, the Cusp function is not a good choice for SPAM because it fails to

reproduce density well.
3.7 Summary

Given initial and boundary conditions, ordinary differential equations can be solved
in many ways. We use the classic fourth order Runge-Kutta method, which is quite
accurate, to carry out the Smooth Particle time integration. For still a different treatment of
boundaries, using a continuous distribution of external particles, and different Runge-Kutta
method, see Reference [20]. In this algorithm, the major computing work is the search for
interacting neighbor particles. The Linked Ilist algorithm, with computing time
proportional to NIn(N) is used to find the neighbors in two space dimensions. Two
typically used initial configurations of particles are described: the square and triangular
lattices. Three different boundary conditions are described: periodic, reflective with fixed
boundary particles, and reflective with image boundary particles. =~ We showed that
homogeneous shearing of the system with constant shear rate, which has been used in
Nonequilibrium Molecular Dynamics, works well. We applied this model to the plane
Couette flow to calculate elastic constants, shear modulus and Bulk modulus, in the small
strain elastic range. In this calculation, the numerical value of the intrinsic fluid-phase

shear modulus is not zero and depends on the weight functions. = The modulus does

approach zero for large interaction ranges.
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4.1 Introduction

The basic physical equations governing the behavior of fluids and solids in
motion are the well known laws of mechanics — conservation of mass, the Newtonian laws
of motion, and the laws of thermodynamics. These equations are very simple and neat in
appearance but complexities arise because these equations are nonlinear [1]. Even steady
nonequilibrium systems behave in a very complex way. We begin our study of
microscopic and macroscopic stability problems by reviewing the basic physical terms
involved in this complexity.

We describe Lyapunov instability and fluctuations in microscopic steady
nonequilibrium systems in Section 4.2. The scope of SPAM for dealing with
hydrodynamic systems is also described in this Section. In a time reversible algorithm
Lyapunov exponents should be reversible too. This is unlike expected behavior in a
dissipative system [2].  Most algorithms are not time reversible.  For microscopic
molecular dynamic systems, Levesque and Verlet devised a bit reversible integer algorithm
[3]. We applied their algorithm to the macroscopic SPAM algorithm and found a bit
reversible SPAM algorithm for a non-dissipative system. For the special case of an
isentropic ideal gas, we show that SPAM simulations produce continuum particle
trajectories identical to those in molecular dynamics so that the continuum weight function
w(r) plays the role of an atomistic potential function ¢(r) [4]. We describe time reversible
continuum mechanics in Section 4.3. In this Section, we also discuss numerical errors
due to Lyapunov instability.

Macroscopic instability is also present in some solutions of the hydrodynamic
equations [5].  The solutions of the hydrodynamic equations can have an intrinsic

instability in their reaction to the small perturbations to which any physical system is

subject. In Section 4.4 we review the nature of different kinds of hydrodynamic
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instabilities — Rayleigh-Bénard, Couette, Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-

Meshkov.
4.2 Lyapunov instability and fluctuations.

"The present-day challenge for simulation and for statistical mechanics lies in
understanding nonequilibrium systems, particularly those which exhibit macroscopié
Lyapunov instabilities”", Professor Hoover emphasizes [6].  Lyapunov instability is
pervasive in both microscopic and macroscopic dynamics. Many-body systems, both at -
and away from equilibrium, are generally unstable, so that trajectory stability deserves
discussion. _

In reference [10], Lyapunov instability is defined to exist whenever nearby
~ solutions separate from one another exponentially fast in time. But here we expand the
definition of hydrodynamic instability to include linear growth of perturbations from
impulsive forces in some hydrodynamic systems. However, the definition of Lyapunov
instability is unchanged: nearby trajectories separate exponentially fast in time. The
Lyapunov spectrum of exponents is a quantitative phase-space measure of instability.
Exponenté measure the growth and decay of chaotic fluctuations in the system, calculated
from neighboring "satellite" trajectories in the vicinity of an unperturbed "reference"
trajectory [7]. They are related to the occupied phase-space dimension of the system,
Hausdorff dimension, measure, and Kolmogorov-entropy through a few mathematical
theorems, a few plausible conjectures, and a wealth of numerical exploration [8].

Trajectory separation can be measured in either configuration space, momentum
space, or the full phase space [9]. The exponential instability of a perturbation, varying as
exp(At), where A is the Lyapunov exponent, is important for two reasons: first it is typical,

and limits the time for which an accurate numerical solution can be found; second it is the
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type of motion which requires just as much information in the initial conditions as can be
extracted from the trajectories [10, 11].

From the geometrical point of view, these instability notions lead to phase-space
strange attractors, an essential aspect of dissipative nonlinear dynamics. The phase space
volume of any dissipative system contracts in the process of evolution and the motion is
confined to a certain fractional-dimensional "multifractal” éttractor in the long time limit t —
c. The phase space information dimension of the attractor D, is typically not an integer
and is always lower than the dimension of the original embedding phase space [7,8].

By applying this notion to microscopic nonequilibrium molecular dynamics
simulations, the irreversible time evolution that results from reversible mechanics can be
understood in a simple geometric way, without the need of any approximations. This
provides a valid explanation of the Secoﬁd Law of Thermodynamics, extending
Boltzmann's celebrated dilute-gas H theorem to more general systems [12].

The Lyapunov instability in macroscopic hydrodynamic systems, "turbulence",
results from a complex fluctuating flow which generates macroscopic information more
rapidly than it can be dissipated by viscosity, making the future of the flow unpredictable.
Irreversible macroscopic flows are described by dissipative constitutive equations, which
typically include plasticity, or Newtonian viscosity, as well as Fourier heat conduction.

Turbulence is intrinsically a macroscopic nonequilibrium fluctuation property, and
is analogous to microscopic chaos [13]. Much the same at, and away from equilibrium,
turbulent mixing, a macroscopic manifestation of the chaos lurking in most nonlinear
problems, occurs at a high Reynolds number because the ratio of the time required for
decay to the time required for shear is so large that the fluid is "turbulent". The decay time
is defined as the time in which viscosity can dissipate the velocity gradients&causing the
shape to change (Lz/v), where L is a typical system dimension; v is the kinematic viscosity,

defined by the ratio of shear viscosity 1| to density p. The shear time is defined by the

time required for the comoving Lagrangian volume element of macroscopic flow to change
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its shape (L/u), where u is a typical flow speed. The details of turbulence also depend
upon the boundary conditions which provide momentum and heat té ‘the system from the
surroundings.

The understanding of flows, including spontaneous thermal fluctuations, requires
an explicit treatment of source terms (usually related to boundary conditions) to offset the
continual damping provided by viscosity and heat conduction since the macroscopic
hydrodynamic equations typically incorporate constitutive relations which proceed

irreversibly towards a maximum entropy (equilibrium) state.
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Figure 4.1 Lyapunov spectra for two-dimensional ideal gases made up of 16 smoothed
particles, each with unit mass and described by Lucy's weighting function with a range of
1.5. The particles originally occupied a perfect triangular lattice, with a periodic area 4 x
(12) 2" The initial ratios of inertial to kinetic energy are indicated. From reference [16].

The usual macroscopic hydrodynamic equations can lose the microscopic chaos
inherent in the fluid they describe by ignoring fluctuations.  Accordingly, some authors

[14,15] emphasize the difficulty in establishing chaos, from numerical solutions, in
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systems of partial differential equations. When fluctuations are important, smooth particle
simulation provides a natural way to include them [16].

In Smooth Particle Applied Mechanics, a truly stationary state, without fluctuations,
is possible only if the underlying w-fluid freezes. For example, smooth particle applied
mechanics contains velocity fluctuations, with two different estimates of the velocities at the
nodal points, {v}, the velocities at which the 'points move, and {<v>}, the spatially-
averaged velocities characterizing the neighborhoods of the moving points. The smooth
particle continuum approach to hydrodynamics includes chaotic fluctuations which can be
quantified by measuring the Lyapunov spectrum. Figure 4.1 [16] shows that macroscopic
fluctuations, measured by Lyapunov spectra for macroscopic SPAM systems, look very
much like those of microscopic molecular dynamics systems [17]. This result comes from
Liouville's theorem - the equilibrium form of the phase-space continuity equation. The
system is convective, conserving phase-space volume, because the sum of all the
Lyapunov spectrum exponent pairs is zero.

There is an extremely interesting relationship between the Newtonian equations of
motion for a dense fluid and the smooth particle equations for an ideal gas.  For the
isentropic ideal gas equation of state, P = p2/2, the smooth particle motion equations are
isomorphic to the motion eqﬁations of molecular dynamics using weighting function w(r) =
¢(r) as the governing pair potential [4]. This isomorphism appears peculiar, because the
molecular dynamics motion, although conservative and perpetual, must certainly exhibit the
long-wavelength viscous dissipation and heat conduction associated with irreversibility in
numerical simulation. At the same time, the Eulerian e_quations of fluid mechanics contain
no explicit dissipation, and applied to an isentropic ideal gas, correspond to an infinite
Reynold number, but with time-reversibility. @ SPAM also shows an intrinsic shear
modulus with elastic properties similar to those found using molecular dynamics. The

intrinsic shear modulus of SPAM, which comes from the isomorphism to molecular

dynamics, was discussed in section 3.6 in Chapter III.
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Before investigating the shear modulus and viscosity, we investigate the time
reversibility of SPAM with the Euler equations, using a method analogous to molecular
dynamics, invented by Levesque and Verlet and illustrated in their bit-reversible leapfrog

algorithm [3]. We discuss the time-reversibility of SPAM in detail in the next section.
4.3 Time reversible continuum mechanics [4]

The "leapfrog algorithm" of atomistic molecular dynamic [3],

{1, -2r,+1_=dt*(F/m), }; ()

is patently time reversible.  Any "trajectory”, a selection of discrete time-ordered
coordinates {r(ndt)}, going forward in time is mathematically equivalent to a time-reversed
trajectory {r(—ndt)} obeying the same motion equations. But ordinarily, computer
roundoff errors lead to small errors in the last decimal place. Such errors can then grow in
time, with Lyapunov instability, as exp(At), restricting the effective time-reversibility of
trajectories to just a few "Lyapunov times"; that is, a few times 1/A. For a description of
Lyapunov instability in many-body systems see reference [17].

Levesque and Verlet showed [3] that the combined irreversible effect, due to

roundoff error plus Lyapunov instability, can be eliminated entirely by using an integer

representation of coordinate space {r}. Here we explore that same idea from the

standpoint of macroscopic continuum mechanics, employing a version of continuum
mechanics, smooth particle applied mechanics, which closely resembles microscopic
molecular dynamics, but which extends the state space to include densities {p} and internal
energies {e} for each particle.

The leapfrog representation of the continuum particles' equations of motion can be

combined with a time-symmetric energy equation to give the following explicit algorithm:
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(r, - 21, +1); = d?T{[(mo/p?); + (mG/pz)j]-ViWij}o ; (2)
(e, — ) = dX{[(mo/p?); + (mo/p?)l 1y (Viwyp), ) ; (3)
2dtyy = (r, - 1) - (0 -1y | 4)

The initial values required are coordinates and energies at two successive times, t = —dt and
t = 0, for instance. Numerical tests indicate that this scheme is stable, with local errors
which are third order in the time step dt and global errors which are second order. That the
scheme is stable is by no means obvious a priori. For example, a similar difference
scheme for the first-order differential equations of molecular dynamics, and taken from

Milne's text [18],

r,-r_=2dtu,; u_ -u_=2dt(F/m), , (5a,b)

though formally equivalent to the léapfrog scheme for a doubled time step of 2dt, turns out
to be unstable fér molecular dynamics [13].

After our sucéessful trials in one dimension suggested the possibility of stability for
this approach, we tested this scheme in two space dimensions with the hydrostatic

nonlinear equation of state,
P=—c=p%-1 |
=—c=p-“—-1+e, (6)

containing both tensile and compressive parts, as well as thermal expansion.
The numerical results, for 25 particles of unit mass, in a 2.5x2.5 periodic container

with initial internal and kinetic energies of 25 and 25, conserved energy well with time

steps of 0.01 and 0.02, showing the expected second-order global errors.
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Figure 4.2 Time development of the 25-particle energy error (with a total energy
fluctuating about 50.0) using generalized leapfrog timesteps of 0.01 (below) and 0.02
(above) to solve equations (16a), (17), and (21) in Chapter 2. A timestep 0.04 is unstable.
At time 10 the velocities were reversed and the simulations returned exactly (“bit
reversibly") to the initial condition shown in Figure 4.3.
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Figure 4.3 Initial and final configuration (time 1000 with timestep 0.01) for 25 periodic
continuum particles with the equation of state p= p2 — 1 + e. The time-averaged internal

and kinetic energies are 33.94 and 16.05. The vertical bars indicate (from left to right)
internal, kinetic, and total energy.
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See the energy errors plotted in Figure 4.2. The overall density in this case is 4, around
which the smoothed-particle sum fluctuates. The particles were initially arranged in a
square lattice, with random velocities summing to zero. The ordered arrangement gives
way to disordered fluid arrangements of the type shown in Figure 4.3.

Following Levesque and Verlet [3], we replaced the coordinates and energies by
32-bit integers, carrying out intermediate operations in floating point arithmetic and then
truncating the results for the {r} and {e} to integers. Tests showed bit-perfect time
reversibility (as would be expected from the time-symmetry of the difference equations)
over computations of tens of thousand of time steps.

We conclude that the same reversibility properties which apply to molecﬁlar
dynamics can be extended to the Euler equations of continuum mechanics by using the
smooth particle approach (bit-reversible for an integer state space).

In the special case of an isentropic ideal gas, the smooth particle approach to the
continuum simulation produces trajectories identical to those found in molecular dynamics,
so that the continuum weight function w(r) is equivalent to an atomistic potential function
¢(r). When dissipation is present, we were unable to find a similar time-symmetric stable |
formulation in the continuum case. We were also unable to extend Levesque and Verlet's

approach to the afomistic case with a constrained kinetic energy [13,19]:
{dr/dt = u; du/dt= (F/m)—-Eu}; &= (12K)ZFu; K =(m/2)Su;
dK/dt = 0. (7a,b,c.d)

We conjecture that a stable time-symmetric bit-reversible algorithm for these
atomistic isokinetic equations cannot be found. From the physical standpoint, this might
be expected, because such thermostatted equations can be used to drive steady

nonequilibrium heat currents, producing multifractal strange attractor and repellor objects in
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the phase space [13,19]. These fractal structures are the antithesis of the conserved phase

volume which characterizes equilibrium flows.
4.4 Hydrodynamic instabilities [5, 20, 21]

Solutions of the hydrodynamic equations can have an inherent instability in their
reaction to the small perturbations to which any physical system is subject.  The
hydrodynamic stability problems originate in the differentiation of stable from unstable
patterns of flow. In considering the stability of the hydrodynamic system with a given set
of parameters defined by the system states, we determine the reaction of the system to small
perturbations. |

The important quéstion is this: if the system is perturbed, will the perturbation
gradually die down, or will it grow in amplitude in such a way that the system
progressively departs from the initial state, especially exponentially fast, and never reverts
back to it? In the former case, §ve say that the system is stable with respect to the
perturbation; in the latter case, we say that it is unstable. Clearly, a system must be
considered as unstable even if there is only one special mode of perturbation with respect to
which it is unstable. In other words, stabiiity means stability with respect to all possible
infinitesimal perturbations. Most stability problems involve dissipative systems. In non-
dissipative, conservative systems, the situation is generally different. Stable states, when
perturbed, execute undamped oscillations with certain definite characteristic frequencies or
grow linearly in time; in unstable states small initial perturbations grow exponentially with
time.

There are several different types of instabilities intrinsic to hydrodynamics —
Rayleigh-Bénard [22], Couette [23,25], Rayleigh-Taylor [24], Kelvin—Helmholtz [25],
Richtmyer-Meshkov [26]. To simplify the study of these instability phenomena, we

combine various system parameters into nondimensional combinations. Among all
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hydrodynamic instability problems, the best known of such numbers is the Reynolds

number Re:
Re = Lu/v, 3)

where L is a typical dimension of the system, u is a typical speed, and v is the kinematic
viscosity.

The origin of the instability is always the same—a potentially unstable arrangement
of the fluid results from a variety of externally imposed conditions. We can also have an
unstable arrangement of flow resulting from a prevailing adverse gradient of angular
momentum in Couette flow: in a steady circular flow of a liquid between two rotating
coaxial cylinders. This instability can be interpreted in terms of Taylor number (Ta). A
discussion of this problem can be found in references [23, 25]. For Couette flow, viscous
flow between two rotating coaxial cylinders, the Taylor number Ta, including cylinder radii

and angular velocities, is used:
Ta = (4Q,R, ‘WAL m*w/m-n>2; ©)
n=R,/R,; u=Q,/Q,, (10a,b)

where R, and R, are the radii of two cylinders, and €, and Q, are the angular velocities of

their rotations.
Similarly, for the thermal stability of a horizontal layer of fluid, heated from below,

the Rayleigh number and Prandtl number are used:

Ra= gocBL4/(1cu) ; Pr=v/x, _ (11a,b)
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where g is the acceleration due to gravity, L is the depth of the layer, B is the imposed
temperature gradient, o and K are the coefficient of thermal expansion and thermal
diffusivity, the ratio of heat conductivity to specific heat capacity times density.

Rapid low-cost simulations are replacing the complex theoretical approaches and
structures of the pre-computer era. It is nowadays easy to study instabilities by computer
simulation. =~ We study two types of instabilities, Rayleigh-Bénard and Richtmyer-
Meshkov, using SPAM. Before we discuss our results, we describe the fundamental
features of these instabilities.

The Rayleigh-Bénard problem in horizontal layers of fluid heated from below is
now nearly 100 years old, demonstrated by Bénard in 1900, but still the subject of
intensive investigations and still regularly yielding surprising results relevant to the general
theory of hydrodynamic stability. A horizontal layer of fluid with an adverse temperature
gradient is maintained by heating the underside. The temperature gradient maintained is
adverse since, on account of thermal expansion, the fluid at the bottom will be lighter than
the fluid at the top. Gravitational force is applied to the system in adverse direction of
temperature, yielding a top-heavy, potentially unstable, arrangement of the system.
Because of this latter’instability there is a tendency for the fluid to redistribute itself. This
natural tendency is inhibited by viscosity. We expect that the adverse temperature gradient
must exceed a certain value before instability can occur. The theoretical foundation of this
phenomenon involves the non-dimensional Rayleigh number (Ra), named for Lord
Rayleigh. We report simulation results using SPAM in Chapter V.

The onset of instability of the fluid can occur in heterogeneous fluids—two
contiguous fluids, possibly with different densities accelerated toward each other. There
are at least three different instabilities of this type. Rayleigh-Taylor instability occurs when

a light fluid supports a heavy one in a gravitational field. The upper heavy fluid in the

nonlinear stage of the Rayleigh-Taylor instability forms falling spikes while the light one
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forms rising bubbles. For the small interface perturbations, the instability grows

exponentially.

In the same situation but with the layers in relative horizontal motion, the instability

of the plane interface is called Kelvin-Helmbholtz instability.

00

(b)

Figure 4.4 Schematic Diagram of fluid dynamic instabilities: (a) instability arising from
rotating Couette flow .(arrangement of Taylor cells), (b) Rayleigh-Bénard instability
(Rayleigh-Bénard cells), (c) Richtmyer-Meshkov instability in shock impulsive force field,
or Rayleigh-Taylor instability in gravitational field (bubbles and spikes), (d) Kelvin-
Helmholtz instability (shear instability in stratified fluid).

(c)

Instead of gravitation, as in Rayleigh-Taylor instability, a shock wave can accelerate

one fluid into the other. This type of instability is called Richtmyer-Meshkov instability,
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predicted by Richtmyer and confirmed experimentally by ”’Meshkov. When a shock wave
collides with the interface between two different materials, the interface pe’rtﬁrbations grow
into nonlinear structures having the spike-and-bubble form of Rayleigh-Taylor instability.
There is no theory or computation providing a comprehensive understanding of this
instability. However, for small perturbations the instability grows linearly. Lawrence
Livermore National Laboratory's A Division has much interest in studying these
hydrodynamic instabilities. Dr. Mikaelian [27] (A Division) has studied theoretically these
instability problems for more than 10 years. @ We report our SPAM studies of this
instability in Chapter VII. Figure 4.4 shows the four different kinds of instabilities—
Rayleigh-Bénard, Couette, Kelvin-Helmholtz, and Richtmyer-Meshkov, which is
qualitatively the same as Rayleigh-Taylor instability.

4.5 Summary

Usually macroscopic hydrodynamic calculations reduce the fluctuations intrinsic to
the microscopic molecular level. But SPAM incorporates fluctuations characterized by two
different velocities: velocity calculated from direct time integration of the motion equation
and the velocity calculated from the spatial averages using weighting function. These
fluctuations occur whether the flow is turbulent, or not. = However, for conservative
macroscopic hydrodynamic systems, Lyapunov spectra calculated from SPAM algorithm
resemble those from Molecular Dynamics: sums of pairs of exponents vanish so that phase
space volume is conserved with time - the result from Liouville's theorem.

For an isentropic ideal-gas system, the Smooth Particle equation of motion is
identical to that of Molecular Dynamics. It generates the same trajectories as those of

Molecular Dynamics so that the Smooth Particle method has intrinsic viscosity,

conductivity, and elastic constants. These constants are intrinsic to Molecular Dynamics.
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Extending the "Bit reversible integer algorithm” developed by Levesque and Verlet
for molecular dynamics, we showed that smooth particle applied mechanics is also time
reversible for non-dissipative macroscopic hydrodynamic systems. For the Bit-reversible
leapfrog algorithm, SPAM with B spline weighting function of the smoothing length 2.5 is
stable with time steps up to 0.02. Our system goes forward 100 000 cycles to time 1000,
with time step 0.01, and then reverses back to the exact initial configuration at time 2000.

For hydrodynamic systems, instabilities are ubiquitous due to nonlinearities. We
described different types of instabilities and non-dimensional variables used in simplifying

| analyses of instability problems: Reynolds number, Taylor number, Rayleigh number, and

Prandtl number. Schematic pictures of fully developed instabilities were presented.
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5.1 Introduction

We had a coarse grained introduction to this topic in section 4.3, "hydrodynamic
instabilities", but it was only a glimpse of a larger problem. The Rayleigh-Bénard problem
originated in the study of regular convection cell structures seen in fluid layers heated from
below. The overall configuration with which we are concerned was shown in Figure

4.4(a): alayer of fluid is bounded by two horizontal rigid planes separated by a vertical [y]

distance L and at different constant uniform temperatures T, and T, — the lower plate is

hotter than upper one (T, >T,). In everyday experience, this configuration is common ~

for example, in boiling water, hot fluid tends to rise and cold fluid tends to fall. The
principle is very simple but its' consequences are among the most complex in fluid
dynamics. For nearly incompressible fluids, Lorenz' classic set of three coupled nonlinear
equations describes the mechanical instability.

The history of related hydrodynamic investigations spans a century. The
references listed in the work by Goldhirsch, Pelz and Orszag [1] provide access to the early
work. As we already mentioned, some nondimensional parameters (the Rayleigh number,
the Prandtl number, the aspect ratio, and the Nﬁsselt number) play important roles in this
problem.

As a geometric parameter, the aspect ratio of the system, I' is defined as the ratio of
the horizontal, x direction to the vertical, y direction, Lx/Ly. Horizontal dimensions are
sometimes assumed infinite (modelled with periodic boundary condition) but the classical
Rayleigh-Bénard problem has a finite boundary on which the fluid is at rest. The Rayleigh

number and Prandtl number were defined in section 4.3. One of the most convenient
nondimensional numbers in this instability problem is the Nusselt number, Nu [=

QLy/(KAT)], where Q is heat flux, AT = T, — T, k is thermal conductivity, and Ly is the

system height. The Nusselt number is the ratio of the actual heat transfer to the heat
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transfer that would occur by conduction alone were the fluid at rest.  The onset of
Rayleigh-Bénard instability is marked by Nu increasing above unity [1-5].

‘As an analytic ‘method for solving this problem the Boussinesq appfoximation
together with variational approximation methods have been used with many approximations
[6,7]. These methods explain the basic physics behind this problem. We review these in
Section 5.2. Because cases in which the fluid equations can be solved analytically are
limited, numerical methods play an important role in this problem. Numerical methods can
be applied to the full set of hydrodynamic equations.

In the analysis of this problem with SPAM, we have several different models —
with different configurations and boundary conditions, with different forms of weighting
functions, and with different constitutive equations. We review the classic analytic
methods in the next section. From this review, we see the essential physical concepts of
this problem. We describe different parameters used in our numerical models in Section
5.3. In Section 5.4 we briefly describe the Navier-Stokes continnum model for
comparison. We report our results and conclusion in Section 5.5. Section 5.6 includes a

summary.
5.2 Analytic methods [6-8]

Imagine the fluid in between two different temperature plates. Heat is conducted
into the fluid from a hot wall, transported through the layer and conducted out at the cold
wall. There is no overall mass transport in this process. The time-averaged upward and
downward mass currents balance. If the space were filled with a solid instead of a fluid,
the transport through the layer would be by conduction so that the temperature would fall
approximately linearly from the hot wall to the cold. In the case of fluid in motion, the
temperature- distribution is more complicated but the fluid close to the hot wall is at higher

temperature than the fluid close to the cold wall.  Density variation accompanies this
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temperature variation: the hot fluid expands, and so becomes less dense than the cold fluid.
The cause of motion is the differing gravitational force per unit volume acting on these
density differences: the fluid would remain at rest if the applied temperatures were equal
(T, =T,), if the density did not vary with temperature, or if there were no gravitational
force field applied. Consequently, an analysis includes all three concepts.

The Boussinesq approximation method, which is the simplest analytic method,
deserves review here. In this approximation, variations of all fluid properties other than
the density and pressure are ignored completely. Variations of the density are ignored
except in so far as they give rise to a gravitational force. From this approximation, the

fluid is incompressible:
Vau=0. -

Similarly the term, pdu/dt, in the motion equation is replaced by p du/dt with constant p

imposed in the initial condition. Only the gravitational force in the vertical direction is not

approximated,
F=pg=(p,+Ap)g =V-(p,gy) + Apg, 2

where we assume that a specific potential energy due to gravity is gy in the vertical

direction. The pressure due to density change is linearized:
P=p,+p,Ly, 3)

where p, is hydrodynamic pressure and p _gy is hydrostatic pressure due to mass density

p,- Then the Navier-Stokes motion equation becomes,
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p,du/dt = VP + nVu + Apg )

If Ap =0, this is the same as the Navier-Stokes equation without gravity except that P has

been replaced by p,. Because the Rayleigh-Bénard problem has no pressure boundary

conditions this change makes no difference. Additionally one can linearize the dependence
ofpon T, Ap = —~ap AT, where AT = T — T, ,;,, and a is the coefficient of the thermal

initi

expansion. Then the Boussinesq equation of motion is,
duw/dt = ~(1/p )VP + vV7u — goAT, 5

where AT =T — T, ., and v is kinematic viscosity, n/p,..
In addition to the dynamical equation of motion, we need an energy conservation
equation. If the heat conductivity and specific heat constant are constants in space and

time, the energy conservation equation has the same form as does the Lagrangian heat

transfer equation,
dT/dt = V7T, (6)

where ¥ [= k/(p C,)] is the thermal diffusivity. Note that the work term is ignored in this

approximation.

Let us consider the physical meaning of each term in these equations. The term, ~
goAT, is known as the "buoyancy force" because this term represents the tendency for
light fluid to rise. The term vV?u is the familiar "damping force" due to viscosity. The
"inertia force" term, u-Vu, is concealed in the Lagrangian comoving derivative of motion
equation, dw/dt.  The right hand side term in heat transfer equation, kV?T, is the
"conduction term”. The "convection term”, u-VT, is also concealed in the comoving time

derivative of temperature T. The boundary values are closely tied to the heat transfer
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equation (6) because the given boundary conditions provide temperature differences
between the two vertical plates.

Since the dynamic roll mechanism is damped by viscosity the rolls are dormant for
small temperature differenées. Sufficient temperature difference can keep the rolls moving

through the buoyant driving force of thermal expansion. The critical condition is that the

two forces balance for large temperature differences, AT = T,-T;:
goAT =vV2u = u=(goATL)N. (7

The Rayleigh number is just the ratio of the two competing heat fluxes, heat transfer by
convection divided by heat transfer by conduction, when the roll velocity is estimated from

force balance:
(u-VT)/(KVZT) ~@ul)/x= (gOLATL3)/(Kv) =Ra. 8

The Rayleigh number, Ra, represents the ratio of the two competing heat fluxes. The
critical Rayleigh number is, however, not unity, but of order (21t)4 ~ 1000. Provided that
the Rayleigh number is sufficiently small the problem is a simple one with a linear
temperature profile and with heat being transmitted from bottom to top by conduction.
When the temperature difference becomes large enough a more efficient mode of energy
transport is the formation of convective, and finally turbulent rolls, "Rayleigh-Bénard
rolls.”

The Prandtl number (Pr = v/x) is related to the ratio of the inertia force due to the

convective term in the motion equation to viscous dissipative forces;

(-Vu)/(vVu) ~ (@¥L)/[(vu)/L?] = (uL)/v = Ra/Pr. )
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Turbulent flows are rotational. = Buoyancy forces can directly generate local

vorticity. To see this, apply the curl (VX) operation to the Boussinesq motion equation

(5),
dw/dt = o-Vu + vV + agxV(AT), . (10)

where @ (= Vxu) is the vorticity vector. The horizontal component of the temperature
difference gradient, [V(AT)], contributes to generate vorticity perpendicular to the
temperature difference gradient and gravity force. This is obvious: horizontally separated
hotter fluid and colder fluid move in different directions to each other, the torque produces
rotation about the third axis. The vertical component of the temperature difference gradient

cannot contribute to generaté the turbulence. See Figure 5.1 for the detailed geometry.

A
Y

Horizontal Boundary

Vertical Boundary

>

- L > X

Figure 5.1 Coordinate system in two dimensional problem. The aspect ratio I" is defined
by L/H.
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Another approximation, independent of this method, is the perturbation approach,
which 1eads to a normal mode analysis. For details of this method, see reference [6]. In
either approach, Boussinesq or perturbation, the solutions are subject té boundary
conditions. Two different kinds of boundary conditions are typical of analytic methods:
rigid surfaces on which no slip occurs and free surfaces on which no tangential stress acts.
The condition that no slip occurs on a surface implies that not only the vertical component
of velocity, but also the horizontal component of the velocity vanishes in a two-dimensional

problem:

u, =u, =0. (11

The condition on a free surface is likewise;
Pyy = 0 and Py = 0. (12)

Because the isotropic term —p8ij has no transverse component, the zero tangential stress

condition implies, using the condition that uy vanishes for all x on the boundary surface,
au)/ax = ou,/dy =0, (13)

on the free surface. Therefore, boundary conditions for the Rayleigh-Bénard problem can
be given in either of two ways: vanishing velocities or stress tensor components in the
momentum conservation equation; fixed temperatures on the boundariés in the energy
conservation equation. With these boundary conditions the critical Rayleigh number can
be calculated analytically.

Another method to calculate the critical Rayleigh number comes from Schmidt and

Milverton's experimental method. They determine the Nusselt number, which is also a
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non-dimensional parameter, by measuring heat flux quantities in convection. This number
can also be used to calculate the critical Rayleigh number in computer simulation. To do
this we calculate the Nusselt number as a function of Rayleigh number. Above the critical
Rayleigh number the Nusselt number exceeds unity. Below the critical Rayleigh number it
fluctuates around unity. Lastly the temperature distribution has a bifurcation at the critical
Rayleigh number: the central temperature becomes different from the lateral edge
temperatures. This temperature bifurcation phenomenon has also been used for calculating

the critical Rayleigh number [13]. In SPAM simulations to calculate a critical number we
| can use either the Nusselt number or temperature bifurcation. We describe our simulation

models in the next Section.
5.3 Simulation models [1, 9, 10]

Analyﬁcal results gives us the basic physical concepts regarding nondimensional
parameters and approximate critical values for some simple systems. However, the cases
in which the fluid equations of motion can be solved analytically are very limited.
Numerical simulation plays an important role in the analysis of complicated fluid systems.
Numerical experiments resemble laboratory experiments but can deal with problems out of
the range of laboratory experiments [11]. Numerical experiments including microscopic
systems, must also deal with simplified models, not real systems [12-19]. We use our
SPAM algorithm to analyze the Rayleigh-Bénard problem. Since we already described the
detailed numerical method in Chapter III, we describe only the parameters used in the
models here. |

Initially all system particles are placed on square lattice positions in two space
dimensions. They have no initial velocities at all. Two different temperatures are applied
to the two horizontal boundaries for an uniform adverse temperature gradient. The

problem requires also a gravitational field g. To maintain thermal contact at the upper




Chapter 5 Rayleigh-Bénard instability 81

[cold] boundary, g cannot be too large. For static equilibrium, and at constant density,

gravity satisfies the force balance equation,

(9P/AT), dT — pgdy = 0. (14)

For the ideal gas equation, gfavity g is the ratio of température difference to the vertical
boundary length. For the dense fluid.equation of state, g is five times greater than that of
ideal gas equation of state because the pressure is approximately five times greater than that
of ideal gas equation of state. ~We also chose it in such a way that the maximum-to-
minimum density ratio was not too large, always less than two.

We simulate two different models with rigid boundary conditions: four reflective
boundaries using image particles, and two horizontal reflective boundaries with two
periddic lateral boundaries. With image particles, temperature and velocity are fixed on the
two horizontal boundaries as explained in Chapter III. We also tested fixed boundary
particles. For still a different treatment of boundaries, using a continuous distribution of
external particles, see Reference 23.

We use three different equations of state. The simplest of the three state equations

is the ideal gas law, appropriate to a dilute gas:
P=pe; fe=ekyT=1, (15)

where ky is Boltzmann's constant per unit mass. We have also used van der Waals'
equation, which augments the ideal-gas equation of state to include both the effects of
attractive forces (through the parameter a) and excluded volume effects (through the

parameter b). In the single phase region of the phase diagram:

BP = [p/(1 — pb)] — Bap?; Pe = 1.0 — Ppa; a = £6%2m; b = 6*/2m. (16)
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We choose these values for the two material properties, a and b, in order that unit reduced
number density, no? = No%/V = pcz/m = 1, somewhat exceed the critical reduced number
density (2/3) and that our reduced temperature range 0.5 < mk;T/e < 1.5 lies well above
the critical reduced temperature (8/27).

In addition to the ideal-gas and van der Waals models, we have also used a rhore—
complex equation of state (macroscopic dense fluid equation of state) from molecular

dynamics. The macroscopic dense fluid equation of state corresponds to a simple inter-

atomic pair potential with three vanishing derivatives at the cutoff distance, r = ¢ [15]:
o(r) = 100e[1 - (/c)*1*. a7

More details of this potential are discussed in the reference [15]. For numerical purposes,
we rewrite the forms of equation of state in terms of the density, p temperature, (kT/g)
pressure, (PV/Ne) and energy, (E/Ne). N is the number of particles with unit mass in
molecular dynamic systems and € is the strength of the potential. At unit (number) density
and reduced temperature, p and (kT/€), and the reduced pressure and energy, (PV/Ne) and

(E/Ne), are respectively 1.00, 1.00, 5.04 and 1.443. For small deviations from this

standard state, the following expansions apply [15]:

PV/Ne =5 + 88p + 2.56¢ + 9(3p)? + 28pd¢; (18)
mkyT/e = 1 - §p + 0.78¢ — 0.8(3p)* - 0.55pde; (19)
me/e = E/Ne = 1.443 + 1.58p + 1.561 + 2.4(8p)2 + 1.28pdr; 20)

3p = No?/V) — 1.0; de = (B/Ne) — 1.443; &t = (KT/¢) — 1.000. (21)
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It should be noted that this quadratic dense-fluid equation of state is not quite
"thermodynamically consistent". For instance, the Maxwell relation based on

differentiating Helmbholtz' free energy A with respect to temperature and volume:

9X(BAYOPAV = (FE/AV)y = 3*(BAY/IVIP = ~J[(BPYOB],; B = 1/mk,T, (22)

is not exactly satisfied. This means that thermodynamic cycles can be constructed in such
a way as to violate conservation of energy. To illustrate, consider just linear variations
around the reference state. (9E/QV), evaluated from the energy equation, is 1.5¢/G> while
J(BP)/9B = P + dP/dInp, evaluated by combining the mechanical equation of state and the
energy equation, is 1.25e/c%.  This lack of consistency causes no apparent trouble in
smooth particle simulations. On the other hand, we believe that it is the underlying cause
of a slow divergence, at very long times, of some of our attempts to find corresponding
Navier-Stokes "solutions".

Our dense fluid equation of state was especially useful in revealing a fundamental
shortcoming of the smooth particle method in treating dense fluids. Our early attempts to
compare Navier-Stokes and smooth particle solutions for the molecular dynamics based
equation of state led repeatediy to "frozen" states with the smooth particles crystallizing into
static hexagonal-symmetry structures with either one (Lucy) or two (Monaghan) panicles'
per site. See Figure 5.2 for an example. In the calculation of Figure 5.2, a simpler
linear (in 8V and 8B) version of dense fluid equation of state is used. The linear dense
fluid equation of state has the same reference states as those of equations (18), (19), and
(20) and satisfies exactly the Maxwell relation just described but without the second order
terms. With exactly the same imposed boundary conditions, the Navier-Stokes equations

with this linear version equation of state easily generate reproducible convecting flows.

In Figure 5.2 it is obvious that the density is nearly constant (p = 1) when the

system is crystallized. The temperature gradient in the y direction (height) is likewise
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constant. Heat only ﬂbws through the conduction. The average temperature, Ty, is (Ty
+T; /2. The energy and pressure, e(p, T) and P(p.e), are both given by the equilibrium

equation of state so that the pressure gradient balances the gravitational acceleration. This
constant density, constant gradient crystallized system keeps its stationary structure

forever.

o° €

(o] (o]

o o

¢ o OQ)

O 0 0

Figure 5.2. "Freezing" of the smooth particle fluid (Ra = 2000). The linear dense-fluid
equation of state is used. But the Navier-Stokes equations with the same equation of state

show a convective solution with two rolls at this Rayleigh number. The high pressure,
using Monaghan's weight function with a range h = 30, leads to an unphysical freezing of
the smooth particles. Similar results are obtained using Lucy's weighting function. For
the freezing system, density is constant and temperature and pressure gradients are
constant. This constant density, constant gradient crystallized system keeps its stationary
structure forever.
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This unphysical high-pressure freezing can be traced to the form of the smooth
particle equation of motion. At sufficiently low pressures a typical smooth particle kinetic
energy exceeds the maximum value of the effective potential energy from which the smooth

particle accelerations are determined:
mv? > g(0) = 2P(V/N)*(c/h)*w(0). (23)

At sufficiently high pressure, on the other hand, P(V/N) approximates mc?, where c is the
sound speed, so that ordinary hydrodynamic flows cannot overcome the potential barrier to
smooth particle motion.

A more precise criterion for the applicability of the smooth particle technique for
fluids can be based on an analog of Lindemann's melting criterion. In two or three space
dimensions, melting occurs when the fluctuation in the nearest-neighbor separation is of
order 10%. In order for the corresponding potential energy to be available from the flow,

the pressure cannot be too large:
mv?2 > 2Pn—2[w(0.90) - w(o)]. 24)

For our Lucy weight function the combination in square brackets is about 0.01n. In the
molecular dynamics case 2Pn~! = mc2, where c is the sound velocity, while in the van der
Waals case it is considerably smaller. Thus it is not surprising that the smooth particle
approach is successful only in the latter case. In conventional continuum mechanics a
constant pressure addition does not affect the accelerations at all, because they depend upon
the gradient V-P. It is obvious that an additional constant pressure in the combined term,
(P/p2)-Vw, used in smooth particle method does not affect the accerelations for a 1-

dimensional regularly-spaced system because of the symmetric cancellation of forces. But

if the particles move or vibrate, then the nonlinear part of (P/p2)-Vw by analogy with
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molecular dynamics melting affects the accelerations. Freezing can be avoided by using
the difference form used in the flux calculation, (P, — Pj)/pij. This expression does not
guarantee the conservation of the total momentum and turns out to be unstable.

We use three different forms of weighting functions described in Chapter II. B
spline, Lucy's, and Cusp weighting functions. The reason why we use the different
weighting functions is that SPAM algorithm depends explicitly on the weighting function.

We see the different results due to different weighting function in Section 5.5. We also

calculate the temperature bifurcation and the Nusselt number versus Rayleigh number and

estimate the critical Rayleigh number of our system. In the next Section we describe

compressible continuum Navier-Stokes model.

5.4 Continuum Flow Solutions

Only a brief description of our method for solving the Navier-Stokes equations is
warranted, because the approach we developed turned out not to be new [16]. We
spanned the system with a grid of square celis, evaluating {v, e, dv/dt, de/ot} at the grid
points, and {p, P, Q, dp/dt} at the cell centers. The centered-difference equations for the
time development of {p, v, e} at these fixed locations were integrated with the same fourth-
order Runge-Kutta integrator which we used in the Smooth Particle work. The required
values of density from cell centers just outside the system were set equal to the nominally
constant reference-state value of unity. With this scheme we found no trouble in obtaining
fully converged results for systems of several thousand cells.

Two aspects of the continuum results were especially interesting. First, we found
that there is a considerable range of Rayleigh-Number values for which the kinetic energy
varies almost exactly linearly when plotted as a function of Ra—1/2.  Furthermore, the
slopes and intercepts of these lines also varied almost exactly linearly with L-2. These two

simple linear dependences made it possible to extrapolate accurately to a fully-converged
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Figure 5.4 Fully-converged (L. — o) variation of reduced steady-state kinetic energy K/Ne
with Rayleigh number Ra in square systems with four reflecting boundaries. The
temperature along the lateral boundaries is a linear interpolation between the temperatures of
the two horizontal boundaries. The points shown are the results of corresponding Lucy-
weighted smooth particle simulations using 1600 particles.

critical Rayleigh Number using just a few calcula_itions, with either NxN or Nx2N square
zones and with N values of 30, 40, 50, ... . Fully-converged (extrapolated) results are
shown in Figures 5.3 and 5.4 for the two kinds of boundary conditions. These numerical
results make it possible to assess the accuracy of the Smooth Particle solutions discussed in

the following section.




Chapter S _Rayleigh-Bénard instability 89

5.5 Results and Discussion.
5.5.1 Nusselt number calculation [1-5]

In the absence of convection, there would be a uniform vertical temperature gradient

and a thermometric flux F = kAT/L, where L is the system height. When the convection

occurs the horizontally averaged thermometric flux defined in the laboratory frame is
F=<v,T- x0T/0z> (25)
and the normalized flux or Nusselt Number is given by their ratio [2, 4, 5]:

Nu=F/F = L/AT[(l/K)<vyT> - <dT/dz>]. (26)

We calculated tﬁe Nusselt number for different Rayleigh numbers. The Rayleigh number
[Ra= (gocATL3)/(Kv)] is given by equation (8) and depends on the product of thermal
diffusivity ¥ and kinematic viscosity v. For the same size system with same temperature
difference, different artificial coefficients of thermal diffusivity and kinematic viscosity
correspond to different Rayleigh numbers.

We simulate 2500 (50x50) particles system (I" = 1) using B spline weighting
function with smoothing length 2.5, four reflective boundaries, dense fluid equation of
stste, high temperature at lower boundary 10, lower temperature at upper boundary 0.5,
gravity 1 as a function of thermal diffusivity and kinematic viscosity. Figure 5.5 shows

Nusselt number of the system as a function of Rayleigh number represented by the product

of kv. In this calculation, we keep the Prandtl number unity.
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Figure 5.6 shows the same system averaged temperatures at the three different
positions as a function of Rayleigh number: central temperature, average of two vertical

edge temperatures, and horizontal temperature average at the central height.

2.5 T T T
»
/
r'd
2.0 + ,/ -
- ¥
2 p
< 7
g ]
wn
2 /
1.0 / .
"0—-—-0/—‘\"
0.5 . L
‘ 0.0 0.3 0.6 0.9 1.2
l/xv

Figure 5.5 Nusselt number as a function of 1/xv. The system consists of 2500 particles
(50x50) with four reflective boundaries. Dense-fluid equation of state is used. In equation
(8) Rayleigh number Ra = (gOLATL3)/(KV) (= 47500/xv), where gravity g = 1.0,
temperature difference AT = 9.5, system height L = 50, thermal expansion coefficient o =
0.04 for dense-fluid equation of state. The critical Rayleigh number occurs about 1/xv =
0.45, corresponding to Ra = 21375.

For systems with Rayleigh number bigger than the critical Rayleigh number in the Figure
5.5, we also see temperature bifurcation in Figure 5.6 [13, 20]. The critical Rayleigh

number depends on the boundary conditions in temperature which is affected by the heat
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diffusion equation and, in the equation of motion, by the slip or no slip boundary condition

on velocity.
9.5 , r |
—e - Horizontal Average
8.5 —
——Central Part
) - == = Average of Central Ends
5 7.5 -
b
1]
B
-]
£
& 6.5 -
ot
5.5 -
4.5
0.0 0.3 0.6 0.9 1.2
1/xv

Figure 5.6 Temperature bifurcation as a function of 1/xv. This system has the same
physical parameters as those used in Figure 5.5. Horizontal average value is the average of
the horizontal temperature at the central hight of the system. Central part is the average
temperature of the central area of one interaction range at the center of the system. Average
central ends is the average temperature of two lateral edges at the central height of the
system. We see the temperature bifurcation at the critical Rayleigh number of Figure 5.5.

Table III shows the numerical values of Figures 5.5 and 5.6. In the table, Nu

represents Nusselt number, Ha horizontal average, Cp central part, Ae average of central
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ends. In the dense fluid equation of state temperature depends on the system density and

internal energy with respect to their unit reference values [15].

Table III Numerical values of Nusselt number and temperature of horizontal average (Ha),

central part (Cp), and average central ends (Ae) in Figures 5.5 and 5.6. Corresponding
Rayleigh number Ra = 47500/(xv) for the system.

Transport r':]&];sbﬂ: Temperature
coefficients

(x=v), (1/xv) Nu Ha Cp Ae
1.0 (1.000) 2.40 5.23 7.29 4.68
1.2 (0.694) 1.82 5.44 6.91 4.97
1.3 (0.592) 1.58 5.68 6.79 5.21
1.4 (0.510) 1.46 5.55 6.77 5.05
1.5 (0.444) 0.83 5.49 5.55 5.30
1.6 (0.391) 0.83 5.53 5.92 5.19
2.0 (0.250) 0.82 5.50 5.51 5.32
4.0 (0.063) 0.82 5.43 5.41 5.29
5.0 (0.040) 0.83 5.41 5.39 5.29

It is hard to analyze an intrinsic shear viscosity quantitatively because intrinsic shear
viscosity is a function of energy and nonlinear as is shown quantitatively in Figure 5.7.
We discuss this problem in Section 5.5.5 in detail.

We simulate 5000 (100x50) particles system (I" = 2) using Lucy weighting function
with smoothing length 3, ideal gas equation of state, vertically periodic boundary
conditions, transport coefficients, k = v = 1, gravity 1/50. The system corresponds to
Rayleigh number about 2500. Figure 5.8 shows the roll patterns, iso-temperature curves,

and isodensity curves. This system size and transport coefficients are large enough so that
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the intrinsic shear viscosity effect is negligible compared to the values shown in Figure 5.7.
But eventually the intrinsic viscosity property can be reduced by using many particles or

longer smoothing length which we saw in Chapter 3.
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Figure 5.7 Shear viscosity coefficients as a function of strain rate in microscopic model
with Lucy potential function with smoothing length 3 at energies E = Ne and E = Ne/2.

- Viscosity coefficients decrease as the strain rates increase. Data from Professor H. A.

Posch [University of Vienna].
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5.5.2 Different weighting function effects.

In Table II of Chapter 3, we showed that SPAM has different intrinsic shear moduli
for the three different weighting functions: B spline, Lucy, and Cusp weighting functions.

The Cusp weighting function has the smallest shear modulus and Lucy has the largest one.

252 103 T 1 ¥ ¥ l ¥ T T 13 ’ T ! i H l 1 1 T T T i 1] T T I 1 [ T T
i A i
ty
' l |
I | \ -— - B Spline
1.7 10° Co .
I Lucy
.| | -
o0 | ! ' =-=== Cusp i
) I \
=
= - , . ]
£ 11 10° - ‘
-3
oE B !
a \
1
5.5 10?
0.0 ==t
0.0 50.0 100.0 150.0 200.0 250.0 300.0
Time

Figure 5.9 Kinetic energy fluctuation as a function of time for three weighting functions: B
spline, Lucy, and Cusp weighting functions. Dense fluid equation of state is used. We see
that the initial kinetic energy increase depends inversely on the shear moduli calculated in
Chapter 3 at the early time of about 25, about one half the sound traversal time.
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This effect appears in the kinetic energy fluctuations as a function of time in Figure 5.9.
At the early time in this graph, we see the effects of the intrinsic shear modulus: the kinetic
energy increase is inversely proportional to the intrinsic shear modulus of the weighting
function. ‘

The calculation was done on the square lattice system with the same horizontal and
verticai dimension (= 50) so that the total number of particles are 2500. Initially the
particles are placed on the square lattice site with no velocity at all. Boundary conditions
used are reflective ones, with image particles. In this system the global density of the
system is unity. As transport coefficients, we use the same value for thermal diffusivity
and kinematic viscosity (= 0.4) so that Prandtl number is unity. As an equilibrium

| pressure, we used the dense fluid equation of state and smoothing length (=h) is 2.5.

Fully developed Rayleigh-Bénard rolls show up in the second cycle of kinetic
energy iricrease, in the middle part of Figure 5.9. Unit gravity is big enough to set up the
initially static equilibrium status without convection. We then increase the gravity step by
step to adjust the whole system in equilibrium condition during the calculation. Otherwise
the system breaks down. The shapes of fully developed Rayleigh-Bénard rolls are
different with different weighting functions with reference system, as shown in Figure
5.10. Two symmetric rolls are developed with B spline weighting function, two skew
symmetric roll for Lucy weighting function, and no roll at all for Cusp weighting function.
The hydrodynamic equations do not necessarily provide a unique flowing path so that two
symmetric rolls in B spline and two skew symmetric rolls (big one and small one) in Lucy
could both possibly be correct in the given condition. But the Cusp weighting function
definitely fails for this problem because it has no rolls at all. While developing the rolls,
different weighting functions change the initial square lattice structure to different lattice
types: the Cuép weighting function gives triangular lattice, the B spline tends to order the
particles in pairs, and the Lucy weighting function makes another type of structure. The

lack of rolls in the Cusp case is due to the forming of a stable triangular lattice with lower
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SOl CNCALe caps SotMu S0 aris

Figure 5.11 Characteristic particle motions
at time 62.5 for three different weighting
function long before making rolls with the
same system parameters as in Figure 5.9.
The dense fluid equation of state is used.
Note the pair particle structure for the B
spline weighting function. Lucy's crystal
structure forms from an initial square lattice
structure. The Cusp's triangular lattice
structure comes from that same initial
square lattice structure. This crystalization
phenomenon can be understood through the
analogy with molecular dynamics.
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energy than the square lattice. Figure 5.11 shows typically different particle motions

€

corresponding to different weighting functions.

5.5.3 Different boundary condition effects.

As discussed in Chapter 3, we can have different reflective boundary conditions
with different boundary particles: image particles and fixed particles [15]. We simulated a
system with two vertical periodic boundaries and an aspect ratio I' = 2.  See Figure 5.12.
Figure 5.13 shows the roll patterns of the same systems (I' = 1, B spline weighting
function with smoothing length 2.5, transport coefficients [k=v=0.4]) with different types
of boundary particles. Both conditions can be applied. The image particle choice is much

less intrusive.
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Figure 5.12. Rigid boundary rows of fixed particles (with specified temperatures) are used
to confine the bulk fluid. The fixed boundary particles are shown as open circles while the

bulk smoothed particles are indicated by arrows with a length proportional to the individual
particle velocities. The illustration shows an ideal gas Rayleigh-Bénard flow with 1 =k/kB

= 0.5(me)l/2/c at a Rayleigh Number of 10 000. There are 5000 bulk particles i a

rectangular 50 x 100 box. Data from Professor H. A. Posch [University of Vienna].
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5.5.4 The effects of equation of state [15].

The equation of state is the required material description in hydrodynamics. We
compare results with two different equations of state: a dense-fluid equation of state and an
ideal gas.equation of state with the specific heat ratio two. The two systems are exactly the
same except for the value of gravity: in the dense fluid gravity is unity but 0.2 using the
ideal gas equation of state system. These values were estimated from equation (14).
Gravity in the ideal gas equation of state is approximately AT/L and the pressure in dense
fluid is approximately five times greater than that of ideal gas equation of state near the
equilibrium region. Therefore, the different gravity values do not change the essential
physics.

A dramatic diffefence between the two systems is shown in the direction of rolls:
up in the center in the dense fluid system and down in the center in the ideal gas system.
Figure 5.14 shows two different roll directions for the two different equations of state.
We calculated the iso-temperature curves and iso-density curves for the corresponding
systems shown in Figure 5.14. Figure 5.15 shows the iso-temperature profiles. In the
ideal gas case with central downward stream line, iso-temperature profiles show a concave
shape. But in dense fluid with the central upward stream line, iso-temperature profiles
show a convex shape. Figure 5.16 shows iso-density profiles for the two systems.
Density profile is not linear for the fully developed rolls. However, the ideal gas system
changes its roll directions, first counter clockwise then clockwise then counter clockwise,

While changing the roll directions, as an intermediate step the system displays four

rolls. From this result, we see that the solutions of hydrodynamic systems are not unique.
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Figure 5.15 Iso-temperature profile of the rolis corresponding to Figure 5.14. (a) dense
fluid equation of state: convex shape corresponding to central upward stream. (b) ideal gas
equation of state: concave shape corresponding to central downward stream.

Figure 5.16 Iso-density profile of the rolls corresponding to Figure 5.14. (a) dense fluid
equation of state. (b) ideal gas equation of state.
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5.5.5 Quantitative analysis of intrinsic shear viscosity.

This analysis is based on molecular dynamics data calculated by Professor H. A.
Posch at the University of Vienna, shown in Figure 5.7. He calculated the viscosities for
the total energy E = Ne and E = Ne/2. We call them hot and cold particles respectively.
For hot particles, temperature or kinetic energy is 0.54 and for cold it is 0.07.  Shear
viscosities of hot and cold particles are 12 and 0.6 as shown in the Figure 5.7. Posch
used Lucy's weighting function with smoothing length 3 for this calculation.

To understand the results consider the following approximate arguments. The
mean force on a particle is proportional to the potential gradient times the square root of the

number of interacting neighbor particles:
F=-¢'VN, @n

where N is the number of interacting neighbor particles. The velocity of a particle is
V(2mkT), where T is temperature. The number of weak collisions required to change this

velocity is,

N, = (WF), (28)

where u is velocity and # is the number of degrees of freedom. The collision time is equal

to the potential range divided by the velocity,

T, =L/ | (29)

The relaxation time is equal to the collision time times the number of collisions,
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T.=N.T. (30)

T c C

Then the mean free path, A is calculated by the number of collision times the potential

length. Finally the kinematic viscosity v (= n/p = Au/3) turns out to vary as T2 for the
particles of the thermal velocity TY2. This argument describes the temperature dependence
of our viscosities very well and also provides semiquantitative agreement with the

numerical values:

N = 35(mkT)*(kT/eo), (31)

restricted to the case of unit number density No? = V. We expect that a similar argument
would provide an effective heat conductivity for the Lucy potential, but we have not
checked this notion.

Usually the full blooming Rayleigh-Bénard rolls are formed at the maximum energy
state in smooth particle simulations. In that maximum energy state, the intrinsic viscosity
also increases maximally. The intrinsic viscosity of the Lucy flow, though evidently less

than our estimate for an energy E = Ne/2, is still sufficiently great to exceed the specified

viscosity, and can dominate the flow. To emphase this point we carried out a simulation
with the viscosity set equal to zero (thermal conductivity is still required, in order to drive
the flow). Again rolls formed, though irregularly and many in number, suggesting the
persence of viscous dissipation in the smooth particle model of an inviscid fluid.

Figure 5.17 shows the zero viscosity rolls at times 50, 500, and 2000. Imitial
velocities are zero. The system consists of 800 particles (40x20). Lucy's weighting
function with smoothing length 3 and ideal gas equation of state are used. Rolls are

formed clearly at time 500 and it looks as if many rolls are formed later. Heat conductivity

Kk =0.1.
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5.5.6 Comparison with Navier-Stokes simulation

The comparison with Navier-Stokes simulations was done for two different system
shapes, with aspect ratios of 1 and 2, in order to make contact with earlier calculations [1,
6]. A system with periodic lateral boundaries and an aspect ratio of 2 corfesponds closely
to Chandrasekhar's classic analysis [6], which predicts — for sticking boundaries — that
stable convection begins to occur as the Rayleigh number exceeds 1708. A square system,
with specified temperature on the boundaries corresponds to Goldhirsch, Pelz, and
Orszag's simulation, using a spectral method [1]. These workers did not estimate the
precise critical Rayleigh number for this system. In both cases we control the boundary
values of temperature and velocity by specifying these for all image particles. Both
Chandrasekhar and Goldhirsch-Pelz-Orszag consider the nearly-incompressible Bousihesq
approximation. Though we first believed that the small deviations from Chandrasekhar's
analysis were due to our relatively large temperature gradient (with AT = <T>) additional
calculations, with much smaller temperature differences AT produced only small changes,
so that we believe that the Boussinesq approximation is responsible for the disagreements.
The usual theoreﬁéal perturbation analyses typically assume either an isochoric or an
isobaric thermal diffusivity. In fact, for a compressible fluid, any hydrodynamic process
is neither isochoric nor isobaric, so that an intermediate heat capacity is appropriate.

In addition to the equilibrium equation of state, irreversible momentum and energy
transport must be described. For simplicity, we have in every case chosen constant, and
equal, reduced transport coefficients, corresponding to a Prandtl number of unity. We

have explored the two simplest choices. First:

N =k/kp =< (me)/c, (32)
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where 1 is the shear viscosity, k is the thermal conductivity, and kg is Boltzmann's

constant per unit mass. Second:
v=n/p =x=k/(pCy) = (¢/m)2c, (33)

where Vv is the kinematic viscosity and k is the thermal diffusivity x = k/(pCy). Cy is the
isochoric specific heat. "I‘he transport coefficients 1 and K are defined by Newton's and
Fourier's Laws in equations (4), (5), (6). Though the two choices above are equivalent
for the reference state, they in fact lead to slightly different critical Rayleigh numbers, close
to, and bracketing, Chandrasekhar's analytic result based on the Boussinesq
approximation. See Figures (5.3) and (5.4).

In the continuum simulations we have assigned the densities and fluxes of image
particles to match those of the corresponding bulk particles. Thus the density and fluxes
are continuous at all system boundaries. To satisfy the condition of static equilibrium at an
exactly constant density, we have further chosen the magnitude of the gravitational

acceleration to satisfy the static force balance equation (14).  Thus, for the ideal gas

equation of state, g is chosen equal to kBAT/L, where kB is Boltzmann's constant, L is the

system height and AT is the temperature difference Ty — T, For the dense fluid and

van der Waals equations of state, we have used the same constant-density condition,

evaluating the thermodynamic derivative (ap/aT)p. All of our simulations have been

carried out with the overall reduced density equal to unity; most have a mean reduced
temperature mkp<T>/e = (mkyp/e)[ Ty, + T p)/2 Of unity as well.

Our smooth particle calculations were typically carried out with from 500 to 5000
particles, though even a million particles could be used on a modemn parallel computer.
500 particles can easily generate convincing and realistic convection currents. See Figure

5.18 for a 512-particle flow using van der Waals' equation of state.
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Figure 5.18 Rayleigh-Bénard simulation of a van der Waals fluid using 512 particles and
Lucy's weight function. The mean reduced number density, no? = 1, is half the maximum

and the mean temperature is 27/8 times the critical temperature.

Not only the final states of these simulations but also the approach to these
convecting states are faithfully described. In Figure 5.19 we compare the kinetic energy
approach to the steady state for an ideal gas using the smooth particle method fo that found
by solving the Navier-Stokes equations, as described in Section 5.4.

In both cases we
used the same simple initial velocities:

vx o sin(mx/L)sin(2ny/L) ; —L <x<+L; (34)

Vy o< cos(mx/L)cos(my/L) ; —L2<y< +L/2, (35)
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with an internal energy distribution corresponding to a uniform temperature gradient.
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Figure 5.19 Approach of the kinetic energy to the steady two-roll state for the continuum
and Lucy-weighted smooth particle methods, applied to an ideal gas [Rayleigh number 10
000 and N = k/kg = 0.5(me)2/c ]. The initial condition has a uniform temperature
gradient and two simple rolls, with the functional form given in Section 5.5.6
corresponding to a total kinetic energy about one half the final value.

Errors less than about 1% are disguised by the fluctuations inherent in the smooth

particle method. These fluctuations are the analog of kinetic temperature in molecular
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2. The initi
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k/kp = 0.5(me)1/2/c. The Rayleigh number is 10 000 and the aspect rat

kinetic energy of the 5000 particles was about 9¢. The distributions correspond to a time of 5000(mo%/c)1/2.
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Figure 5.20 Density and temperature distributions for the continuum (upper) and smooth particle (lower) methods using the

ideal-gas equation of state with 1
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dynamics, a measure of the mean squared deviation of individual particle velocities from
the average velocity in their neighborhood, <v2> — <v>2.  Because the kinetic energy of
the continuum flows was found to vary nearly linearly with Ra-1/2, we have chosen the
kinetic energy of the smooth particle flows (p/2)<v>2 for a quantitative comparison. We
compared the Navier-Stokes and smooth particle kinetic energies per unit mass for
Rayleigh numbers 5000 and 10000. From the Navier-Stokes calculations, the
corresponding infinitely-fine-mesh limits are 0.00340 and 0.00481 for Rayleigh numbers
of 5000 and 10 000. From the smooth particle results, using the ideal-gas equation of
state, these same specific energies are 0.0030 and 0.0046. Thus the energy errors are no
worse than 10% so that velocity errors are of order 5%. Smooth particle kinetic-energy
data are also shown in Figures 5.3 and 5.4, again with velocity fields correct to about 5%.
Comparisons of the density and temperature contours appear in Figure 5.20. We view the
good agreement of the smooth particle and the Navier-Stokes results as completely
satisfactory provided that the pressure is low enough to allow for smooth-particle fluid
flow.

At higher values of the Rayleigh number thé "robust” smooth-particle technique
continues to provide solutions when the continuum solutions begin to fluctuate, and can
only be obtained with difficulty, if at all. It is this robust aspect of smooth particle applied
mechanics, for extreme conditions and at high speeds, which accounts for its popularity in

studying a variety of strongly nonequilibrium fluid and solid flows [24].
5.5 Summary

Smooth Particle Applied Mechanics provides a robust and simple approach to
reasonably accurate solutions of many continuum problems, including Rayleigh-Bénard
instability. It completely avoids grid-tangling and mesh instabilities. Often, a smooth

particle solution requires fewer degrees of freedom than does a finite-difference or finite-
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element approach. Considerably fewer smooth particles are required than atoms in a
corresponding molecular dynamics solution. Nevertheless, the smooth particle trajectories
are essentially Newtonian trajectories, for particles with mass m, subject to an effective
potential function 2Pn—2w(r). Accordingly, high—pressure subsonic fluid problems, with
v2 << ¢2, cannot be reliably solved using this method [25].

Different weighting funcﬁons show different types of Raleigh-Bénard rolls and
different kinetic energy fluctuations. The hydrodynamic equations cannot tell us the exact
or better solution for the given system so that we have no way to tell which one is correct
or better than the other. In our computer experiments the Cusp weighting function often
solidifies and displays no rolls so that we can cértainly conclude that the Cusp function is
not appropriate for this problem.

Different weighﬁng functions lead to the different types of particle structure: B
spline weighting function makes doubling particle motion from regular square lattice, Lucy
function keeps the initial regular lattice type but gradually change it into an irregular shape,
Cusp weighting function makes triangular lattice shape which is more stable than the initial
regular square lattice.

Rayleigh-Bénard convective turbulent modes occur when the Rayleigh number
greatly exceeds the critical Rayleigh number. We calculate the critical Rayleigh number of
the system with unit aspect ratio for the dense fluid system. For the dense fluid equation
of state we get a three times bigger critical Rayleigh number than that of ideal gas case.

A most interesting thing occurs when different equations of state are applied.
Rayleigh-Bénard roll directions are different for dense fluid equation of state and ideal gas
equation of state. The ideal gas system alternates roll directions counter clockwise and
clockwise during the calculation. As an intermediate step the system shows the four rolls.
But these phenomena were not seen in the dense fluid system.

Many authors [20-22] report that the Rayleigh-Benard convection system with a

large Rayleigh number is a good source of Chaotic properties. In this range the Smooth
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Figure 5.21 Two equivalent views of an ideal-gas simulation with 5000 smoothed particles
at a Rayleigh number of 10 000 and with 1} = k/kg = 0.5(me)/%/c. In the lower view the
velocities have been evaluated on an 1800-point square grid using Lucy's weight function
with a range of 3¢ = 3(VMN)12, The distributions correspond to a time of 5000(moc2/e)1/2.

Particle method can be applied and may therefore also be a good method to study Chaos
[15].
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The smooth-particle method promises to be of special interest whenever it is
desirable to include fluctuations, or to evaluate accurate flow quantities on a regular grid.
This latter feature is desirable for the calculation of fast Fourier transforms of field
quantities and for automatic rezoning. Figure 5.21 illustrates two velocity-arrow views of
the same flow field: first, the individual smooth particle velocities; second, the averaged
flow velocities computed at the vertices of a square grid. Because the smooth-particle
results we find lie within a few percent of fully-converged solutions of the compressible

continuum equations it is economically desirable to develop this method further.

References

[1] I. Goldhirsch, R. B. Pelz, and S. A. Orszag, "Numerical simulation of thermal
convection in two-dimensional finite box", Journal of Fluid Mechanics 199 (1989) 1.

[2] G. Veronis, "Large-amplitude Bénard convection”, Journal of Fluid Mechanics 26
(1966) 49.

{3]J. W. Deardorff and G. E. Willis, "The effect of two-dimensionality on the suppression
of thermal turbulence", Journal of Fluid Mechanics 23 (1965) 337.

[4] D. R. Moore and N. O. Weiss, "Two-dimensional Rayleigh-Bénard convection”,
Journal of Fluid Mechanics 58 (1973) 289.

[51 L. N. Howard, "Heat transport by turbulent convection", Journal of Fluid Mechanics
17 ( 1963) 405.

[6] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability (Oxford,
London, 1961).

[71 D. J. Tritton, Physical fluid dynamics (Oxford, London, 1988).

[8] W. G. Hoover, Computational statistical mechanics (Elsevier, Amsterdam,

1991).




Chapter 5_Rayleigh-Bénard instability 116

[91J. H. Curry, J. R. Herring, J. Loncaric, and S. A. Orszag, "Order and disorder in two-
and three-dimensional Bénard convection”, Journal of Fluid Mechanics 147 (1984) 1.

[10] J. B. Mclaughlin and S. A. Orszag, "Transition from periodic to chaotic thermal
convection”, Journal of Fluid Mechanics 122 (1982) 123.

[11] M. Assenheimer and V. Steinberg, "Transition between spiral and target states in
Rayleigh-Bénard convection”, Nature 367 (1994) 345.

[12] M. Mareschal, M. M. Mansour, A. Publ, and E. Kestemont, "Molecular dynamics
versus hydrodynamics in two-dimensional Rayleigh-Bénard system", Physical Review.
Letters 61 (1988) 2550.

[13] T. Watanabe, H. Kaburaki, and M. Yokokawa, "Simulation of two-dimensional
Raylegh-Bénard system using the direct simulation monte-carlo method", Physical Review
E 49 (1994) 4060.

[14] D. C. Rapaport, "Molecular-dynamics study of Rayleigh-Bénard convection”,
Physical Review Letters 60 (1988) 2480.

[15] W. G. Hoover, T. G. Pierce, C. G. Hoover, J. O. Shugart, G. M. Stein, and A. L.
Edwards, "Molecular dynamics, smoothed-particle applied mechanics, and irreversibility",
Computers and Mathematics with Applications 28 (1994) 155.

[16] A. Puhl, M. M. Mansour, and M. Mareschal, "Quantitative comparison of molecular
dynamics with hydrodynamics in Rayeligh-Bénard convection", Physical Review A 40,
(1989) 1999.

[17]]J. A. Given and E. Clementi, "Molecular dynamics and Rayleigh-Bénard convection",
Journal of chemical Physics 90 (1989) 7376.

[18] M. Mareschal and E. Kestemont, "Order and fluctuations in nonequilibrium molecular
dynamics simulations of two-dimensional fluids", Journal of Statistical Physics 48 (1987)

1187.




Chapter 5 Rayleigh-Bénard instability 117

[19] A. Pubhl, M. M. Mansour, and M. Mareschal, "Quantitative comparison of molecular
dynamics with hydrodynamics in Rayleigh-Bénard convection”, Physical Review A 40
(1989) 1999.

[20] P. Colinet and C. J. Legros, "On the Hopf bifurcation occuring in the two-layer
Rayleigh-Bénard convective instability"”, Physics of Fluids 6 (1994) 2631.

[21] T. H. Solomon and J. P. Gollub, "Chaotic particle transport in time-dependent
Rayleigh-Bénard convection", Physical Review A 38 (1988) 6280.

[22] P. K. Newton, "Chaos in Rayleigh-Bénard convection with external driving",
Physical Review A 37 (1988) 932.

[23] T. Watanabe, H. Kaburaki, and M. Yokokawa, "Simulation of two-dimensional
Rayeligh-Bénard system using the direct simulation monte-carlo method”, Physical Review
E 49, (1994) 4060. |
[24] H. E. Trease, M. J. Fritts, and W. P. Crowley (Editors), Advances in the Free-
Lagrange method, Lecture Notes in Physics #395 (Springer-Verlag, Berlin, 1991).

[25] O. Kum, W. G. Hoover, and H. A. Posch, "Viscous conducting flows with smooth particle

applied mechanics", Physical Review E (to appear, 1995).




Chapter 5 Rayleigh-Bénard instability




Chapter 6 _Shock Waves 119

CHAPTER 6

SHOCK WAVES




Chapter 6 Shock Waves

Blank page




Chapter 6 _Shock Waves . 121

6.1 Introduction.

Shock phenomena are ubiquitous in high-speed compressible flows and also
provide an important source of equation of state information under extreme conditions.
Dynamic phenomena of shock waves such as propagation, diffraction, reflection,
refraction, and interaction of shock waves have been studied by using experimental,
numerical, and theoretical methods for a long time [1-5]. A numerical method for the
calculation of shock motion is to solve Navier-Stokes equations numerically.  Finite-
difference methods [6-10] have been used in the macroscopic regime and Molecular
Dynamics simulation has been used on the microscopic scale [11, 12].  The Smooth
Particle method is a hybrid so that we can simulate shock dynamics in the macroscopic
regime using a transient Molecular Dynamic technique with a moving piston [12-14].

The basic idea of wave propagation is that some recognizable disturbance moves
with a finite velocity — through the convective motion of particles. We describe Wave
formation using a moving piston in Section 6.2. We discuss the forming of shock waves
from a simple wave by showing the wave velocity as a function of density in Section 63
We also describe the Hugoniot relations for the shock waves and equation of state there.

With the formation of shock waves, the initial distribution of density has a
discontinuous step with the value of density behind the discontinuity greater than that
ahead. Without dissipation, the discontinuous surface becomes infinitely steep so that a
numerical simulation can not continue. To avoid this difficulty, we incorporate dissipation
. by using heat conduction and viscosity — "artificial” viscosity [15]. We describe two
different terms of artificial viscosity in Section 6.4. The Hugoniot equation is used in
computing theoretical shock propagation propertiecs. @~ We describe the computational
procedure of calculating the Hugoniot relations in Section 6.5. Whenever the propagation

wave encounters a second medium, which causes its velocity to change, part of the incident

wave is reflected and part of it is transmitted. We discuss this phenomena using a simple
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numerical example in Section 6.6.  Finally in Section 6.7 we describe piston shock
generation method using the SPAM algorithm and discuss the results.  This shock
generation algorithm is directly related to the Richtiyer-Meshkov instability problem,

which is discussed in the Chapter 7.
6.2 Wave formation using a piston [3, 4]

Consider the problem of a cylinder filled with gas and with a movable piston at one
end. Pushing or pulling the piston with a constant speed generates a compression wave or
rarefaction wave. This is because the uniform flow field ahead of the piston is disturbed

and the disturbance propagates as a speeding wave.

il ¥
Figure 6.1 Compressive wave formation with a piston. The moving piston generates

disturbances which move a steady finite velocity. The wave velocity always exceeds the
piston velocity.
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Obviously, the compressive wave speed must exceed the piston speed. Figure 6.1
shows the relative positions of the wave and the piston. Any material can propagate sound
waves. A sound wave is defined as the small amplitude wave observed as the piston
speed approaches zero. It is interesting to see the form of the equations for sound in the
hydrodynamic equations. To simplify the problem, consider a one-dimensional isentropic
ideal gas problem. The flow is subject to the hydrodynamic equations, continuity

equations, Euler equations, and equation of state. In the Eulerian form;

dp/dt + pIu/dx + udp/dx =0, 1)
du/at + udu/ox + (1/p)oP/ox = 0, 2)
P=P(), 3)

where P, p, and u are pressure, density, and flow velocity, respectively. Now assume a

small perturbation of pressure and density,

P=P +P; p=p,+p'; u=u, (4a,b,c)

where ' denotes small perturbations, and subscript o denotes undisturbed quantities.

Putting these into the equation (2) and retaining only the first order terms yields,

op'/ot + p Qu/dx = 0 ; p Ju/ot + c?Ip'/ox =0, (5a,b)

where c¢? = 9P'/0p' = 0P/dp. c is called the speed of sound because the wave propagation

equation is obtained by applying the partial derivative of equation (5a) with respect to time t

minus partial derivative of equation (5b) with respect to space x,
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0%p'/9%t — c?0%p'19%x = 0. (6)
The solution of this wave equation (6) is,

p'= fl(x —ct) + £,(x + ct), )

where f; and f, are arbitrary functions, x — ct = constant corresponds to right traveling

waves, X + ct = constant corresponds to left traveling waves. Thus infinitesimal pressure
waves propagate with the speed of sound c. The speed of sound ¢ can be written in terms

of the partial derivative of pressure P with respect to density p at constant entropy,

c? = (9P/3p),. (8)

‘Even though this result is derived from simple assumptions, equation (8) ié
generally valid for fluids — it is valid even if sound propagates in a non-isotropic flow ,
field. Let us take an example for the ideal isentropic gas equation of state in which
pressure is proportional to a power of density. The sound speed can be determined as

follows:
P=Rp’ = dP/P=+dp/p = (dP/op),=7RT; 9
c? = (9P/dp), =1RT, (10)

where Y (= ¢ /c, ) is the ratio of specific heats, R is the gas constant, and T is temperature.
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6.3 Formation of a shock wave from a simple wave.

To see the change of wave form as a simple wave moves to the right, we need to
identify the sign of the expression of propagation velocity of pressure disturbance
depending upon density change, (d/dp)[u + c]. Considering the right-traveling isentropic

wave,
- (d/dp)[u +cl = (y+ Dc/(2p) >0, : an

where We used a constant Riemann Invariant [3] for the right-traveling wave, [u +
I(c/p)dp]. For the right-traveling ideal-gas simple wave, the wave velocity at a higher
pressure highér-densify point is greater than that at lower pressure. Thus a compression
wave steepens as it progresses, with the higher pressure parts of the wave overtaking the

lower pressure parts to form a shock wave and contact discontinuity.

Figure 6.2 Shock wave motion as seen

in three coordinate frames: (a) laboratory
frame with piston speed u, and shock

wave speed ug, (b) stagnation frame, in
which cold fluid moving at u, is brought
to rest by a rigid wall, (c) shockwave

frame, fixed on the wave, in which cold
fluid enters at speed u, and exit at speed

LR From reference [12].
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Only the presence of viscosity and, to a lesser extent, heat conductivity, prevents
such a propagating one-dimensional wave from becoming infinitely steep. In the ideal gas
shock wave analysis, we use artificial viscosity to moderate the wave. We discuss this
idea in detail in the next Section.

The gas behind the shock wave front is usually in a "hot" high-temperature, high-
energy compressed state. Ahead of the shock front is a "cold" fluid at a relatively low
temperature, energy, and density. The progress generating such .a shock wave can be

analyzed in the three different reference frames. Figure 6.2 shows the different reference
frames: the laboratory frame, with piston speed u, and shock speed ug; the stagnation

frame, in which cold fluid moving at u, is brought to rest by a rigid wall; the shock wave

frame, fixed on the wave, in which cold fluid enters at speed u_ and exits at speed u—~ u,

[12].

A Figure 6.3 Schematic diagram of
" controlled shock tube, including Hot
region behind the shock fromt, Cold
region ahead of shock front, and thin
- shock width.

Cold

>

In the shock wave frame, the mass, momentum, and energy fluxes are conserved
on both sides, hot and cold, and throughout the shock wave. In the controlled tube shown

schematically in Figure 6.3 the system is divided by the shock front, whose propagating

velocity is u_. In the hot region, behind the shock: front, density is p,, pressure is P,
s 1 1

energy is e; and particle velocity is u; = U, In the cold region ahead of the shock‘ front,




Chapter 6_Shock Waves 127

density is p ,, pressure is P, energy is e, and particle velocity u, = 0. Cold materjal
moves toward the shock front at speed —u_ and hot material moves away from the shock

front at speed u, - U,

\

Hugoniot

Isentrope

Rayleigh Line

Po

-

Figure 6.4 Schematic P, V diagram for three curves, Hugoniot, Isentrope, and Rayleigh
Line. Material is shocked directly from initial state (P, V) to final state (P,, V,). The

slope of the Rayleigh Line determines the shock propagation velocity.

In the shock wave frame, we obtain three equations linking together the thermodynamic
properties of the cold and hot equilibrium states, using the notation pu for the mass flux, P

+ pu2 for the momentum flux, and pule + (P/p) + (©%/2)] + Q for the energy flux [12]:

P, —uY = p(-uy; (12a)
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P, +py(u, —u)® =P +p (-u)?; (12b)

piule, + (Py/p)) + (1/2)(up ~u) =p.ule, + P/p,) + (1/2)(-u ). (12¢)

By eliminating the two speeds from the three equations the Hugoniot relation for the

work done in compression results;

AE . = (P, +P)(V, - V2. (13)

The P, V diagram is very useful for clarifying the theoretical relations governing shock
waves and the properties of Hugoniot curves. Figure 6.4 shows the P, V diagram for
three different curves, Hugbniot, Isentrope, and Rayleigh Line.  Material is shocked
directly from (P, V) to (P;, V,) as shown in Figure 64 By equation (12a), V /V, =

u/(u, - up) and eliminating the velocities u; or u— u, term from equation (12b), the

propagation velocity of shock wave is given by

ul=V_2(P, —PY((V,-V), (14)

where the volumes are all "specific" [volume per unit mass]. This velocity can be
determined graphically from the slope (P, — P )/(V - V,), the Rayleigh Line slope. The
isentropic curve shown in Figure 6.4 has the initial entropy of the fluid S, = S(P_, V).
The sound wave velocity is calculated from the isentropic state following equation (8) and
the Hugoniot curve and Isentrope have the same curvature and slope at the initial state (P,

V). Thus in the limit of a weak shock, wﬁen (P, - PP, — 0, the shock wave is the

same as a sound wave: the entropy change approaches zero and the wave velocity

coincides with the sound speed,
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u=V2(P, -P)I(V,- V) = -V AP/AV), - 2 (15)

In general, the slope of Rayleigh Line is always greater than the tangent to the Hugoniot
curve at the initial state (P, V) so that shock wave velocity is always greater than the
sound speed and Hugoniot curve always passes above the isentrope emanating from the
initial point.

From equation (13) the specific internal energy increase during the shock
compression from (P, V ) to (P;, V,) is equal to the area under the trapezoid made by
Rayleigh Line. If the fluid is compressed isentropically from (P, V) to (P, V,), the
work performed is equal to the area under the isentrope. This area also gives the increase

of internal energy per unit mass,

(AE),=-[i} PaV, (16)

where the integration is performed for S =S .

The difference between the two areas corresponds to the energy difference made by the heat

increase at fixed final volume V, times entropy increase due to shock compression,

(AE) o0k — (AE)g = Ji; TdS = T(Sl =Sy > a7

where T is some average temperature lying between the Rayleigh Line and Isentrope.
Thus the shock process is not only an adiabatic process without heat flow but is also
irreversible. The entropy produced in the shock process is equivalent to an irreversible
conversion of work into heat. |

If the fluid is initially at rest, the kinetic energy per unit mass acquired by the fluid

from the compression is equal to,




Chapter 6 Shock Waves ’ 130

2 /2 = (u, - ug +u) %2 = (1/2)(P; — PV, - V). (18)

This energy corresponds to the area of the triangle made by the Rayleigh Line and the point

(V,, P) so that the total energy, sum of kinetic and internal energy, corresponds to the area

of rectangle made by (P; =P )(V,~ V).
6.4 Aurtificial viscosity [15,‘ 16]

We mentioned in section 6.2 that a compression wave steepens as it progresses,
with the higher pressure parts of the wave overtaking the lower pressure parts to form a
shock wave and contact surface and becoming infinitely steep without dissipation. To
analyze this discontinuity, we solve the nonlinear Hugoniot relations, equations (12a,b,c)
and (13). The detailed procedure for computing the Hugoniot relations is explained in the
" next Section.

It is possible that a shock may develop spontaneously within the fluid. There is no-
way of telling when and where this might happen, except possibly by constantly
monitoring the results of the calculation with an expert eye. To avoid this difficulty, we
can incorporate dissipation by using heat conduction or viscosity.

In 1922, Becker [17] studied the effects of heat conduction and viscosity on shock
waves. He showed that, when only heat conduction is allowed for, the temperature varies
smoothly through the shock layer and that in shocks of strength lesser than a critical value,
the pressﬁre and density vary smoothly also; for stronger shocks, the transition of pressure
and density is partly smooth and partly discontinuous. When viscosity is allowed for,
however, all quantities vary smoothly through the shock region for a shock of any
strength. In either case, the thickness of the transition zone is proportional to the
coefficient of the dissipative mechanism, so that in the limit of no heat conduction and no

viscosity the variations approach the discontinuous Hugoniot ones. Becker also showed
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that with ordinary viscosity, in which the stress is proportional to the shear rate, and which
is therefore represented by linear terms in differential equations, the thickne;ss of transition
layer varies with the shock strength, approaching zero for a very strong shock and infinity
for a very weak shock.

These problems were avoided in numerical simulations by Von Neumann and
Richtmyer. They introduced a purely artificial dissipative mechanism of strength and form
such that the shock transition is smoothed over three or four spatial zones [15]. Their
quadratic artificial viscosity term has a similar effect. When we use only a quadratic term
for shock dissipation, we find enhanced fluctuations around the shock discontinuity. To
avoid these fluctuations we included an additional linear term proportional to the velocity

gradient:

aph®(V-u)? - Bphe(V-u),  (Vu) <0
q= (19
0, (V-u) >0,

where ¢ and § are given constants, p is density, u is velocity, c is sound speed, h is of the
order of the smoothing length. In SPAM, we calculate V-u with the same algorithm as

that of the viscous stress tensor, using equation (1a) in Chapter 3.
6.5 Computing the Hugoniot Relations

Equations (12a,b,c) relating the flow variables on each side of the discontinuity

form a system of three equations with six variables u, p, P, U, Py and P, for the ideal

gas equation of state. It is assumed that thermodynamic equation of state, a function of (P,

p), is known and the value of a parameter describing the strength of shock wave is known,

for example, the density behind the wave front p, or the velocity of the "piston™ creating
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the wave u,. The computation is not explicit, but rather implicit, and the procedure is the
following (with assumption of knowledge of shocked material density p,); first calculate
the specific volume of shocked material (1/p,), second calculate the specific volume

difference AV (= V- V), third calculate the shocked pressure and energy. The third

procedure is done implicitly to satisfy the Hugoniot equation (13) and the given
thermodynamic equation of state at once: first pressure is assumed and a new energy is
calculated using equation (13); then a new pressure is calculated using the given equation
of state, P(p, T) and e(p, T). This process is iterated until the numerical value of the new

pressure is equal to the old one.

A A

Ug P

. | s
Up U.p
&) (b)
Figure 6.5 The relations linking pressure P, shock speed u,, and piston velocity u,. (a)

Shock wave velocity as a function of piston or particle velocity. The shock speed at zero
piston velocity corresponds to the sound velocity of the material. (b) Shock pressure as a
function of piston or particle velocity.

Finally we calculate the shock velocity and particle velocity of the shocked material from

the specific volume difference, pressure difference, and piston velocity. The strength of

the shock wave can be described by specifying either of the two speeds ug and up, Or any
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of variables identifying the final thermodynamic states: P;, V,, and ¢;,. Thus the three

variables related to the shock, pressure P, shock speed u, and particle velocity u,, are not

independent of each other. They satisfy a functional relation according to the equation of
state.

Figure 6.5 (a) shows a shock speed ug versus particle speed u, relation. In this

diagram, shock velocity at zero particle velocity éorresponds to the sound velocity. Figure

6.5 (b) shows a pressure P versus particle velocity u, relation. Figure 6.5 (a) suggests

that a shock wave can be generated at any speed of piston velocity.

6.6 A simple reflected shock wave [18, 19]

Light Material I Heavy Materiall
p=1 p=2 p=4 p=2
up =2 u=0 u=0 u=-1~2
P=1 P=5 P=5 P=1
e=1 e=>5/2 e =5/4 - e=1/2
~——— —_—
V2 1~2

Figure 6.6 Numerical example of a controlled shock tube of Light material hitting the

Heavy material generating transmitted and reflective shock waves. The equation of state is
P = pe.

So far we considered propagating shock waves. When a propagating shock wave

meets a contact discontinuity, [for example, materials with different thermodynamic
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properties, a rigid wall, a force free wall], part of the incident wave is reflected and part of

it is transmitted. This situation is called the Riemann problem.

A

Light Material Heavy Material
(moving material

U, =0
P Up
Figure 6.7 Shock interface matching condition. The shock wave is generated by the Light
material (moving material) hitting the Heavy material.

The actual phenomena of the reflected and transmitted wave are very complicated,
depending upon the thermodynamic properties of the reflecting material. The analysis of
such experiments is based on the fundamental facts of shock wave physics.  Shock

pressure and mass velocity are obviously continuous across any interface between two

materials, thus satisfying a shock impedance [p_u ] matching principle according to the
relation, [AP = (p ous)up], from discontinuity equations (12a) and (12b). We illustrate this
~ principle by taking a simple example: Figure 6.6 shows this numerical example with a
controlled shock tube of Light material hitting a Heavy material with their physical
parameter values.

To get a graphical solution, we use the Hugoniot curve, pressure versus particle

velocity as shown in Figure 6.7. Computing the Riemann problem using the Hugoniot
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relations uses the discontinuity equations (12a, b, ¢) and shock matching condition shown

in Figure 6.7 at each contact interface.
6.7 Piston shock generation using the SPAM algorithm

A transient method, which has been used in molecular dynamics [12,13], can be
used in SPAM to generate a shock wave. Figure 6.8 shows the transient method used in
molecular dynamics from reference [12].

This Figure showé two space dimensions with four periodic boundary conditions.

Two boundaries incorporate time-dependent boundary conditions.

- — e

+Up 0 —Up

Figure 6.8 Special boundary conditions which produce two symmetric shock waves at
each boundary linking the system to a periodic images. Shock velocities are shown at the
top in the laboratory frame. Laboratory frame velocities are shown at the base. The Hot
shocked regions are shaded. From reference [12].

Initially the y coordinates for all particles in the system lie in the range from —L(0)/2 to

+L(0)/2 :

-L(0)/2 < {y} < L(0)/2. (20)
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Instead of using periodic boundary conditions for four boundaries in two dimensional
problem, we tested two different models here: (i) a system with four reflected boundary
conditidns with image particles, and (ii) a system with two periodic boundaries in lateral
directions and two reflective boundaries in horizontal directions with image particles. In

both cases we move a piston with velocity u, from lower boundary toward the upper

boundary in the y direction. For time t, the lower boundary location in y direction is

y(§ = -LO)2 +u,t. @21)

We also assumed the same velocities as the piston velocity (particle velocity) for the
particles within one interaction range of the moving boundary. The .effect of such a time
Idependent boundary condition is to compress the system using a piston. A shock wave
generated near the lower end in y-direction propagates upward at the shock speed u,. For
the pure progressing shock analysis, the calculation is completed when the shock front
reaches the upper end in y coordinate. Figure 6.9 is a panoramic view of the shock wave
~ at regular time intervals. During the period of steady propagation, Figure 6.10 shows the
propagating shock wave properties. In this calculation, we use the ideal gas equation of
state with 1500 (10x150) particles and the B-spline weighting function with smoothing
length h (=2.5).  The physical variables, density, pressure, energy, and particle velocity
of the shocked material, are calculated by a binning method. The bin size is equal to the
one interaction range. Each point represents the average value in a bin. In this Figure, the
particle velocity (piston velocity) is V2, reduced initial density is 1, initial energy is 1, initial
-pressure is 1 using ideal gas equation of state. The shock velocity is 2v2.  The shocked
values, density, velocity, energy, and pressure, have small fluctuations less than 1 % error

comparing with the values calculated by Hugoniot relation.
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Figure 6.9 Propagation of shock waves generated by an upward moving piston. Hot
regions are marked black, and cold regions white. Initially the velocities of particles within
one interaction range from moving piston are given the same velocity as that of piston.
Steady shock waves propagate at constant speed. 1500 (10x150) particles are involved.
Initial reduced density, pressure, and energy are all unity. Particle velocity (piston
velocity) is V2 and shock velocity is 2V2. The ideal gas equation of state (P = pe) is used.
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6.8 Summary

Shock waves can be analyzed in three different coordinate frames, the laboratory
frame, the stagnation frame, the shock wave frame. In the shock wave frame, the mass,
momentum, and energy fluxes are conserved on both sides, hot and cold materials
throughout the shock wave. From the mass, momentum, and energy discontinuity
equations, the Hugoniot (P, V, E) relation is derived. We can compute the propagation
properties of the shock waves using Hugoniot relations or fluid dynamic simulations. We
described f.he two methods. For the fluid dynamic simulation we used the smooth particle
method.

In SPAM simulations we used artificial viscosity terms, a linear term for preventing
fluctuations and a quadratic term for avoiding numerical difficulties from the discontinuous
surface. 'We generated the shock waves by a transient method which has been used in
Molecular Dynamics. The propagating properties of shock waves generated by SPAM
algorithm shows less than a 1 % error compared to the exact values calculated from the
Hugoniot relations. In this simulation, we used a reflective horizontal boundaries and
periodic lateral boundaries. We also simulated a generalized Riemann problem for two
different density materials, a prototype of the Richtmyer-Meshkov instability problem.
For the Light/Heavy or Heavy/Light materials simulations, SPAM shows accurate results

with no greater than 5 % error.
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CHAPTER 7

RICHTMYER-MESHKOV INSTABILITY
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7.1 Introduction

Instability growth plays an important role in understanding the relative fluid motion
of two contiguous heterogeneous fluids of different densities accelerated toward each other
[1-3]. In 1950, Taylor analyzed the instability of an interface, between two different
density fluids, and perpendicular to a gravitatiorial field [4-7]. He solved the problem in
which the density difference between the materials separated by the interface was small.
He found that the interface was unstable to small perturbations if the direction of the
acceleration normal to the interface coincides with that of density gradient. This obvious
instability is well known. It is called Rayleigh-Taylor instability.

In 1960, Richtmyer extended Taylor's analysis of gravitational acceleration to treat
the shock acceleration of such an interface. In 1969, Meshkov confirmed Richtmyer's
analysis with his shock tube experiments. Since then, the shock-instability problem
became known as Richtmyer-Meshkov instability and become a subject of research in its
own right [8-11].

The Richtmyer-Meshkov instability can be considered as a limit of the Rayleigh-
Taylor instability when the acceleration acts for almost zero time but with the magnitude of
the acceleration sufficiently iarge that a finite amount of momentum is transferred to the
fluid. This instability problem is important for basic physics, for understanding
supernovae, and technological applications. Applications include supersonic and
hypersonic combustion as well as inertial confinement fusion [10]. There have been many
experimental [12] and numerical studies of Richtmyér—Meshkov instability.

Experiments can be divided into two different types: shock tube and laser [11].
Shock tube experiments have been more numerous than laser experiments [13, 14].
Experiments in which thin solid plates with a perturbation machined in the driven surface

were accelerated by gaseous detonation products from a plane wave generator were

performed by Barnes et al [15] at Los Alamos. The numerical simulation of acceleration
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instability in elastic-plastic solids was preformed by J. W. Swegle and A. C. Robinson
{16]. The major difficulty with fluid phases is in making a sharp interface perturbation
between two fluids. Most experiments using a gasous phase employ a membrane to
control the interface perturbation. For small amplitude perturbations, experimental results
confirm the Richtmyer-Meshkov results: the amplitude grows linearly with time.
Membrane errors in the measured amplitude are typically about 10 %. For gases without a
membrane, the interface is smooth.  This problem was studied experimentally by
Brouillette [13] in 1989.

Many types of numerical simulations have been carried out [12]: two-dimensional
calculations using purely Eulerian methods (Besnard, Wehner); Eulerian meshes with
interface tracking; Eulerian meshes with adaptive mesh refinement (Rupert); arbitrary
Lagrangian Eulerian meshes (Rauenzahn, Griswold); semi-Lagrangian meshes with
interface tracking (Cowperthwaite); and front-tracking methods (Glimm). Some three-
dimensional calculations using Euleﬁan codes have been carried out by Cowperthwaite and
Wehner. All of the numerical calculations assume inviscid fluids.  The meshes are
defined so as to ensure a good resolution of the initial wavelengths. However, as a
perturbation becomes nonlinear and finally turbulent, smaller scales develop. Some cannot
be resolved. Simulations show that ten times the Kolmogorov eddy size, which is defined
in Section 8.2, is possible for numerical resolution. = The maximum size of resolved
problems is obviously limited partly by computer memory size and principally by execution
speed.

Possible sources of quantitative differences between calculations and experiments
are membrane and boundary layer effects. Both are hard to simulate in calculations.
These aspects of the problem were studied by Benjamen and Cloutman but the puzzle
remains unsolved [12]. For small amplitude perturbations, there has been theoretical

research [17, 18] confirmed by numerical results. Progress has been made, particularly,

in the computation of single-wavelength perturbations.  Although much has been
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accomplished in the past two decades, there is still room for exciting research into several
aspects of the Richtmyer-Meshkov mixing problem, such as the nonlinear behavior of
pérturbation growt;h.

Here we present results calculated using the SPAM algorithm described in Chapters
- 2 and 3. We have three reasons to apply SPAM to this problem: first, SPAM is a purely
Lagrangian method, without a mesh, an advantage in dealing with any turbulent problem;
second, the structure of the SPAM algorithm is very simple. We can easily add any
necessary physical model to this algorithm; third, SPAM can begin with a smooth density
range similar to the real gas experiment without needing the membrane considered by
Broullette {14]. The smoothing function and its range can also be controlled.

In the next section, we review the simple theory explaining amplitude growth. We
describe our numerical model in Section 7.3. Finally, we report our results and discuss

them in Section 7.4. Section 7.5 includes a summary.
7.2 Review of Simple Theories

A simplified model theory cannot explain every important aspect of a full fluid
dynamical instability analysis. But it can give us some valuable insight into the concepts
defining a problem. With the assumption of a small perturbation, Taylor characterized the
instability of a density interface in a gravitational field. He assumed a small perturbation
so that he could apply a linear perturbation theory. He then found the growth rate for the

interface perturbation, a(t):

d?a(ty/dt® = kgAa(t), ¢y

k (= 2n/A), is the horizontal wave number of perturbation, A is the wave length, and a(t) is

a perturbation length at time t. A, is the Atwood number, [(p, — p)/(p, + p;)], and g is
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gravity. The Atwood number A, is positive here to cause the instability. The perturbation

grows exponentially with time.

Richtmyer proposed replacing the constant acceleration g by an impulsive one g =

[u]&(t), where &(t) is the Dirac delta function. Replacing g in this way and integrating the
second order equation once with respect to time, the growth rate of perturbation in

impulsive acceleration becomes,
da(t)/dt = k[u]Aa,, @)

where a is the amplitude of perturbed interface before shock passes , [u] is the change of

interface velocity induced by the shock. The Atwood number A, can now be positive,

zero, or negative. In the linear theory, this equation is valid as long as a(t) << A, i.e. for

small enough t << [lzl(ao[u])]. Figure 7.1 shows two schematic shape of solutions

growing for the arbitrary constant.

A

Exponential Growth in time
(Rayleigh-Taylor instability)

Linear Growth in time
(Richtmyer-Meshkov)

Figure 7.1 Schematic diagram for the solutions of equations (1) (Rayleigh-Taylor
instability) and (2) (Richtmyer-Meshkov instability).
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For the Light/Heavy configuration in which a shock wave is generated in the Light

material and propagates into the Heavy material, A, > 0 and the perturbation increases in

amplitude from the start. For the Heavy/Light configuration in which a shock wave is
generated in the Heavy material and propagates into Light material, A, < 0 and the

perturbation changes phase first and then grows — so called "phase inversion” [7-9]. For

A, =0, there is no perturbation growth — so called "freezing out” [9].

Richtmyer solved the linear problem numerically and found agreement within 10 %
with the impulsive acceleration formula, equation (2), provided 2 and A/, the post-shock
amplitude (both material shocked) and Atwood ratio, were used respectively. His

corrected equation is,

da(t)/dt = k[u]A 'a ', | 3

where the primes denote the use of post-shock properties.

Although shock refraction at an interface between two fluids of different densities is
an inherently compressible process, equation (3) is usually considered to describe
incompressible materials because the perturbation velocities are assumed small with respect
to the local speed of sound.

Even though this equation explains the basic concepts behind the Richtmyer-
Meshkov instability, it does not give quantitative agreement with the experiments [18].
Subsequent theories tried to narrow the gap, for example, K. O. Mikaelian's [17, 19]
surface tension and viscosity effects improved the results. Dr. Mikaelian has studied these
instability problems for more than 10 years, [17, 19] at the Lawrence Livermore National
Laboratory.

Here we wish to modify the above theory to explain the experimental results of a

smoothed interface without membrane because SPAM algorithm automatically smooths the

interface density. Figure 7.2 shows a schematic smoothed interface of two fluids. M.
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Broullette and B. Sturtevant [14] did shock tube experiments without a membrane but with
a smoothing density variation on the interface. They believe the smoothing variation
caused a lower growth rate. They used a smoothing parameter and modified Richtmyer's

equation (3). With a growth reduction parameter Y in their notation, they used the

following growth rate equation for the Rayleigh-Taylor instability problem,
d*a(t)/dt? = (kgAjw)a(t), 4

where the growth reduction parameter Y is a function of time if the thickness of the
smoothing interface increases by molecular diffusion, for example, while the perturbation
on the interface grows in amplitude. In equation (4), W > 1 for a continuous interface and
y = 1 for a discontinuous interface. In the analysis of their experimental results, they

found a linear relation linking the ratio of the smoothed interface length to the wave length.
4 P1

j — K’j____}_ P

Interface P2

Fluid |
density p

Fluid 1}
density p,

(a) (b)

Figure 7.2 Smooth interface of two fluids: (a) sinusoidal perturbation on interface, (b)
vertical density profile. A discontinuous interface would have a thickness 8.
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Applying the same procedure to Richtmyer's approach, replacing the constant

acceleration by an impulsive acceleration, g = [u]8(t), where &(t) is Dirac delta function, in

the growth rate, and integrating the equation, the interface growth rate becomes:

da(t)/dt = (k[u]A,/y)a, . , (5

For the continuous interface they used post-shock properties for Atwood ratio and
initial amplitude which are specified by Richtmyer for the discontinuous interface.. They
assumed the reduction factor W is a function of average interface smoothing thickness
(average of pre- and post shock) and average Atwood ratio (average of pre- and post-
shock). They found that a linear form of function y with one adjustable constant with
respect to average interface thickness and average Atwood number, can explain their
experimental results. Intuitively, this is a good idea because smoothing the interface
density decreases the growth rate. In our SPAM simulation, we expect to reproduce this

type of phenomena. In the next Section we describe our numerical models.

7.3 Numerical simulation

Eulerian and Lagrangian finite difference methods have known difficulties in
analyzing this instability problem. The Eulerian method needs a refined mesh size for
good resolution as well as an interface boundary tracking technique to follow the flow
interface regions. These difficulties require considerable computer memory. On the other
hand, the Lagrangian method has none of these difficulties.  Instead the Lagrangian
method is limited, in the phase reversal problem, by mesh distortion. In the Heavy/Light
material configuration, we have a phase reversal problem so that Lagrangian method does

not apply well to this problem. The no-slip boundary condition in the interface, which is

used in finite difference Lagrangian scheme, also leads to large shearing distortions in the
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mesh since no-slip boundary condition on the interface creates a viscous flow in that
region.

As we described the theory and numerical method in Chapters II and III, SPAM is a
candidate numerical method free of all the above-mentioned numerical difficulties. This
motivates our interest in this problem. SPAM is a Lagrangian method, but without a mesh
so that there is no mesh tangling for large deformation. SPAM needs no boundary
tracking technique because it is purely Lagrangian.

We calculate each particle's density as a weighted sum over all near-neighbor

particles,

p(r) = X my W(r—-rj; h), equation (16a) in Chapter 2.

To make two different density materials in one system, we assign two different
masses to each region of materials. With this calculation, we have a smooth interface
between two materials. This smooth interface resembles the experimental situation
considered by Broullette. The same smoothing length in the two different density regions
leads to a relatively fine mesh in the high density region since we have the same number of
near-neighbor particles in the same volume but different densities.

We use two similar interface perturbation schemes to generate the interface

perturbation:
a=a cos[(2nnx)/L,] or a=asin[(2nnx)/L,], (6a,b)

where a, is the initial perturbation amplitude, L, is length of x-coordinate, n is the number

of waves imposed on the initial setup. The impulsive shock acceleration is applied in the

y-direction so that a is the perturbation amplitude in this direction after the shock wave or

reshock wave passes.
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We use a periodic boundary condition in the x-direction to eliminate edge effects.
But we use a reflective boundary condition in the y-direction with image boundary particles
which compensate for the density decrease near the boundary region for the multiple

reflected shocks. Figure 7.3 shows a schematic configuration of the simulation.

Figure 7.3 Schematic picture of boundary
conditions for studying Richtmyer-Meshkov
Reflective Boundary instability.

Image Particles

System Particles

Periodic Boundary
Periodic Boundary

Reflective Boundary

Image Particles

We need no special interface boundary condition. This situation differs from that using
typical finite difference algorithms. SPAM allows a mixing of two materials without mesh
tangling.

Shock waves can be generated by several different methods: we can use again the
piston method of Chapter 6 to generate propagating shock waves, or we can use an initial
perturbation corresponding to the shocked condition in one material.  Shock waves
generated by pistons in finite difference methods can be smoothed by artificial viscosity but
their structure is sensitive to the numerical value of viscosity. Shock waves with SPAM
are less sensitive to the numerical value of artificial viscosity as we showed in Chapter 6.
There, reflective and transmitted shock waves remained coherent through a density

discontinuity. In the Richtmyer-Meshkov instability problem, we also must include

perturbed interfaces in the density discontinuity region.
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The reference frame of the system is the Laboratory frame. Initial velocities of all
particles are zero for both materials. The initial pressure is constant and continuous across
the two materials. To maintain a constant pressure across the two materials, the initial
temperatures and energies are different in the different density regions. With our method,
we include a small pressure fluctuation in the perturbed interface region. In order to make
this effect small, we use a different artificial viscosity: at the initial stage of evaluation, a
large artificial viscosity is used to smooth out the interface pressure fluctuation.

For the constitutive equation, we use the ideal gas equation of state,
P=pe; kBT =e, (7a,b)

where P is pressure, T is temperature, kg is Boltzmann's constant per unit mass, € is
internal energy, and p is density. The density ratio is achieved through the mass ratio.

The mass of lower density material is always set to unity. We can also implement different

specific heat ratios for different materials used in SPAM algorithm.

We simulate a small perturbation for which linear theory is applicable, ka, =

(2n/A)a, << 1. In the next Section we describe the numerical results and discuss them.

7.4 Results and discussion

To begin, we must first confirm that the smooth particle method produces linear
growth rate for a small amplitude perturbation in the shock problem. Considering the
gravitational force for Rayleigh-Taylor instability, we can apply the shock wave (impulsive
force) in two different ways. One way is to generate shock waves using a moving piston
(boundary) far from the interface at time t = 0.

The shock wave moves with the boundary but since the shock velocity is faster than

the moving boundary (piston) velocity so that the shock hits the interface before the moving
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boundary does. A second way is to set all the physical variables, particle velocity,
pressure, density, and energy, of the particles in one region to the shocked values initially.
In this case the system boundary does not need to move at all. This idea is similar to using
a gravitational force to study Rayleigh-Taylor instability. This low-cost model is good for
a small system where there is no space to generate the shock wave by modeling a moving
boundary. See Figure 7.4. In this Figure, we use sine type interface perturbation with
ideal gas equation of state, equation (7). But we lost all information about the 1mt1a1
conditions when we lost 612 files on the Meiko machine.

Physically there is no difference betwéen sine type and cosine type problem. But
when sine type perturbation is used, aimost all particles have x-velocity so that it is hard to
quantify the growth rate and the particle velocity.  The particles near the two lateral
boundaries have horizontal velocity components so that they move horizontally when the
interface starts to grow. The time derivative of the perturbed amplitude, equation (6b), at

the two lateral edges produces
[da(t)/ dt]x=0 orx=Lx Uy @)

where u, is the horizontal velocity component of particle. This is not zero because the

growth rate is non zero. Thus the interface has a horizontal non zero gradient. This
gradient causes early nonlinear growth in the central region of the interface.

For the piston model, we saw linear growth. See Figure 7.5. Initially, Figure 7.5
(a), all particles are displaced randomly within a square box made by half inter particle
distance from their original square lattice sites. The perturbation is one cosine wave. The
wave number k is 2n/30. In Figure 7.5, two different materials are marked by circles and
stars. The total number of particles is 9 000 (30 x 300). Their initial density ratio is five.
Since this system is comparatively small, we generate a shock wave in the dilute region so

that the Atwood number is positive. For a negative Atwood number, we would have
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phase inversion which takes additional time. We can see it but the relatively long time
required makes the relatively small system collapse. Our model seems otherwise to be
quife generally usefﬁl. The density distribution is not discontinuous across the interface in
the Smooth Particle method. It can be controlled by the smoothing length of the weighting
function.

Here we use B spline weighting function with a smoothing length 3. Figure 7.6
shows the smooth average density profile across the interface.  This smooth profile
resembles those in real experiments done by M. Brouillette and B. Sturtevant without a
separating membrane. See Figure 7.2. Our thermodynamic equation of state is the ideal
gas equation of state, equation (7a, b), in both regions. The materials have the same
specific heat ratio (cp/cV = 2) but different densities.

The shock wave was generated by the pushing the lower boundary upward. The
system size of the lower part, marked by circles, is bigger than that of the upper part to
allow time for shock wave to travel upward. Shock waves arrive at the interfaces at about
time 67. Just after this, the traveling shock waves divide into two parts, transmitted and
reflected. The maximum compression of interface due to shock wave also occurs at about
time 67. The perturbed amplitude (a ) at maximum compression is 1.889. Figure 7.5 (b)
is the configuration at time 120. The time at which the amplitude grows larger than 5.0
occurs at time 100. The amplitude was 5.041 and this is approximately the start of
nonlinear growth because ka, is considerably greater than one. This time 100 agrees with
the fact that the maximum valid time allowed in the linear region is approximately equal to
M[u], 36 in the model after the maximum compression occures. |

To calculate the growth rate analytically, we use the equation (3) or equation (5).
In this model wave vector k is 21/30 = 0.209; the impact velocity (particle velocity after

shocking) [u] is 0.826; the Atwood number after shocking is 0.625; the amplitude just

after shocked is 1.889. Therefore the analytic growth rate is 0.204.
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As in the Figure 7.5 (b) the cosine perturbation makes the lateral ends points fixed,
with no horizontal velocity. This provides easy way to calculate particle velocity and the
amplitude growth length with one wave length in the linear region. Thus the linear growth
is clear in this Figure. We can also see the traveling transmitted and reflected waves in the

Figure 7.5 (b).
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Figure 7.7 Perturbation growth as a function of time. Linear growth occurs from time 67
to about 100. At time 100 perturbation grows nonlinearly. The solid line is the linear
interpolation line and its slope is 0.210. The analytic result for the growth rate is 0.204.
See the text for details.
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Figure 7.7 shows the amplitude growth as a function of time. The time range is
plotted from 40 to 120. Initially the perturbation amplitude is constant up to time about 60.
Maximum compression occurred at time 67. After that the amplitude grows linearly up to
time 100. In this model the growth after time 100 is nonlinear. |

The slope of the solid line (linearly interpolated with the growth data from time 67
to 100 in the linear region) in the Figure 7.7 is 0.210. Thus the computed result agrees
with the analytic result within 3%. If we apply equation (5) the growth reduction
parameter ¥ is 1.015.  Our density smoothing in the interface region is very small
compared to the wavelength as seen in the Figure 7.6. Thus the growth reduction

parameter Y is close to unity. This is also true in the experimental data [14].
7.5 Summary

For a system with a density diséontinuity the force applied makes the system
unstable whenever the direction of applied force is the same as the direction of density
gradient. For example, gravity causes Rayleigh-Taylor instability, shear causes Kelvin-
Helmholtz, and a shock wave causes Richtmyer-Meshkov instability. =~ Usually the
instability grows exponentially in time but the Richtmyer-Meshkov instability caused by an
impulsive shock load grows linearly in time.

The basic physics of this instability is interesting and has important technological
applications. We demonstrated a way to solve this problem with a comparatively simple
numerical method, SPAM. We showed that our SPAM algorithm predicts good results
reproducing the analytical growth rates in equations (3) and (5) for small amplitude
perturbations.

In the nonlinear range there is no theory. SPAM is good for studying this

nonlinear instability problem because it can reproduce experimental data for the nonlinear

range. For higher precision we would need to expand the system size using parallel
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processing. The SPAM algorithm requires inter-processor communication four times per
cycle: the first communication occurs in calculating density; the second in calculating
gradients of temperature. and velocity; the third in calculating force, and finally, in the time
step integration. If we use fourth-order Runge-Kutta method, we would have sixteen
inter-processor communications per time step. For systems of up to 10 000 particles a
single processor machine can be used.

Lawrence Livermore National Laboratory's A division has studied these instability
problems for decades. This project began to follow up Dr. Alan J. Spero's smooth
particle research. He hoped that this simple method could be used to study instability
problems. Unfortunately he left A Division before seeing these results. We hope that he
‘has maintained his interest in this work. We dedicate this chapter to him and his friends in
A Division to honor his project idea and to express our gratitude for his help in obtaining

financial support.
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CHAPTER 8

TURBULENCE IN HOMOGENEOUS SHEAR FLOW VIA
MICROSCOPIC AND MACROSCOPIC SMOOTH PARTICLE
APPLIED MECHANICS
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8.1 Introduction

Turbulence is an all-pervasive ubiquitous phenomena present in, for example,
weather patterns, ocean currents, flows around flying aircraft, high-temperature plasmas,
astrophysical jets, and combustion.

There is no completely satisfying definition of turbulence because nearly all kinds
of different problems are turbulent. But from the abo.ve examples, we can drive the
definition of turbulence: the turbulence is observed in macroscopic fluctuating flow
phenomena. According to reference [1], the more exact definition of turbulence is a
complex fluctuating flow resulting when the Lyapunov instability of the hydrodynamic
equations generates information more rapidly than it can be dissipated by viscosity,
making the flow field unpredictable, except in a statistical sense.

| Why should we have interest in turbulent problems? Because it is closely related
to economics, exact long time weather forecast, fast and quiet submarine, fast airplane
flight without turbulent air flows are all examples of economically desired machines.
Despite the best theoretical and experimental attempts over more than a century, and
more recent computational approaches, turbulence still remains one of the great unsolved
(families of) problems of fundamental physics, and poses a grand challenge comparable
to other prominent scientific problems, such as the large-scale structure of universe and
the nature of subatomic particles.

Smooth particle applied mechanics provides a way to study this problem. Using
smooth particle applied mechanics with particles of unit mass, and a stress tensor obeying
the two dimensional scalar ideal-gas equation of state P = p2/2 = pe, provides equations

of motion isomorphic to the motion equations of monatomic molecular dynamics [2]:

{d%ry/dt? = duy/dt =-V,;@); ®=To,, M
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where ¢(r) is the pair potential. The usual smooth particle weighting function w(r)
differs, in shape and in range, from conventional pair potentials ¢(r). The smooth
particle function has no strongly repulsive core and is also relatively long ranged, so that
each smooth particle simultaneously interacts, relatively strongly, with many others.

In smooth particle applied mechanics density and energy sums the self-
contribution of each particle w(0) is included. In molecular dynamics the corresponding
contributions to the energy {¢(0)} are conventionally not included. This difference does
not affect the isomorphism of the two kinds of particle trajectories, since w'(0) vanishes.

Smooth particle applied mechanics, with the two-dimensional ideal-gas equation
of state, becomes an interesting model for compressible turbulence with high-Reynolds-
number shear flow. Moreover, the statistical mechanics and hydrodynamics of the
corresponding long-ranged molecular systems, with pair potentials resembling Lucy's
weighting function [3], have not yet been systematically explored.

In particular, turbulence on the border line between microscopic and macroscopic
hydrodynamics is very interesting to us. We analyze this problem with the isomorphic
model of Molecular Dynamics [2].

In Section 2 we summarize the basics of turbulence. In Section 3 we describe the
simulation models. Though the smootheness analysis of smooth particle method is not
closely related to turbulence, it is interesting problem and gives us the idea of the particle
distributions. We discuss this problem in Section 4. In Section 5, we discuss our resﬁlts

and conclusions. Finally, in Section 6 we summarize this chapter.
8.2 Basics of turbulence.
The most fundamental and important problems in turbulent theory are:

(1) What is the Reynolds-number dependence of the ratio of the largest to the

smallest excited scales of turbulent motion?
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(2) What is the kinetic energy distribution over different scales and how rapidly
is energy transferred from the largest to smallest scales?

(3) What is the energy transferring mechénism and what are the roles of all the
terms in hydrodynamic conservation equations?

(4) What are the tendencies toward homogeneity and isotropicity?

(5) What are the main effects of compressibility on turbulent structure?

(6) What is the effect of compressibility on the energy cascade process and on
turbulence spectra?

These questions have been investigated experimentally, analytically, and numerically by
many authors [4 - 24], but still very little is known.

Experimentally many turbulent problems are analyzed by measuring frequencies
and related energies; These frequencies are measured by wave numbers. This idea
makes the numerical calculation in wave number space, the "spectral method". Fourier
transforms connect the real velocity space to wave nﬁmbcr space. The Spectral method
of solving the hydrodynamic equations requires changing the governing partial
differential equations written in terms of wave number and time variables by Fourier
transform. This method changes the partial differential equations in space dimensions to
the ordinary analytic equations in the wave number space. By doing this fewer degrees
of freedoms are sometimes enough to give fine results. This structure is similiar to that
of smooth particle mechanics for dealing with partial differential equations.

The kinetic energy of the system can be expressed in terms of two alternative
sums: the sum of the squared velocity in a regular spatial grid or the sum of the squares
of the corresponding spectral components of velocity on a reciprocal-space grid. The
two spaces are related to one another by the Fourier transform of the velocity. For

example, the spectrum of kinetic energy can be described in terms of the Fourier

transform of velocity u on a two-dimensional spatial square lattice.




Chapter 8 Turbulence in homogeneous shear flow via microscopic and macroscopic SPAM 170

Every regular point in space dimension with a velocity, u;(r;) = w;(X;, ;) at point r;
= (X;,y;) corresponds to a Fourier transformed velocity ;(k;) = Wk} kY) in spectral

space. The relations can be expressed in the form of (fast) Fourier transform:
ury) =23 G&; k) explami{(k} x; +k¥ -y )IN], )

where N is total number of points and the summations are taken over —-N/2 < {k}‘ , kJY } <
N/2. -N/2 is not included since the spectral energies at ~N/2 and N/2 are identical. To
use the fast Fourier transform method, N is of the form 4™ in two space dimensions and
8" for three space dimensions for any integer n. The square of the Fourier coefficients

Elineiick;) = lﬁ(ki) 2 [k; = (k’i‘ ,k¥ )] is called the kinetic energy spectral density. By

Parseval's_, theorem,
<Ekinetic> = NE Ekinetic(ki) ’ 3)

where the summation is taken over -N/2 < {k;} < N/2. For the three-dimensional
isotropic case, Ekinetic(k) = 41tk2Ekinetic(ki), and for the two-dimensional isotropic case,
Epinetic®) = 2KE; ;- (k,), [k;| = k, where k is the length of vector k;.

A characteristic of turbulent flows is the net average transfer of energy from
smaller wavenumbers [larger wavelengths] to larger wavenumbers [smaller
wavelengths].  This phenomenon (described by the Navier-Stokes equations) is
inherently nonlinear. A schematic picture of spectral energy transfer is shown in Figure
8.1 (a). Figure 8.1(b) shows the spreading of a contaminant in turbulent flow [4]. The
eddies are embedded within each other and the eventual product of the cascade, where
dissipation takés place, is a highly convoluted multifractal sheet shown in Figure 8.1 (b).
As shown in Figure 8.1 (a), the eddies of size L (= 1/k) interact with each other and with

the more energetic large-scale eddies to generate smaller eddies.
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Figure 8.1 Turbulent cascade: (a) schematic diagram . of spectral energy transfer in
turbulence. The injected energy from the boundary generates the largest eddies. The larger
eddies generate smaller eddies and the injected energy is transferred until the energy is
dissipated to the heat by viscosity. (b) contaminant spreading in turbulent flow. The
eddies are embedded within each other. The eventual product of the cascade is highly
convoluted multifractal sheets.
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These smaller-scale eddies, in turn, populate eddies of yet smaller size. The whole
process is called the turbulent cascade.

The energy spectrum E(k) (kinetic energy per unit mass and unit wavenumber k)
depends on the wavenumber k. Kolmogorov explained many aspects of the spectrum by
dimensional analysis. In a stationary process, for a system with steady total energy, the
rate of energy injection from boundary, the rate of energy transfer through cascade, and
the rate of microscopic energy dissipation by viscosity are all the same and must be a
function with units [L2/I‘ 3’] where all energies are specific-(per unit mass) with units
[L2/T 2]. Kolmogorov begins by taking the spectral energy density to be a function of the

energy rate, € with units LT3, and the wavenumber k with units L™%:
Engineric®) L2121 ~ & * kP — L2ropm?, )

where o = 2/3 and B = -5/3 are necessary in order to match the units. This result, that

the spectral strength must fall off as k3

, is Kolmogorov's 5/3 law. This law holds
independent of problem dimensionality. The total kinetic energy per unit mass is the

sum over all wave numbers:

Eyinetic = f Eyineric® dk ~ ¢ 2By [LZ/T 2]' - 3)

The units [L2/T 2] are the same as that of velocity squared and are consistent with the
general result that specific kinetic energy (kinetic energy per unit mass) is proportional to
the square of velocity (i.e. velocity u ~ € 13113y " Therefore, the eddy rotation time t (=
Li)is & 13123

The cascade must eventually stop, at some minimum eddy size of Ly, where

eddies are so small that they decay appreciably due to viscosity in the time they take to

rotate. If we define the viscous dissipation time t4iss ag LdZ/v, where v is kinematic
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viscosity of the fluid, then the Kolmogorov microroscale is defined as L 4 ~ (v3/ e )1/4 by

equating the eddy rotation time to the dissipation time, at which length the cascade is
terminated by viscous dissipation. In a completely resolved numerical calculation, the
mesh size must be at least as small as this microscale. See Figure 8.1.

Some authors [12, 19, 20, 30-33] find an energy spectrum E(k) ~ k™3 rather than
k™3 in two-dimensional numerical models. In inviscid two-dimensional flow, the
vorticity of each fluid element is a constant of motion so loqg as boundaries are ignored.
Consequently, the squared vorticity is an inviscid constant of motion. In contrast to
three dimensional flows, the two constants of motion imply that any transfer of energy to
higher wavenumbers must be acqompanied by a bigger transfer to lower wavenumbers.
In this picture, energy cascades from input wavenumbers to lower wavenumbers through
an inertial range with energy spectrum of Kolmogorov 5/3 law but the squared vorticity
cascades to higher wavenumbers through an inertial range with a spectral density
proportional to k3. Lilly [19] demonstrated this in his two-dimensional numerical
simulation in 1969. Wiin-Nielsen [19] has shown the apparent existence of an
approximately k3 energy spectrum in the atmosphere between longitudinal
wavenumbers k of about 8 [m ‘1] to at least 15 [m™!]. These frequencies lie in the range
between those of strong baroclinic instability, where most large-scale kinetic energy is
produced, and those beyond which the atmosphere can no longer be considered quasi-
two-dimensional. Aiong with the dimensional problem, fluid compressibility affects
turbulence. In compressible fluids, many authors [17, 22, 23] report that shock wavelets

exist in turbulent flow and produce energy spectra different from those of Kolmogorov

5/3 law. We describe the simulation models in the next Section.
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8.3 Simulation models.

One of the simplest idealizations of turbulent shear flow is a "homogeneous"”
shear flow. Homogeneous shear flow refers to the problem of spatially homogeneous
turbulence sustained by a velocity field generated by a constant shear rate € . To
minimize boundary effects, we use specially moving periodic boundary conditions. This
mechanism was already explained with the Couette flow in Section 3 of Chapter 3 in
discussing the elasﬁc properties of Smooth Particle Applied Mechanics. In the link-list
algorithm with moving boundary system, each cell on the upper row has one more
neighbor cell moving toward its site. See Figure 8.2 and Figure 3.2 in Chapter 3. Here
we describe two different simulations related by their isomorphism: microscopic time

reversible simulation and macroscopic irreversible simulation.

Figure 8.2 Dotted cells are periodic
image cells moving with velocity u.
The upper cells in the system (thick
line) have one more interacting cell
compared to the other cells. The
black particle interacts with the
particles in the shaded cells.
Compare with Figure 3.2.

1

I 1 i I I

<l L

| | | | I
Homogeneous periodic shear has been studied for more than 20 years [1], using

reversible Gauss [34] or Nosé-Hoover [28-29] “friction coefficients" { to constrain either

the temperature or the internal (excluding the macroscopic flow kinetic energy) energy.

For particles of mass m, and with a macroscopic (time-averaged) strain rate £ = du,/dy,

the Gaussian isoenergetic form of these equations is the set:
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{x =&y+p/m;y =p/m;p, =F, -€p ~Cp;p,=F,-Cp,}, ©]
with
{=-£P, VA2K); K = (1/2m)3p”. 7

It is convenient to solve this set of 4N equations for {X , ¥ ,p,, P y} using the classic

fourth-order Runge-Kutta method. The nature of cutoff of our smoothing function
implies local trajectory errors of order dt*. This error should exceed the time step
integration global error of the fourth-order Runge-Kutta method. With a (reduced-units)
-time step of 0.005, the single step energy is conserved to about 9-digit accuracy. This
small error can then be mostly eliminated by rescaling the momenta after each Runge-

Kutta integration step. The forces {F,, Fy} are calculated from the gradient of Lucy's

weighting function [3]:
w(®) = (5911 + ][l —=1/3P%; r<3, (8)

at unit reduced density, N=V, where the smoothing length is 3. We use unit particle
mass in the calculation so that p = 1. This choice gives 24 interacting neighbors for each
particle when the particles are arranged_in a regular square lattice and 36 interacting
neighbors when the particles are arranged in a regular triangular lattice. Typical
configurations of 1024 smooth particles are shown in Figure 8.3 at energy of N/2 with the
moderate strain rate ¢ = 1/4. The particle velocities are displayed in that Figure in two

different ways: the individual particle "momenta" {p;}, which represent velocities

relative to the mean streaming motion,

{Pl} = {ui _(8 Y’O)}, : (9)
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and the averaged momenta { <p,> = Zwijpj } at the nodes of a regular square grid,

computed from the weighting function W Lucy" Because the averaged momenta {<p,>}
can be defined at any point in space, we have chosen to compute and display them on a
square grid to facilitate the calculation of (fast) Fourier transforms of the velocity field.

Irreversible macroscopic flows are described by dissipative constitutive equations,
which typically include plasticity or Newtonian viscosity, as well as Fourier heat
conduction. These dissipative processes inexorably diminish velocity and temperature
differences. The most interesting systems can be driven into wild chaotic time variation
despite fixed nonequilibrium boundary conditions.

The Russian literature [27] stresses the need for phenomenological source terms
in describing hydrodynamic flows with fluctuations. Energy sinks are often included to
stabilize hydrodynamic simulations of shock waves [with "artificial viscosity"] and to
avoid the explicit consideration of short wavelength degrees of freedom [with "eddy
viscosity"]. Smooth particle applied mechanics contains natural velocity fluctuations
with two different estimates of velocities at the nodal points, {u}, the velocities at which
the points move and {<u>}, the spatially-averaged velocities characterizing the
neighborhood of each moving point. In the absence of damping, smooth particle applied
mechanics, like Newtonian mechanics, is exactly time-reversible [2]. If damping is
required, as in driven system, then the difference between the spatially-averaged velocity

and point velocity provides a natural high-frequency short wavelength heat sink:

U Bhay = [<w>—ul/t. (10)

T is a phenomenological relaxation time which can be used to control the system energy.

The damping occurs only at the smallest possible range of length scales, {r <h}. Small

T provides a flow in which the energy is nearly all potential, while larger T provides flows

with more kinetic energy. Another approach is to continuously rescale (<u> — u)2 to
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keep the system "thermal" energy constant [35]. But we found that this approach
produces a strange velocity profile and we did not consider this approach further. Before
discussing the results we introduce a new way of analyzing the smoothness of the smooth

particle distributions in the next section.

8.4 Smoothness analysis.

1.1 L t i 1 1 1 t iil L i ‘ 1 1 ]
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Figure 8.4 Lucy's radial distribution function with smoothing length 3 for two energies,

N and N/2, where N=1024. Density is unity and time step dt = 0.005. This data is the

average over 8000 cycles after discarding the first 2000 cycles.
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Though this section is not directly related to turbulence, smoothness analysis is
very useful for studying particle distributions. The smoothness of the smooth particle
distributions can be checked by analyzing the radial distribution function. Figure 8.4

shows Lucy's radial distribution function normalized with respect to ideal gas density.

10.0 1 i Illll_ll ] i llll1l| ¥ UL

Yy

XX

® +P )2
=
o

0.1 s sl L1l NIRRT
0.001 001 4 01 1

Figure 8.5 Pressure as a function of strain rate in microscopic model with Lucy potential
function with smoothing length 3 at energy E = N and N/2. Static pressure is constant,
independent of strain rates. Data from Professor H. A. Posch [University of Viennal.

This radial distribution function is the average over 8000 cycles of length 0.005 after

discarding data from the first 2000 cycles. In terms of the radial distribution function,

the potential energy per particle is expressed by the equation:
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®/N = (1/2) [ o(r) 27 rg(r) dr, (11)

where ¢(r) = w(r). For Lucy's weighting function and N = 1024 particles, the potential
energy per particle ignoring ¢(0) is 0.423 for E = N/2 and 0.462 for E = N. These data
agree with the simulated values {0.422, 0.463} within 1%. The pressure per particle is

expressed by the equation:
PV/N = <p?2m> — (1/4) [ 0'(r) 27 r?g(®) dr. (12)

Calculated data are 0.57 and 1.02 and agree with the simulated results shown in Figure
8.5. Figure 8.4 indicates that a smooth particle has no finite volume and allows the
particles to overlap substantially. It is interesting that the higher kinetic energy system
(E = N) is smoother than the higher potential energy system (E = N/2) even though the
higher kinetic energy system has a larger viscosity. See Figure 5.7 in Chapter 5.

Another way to analyze the topology of the flow is through the local moment of
inertia tensor as suggested to us by Romeel Davé (University of California, Lick

Observatory) in a 1994 Hertz Foundation interview;
Spave = Zm; 7 I- Brw(, - 1), (13)

where w is a weighting function and I is the unit tensor in two dimensions.

Figure 8.6 shows the topological characteristics of the 1024 flow particles
generated by the smooth particle method and by random numbers. In this Figure we
calculate the moment of inertia tensor with Lucy's weighting function using smoothing

length 3. Initially we start at the regular 32x32 lattice points and follow the eigenvector

direction belonging to the smallest eigenvalue. Each step size is 0.1 and first 200 steps




Figure 8.6 Topological characteristics of
 { the 1024 flow particle system generated by
\ N\, Il the smooth particle method and by random
2o/ ) numbers. (a) smooth particles with zero
| shear rate at time 50. (b) smooth particles
with unit shear rate at time 5. (¢) randomly
& generated particles. The paths follow the
| eigenvector direction -belonging to the
£ smallest eigenvalue of local moment of

=0 W L. . .. = inertia tensor. Starting points are 1024
A .:‘ : //4\% - {3 regular lattice points. A total of 400 steps

/ & SKASERAT  are generated at each starting point but the
first 200 steps are discarded. Step size is
0.1 and the square shown is 32x32.
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are discarded and the following 200 steps are used in order to avoid small path
fluctuations.

The system is neatly divided into a set of cells, the size and shape of which
characterize the topology of the flow [36]. Each flow configuration and corresponding
topological cells are shown side by side. In the next section, we provide results and

discuss them.
8.5 Results and Discussion.

The new type of eddy viscosity, a thermostat idea, can be applied both in
microscopic and in macroscopic simulations. Kolmogorov's 5/3 law can be inverted to

total energy as a function of normalized wave length:

Epineric ~J K0 dk ~ J A% d(1n) ~ Wh )3, (14)

where the various proportionality constants are related to the energy transfer rate and
minimum wave length. The flows themselves provide numerical energy spectra
supporting Kolmogrov's dimensional arguments for long wavelengths.

Figure 8.7(a) shows the results from microscopic Gaussian thermostat for 32x32
particles corresponding to Figure 8.3 for particle velocities. In this Figure, the points
represent the total energy spectrum as a function of wave length and the solid line is the
interpolation of the eight longest wavelength points from the energy spectrum.

The constant interpolating slope supports Kolmogorov's dimensional arguments
for this small system. We can analyze this Figure 8.7(a) with that of k-space, Figure
8.7(b), which is the square lattice in k-space centered at black dot. The smallest wave

number in Figure 8.7(b) is unity and represents the four sites closest to the origin. The

numbers in circles in Figure 8.7(b) represent the distances from the central particle.
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Figure 8.7 (a) Total kinetic energy per mass as a function of normalized wavelength in a
system of 32x32 particles. The solid line approximates the eight longest wavelength
points in the integrated energy spectrum. This is a microscopic reversible simulation
with Gauss’ thermostat. The total energy is N/2.

Figure 8.7 (b) Fourier wave number space in a square
lattice centered at the black dot. This space is reciprocal
to wavelength space. The smallest wave number points,
marked by 1, correspond to the longest wavelength in
Figure 8.7(a). The numbers in circles represent the
distance from the central dot.
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The closest four sites correspond to the longest wave length 32 and appear as the right
most point in Figure 8.7(5). The next shortest wave number is the square root of two for
which four sites are involved. These correspond to the second point from the right in
Figure 8.7(a). Therefore, the eight points involved in interpolation in Figure 8.7(a)
- correspond to wavelength 32 (four points), 32/2 (four points), 32/Y4 (four points), 32/V5
(eight points), 32/V8 (four points), 32/V9 (four points), 32V 10 (eight points), and 32/V13
(eight points). Only forty-four points follow Kolmogorov's analysis out of more than
one thousand points. However, this approach is entirely different to that followed by
She and Jackson [37], who developed spectral methods for solving the Euler equations.
For the macroscopic simulation, the "background bulk energy" due to

homogeneous shear flow depends on the system sizes:
E, =£L%24, (15)

where E, is background bulk energy, € is shear rate, L2is system size. We simulate the

same order of bulk energy systems for three system sizes, 16x16, 32x32, 64x64. Figure
8.8 shows the kinetic energy fluctuations as a function of time for three systems. Kinetic
energies converge vefy fast and their fluctuations are very small. 'We checked the
spectral energy in the fully converged ranges. Figure 8.9 shows the velocity profiles for
particle positions and regular grid points. We studied very small energy system (small
Reynolds number system) because high kinetic energy system with big relaxation time
does not show any y-velocity component either in particle position or in grid points. See
the Figure 8.9. Therefore the high Reynolds number turbulent system can not be
represented with relaxation time eddy viscosity. Figure 8.10 shows Kolmogorov's
results for three systems. The physical interpretation is the same as that in the
miscroscopic case, Figure 8.7; some large wave lengths satisfy the Kolmogorov's theory.

But system size becomes bigger and bigger, the larger eddies dissipate their energies
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Figure 8.9 Particle (with unit density) momenta, relative velocities to the mean stream
motion in macroscopic shear flow for 256 (16x16) and 1024 (32x32) particles systems.

Comparing average momenta at the nodes of a regular square grid with individual particle
momenta at particle positions. Strain rate is unity. Relaxation time T is 1.0 and 2.0

respectively. We neglect 4096 (64x64) system because it shows the same features except
with more complexity.
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more rapidly than the smaller ones. In other words, it is hard to generate the larger
eddies when the system size becomes big. We can not interpret it quantitively yet but we
guess that this phenomenon is due to the intrinsic viscosity shown in Figure 5.7 in

Chapter 5.

8.6 Summary

Homogeneous shear flow which is substained by a velocity field generated by a

constant shear rate ¢ can produce a simple idealization of turbulent flows. SPAM can
approach homogeneous turbulent flows in two different levels, microscopic and
macroscopic levels since SPAM can generate isomorphic trajectories for the isentropic
ideal gas equation of state. For the two-dimensional ideal gas equation of state, the
Smooth Particle method becomes an interesting model for compressible turbulence with
high-Reynolds-number shear flow.

We investigated the challenging problems of turbulence along with microscopic
and macroscopic shear flow equations of motion. We use the eddy viscosity with the
same idea of microscopic thermostats; in miscroscopic simulation we use the Gauss
reversible thermostat; in macroscopic simulation we use the velocity fluctuations,
difference between the spatially-averaged velocity and point velocity, which provides a
natural high-frequency short wavelength heat sink.

We simulated three system sizes, 16x16, 32x32, 64x64. For the high Reynolds
number turbulent system thermostat eddy viscosity does not show turbulent eddies. For
the small energy system with small relaxation time, some large anelengths satisfy
Kolmogorov's dimensional analysis, a robust part of turbulence theory. But as the
system size becomes bigger, it is hard to generate energetic large wavelength eddies.

From the above results we conclude that the thermostat idea of eddy viscosity, which can
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be one possibility in smooth particle method, is not a very good way to represent the eddy

viscosity for homogeneous turbulence generated by constant shear rate.
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It is possible to use fast computers to study many body systems, both at and away
from equilibrium. At equilibrium Gibbs' exact ensemble theory allows the Monte-Carlo
method to be used [1]. Because of the multifractal nature of nonequilibrium systems,
dynamic computer simulation is popular way to study nonequilibrium systems.
Dynamic computér simulation can easily generate nonequilibrium steady states [2]. The
development of computer téchnology even makes it feasible to use computers to discover
efficient algorithms for numerical integration [3, 4]. The multifractal nature of
nonequilibrium systems can also be studied with graphical workstation using maps
corresponding to dynamic evolutions [5].

The smooth particle method, the subject of this thesis, has now been applied
successfully to many complex astrophysical problems, such as colliding planets and stars,
for which correct answers are unknown. It is hard to assess the adaptibility or fitness of
this method for solids and fluids using complex astrophysical results with no comparison
to exact solutions. In this sense, smooth particle methods are still in their infancy
relative to use in typical hydrocode production problems. Its fitness for the usual solid
and fluid problems has yet to be determined even though it has been applied for almost
two decades now.

Smooth particle applied mechanics is hybrid: it provides ordinary differential
equations, which is similiar to molecular dynamics, for solving the partial differential
conservation equations. To solve the ordinary differential equations provided by smooth
particle applied mechanics, we use the efficient and accurate classical fourth order
Runge-Kutta method with the link-list algorithm. The link-list algorithm is the best
algorithm for use of memory storage and computing time and for parallel computing.
We supply constitutive equations and boundary conditions. The hardest problem in
smooth particle method for usual solids and fluids is to implement the boundary
conditions and surface forces. We use periodic boundaries to represent infinite systems

and reflective boundaries with image particles or fixed particles for finite systems,
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preventing density anomalies near the boundary region, while maintaining continuous
boundary fluxes. Still the surface force problem remains. An additional problem is the
intrinsic viscosity which comes from the molecular dynamics (hybrid) nature of smooth
particle method [6].

Here we have studied two-dimensional systems [7, 8] because the divergence of
two dimensional transport coefficients [9] makes two diménsional systems especially
interesting. Smooth particle applied mechanics with isentropic ideal gas equation of
state, P = p2/2, is in fact isomorphic to molecular dynamics [10]. Even in the inviscid
case, smooth particle applied mechanics includes an intrinsic viscosity which can be
understood through its relation to molecular dynamics. Even though the smooth particle
method has intrinsic "shear viscosity"” through its relation to molecular dynamics, it can
be "time-reversible” for nondissipative Euler equation just as is molecular dynamics.
Boltzmann's connection of macroscopic irreversibility, second law of thermodynamics, to
microscopic time reversibility, Newton's equation of motion, has been a famous problem
for more than one hundred years. In molecular dynamics, the explanation involves the
Lyapunov instability of particle trajectories in phase space [11]. The smooth particle
method provides insight into the problem for continua.

In studying the Rayleigh-Bénard instability [12] we found that a smooth particle
method with image particles provides exact solutions of kinetic energies within 10 %
error comparing with continuum Navier-Stokes solutions and is a very robust method.
However, in applying the dense fluid equation of state, we found a fundamental
shortcoming of the smooth particle method. In conventional continuum mechanics a
constant pressure addition does not affect the accelerations at all, because they depend

upon the gradient V-P. In smooth particle mechanics such an addition does affect the
accelerations, when the particles move or vibrate, through the combination (P/p2)-Vw.

By analogy with molecular dynamics melting affects the accelerations.
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The intrinsic viscosity problem is helpful to apply this method to shock wave
propagation problems. The smooth particle method is not so sensitive to the» artificial
viscosity coefficients compared to a one dimensional Lagrangian code. Particle
distribution (regular or random distribution) does not affect the shock wave propagation.
We simulated Richtmyer-Meshkov instability with smooth particle applied mechanics.
The perturbed interfaces grow linearly within 3% error comparing analytical results. We
did not study the nonlinear region in this thesis. For studying nonlinear region, we heed
to use bigger system which is possible in parallel processing. Parallel computing is not
hard for smooth particle method with link-list algorithm. But to treat the real mixing
problem in nonlinear region we think that a surface force implementation is essential.

Smooth particle applied mechanics contains natural velocity fluctuations with two
different estimates of velocities at the particle position, {u}, the velocities at which the
points move and {<u>}, the spatially-averaged velocities characterizing the
neighborhood of each moving point. On the other hand we can calculate velocities at
each regular grid point which is useful for Fourier transformation. The velocity
difference between the spatially-averaged velocity and point velocity provides a natural
high-frequency short wavelength heat sink (eddy viscosity) with phenomenological
relaxation time, similiar to the thermostat idea in molecular dynémics. We applied this
idéa to study homogeneous turbulence generated by constant shear rate. The results do
not fully explain Kolmogorov's 5/3 law which holds independent of problem
dimensionality. Therefore, we conclude that the thermostat eddy viscosity is nbt very
good for homogeheous shear flow turbulence with smooth particle applied mechanics.

Though 10 or 5 % errors are a bit large for scientific research, they are quite
acceptable for most engineering applications. Therefore, we conclude that the smooth
particle applied mechanics is a most useful method for problems that are difficult to

solve. Itis also an excellent method for teaching, research, and applications. Especially

it can provide hybrid methods or powerful alternative methods to the more-usual finite
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difference and finite element methods. We recommend the following problems for
future study. It is important to implement sﬁrface tension in the smooth particle method
in order to treat real boundaries. A real surface tension is important as are the eddy
viscosity or artificial viscosity in mixing problems. It would also be worthwhile to

analyze the detailed effects of the intrinsic viscosity for a variety of weighting functions.
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