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Abstract

We present a Bayesian statistical methodology for identifying im-
provement in predictive simulations, including an analysis of the num-
ber of (presumably expensive) simulations that will need to be made
in order to establish with a given level of confidence that an improve-
ment has been observed. Our analysis assumes the ability to predict
(or postdict) the same experiments with legacy and new simulation
codes and uses a simple binomial model for the probability, 8, that, in
an experiment chosen at random, the new code will provide a better
prediction than the old. This model makes it possible to do statistical
analysis with an absolute minimum of assumptions about the statistics
of the quantities involved, at the price of discarding some potentially
important information in the data. In particular, the analysis depends
only on whether or not the new code predicts better than the old in
any given experiment, and not on the magnitude of the improvement.
We show how the posterior distribution for # may be used, in a kind
of Bayesian hypothesis testing, both to decide if an improvement has
been observed and to quantify our confidence in that decision. We
quantify the predictive probability that should be assigned, prior to
taking any data, to the possibility of achieving a given level of con-
fidence, as a function of sample size. We show how this predictive
probability depends on the true value of 6 and, in particular, how



there will always be a region around 6 = 1/2 where it is highly im-
probable that we will be able to identify an improvement in predictive
capability, although the width of this region will shrink to zero as the
sample size goes to infinity. We show how the posterior standard de-
viation may be used, as a kind of “plan B metric” in the case that
the analysis shows that 6 is close to 1/2 and argue that such a plan
B should generally be part of hypothesis testing. All the analysis pre-
sented in the paper is done with a general beta-function prior for 6,
enabling sequential analysis in which a small number of new simula-
tions may be done and the resulting posterior for 8 used as a prior to
inform the next stage of power analysis.
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1 Introduction

In this paper, we describe a Bayesian statistical methodology for identifying
improvement in predictive simulations. In particular, we address the question
of how many simulations will need to be run and compared to experimen-
tal results in order to have a given expected confidence in any detection of
improvement or lack of same.!

We assume the existence of a “legacy” simulation methodology that has
been used to predict experiments in the past and a “new” simulation method-
ology that may be used either to predict new experiments? or to “postdict”
the experiments for which the legacy methodology originally produced pre-
dictions®. The most important constraint in our approach here is that we
assume that it is possible to use both the legacy and new methodologies to
predict (or postdict) the same experiments. In other words, we assume that
we will have a set of paired predictions, one pair for each experiment.

In order to frame precisely the question of the number of experiments for
which we will need paired predictions, we need to define the process that we

!The investigation of this question is traditionally referred to as power analysis in
statistics.

2In this case the legacy methodology must still be available to be used on the new
experiments.

3In this case, the essential requirement is that the postdictions be honest, that is, that
they do not use the known experimental results to fit simulation inputs or otherwise “tune”
the simulation.



will use to assess predictive capability based on a given set of paired pre-
dictions. We will assume in this paper that we have a method to determine
how well the legacy and new methodologies do on a given experiment. We
might make this determination, for example, by looking at the discrepancies
from the two methodologies between predicted and measured values for a
given experimental observable. Or, we could do the same comparison for
some weighted combination of discrepancies for multiple observables. How-
ever we make the determination, the result will be a set of binary variables,
x;, one for each experiment, i, for which we have compared legacy and new
predictions. We will adopt the convention that a value x; = 1 implies that
the new methodology does better at predicting the results of experiment ¢
(a “success”) and a value of x; = 0 that the new methodology does not do
better than the old (a “failure”).

In general, we do not expect either the new or the legacy methodology to
do better on all the experiments. Thus, in the context of our discussion so
far, we may frame our previously vague questions on identifying improvement
in predictive capability and the number of simulations required to do so more
specifically:

1. If the legacy methodology does better on some experiments and the
new methodology on others, how do we determine which is best?

2. How many comparisons between legacy and new methodologies do we
need to do in order to answer the question above?

In order to answer these questions, we must next develop a statistical model
for the binary data, x;.

We do this in Section 2, where we propose a simple binomial model with
a single unknown parameter, 6, which gives the probability that an experi-
ment chosen at random will be better predicted by the new than the legacy
methodology. Of course, § > 1/2 corresponds to improvement in predictive
capability and # < 1/2 corresponds to no improvement (or, if § < 1/2, to a
deterioration). In Section 3, we describe the properties of the binomial model
and the result of applying Bayesian inference to it using the x; as our data.
This result will be, as is typical in Bayesian analysis, a posterior distribution
for the unknown parameter 6.

Assuming that we will have a posterior for 6, we need to know how we
will use it to assess whether or not we have detected an improvement in
predictive capability. Given a posterior for 6, the obvious first step is to
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use it to compute the posterior probability that the new methodology makes
better predictions than the old—which is just the posterior probability that
0 is greater than 1/2, P[0 > 1/2|d], where our probability, being a posterior
result, is conditioned on our data, d (see Section 4). It may be that this
probability is all that is needed in a particular context, in which case we will
be done.

However, if some definite decision must be made as to whether or not we
have detected improvement, then we have entered the realm of what conven-
tional (frequentist) statistics calls “hypothesis testing”. Because we are using
a Bayesian approach we have a tool, the posterior distribution for 6, that is
not available to frequentist statisticians and our use of this tool will cause
our approach to diverge substantially from conventional hypothesis testing.
In particular, for given data and a given decision, we can always compute
the posterior probability that our decision is correct (a probability that we
call the posterior confidence). The availability of the posterior confidence
allows us to lay out a three-way choice for evaluating predictive capability:
Decide that an improvement is present (at a given level of confidence); decide
that an improvement is not present (also at the given level of confidence);
or decide that we do not know (again, at the given level of confidence). We
present our results on hypothesis testing in Section 4 with Section 4.2 dealing
specifically with the three-way test.

In the (usually not very satisfactory) situation where the data dictate that
we do not know whether or not there has been an improvement, it will always
be the case that the data are also telling us that 6 is close to 1/2. In this case,
it makes sense to do some further analysis on the posterior. In particular, it
makes sense to examine the width of the posterior in order to establish just
how far from 1/2 6 might possibly be. Any reasonable measure of the width
of the posterior (together with any reasonable measure of central tendency,
which will be close to 1/2) constitute additional pieces of information that
should be presented to decision makers in the case that our hypothesis tests
fail to produce a clear answer. Doing so makes it possible, for example, to
decide if any possible improvement in predictive capability (quantified by )
is simply too small (6 is too close to 1/2) to make any practical difference. We
believe that this kind of “plan B” should probably be part of any hypothesis
testing, at least where the hypotheses correspond to an unknown continuous
parameter being in particular regions. See Section 4.3 for details.

Having laid out the procedure that we will use, once we have data, to
detect any improvement in predictive capability, we can assess the number



of paired predictions that we are likely to need in order to be able to achieve
a given level of confidence in our results. We do this by evaluating the
predictive (sometimes called preposterior) probabilities for making certain
kinds of errors and for achieving a particular level of confidence. These
probabilities may be usefully evaluated either conditionally, as a function of
the true value of #, or unconditionally, by averaging over the possible true
values of 6.* The results of this analysis are presented in Section 5.

In accord with the program just described, we now proceed to describe
our model for the statistics of paired predictions.

2 A Model for the Statistics of Paired Pre-
dictions

We will assume that we have paired predictions for n experiments and that
we can produce the corresponding set of z;, where we set x; = 1 if we have
a “success”, a situation where the new prediction is better than the old, and
x; = 0, otherwise.

We will model the z; as independent, identically distributed random (bi-
nary) variables with a well-defined probability, § (0 < 6 < 1), to take the
value 1 and, of course, probability 1 — 6 to take the value 0. Naturally, deter-
mining a posterior distribution for  will be the central task for our Bayesian
analysis.

In the language of mathematical probability, we will model our samples
x; as a sequence, = {x; : 1 < i < n}, of Bernoulli trials (flips of a weighted
coin). In statistics, this is known as the binomial model. Not surprisingly,
given its simplicity, it is one of the most common and well-understood prob-
abilistic models.

4Tt should be noted that this last operation, averaging over the true value of 6, is only
available in a Bayesian analysis. Because the averaging is done with respect to the prior
for 0, preposterior #-averaged results will be heavily dependent on the choice of prior for
f in a way that does not become arbitrarily small as we compute results for larger and
larger (potential) datasets. This behavior is quite different from posterior quantities, which
become asymptotically independent of the prior as we take more data. This dependence
presents no problem if our prior has a strong basis as, for example, in the case where the
prior is simply the posterior from an earlier analysis of some substantial amount of data.
However, in cases where the prior has no strong basis, as when we use a noninformative
prior for lack of a better choice, the predictive probabilities averaged over 6 should be
taken with a substantial grain of salt.



It is worth noting that, in addition to being simple and well-understood,
the binomial model has the advantage that we may carry through the entire
program presented in the introduction to this paper without having to worry
about the joint distribution of the discrepancies from the legacy and new
methodologies, nor their correlation, nor even their respective marginal dis-
tributions. All that matters when we use the binomial model is the unknown
0, which we may infer from a sample of paired predictions, reduced to the
data x;.

This simplicity has been bought at the price of ignoring certain informa-
tion in the paired predictions. In order to be able to work with the binomial
model, we have had to restrict our attention to the binary quantities x;. We
are thus ignoring any information we have about how much better or worse
the new methodology is at predicting a given experiment. If, for example, we
are making our decision on whether or not the new methodology is doing bet-
ter in a given experiment based on the discrepancies from the legacy and new
methodologies for a single observable, we are effectively basing our analysis
on the sign of the difference between the discrepancies and are ignoring the
magnitude of the difference. There is certainly the possibility that working
with the full difference would allow a better analysis, although any improve-
ment would, in turn, need to be paid for with the work to model the joint
distribution for the two discrepancies (or at least the distribution for their
difference) and with any accompanying uncertainties or errors introduced by
this modeling. An analysis, parallel to this one, that takes into account the
magnitudes of the differences is currently in the works.

We next proceed to present basic results on the binomial model and on
the process of Bayesian inference on it.

3 Bayesian Inference on the Binomial Model

As discussed above, the binomial model assumes that we have a set of n bi-
nary samples, x;, and, further, that the x; may be modeled as independent,
identically distributed random binary variables with a well-defined probabil-
ity, 0 (0 < 6 < 1), to take the value 1 and probability 1 — @ to take the value
0. For a more detailed discussion of the binomial model and references, see
Appendix A.1.

If we define s as the number of times that 1 appears in @, s = s(x) =



> 7 x;, then the likelihood, given 6, of observing s in n trials is

n!

P(s|0) = (Z) 65(1 — )" 65(1 — )", (1)

sl(n —s)!
Note that s is an integer so the likelihood is an actual probability, not a
density.® Of course, s can take the values 0,1,...,n.°

Given this likelihood and a prior probability distribution for 6, p(6), we
may apply Bayes law to compute a posterior probability distribution for 6,
given an observed sequence x,

__ P(sl0) p(6)
p(fls) = 40 PUs]0) p(0) (2)

We will assume a conjugate prior” for #, which, in the case of the binomial
model, is an instance of the beta distribution on [0, 1],

I'(ao + o) goo-1
F(Oéo)r(ﬁo)

where our prior has hyperparameters ag > 0 and 3y > 0.® The case o = 1

and [y = 1 corresponds to a flat (noninformative) prior. Then, as shown in
Equation 58 in Appendix A.3, the posterior is

p(0) = Be(0|a, fo) = (1—0)>7, (3)

p(6]5) = Be(Blag + 5, o + 1 — 5)
_ F(n +ap + ﬂo) stap—1/1 _ p\n—s+Bo—1 (4)
C I(s+ag)l(n— s+ 3) f =9 '

5Throughout this paper we use uppercase P to represent probabilities and lowercase p
to represent probability densities. Moreover, we place the argument of P in parentheses
(as in P(s|0)) if it is an elementary quantity like s. If the argument of P is a composite
predicate as in P[s > n/2|6], then we place the argument in square brackets.

6The astute reader will note that the likelihood in Equation 1 is conditional on the
number of samples, n, as well as §. The same will be true of all the probabilities in this
paper so, for the sake of simplicity of expression, we will leave this dependence implicit.

"For a brief discussion of the use of conjugate priors in Bayesian inference, see Ap-
pendix A.2.

80f course, the prior probability is dependent on g and 3y and might just as well be
written as p(f|ag, Bp). The same is true of any other probabilities that depend on the
prior. As with the case of dependence on the number of samples, n, we will leave this
dependence implicit for the sake of simplicity of expression.



If we assume that oy and [y are integers then, since s and n are integers,
the arguments of our Gamma functions are integers and we may use the fact
that, for a positive integer argument n, I'(n) = (n — 1)! to write

(n+ap+ o — 1)!

s+ag—1 1 — n—s+Bo—1
(s+0¢0—1)!(n—s+ﬁo—1)!9 (1-6) - )

p(f]s) =

It is worth noting that using a prior with agy and 3, equal to integers > 1
is equivalent to using as a prior the posterior from an earlier application that
used a flat prior to analyze data with ag — 1 ones and 3y — 1 zeros.

The posterior mean is given by Equation 60,

S+ g

) = e+ A

(6)
the posterior variance by Equation 62,

(s +ag)(n— s+ )
(n+ap+ Bo)2(n+ag+ G+ 1)

Var(f|x) =

and the posterior mode by Equation 64

S+Oé()—1
n+ Go+ag—2

Omax = (8)

In the next major section (4) we will explain how we will use the posterior
for 0 to test for improvement in predictive capability. Before we proceed,
however, we want to discuss, in the next two subsections, two questions that
may have occurred to the reader: The question of “statistical significance”;
and the question of the role of experimental uncertainty (or error).

3.1 “Statistical Significance”

It is important to understand that the use of the Bayesian posterior for
f in our analysis automatically takes into account what is usually termed
“statistical significance.” The posterior distribution becomes more sharply
peaked as more data are included in the analysis, guaranteeing that our
confidence in our results increases appropriately as we include more data.
This may be illustrated with a simple example.

Two typical posterior distributions for the binomial model are shown in
Figure 1. The priors for 8 are flat in both cases. The ratio of successes to
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samples, s/n, equals 0.6 in both cases, but the sample sizes differ by a factor
of four. Any reasonable estimates for 6 that one might make from the two
posteriors would be very close: The posterior medians are very close (0.58811
for the 10 sample case and 0.59676 for the 40 sample case) as are the posterior
means (0.58333 for the 10 sample case and 0.59524 for the 40 sample case),
and the posterior modes are identical, 0,,,x = s/n = 0.6. On the other hand,
the posterior for the larger sample size is clearly much sharper, which shows
how the Bayesian posterior automatically reflects the effects of sample size—
even though any reasonable estimates for ¢ that one might make from the
two posteriors would be very close, any reasonable error bounds that one
would put on the estimate will be much narrower in the case of the larger
sample size.

s/n = 0.60

p(0]s,n)

8.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 1: Typical posteriors from inference on the binomial model, assuming
a flat prior for . The two cases correspond to different sample sizes but the
same ratio of successes to samples, s/n. The posterior for the larger sample
size is clearly much sharper, even though any reasonable estimates for ¢ that
one might make from the two posteriors would be very close.
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3.2 The Role of Experimental Uncertainty

Modeling experimental uncertainties for legacy experiments is often extremely
difficult. Often, experimentalists have not provided any experimental uncer-
tainties at all. When they have, it is often difficult to interpret the quantities
they have provided. For example, it may be unclear whether the stated un-
certainties were intended as one-sigma or as two-sigma uncertainties, or as
some kind of strict bounds. If the experiments were performed many years
before the statistical analysis, there may be no way to answer such questions
as the experimentalists may be unavailable due to career changes, retirement,
or death. Even when the experimentalists are available, memories may be
faulty or may fail altogether.

The interpretation of experimental uncertainties becomes even more diffi-
cult when one is analyzing multiple experiments performed over a long period
of time by different experimentalists, or even different generations of exper-
imentalists. Uncertainties in outputs from different experiments may have
been assessed with very different methodologies—everything from formal sta-
tistical analysis to expert judgment (which may itself derive from anything
from long personal experience to folk knowledge) to a “scientific wild-assed
guess” is likely to show up.

In light of these difficulties (which can show up in new as well as legacy
experiments), it is good to have a statistical methodology available that is
not dependent on detailed modeling of the experimental uncertainties. Our
approach requires no such modeling.

One may reasonably ask, then, whether experimental uncertainty plays
any role in our approach at all. It does, but only implicitly. In effect, the ex-
perimental uncertainty is aggregated with the modeling error in the codes to
produce an overall assessment of predictions. If experimental error becomes
large compared to the differences between legacy and new predictions, then
the probability that a new prediction will be better than a legacy prediction
will become more random, that is, # will move toward 1/2.

It would certainly be possible to incorporate knowledge about experimen-
tal uncertainties into our analysis. On the simplest level, it makes sense to
take a quick look at predictions from legacy and new codes and to ask if
they are generally within experimental uncertainty (assuming that one has
at least a rough idea of what the experimental uncertainty should be). We
think that this should be done in any case.

If predictions from both codes are generally within experimental uncer-
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tainties but one code does better than the other in a large percentage of the
cases, then one should probably reexamine one’s assumptions about experi-
mental uncertainties, just as one would if a linear fit to some data produced
a line that fit the data much better than the assumed experimental uncer-
tainties should allow. If it is consistently possible to predict results to within
a small fraction of experimental uncertainty, one’s assumed uncertainty is
probably too high.

More formally, it would be possible to separate the discrepancy between
the prediction and the experimental value into a part due to experimental er-
ror and a part due to modeling error. Such an approach would require strong
assumptions about the statistics of the predictions and of the experimental
results and would lose the simplicity of the binomial model. Extending our
analysis in this direction is not currently one of our priorities but we would
be open to doing so if we can be convinced that it would be valuable.

4 Testing for Improvement in Predictive Ca-
pability Based on Binomial Inference

Our next task is to explain how we will use the posterior for 6 to decide
if we have observed improvement in predictive capability. As discussed in
the Introduction, the critical question is whether or not 6 is greater than
1/2: If it is, then predictive capability has improved; if it is not, there has
been no improvement. In the language of conventional hypothesis testing, it
makes sense to take the hypothesis that “f is less than or equal to 1/2” as a
null hypothesis (no improvement) with the complementary hypothesis, “6 is
greater than 1/2”, as the alternative hypothesis:

Hy <= 0<1/2 (9)
H < 0>1)2.
These two hypotheses are exhaustive and mutually exclusive so, if we assign
a probability p to the null hypothesis, we must assign probability 1 — p to
the alternative hypothesis. (Note that, although we will use the language of
null and alternative hypotheses, we will, unlike in frequentist analysis, treat
the two hypotheses symmetrically.)

Since we have a posterior distribution for f, we may use it to compute
the posterior probability for Hy, which is just the posterior probability that

12



6 is less than or equal to 1/2,

1/2
P[Hols] = P[§ < 1/2]s] _/0 ddp(0|s). (10)

Similarly, for H; we have,
1
P[H;|s] = P[0 > 1/2]s] E/ dfp(0)s). (11)
1/2

(We also have the simple relation P[H;| =1 — P[H].)
The integrals in Equations 10 and 11 can be evaluated in terms of a known
function. Using Equation 4, we have

1/2

P[Hgls] :/0 df Be(0|s + ag,n — s+ o) (12)

= I1/5(s + ap,n — s+ By),

where I.(a, 3) is the regularized incomplete beta function, and

1
P[H1|s] = /1/2d0Be(9|s—|—oz0,n—s+ﬁo) (13)

=1—1)5(5 +ap,n— 5+ [).

The capability to compute the regularized incomplete beta function is found
in standard statistics packages such as the SciPy stats package.

Now, it is important to consider that, once we have a posterior for 6
and the resulting posterior probabilities for Hy and H;, we may not need
to specify anything further. In other words, it may be perfectly acceptable
to report a simple statement of the form, “The probability that the new
methodology is better than the old is x%”, where z is just the posterior
probability for H;. The sharpening of the posterior with sample size that
was demonstrated in Figure 1 guarantees that such a statement already takes
account of the question of “statistical significance”, so there is no essential
factor that is being left out with such a statement.

On the other hand, a stronger statement of the form, “The new method-
ology is definitely better than the old,” may be required. In other words, we
may be required to make a definite choice between the two hypotheses. In
that case, it makes sense to consider “hypothesis tests” of Hy and H;. The
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outcomes of any such tests should, of course, be determined by the posterior
probabilities for Hy and H;. We will investigate two tests for deciding if
improvement in predictive capability has been observed:

1. A simple binary test, described in Section 4.1 immediately below; and
2. A more sophisticated three-way test, described in Section 4.2.

In addition to allowing us to make a definite statement about improvement of
predictive capability, our analysis of these tests we will also provide an answer
(actually more than one) to the question, “How many new predictions do we
need to do in order to be able to decide if we have observed an improvement
in predictive capability?”

In addition to the two tests mentioned above, we will also describe, in
Section 4.3, posterior quantities that should prove useful to decision makers
when the three-way test fails to produce a conclusive answer.

4.1 A Simple Binary Test

If we are forced to make a simple binary choice between Hy and Hi, it is
hard to see a justification for anything other than the following procedure:
If the posterior probability for 6 to be greater than 1/2 is greater than the
probability for it to be less than or equal to 1/2, decide for Hy; if not, decide
for Hy. More formally,

If P[0 > 1/2]s] > P[0 < 1/2]s], decide for Hy,

. (14)
If P[0 > 1/2]s] < P[ < 1/2|s], decide for Hy.
(Note that the two conditions on the posterior distribution for 6 correspond-
ing to deciding for H; and Hy are equivalent to the posterior median being
greater than 1/2 on the one hand, or less than or equal to 1/2 on the other.)
One might expect that, in order to perform this test, we would need to
integrate the posterior for  (Equations 4 or 5) from 0 to 1/2 (or equivalently,
from 1/2 to 1). However, we show in Appendix A.4 that we may simply
examine the posterior expectation, given by Equation 6, because the posterior
median is greater than 1/2 if and only if the posterior expectation is greater
than 1/2. Moreover, both of these conditions are equivalent to the posterior
mode being greater than 1/2 so that almost all simple binary tests that one
might reasonably propose are equivalent.
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Using our formula for the posterior expectation, Equation 6, we can rep-
resent the situation where the posterior expectation is greater than 1/2, and
thus where the posterior median and mode are greater than 1/2 and the bulk
of the posterior probability lies to the right of 1/2, thusly:

1
E(0|8) > 5 <~ 2(8+O€0) >7’L—|—C\40+50
1 (15)
= s>§(n+ﬁo—a0).
For notational convenience, we will define here the set of values of s cor-
responding to Hy as Sy and the set of values of s corresponding to H; as

Slu

505{8’8§ (n—i—ﬁo—ao)}

(16)

N = N

515{5‘5>—(n+ﬂo—040)}

remembering, of course, that s is restricted to the range 0 < s < n. Then,
our proposed test may be implemented as:

If s € Sy, decide for Hy;

17
If s € Sy, decide for Hy. (17)

We discuss this test and its implications in Section 5 below.

4.2 A Three-Way Test Based on the Posterior Confi-
dence

Beyond deciding if we have or have not observed an improvement in predictive
capability, we will want to know the (posterior) probability that our decision
is correct. Obviously, a posterior probability of, say, 0.6 that 6 is greater than
1/2 and a corresponding probability of 0.4 that it is not will not constitute
strong evidence for an improvement in predictive capability. Thus, in order
to state with confidence that we have observed an improvement, we will
want to require some lower limit to this probability, such as, for example,
0.9. Similarly, in order to state with confidence that we have not observed
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an improvement, we will want to require some lower limit, say 0.9, to the
probability that 6 is less than or equal to 1/2.°

If the posterior probability for Hj is greater than or equal to the posterior
probability for H; (or, equivalently, if the posterior expectation is less than
or equal to 1/2), then the posterior probability that our choice is correct
will be given by the posterior probability for Hy, P [H0|s}. Similarly, If the
posterior probability for H; is greater than the posterior probability for H,
(or, equivalently, if the posterior expectation is greater than 1/2), then the
posterior probability that our choice is correct will be given by the posterior
probability for Hq, P[Hl|s} =1- P[H0|s]. We will call this probability
the posterior confidence or just the confidence!®. Specifically, we define the
posterior confidence, C, to be

C = C(s) = P[Hy|s], when P[H,|s] <1/2; and (18)
C = C(s) = P[H,|s|, when P[H|s] > 1/2. (19)

Using Equations 12 and 13, we have analytic expressions for the confidence,

C(s) = Lja(s + ao,n — s+ o), when P[H|s] <1/2; and (20)
C(s) = 1= ILija(s + ap,n — s+ By), when P[Hy|s] > 1/2. (21)

(Of course, we can, as discussed above in Section 4.1, determine easily
whether or not P[H;|s] < 1/2 by determining whether or not s is less than
or equal to % (n+ By — ap).) Note that the confidence will never be less than
0.5, because the posterior mean will always be on the side of 1/2 where the
most posterior probability lies. (As proven in Appendix A.4.)

Figure 2 shows posterior confidence as function of s/n for various sample
sizes, assuming a flat prior for #. Note that, because our data, s, are discrete,
the confidence is defined only at the markers and not in between—we have
shown the lines connecting the markers only to aid in reading the figure. The
figure shows clearly that:

1. The confidence is never less than 0.5;

9Note that our ability to characterize our confidence in our choice with a probability is
dependent on our having a posterior distribution for 8 and, thus, is a specifically Bayesian
capability which is not available in non-Bayesian hypothesis testing.

10«Pposterior confidence” and “confidence” are not standard terminology—they have
been adopted here strictly for convenience.
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Figure 2: Posterior confidence as a function of s/n for various sample sizes,
assuming a flat prior for 6. [Figure: figs/confidence_examples.png]

2. For fixed sample size, the confidence increases as the measured s/n
moves away from 1/2; and

3. Except when s/n = 1/2, the confidence increases with sample size for
a given s/n.

In addition, all computations with even sample sizes (not shown on the figure)
give a confidence of exactly 0.5 when s = n/2, as one would expect from the
symmetry of the problem in that case.

If we go beyond a simple binary choice and demand a given level of
confidence in our decision, ¢ : 0 < ¢ < 1, we are led naturally to a three-way
choice between: 1) Decide definitely for H; (if the posterior probability of
H, is greater than or equal to ¢); 2) Decide definitely for Hy (if the posterior
probability for Hj is greater than or equal to ¢); 3) Decide that we do not
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know (because the posterior does not give the required level of confidence in
either hypothesis).

Formally speaking, we consider two mutually exclusive (but not exhaus-
tive) possible outcomes of our Bayesian analysis:

Oy < P[Hi|s| <1/2 and C(s) > ¢; and

(22)
O, < P[H|s] > 1/2 and C(s) > ¢.

Of course, we know how to determine when the posterior probability of H;
is greater than 1/2 from our data and prior through Equation 17 so we may
write our two outcomes as:

Oy <= s € S and C(s) > ¢; and

23
0, <= s€ ) and C(s) > ¢. (23)

Then, our test is:

If Oq, decide definitely for Hy;
If Oy, decide definitely for Hi; (24)
If neither Oy nor Oy, decide that we do not know.

We discuss this test further in Section 5.2.

4.3 Examining the Width of the Posterior When the
Confidence is Too Low

It should be obvious that having to choose the third case in Equation 24 is
not likely to be very satisfactory, even though it will be the data that dictate
our choice. Fortunately, there is a sensible “plan B” that we can employ in
this case. The data will not tell us to choose the third case except when it is
also telling us that € is close to 1/2. Now, in practice, there will certainly be
some region around € = 1/2 where the improvement in predictive capability
effectively quantified by 6 — 1/2 is simply too small to matter. Thus, when
the three-way test is inconclusive, the width of the posterior distribution of
0, together with a point estimate for § which will necessarily be close to 1/2,
will be useful quantities for guiding any decisions that need to be made (like,
for example, decisions about how many more simulations should be done).
Any reasonable measure of the width of the posterior and any reasonable
measure of central tendency should be satisfactory in this context. The
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mean of the posterior is given by Equation 6 and the standard deviation
of the posterior may be obtained immediately by taking the square root of
the variance as given by Equation 7. We propose reporting these quantities,
especially when the three-way test is inconclusive.

In general, whenever one works with discrete hypotheses that are defined
by partitioning the range of a continuous variable (like 6) into disjoint regions,
there will be a problem similar to the one we have just discussed when the
variable is close to the boundary between the regions. Thus, it seems to us
that the kind of plan B that we have just outlined should be a feature of
hypothesis tests in many common situations.

We present results on the problem of predicting the posterior standard
deviation in Section 5.3 below.

5 Evaluating and Predicting the Results of
the Tests

In our hypothesis testing described in the preceding section, we proposed to
use two quantities computed from the data to decide whether or not we have
observed an improvement in predictive capability:

1. The number of ones in our data, s, which tells us whether or not the
posterior probability for improvement, P [H 1 |3] , is greater than the pos-
terior probability for no improvement, P[H0|s} and thereby provides
us with the binary test described in Section 4.1; and

2. The posterior confidence defined by Equations 18 and 19, which allowed
us to define our three-way test in Section 4.2.

Once we have taken our data and computed the posterior density for 6, these
two quantities will have perfectly definite values. However, before we have
taken any data, these quantities are unknown and, hence, must be described
as random variables characterized by probability distributions, which we will
call predictive distributions. Bayesian statisticians sometimes call them, per-
haps more descriptively, preposterior distributions [1, chapter 7].

In order to determine how many pre- or post-dictions we will need to do
with our new simulation methodology, we need to characterize the predictive
probability distributions for these two posterior quantities. In addition, ex-
amining the predictive distributions will give us insight into our binary and
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three-way hypothesis tests, showing us, for example, the situations in which
they can and cannot be expected to give definite answers.

For each of the two posterior quantities, we will begin by characterizing
the predictive distribution of the quantity, as a function of the true value of
0. There will not be anything particularly “Bayesian” about this character-
ization (other than the fact that the two quantities come from a posterior
distribution). Then, we will characterize the predictive distribution, aver-
aged over the true value of 6. This will be a Bayesian analysis that depends
on the prior density that we assign to 6, before taking any data.

We present our analysis of the predictive distribution of s in Section 5.1
immediately below and our analysis of the predictive distribution of the con-
fidence in the following Section 5.2.

In addition to the two quantities just discussed, we have also identified
(in Section 4.3) a role for the posterior mean and standard deviation in
informing decision making based on our analysis, especially when the three-
way test does not produce a definite result. The primary predictive quantity
associated with these posterior quantities that we examine is the predictive
mean of the posterior standard deviation, which we do in Section 5.3 below.

5.1 The Binary Test: The Probability of Making Type
1 and Type 2 Errors

In evaluating a proposed binary test, frequentist hypothesis testing makes
use of the concepts of Type 1 and Type 2 errors. A Type 1 error occurs
when one incorrectly rejects the null hypothesis (a false positive) and a Type
2 error occurs when one incorrectly fails to reject the null hypothesis (a false
negative). Frequentists rely almost exclusively on the predictive probabilities
of making Type 1 and Type 2 errors for quantitative evaluation of a test.

Although our approach here is more symmetric than the frequentist one
and we will have the posterior confidence to guide us in evaluating the results
of any test, the concepts of Type 1 and Type 2 errors and their predictive
probabilities are still useful. We have chosen as our null hypothesis, Hy,
the proposition that § < 1/2; and as our alternative hypothesis, H;, the
proposition that § > 1/2. Then, we will have made a Type 1 error if we have
inferred that # > 1/2 when it is actually the case that § < 1/2. Conversely,
we will have made a Type 2 error, if we have inferred that 6 < 1/2 when it
is actually the case that 0 > 1/2.
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Given 0, we already know the distribution of s, as given by Equation 1.
Based on this, we can compute the probability of making a Type 1 error, as
a function of the true value of #. A Type 1 error can only occur when the
true value of # is less than or equal to 1/2. The probability of making such
an error is equal to the predictive probability (conditioned on the value of
0) that the posterior mean will be greater than 1/2; in other words, that s
will be greater than 3 (n + By — ap). Writing in terms of the set S; defined
in Equation 16, this probability is,

Pls € 51160] = Z (Z) 6°(1—6)", 6 <1/2. (25)

{s|s€S1}

Similarly, we can compute the probability of making a Type 2 error,
conditioned on the true value of #. A type 2 error can only occur when the
true value of € is greater than 1/2 and the probability of making such an
error is equal to the predictive probability that s will be less than or equal to
5 (n+ By — ayp), conditioned on the true value of #. Again using Equation 16,
this probability is,

P[s € Sy|6] = Z (Z) 05(1 —60)"*, 6>1/2. (26)

{s]s€So}

It is worthwhile plotting these functions for the simple case of a flat prior
(= =1). In this case, the set Sy of values of s that correspond to Hy is
{s|s<n/2} and S; is {s | s > n/2} (from Equation 16).

Figure 3 shows the predictive probabilities for Type 1 and Type 2 error
for the case of a flat prior when the number of samples is odd. (The reason for
separating the cases of odd and even sample sizes will be explained below.)
The different sample sizes have been chosen to be approximately equally
spaced logarithmically. Since our Hj lies to the left of § = 1/2 and our H;
lies to the right, the curve to the left of 1/2 gives the probability of making a
Type 1 error and the curve to the right of 1/2 gives the probability of making
a Type 2 error. (Of course, the boundary case § = 1/2 is in Hj but even if
it were in H; the figure would not change.) The figure is symmetric around
0=1/2.

The figure shows that the probability of error if the true value of 0 is
1/2 is 50%, regardless of the number of samples. This should really not be
surprising. If # = 1/2, then s is just as likely to be greater than n/2 as to be
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Figure 3: Probability of error, conditioned on the true value of 6, for the
binary test, assuming a flat prior for §. For § < 1/2 the curve gives the
probability for a Type 1 error; for § > 1/2, the probability for a Type 2
error. The number of samples, n, is odd.

less and we are as likely to incorrectly decide for H; as to correctly decide for
Hy. The root of this indeterminacy lies in the fact that the case § = 1/2 is
in our Hy but is arbitrarily close to points in H;. Obviously, we could have
chosen to put the case § = 1/2 is in our H; but we would still have the same
issue. As long as we are partitioning the (continuous) range of 6 into two
disjoint regions, we are always going to see this behavior when the true value
of # lies on the boundary between the regions.

For all other values of the true 6, however, the figure shows clearly that
the probability of error goes down monotonically with the number of samples.
Not surprisingly, the probability of error is higher the closer the true 6 is to
1/2. A few characteristic values are presented in Table 1. From the table
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n  -10% uw-10% 1-5% u-5%
13 0.33 0.67 0.28 0.72
55 0.415 0585 0.39 0.61
257  0.46 0.54 0.45 0.55

Table 1: Probabilities of error from Figure 3. n is the number of samples,
[-10% is the lower value of 6 at which the probability of error equals 10%,
u-10% is the upper value at which the probability of error equals 10%, and
I-5% and u-5% are the corresponding values for 5% probability of error.

we see that, for example, with 13 samples there is a less than 10% chance of
error if 0 is outside the range [0.33,0.67] and a less than 5% chance of error if
6 is outside the range [0.28,0.72].1 Roughly speaking, we can do reasonably
well if € is no closer than £0.2 to 1/2. If we go to 55 samples, we can do
reasonably well if 6 is no closer than +0.1 to 1/2. 257 samples allows us to
do well outside of 1/2 % 0.05.

Figure 4 shows the plot analogous to Figure 3 when the number of samples
is even. The first thing one notices about this plot is that it is dramatically
asymmetric. In particular, the probability for making a Type 2 error at a
given distance from 6 = 1/2 is larger than the probability of making a Type
1 error at the same distance.

This asymmetry is a consequence of the discrete nature of our data, s, and
the asymmetry between our null and alternative hypotheses that results from
deciding to put the case § = 1/2 in Hy rather than H;. In the previous case of
an odd number of samples, every possible data value leading to a decision for
Hj had a complementary value on the other side of 1/2 leading to a decision
for Hy. Hence, the symmetry of Figure 3. With an even number of samples,
one possible value for s is exactly n/2 and in this case we decide for the null
hypothesis as specified by Equation 17. There is no complementary data
value leading to a decision for Hy, so the figure is asymmetric. Of course,
we could choose to put the case @ = 1/2 in H; but this would just have the
effect of flipping the asymmetry.

A table analogous to Table 1 for the case of even sample sizes is given in
Table 2. As long as 6 does not get too close to 1/2 and the sample size is
not too small, the two figures give similar values for the probability of error

UThe very similar ranges for 10% and 5% probability of error are due to the vary rapid
increase in the probability of error as 6 approaches 1/2, as is apparent in Figure 3.
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Figure 4: Probability of error, conditioned on the true value of 6, for the
binary test, assuming a flat prior for §. For § < 1/2 the curve gives the
probability for a Type 1 error; for § > 1/2, the probability for a Type 2
error. The number of samples, n, is even.

for similar sample sizes.

The import of all this will become more clear when we examine the overall
predictive probabilities for making Type 1 and Type 2 errors. The overall
predictive probability of making a Type 1 error is just the joint predictive
probability that s € S; and 0 < 1/2,

P[s e 5,0 <1/2], (27)

where it is may be helpful to the reader to note that this quantity is implicitly
dependent on the number of samples, n, and on the prior hyperparameters
ag and (3y. This quantity has the form P[s celU by <0< 91} with U = 97,
0o = 0, and 0; = 1/2. Quantities of this form are evaluated in Appendix A.5.
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n  -10% uw-10% 1-5% u-5%
12 0.36 0.71 0.31 0.75
56 0.42 0.59 0.40 0.62
258  0.46 0.54 0.45 0.55

Table 2: Probabilities of error from Figure 4. n is the number of samples, (-
10% is the lower value of 8 at which the predictive probability of error equals
10%, u-10% is the upper value at which the probability of error equals 10%,
and [-5% and u-5% are the corresponding values for 5% probability of error.

Substituting the specific values for U, 6y, and 6, above into Equation 74 in
that appendix, and recognizing that Iy(s + ag,n — s + (y) = 0, we have,

Pls e 51,0 <1/2]
B ['(ap + Fo) n!
 T(a0)T(Bo)T(n + Bo + ) (28)
I'(s 4+ ag)l'(n —s 0
5 ( ) + o)

sl(n —s)!

Lj2(s + a9, n — s+ 3),
SES1

where, once again, I,.(a, 3) is the regularized incomplete beta function. For
the case of a flat prior, Equation 77 gives the dramatic simplification,

1
P[s € 5,0 < 1/2] = H—HZ[l/g(s—kl,n—s—i—l), for ag = By = 1.
SEST

(29)

Similarly, the overall probability of making a Type 2 error is just the joint
probability that s € Sy and 6 > 1/2,

Pls € Sp,0>1/2] (30)

Now, we substitute U = Sy, 6y = 1/2, and ¢; = 1 in P[S e U0y <0< 91}
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and, recognizing that I1(s + ag,n — s + (y) = 1, Equation 74 gives us

P[s € Sy,0 > 1/2]

. F(Oéo + ﬁo) n!

I'(co)I'(Bo)T'(n + Bo + )

I'ls+ag)l'(n — s+
SESp ’ ’

(31)
For the case of a flat prior, Equation 77 gives the simplified form,
P[SESO79>1/2] for ag = By = 1,
1
:n+12(1—11/2(s—|—1,n—s+1)). (32)
EIS)

It is important to note that, because the overall predictive probabilities
for making Type 1 and Type 2 errors are computed with respect to the
prior distribution for 6, the results are critically dependent on the choice of
prior. Posterior results become independent of our choice of prior as we take
more data but preposterior quantities are computed without the benefit of
data and so remain dependent on priors no matter how large the proposed
sample size. In particular, if we were to take a prior that, unlike our current
uniform prior, weights the values of # near 1/2 more than values near 0
and 1, the overall probabilities of Type 1 and Type 2 errors would increase,
because values of § near 1/2 have a greater predictive probability of producing
these errors. The lesson here is that our results for overall probabilities of
producing Type 1 and Type 2 errors are only as good as our choice of prior.
Where this prior has a solid basis, as when it is the posterior from an earlier
analysis on a substantial amount of data, then we can have a high level of
confidence in our overall probabilities. Where the prior represents only very
vague prior knowledge, the overall probabilities must be taken as suggestive
but not definitive.

Figures 5 and 6 show the overall probabilities of error for even and odd
sample sizes, respectively, out to a sample size of 70, assuming a flat prior
for .  With an odd number of samples, the probabilities for Type 1 and
Type 2 errors are equal. With an even number of samples, Type 1 errors are
less probable than Type 2 errors but the total probability of error at a given
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Figure 5: Probability of error, averaged over the true value of 8, for the
binary test, assuming a flat prior for . The number of samples, n, is odd.
The probabilities for Type 1 and Type 2 errors are equal and the green lies
directly on top of (and overwrites) the blue curve.

sample size is almost identical to the case of odd sample size, once we get
out to about 15 samples.

A couple of observation that can be made by inspecting these graphs are
that the total probability of error is under 10% if the sample size is over
about 15 and under 5% for sample sizes over about 65.

If we plot the total probabilities of error on log-log graphs, we see that
the error is falling off as about 1/4/n for large sample size, n, as is generally
expected in statistics. Log-log plots are shown in Figures 7 and 8. These
figures show that the total probability of error is about 2.54% at roughly 250
samples.

We conclude our discussion of the simple binary test with the following
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Figure 6: Probability of error, averaged over the true value of 8, for the
binary test, assuming a flat prior for . The number of samples, n, is even.
The probabilities for Type 1 and Type 2 errors are different, with Type 2
error always being more probable than Type 1.

observations about the case of a flat prior for 6:

1. The probability of error when the true value of 6 is 1/2 is always 50%,
regardless of sample size.

2. The probability of error for all other values of # goes to zero with
sample size but, at any given sample size, there is always a region
around 1/2 where the probability of error is rapidly increasing toward
50% at 0 = 1/2.

3. If we define this region more precisely as the region over which the
probability exceeds either 10% or 5%, we get similar results for the
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Figure 7: Probability of error, averaged over the true value of 8, for the
binary test, assuming a flat prior for . The number of samples, n, is odd.
Once again, the probabilities for Type 1 and Type 2 errors are equal and the
green curve lies directly on top of and overwrites the blue curve.

width of the region. At 13 samples, the width of the region is roughly
+0.2, at 55 samples it is roughly +0.1 and at 257 samples it is roughly
+0.05.

4. The total probability of error, averaged over 6, is under about 10% for
sample sizes over about 15, under about 5% for sample sizes over about
65, and about 2.54% at about 250 samples.

Given the complexity of the plots with even sample sizes, we will restrict
our attention hereafter to odd sample sizes.
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Figure 8: Probability of error, averaged over the true value of 8, for the
binary test, assuming a flat prior for . The number of samples, n, is even.
Once again, Type 2 error is always more probable than Type 1.

5.2 Predictive Probabilities for the Confidence

In the case of the predictive distribution for the confidence, the computation
is a bit more complicated. We begin by reminding the reader that, for a fixed
number of samples, n, there are only finitely many possible values for the
integer-valued data, s: Specifically, 0 < s < n. For each possible value of s
and a given prior specified by (ag, o) there is a particular posterior distribu-
tion for 6, p(f|s), given by Equation 4 and, thus, a well-defined value for the
posterior confidence defined by Equations 18 and 19 and given analytically
by Equations 20 and 21. Moreover, we already know the predictive distribu-
tion for s given 0, P(s|f), from Equation 1. Therefore, we can compute the
predictive probabilities for the various values of the confidence—they are just
the sums of the predictive probabilities of the corresponding values of s. Col-
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lectively, these probabilities are the predictive distribution for the confidence
and we may compute any properties of this distribution that we want—the
mean, the variance, quantiles, etc. However, it is important to be aware that,
because the predictive distribution for the confidence is discrete rather than
continuous, we cannot in general find a point corresponding exactly to a ar-
bitrary quantile, such as 95%. Rather, if we wish to work with quantiles, we
will need to compute quantities like “the smallest value of s > % (n+ By — ap)
for which the posterior confidence is at least 95%”.

In general, the confidence that we achieve when we have made the correct
decision (as with the simple binary test) has a very different significance than
the confidence that we achieve when we have made the incorrect decision.
We would hope that, when we have decided correctly, our confidence will
be relatively high and when we have decided incorrectly, our confidence will
be relatively low. Accordingly, in our analysis of the predictive distribution
for the confidence, we will condition on both the true value of 6 and the
correctness of our simple binary test given by Equation 17. So, we will be
interested in four cases:

1. # <1/2 and s € Sy,
2. 0>1/2and s € 5,
3. 6 <1/2and s € Sy, and
4. 0 >1/2 and s € S,

where Sy or S are defined in Equation 16 and membership of s in either S
or S determines the result of the simple binary test as given by Equation 17.
In the first two cases our simple binary test leads to the correct conclusion
and in the last two cases, the incorrect conclusion. Case 3 corresponds to a
Type 1 error in the simple binary test and case 4 to a Type 2 error.

In considering these cases, we will need to group together values of s
that give us a particular answer to our binary test and which do so with the
required level of confidence. In other words, we will be interested in the two
sets of possible values of s, Ty and T3, given by,

TOE{S‘SS%(TL—}—ﬁQ—Ofo) andC’(s)Zqﬁ}CSg (33)
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and

le{s‘s>%(n+ﬁg—oz0) andC’(s)Zgb}CSl, (34)

where ¢ is our desired level of confidence and, of course, 0 < s < n.

We will begin, as in our analysis of the simple binary test in Section 5.1
above, by computing the relevant predictive probabilities conditioned on the
true value of #. Then, we will compute overall predictive probabilities, aver-
aged over the unknown value of 6.

5.2.1 Predictive Probabilities Conditioned on the True Value of 0

We will first consider the situation where our simple binary test produces
the correct answer, cases 1 and 2 above. Given a value for 6, the predictive
probability of achieving the desired confidence ¢ when the binary test gives
the correct answer is P[s € Tp | 6] for § < 1/2 and P[s € Ty | 6] for 6 > 1/2.
These quantities are easily computed from the likelihood, Equation 1,

PlseTy| 0] 0 <1/2,
= Z P(s|0)
{sls€To} (35)
= Z (n> 95<1 _ (9)n_8
S
{s|s€To}
and,
Plse T | 0] 0>1/2,
- ¥ (”> 6°(1 — )" (36)
{s|s€T1} 5

A plot of these functions for the case of a flat prior and a variety of sam-
ple sizes is shown in Figure 9. The desired level of confidence is ¢ = 0.9.
For the most part, the figure behaves as we would expect—true values of
that are farther from 1/2 are more likely to result in at least 90% confidence
than values closer to 1/2 and larger sample size generally results in a higher
probability of achieving at least 90% confidence than smaller sample size.
However, there is a region around 6 = 1/2 where some of the curves for dif-
ferent sample sizes cross. This is due to the discrete nature of our data and
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Figure 9: Predictive probability of achieving at least 90% confidence when
the simple binary test gives the correct answer, assuming a flat prior for 6.
The number of samples, n, is odd.

our resulting inability to precisely specify a quantile like “90% confidence”.
As we increase our number of samples, the actual cutoff probability for in-
cluding possible data values in the sums in Equations 35 and 36 fluctuates in
the region just above 90% and we get the otherwise counterintuitive result
of a larger number of samples sometimes having a slightly reduced predictive
probability of achieving at least 90% confidence. The effect is largely re-
stricted to the smaller sample sizes and the neighborhood of # = 1/2. This is
apparently a well-known phenomenon when performing preposterior analysis
of systems with discrete data [2].

It is also worth noting that the probability of (correctly) achieving at least
90% confidence given 6 = 1/2 jumps around 0.1 with no apparent pattern
as we change the sample size. This behavior, too is a consequence of the
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Figure 10: The horizontal axis for both plots is the sample size. The upper
plot gives the actual cutoff for the confidence when we consider only data
values s for which the associated posterior confidence is at least 90%. The
lower plot shows the probability of achieving a confidence of at least 90%
when the true value of 6 is 1/2.

changes in the effective cutoff probability as we change sample size. That
this is so may be seen from Figure 10. The figure shows how the actual cutoff
probability changes with sample size and the effect these changes have on the
probability of achieving at least 90% confidence when 6 = 1/2. The vertical
axis in the upper plot is the actual cutoff probability, that is, the smallest
value of the posterior confidence, taken over all possible data values s, that
is greater than or equal to 90%. The vertical axis in the lower plot is the
probability of achieving at least 90% confidence when the true value of 6 is
1/2.

Note that, even with over 200 samples, the actual cutoff can be as high as
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92% and it is as high as 96% when the number of samples is in the teens. It
is clear that the fluctuations of the probability of achieving 90% confidence
at § = 1/2 are driven by the cutoff—when the cutoff is well above 90%, the
probability of achieving at least 90% confidence is relatively low and when the
cutoff approaches 90%, the probability of achieving at least 90% confidence
is relatively high. It appears that the probability of achieving at least 90%
confidence when 6 = 1/2 is approaching 10% as the number of samples goes
to infinity, but only very slowly.

n o 1-90% uw-90% 1-80% u-80%
13 0.20 0.80 0.25 0.75
25  0.33 0.67 0.35 0.65
257 0.42 0.58 0.44 0.56

Table 3: Probabilities of achieving at least 90% confidence from Figure 9. n is
the number of samples, [-90% is the lower value of § at which the predictive
probability of achieving at least 90% confidence equals 90%, u-90% is the
upper value at which the probability of achieving at least 90% confidence
equals 90%, and [-80% and u-80% are the corresponding values for 80%
probability of achieving 90% confidence.

It is instructive to tabulate some characteristic values from the plot in
Figure 9 as we did for the simple binary test. The results are shown in Table 3.
If we are willing to accept an 80% predictive probability of achieving 90%
confidence, and are not concerned with a difference of 6 from 1/2 of less than
0.15, then it appears that 55 samples will suffice. If, on the other hand, we are
concerned with a difference of 6 from 1/2 of more than 0.06 (again accepting
80% predictive probability for achieving our target confidence), then we will
need many more samples, on the order of 250.

We next consider cases 3 and 4 from page 31 above, where the simple
binary test produces the wrong answer. It is easy enough to derive formulae
for the probability of achieving a given confidence and getting the wrong
answer, analogous to Equations 35 and 36. The quantities we want are
P[s € Ty|6] for  <1/2 and P|s € Ty | 6] for 6 > 1/2 and these evaluate to,

Plse T | 0] 0 <1/2,
— n 05(1 o e)n—s (37)
{ssze:m (S>
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and,

PlseTy| 0] 0>1/2,
— n 65(1 o e)nfs (38)
{s;ﬂ]} (3>

The resulting plot, for the case ¢ = 90% and a flat prior for 6, is shown
in Figure 11. The probabilities are comfortingly low, even for the case of
13 samples. The probability of incorrectly achieving 90% confidence never
exceeds 0.13 and is mostly much lower. We may have trouble achieving our
desired level of confidence but, if we do, we can be reasonably certain that
we have not become confident in the wrong conclusion.

odd number of samples, incorrect

0.14 : ! : ! : ! : ! : ! : ! : ! : ! : ! :

012 5 | — 21 ]
| |— 33 [

0.10 - { — 55 H

93

0.08f -

0.06 -

0.04 |-

probability of achieving at least 90% confidence

002 _ ‘ . - I"II. ._',...I".' .

003601 o0z 03 04 05 06 07 08 00 1o

Figure 11: Predictive probability of achieving at least 90% confidence when
the simple binary test gives the incorrect answer, assuming a flat prior for 6.
The number of samples, n, is odd.
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5.2.2 Predictive Probabilities Averaged over the True Value of 6

Now, we consider the overall predictive probability to achieve a given level
of confidence, averaged over the true value of #. As in the section above, we
will first consider the situation where our simple binary test produces the
correct answer, cases 1 and 2 on page 31 above.

The overall predictive probability that the simple binary test will give
the correct answer and that we will achieve confidence ¢ is the sum of two
probabilities corresponding to cases 1 and 2, respectively,

Pls €Ty, 0 <1/2] (39)
and

PlseTi,0>1/2], (40)

where T, and T are defined by Equations 33 and 34, respectively. These
quantities have the form P[S celU b6 <0< 01} that is evaluated in Ap-
pendix A.5. Making the appropriate substitutions for U, #,, and #;, we have,

PlseTy,0 <1/2]
B (g + Go) n!
~ D(ag)L(Bo)T(n + fo + o) (41)
['(s 4+ ap)l'(n — s+ By
5 ( )I( )

sl(n —s)!

[1/2(3 + Ao, — S + 60)
s€Tp

and

PlseTi,0>1/2]
- F(ao + ﬁo) TL'
[ (co)T'(Bo)T(n + Bo + axo) (42)

'ZF(S—F?)&@;{?—F%) (1= Tija(s + ag,n — s+ o))

seTy

For the situation where the binary test produces the wrong answer, the
overall predictive probability that we will achieve confidence ¢ is the sum of
two probabilities associated with cases 3 and 4,

PlseT,0 <1/2] (43)
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and

Pls €Ty, 0 >1/2], (44)
which evaluate to
PlseTi,0 <1/2]
_ [ + Bo) n!
~ T(a0)T(Bo)T(n + Bo + o) (45)
' Z he i?)(gf ;‘5 + o) L1ya(s + ag,n — s + o)

seT
and

Pls e Ty,0>1/2]
_ I'(ap + o) n!
~ D(a)T(Bo)(n + By + ) (46)

3 Rt A (1 s+ s+ )

s€Tp

For the case of a flat prior for 6, the overall probabilities of achieving at
least 90% confidence for the correct and incorrect cases are given in Figures 12
and 13, respectively. In the case that the simple binary case produces the
correct answer, we have an overall 80% predictive probability of achieving
90% confidence with 50 samples. 90% predictive probability occurs only
with about 180 samples. In the case that the simple binary case produces the
incorrect answer, the probability of achieving 90% confidence is already down
to 1.8% at 13 samples and falls rapidly to about 0.6% at about 40 samples.
Once again, we are very unlikely to incorrectly achieve 90% confidence.

It is appropriate to mention at this point that our choice of 90% as our
target confidence is not entirely arbitrary. It is not difficult to compute the
predictive mean of the confidence conditioned on the simple test giving the
correct answer. The formulas are given in Appendix A.6 and the resulting
plot in Figure 14. The salient point is that the predictive mean confidence
is never less than 75%. It therefore seems to us that choosing a target
confidence much less than 90% is likely to amount to no real target at all.

We conclude our investigation of the three-way test with the following
observations about the case of a flat prior for 6:
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Figure 12: The overall predictive probability of achieving at least 90% confi-
dence when the simple binary test gives the correct answer, assuming a flat
prior for 6.
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Incorrect and 90% confident
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Figure 13: The overall predictive probability of achieving at least 90% con-
fidence when the simple binary test gives the incorrect answer, assuming a
flat prior for 6.
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Figure 14: The predictive mean of the confidence when the simple binary
test gives the correct answer, assuming a flat prior for 6.
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1. At about 55 samples, we have an approximately 80% predictive prob-
ability of achieving at least 90% confidence, provided the true value of
6 is no closer than 0.15 to 1/2.

2. At about 250 samples, we have an approximately 80% predictive prob-
ability of achieving 90% confidence, provided the true value of 6 is no
closer than 0.06 to 1/2.

3. We have an overall predictive probability of 80% of achieving 90% confi-
dence (and being correct in our binary decision) with about 55 samples.

5.3 Predicting the Width of the Posterior When 6 is
Near 1/2

In Equation 88 in Appendix A.7, we give a formula for the predictive mean of
the posterior standard deviation, conditioned on the true value of 6. A plot
of the predictive mean as a function of # for various sample sizes is shown
in Figure 15. Note that our prediction for the posterior standard deviation
goes down as the sample size increases (as expected) and that the prediction
is relatively insensitive to the true value of 8, except in the vicinity of 0 and
1.

The same plot, but for the fairly extreme case of a prior with ag = 2 and
8o = 10, is shown in Figure 16. Note that the prior has not made a dramatic
difference in the prediction for the posterior standard deviation, especially
for the larger sample sizes, as long as we do not go very close to 0 or 1. This
is desirable behavior because we are principally interested in the predictive
mean of the posterior standard deviation when the data tell us that 6 is
close to 1/2. So the observed behavior guarantees that the predictive mean
of the posterior standard deviation at a given sample size will be relatively
insensitive to the data we have already analyzed in the cases in which we
care about it.

This point is reinforced by Figures 17 and 18, which show the predictive
mean of the posterior standard deviation averaged over the true value of 6,
assuming a flat prior for 6 in the former figure and a oy = 2 and §y = 10
prior in the latter. Again, the differences between the two cases with very
different priors are really quite moderate, maybe a factor of 1.5 at 30 samples,
indicating that the predictive mean of the posterior standard deviation is a
relatively stable with respect to prior knowledge.
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Figure 15: The predictive mean of the posterior standard deviation as a
function of the true value of #, assuming a flat prior for 6.

This point may be made even stronger if one takes into account the fact
that a prior with ag = 2 and [y = 10 is equivalent to having started with a
flat prior and observed ten samples, with one sample being zero and the other
nine samples being ones.'? If we look at the value of the curve in Figure 18
at a given number of samples and match it with the value of the curve in
Figure 17 at that number of samples plus ten, the values are very close. In
other words, the posterior standard deviation depends fairly strongly on the
sample size, but only quite weakly on the actual values of the data.

6 Sequential Power Analysis

The procedure that we have outlined for doing Bayesian inference on the
binomial model, the tests that we described based on the posterior for #, and

12See the comment on page 9 immediately below Equation 5.
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Figure 16: The predictive mean of the posterior standard deviation as a
function of the true value of 6, assuming a prior for ¢ with g = 2 and

ﬂo == 10
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Figure 17: The predictive mean of the posterior standard deviation averaged
over the true value of #, assuming a flat prior for 6.

45



a, =2.00, 3, =10.00

0.10} -
0.08 -
0.06 |

0.04}

predictive expectation of posterior stddev

0.02} -

000 | . . . . | . . . . | . . . . | . . N . | . . . .
0 50 100 150 200 250 300
number of samples

Figure 18: The predictive mean of the posterior standard deviation averaged
over the true value of #, assuming a prior for 6 with oy = 2 and Sy = 10.
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the power analysis that we did on the tests can all be performed sequentially.
In other words, we can analyze some number of cases, x;, produce a posterior
for 6, and then use that posterior as a prior for further analysis, including
power analysis.'®> This allows us to incrementally update our predictions
about how much new data will be necessary to determine whether or not an
improvement in predictive probability has been observed.

If we are using a prior for # that comes from an earlier formal analysis,
then the relative meaningfulness of the predictive probabilities conditioned
on the true value of # and averaged over 6 will change from the examples
that we have presented so far, which have used a flat prior for . On the
one hand, predictive probabilities conditioned on the true 8 will become less
meaningful because our prior will eliminate more and more of the range of 6
the more data used to derive it and, even within the range for 6 that is left,
different values will have very different prior weights. Conversely, predictive
probabilities averaged over 6 will become more meaningful because the prior
that plays a critical role in their calculation becomes more well-founded. In
other words, when we are starting from scratch and use a simple flat prior
largely for convenience, the conditional predictive probabilities should play
the dominant role. When we have data on which to base our prior, the
averaged predictive probabilities should probably come to the fore.

7 Summary

We concluded Sections 5.1 and 5.2 with brief summaries of the numerical
results of our analyses of the predictive probabilities associated with our two
tests, in the case of a flat prior for 0. (See pages 28 and 42.) We will not
repeat those results here but, rather, will present a high-level summary of
the results that we have presented in the body of paper above.

In brief, in this paper we have:

1. Proposed a simple binomial model for comparison of paired predictions
from legacy and new simulations methodologies, with a single unknown
parameter, #, which quantifies any improvement in predictive capabil-
ity. (Section 2)

130ur use of a conjugate prior for § makes this sequential analysis particularly simple
because the beta-distribution form for all priors and posteriors is preserved with each
iteration of the analysis.
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2. Showed how to do Bayesian inference to obtain a posterior distribution
for 0. (Section 3)

3. Showed, in Section 4, how to use the posterior distribution for 6 to do
a kind of Bayesian hypothesis testing that answers two questions:

(a) Have we observed an improvement in predictive capability?

(b) Have we achieved a given probability of improvement, a given
probability of no improvement, or neither?

4. Stressed that, no matter how many data are taken, there will always be
a region around ¢ = 1/2 where question 3b above is virtually certain to
receive an indefinite answer and discussed the ubiquity of this problem
in hypothesis testing. (In Section 4.3 and throughout Section 5)

5. Showed how to use the posterior mean and standard deviation of € as
a kind of plan B to provide additional useful information to decision
makers in the event that question 3b above receives an indefinite an-
swer, and discussed the relevance of such an approach whenever one
does hypothesis testing. (Section 4.3)

6. Performed a power analysis on the tests we have proposed and showed
how the resulting predictive probabilities may be used to project, before
simulations are run, how many simulations are likely to be necessary
to answer the questions above. (Section 5)

7. Discussed the use of our results for sequential power analysis, where
one performs a small number of simulations and uses the results to
make a (more) informed projection of how many additional simulations
will need to be run in order to answer the questions in item 3 above.
(Section 6)

A Appendix: Some Standard Results and De-
tailed Calculations

This appendix provides some standard definitions and results from statistics
and documents the details of several calculations in the main text. The cal-
culations are extremely detailed with almost every step made explicit. This
detail has been presented in order to make it easy to check the calculations.
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A.1 Series of Bernoulli Trials and the Binomial Like-
lihood

In statistics, a Bernoulli trial is an observation that can produce one of
only two possible outcomes (conventionally called 0 and 1, or “failure” and
“success” respectively) with a well-defined probability, § (where of course
0 < 6 < 1), to take the value 1 and, of course, probability 1 — 6 to take
the value 0. In simpler terms, a Bernoulli trial is equivalent to the flip of a
weighted coin.

Assume that we have a sequence of n Bernoulli trials, @ = {z;} : 1 <
1 < n, that can be presumed to be identically distributed with parameter 6
and to be independent, given . Then, the probability of obtaining a given
sequence x is just

Plx)=0°(1—-0)""", (47)

where s = s (x) = ), x; is the number of times 1 appears in the sequence.
Note that s can take the values 0,1,...,n. Now, elementary combinatorics
tells us that there are (Z) distinct binary sequences of length n that contain
1 exactly s times, where (Z) = S,(%S), is the binomial coefficient. Thus, we
may write the likelihood, given 6, of observing s in n trials as

n!

P(s) = (Z) 65(1 — )" = 6°(1 — )", (48)

sl(n —s)!

1

This distribution for s is called the binomial distribution'* and, when it

represents the likelihood, the binomial model.*®

A.2 Conjugate Priors in Bayesian Parameter Estima-
tion

Appendix A.1 immediately above presents our unknown parameter, 6, and
the likelihood that connects 6 to our data, . The remaining essential in-
gredient for a Bayesian analysis is the prior for 6, p(6). We choose to use a
conjugate prior for 6, a concept that we explain in this appendix.

14See Gelman et al [3, Sections 2.1-2.5] or Bernardo and Smith [4, page 115 and Sec-
tion 4.3.1] or almost any elementary statistics text for basic information on sequences of
Bernoulli trials and the binomial distribution.

15Because the likelihood depends on the data only through the scalar function of the
data, s, s is referred to as a sufficient statistic for the unknown parameter 6.
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Conjugate priors are basic to the practice of Bayesian statistics, particu-
larly when working with the kind of simple model that we are using in this
paper. Simply put, given a likelihood and a particular parameter in the like-
lihood on which we are doing inference, a conjugate prior for the parameter
is a prior that produces a posterior of the same functional form as the prior.
A bit more specifically, a conjugate prior has a particular functional form
with parameters of its own (usually called hyperparameters) that determine
the specific prior. When this form for the prior is used with the correspond-
ing likelihood, the result is a posterior with the same functional form but
modified values for the hyperparameters.

Almost any basic text on Bayesian statistics will provide an extensive
discussion of conjugate priors. See for example, Gelman et al [3] or Bernardo
and Smith [4, Section 5.2]. Here, we will just outline what is probably the
most common example.

Assume we have a Gaussian likelihood for some data, d = {d;},

pwww:@zgﬁawp<i;§jwf—mﬁ, (49)

1

with an unknown mean, 6, and a known variance, 2. If we further assume
a Gaussian prior for 6,

M®—¢%%wp6%@—mﬂ>, (50)

with mean 5 and variance 73, then the posterior for § will also be Gaussian,

1 1 9
p0id) = e (5 0 "). 51
with mean, 1, and variance, 7, that are functions of the data, the variance
of the likelihood, and the mean and variance of the prior. (See either of the
references above for details.)

Conjugate priors, where they exist, greatly simplify Bayesian parameter
estimation. In particular, they make any kind of sequential analysis, where
one repeatedly updates one’s distribution for an unknown parameter using
new data, much easier and more transparent.

Although the class of likelihoods and resulting inference problems that
have conjugate priors is limited, it includes most of the common simple like-
lihoods and, fortunately, the binomial inference problem with which we are

50



dealing here. We will now present our method for doing inference on the
binomial model, using the appropriate conjugate prior.

A.3 The Posterior for the Binomial Model

Bernardo and Smith (B&S) [4] define the inferential process for the binomial
model in the first box in their Appendix A.2 on page 436. They give a
parametric form for the conjugate prior

p(z) = Be(z|ao, o), (52)
where Be is the beta distribution, defined by them in their Section A.1 in
the first box on page 430 as
I'a+pB)
[(e)T'(5)
Note that we have used the notation ag and 3y to represent the values of o and

[ in our prior and have used bare o and ( for the generic beta distribution.
I is the well-known gamma function, given by

[(z) = /000 dtz" e " (54)

For x an integer, n, we have,

Be(z|a, f) = T ) L (53)

I'(n)=(n—-1)L (55)

On their page 436, they give the posterior corresponding to the prior in
Equation 52 as
p(0|z) = Be(flag + 1, Bo +n — 1), (56)

where their z equals our & and their 7 equals our s = s (x) = >, ;. Writing
in terms of our variables, we have

p(Olx) = Be(f|lag + 5,60 +n — 3). (57)

Plugging into the definition of the beta distribution, Equation 53, with the
dummy o = s + g and the dummy g =n — s + 3y, we have

['(n+ ay+ Bo)
L(s+ ap)l'(n — s+ o)
o (n—i—ozo—i-ﬁo—l)!
(st ag—Dl(n—s+ 58— 1)

p(0lz) = e (1 — gyett

(58)

93+a071 (1 o e)nferﬁofl’
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where the latter formula pertains when «ay and (3, are integers.
For Be(0|a, 3), B&S give the mean

«

E(@|a, B) = ) 59
(Ol ) = (59)
For our posterior, Equation 58, this gives the posterior mean
S+ «g
Ef|lx) = ————. 60
(Of) = 20 (60)
B&S also give the variance for the beta distribution, Be(f|«, ), as
of
Var(f|a, 8) = . 61
For our posterior, this gives the posterior variance
Var(6)z) = s+ ao)(n — s + o) (62)

(n+ag+ Bo)2(n+ap+ fo+ 1)

The mode of the beta distribution is given by Gelman, et al [3, page 576]
as,

-1
Qmax = argmax Be(@]a, ﬂ) = #5_2 (63)
In the case of our posterior, this becomes,
s+ag—1
Ornax = . 64
n -+ ﬁo + Qg — 2 ( )

A.4 Some Properties of the Beta Distribution Poste-
rior

In this section, we show that testing the mean of a beta distribution to see if
it is greater than 1/2 is equivalent to doing the same test on the mode and
on the median.

We begin by showing that the mean and mode are always on the same
side of § = 1/2. For a beta distribution with parameters o and (3, Be(0|a, 3),
the mean is given by Equation 59,

!

E(bla 8) =

(65)
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Simple algebra shows that,

E(@|a,[) > 1/2 <= a > (. (66)
The mode for the beta distribution is given in Equation 63,
a—1
Onax = ————. 67
a+pB-2 (67)
Again simple algebra shows that,
Omax > 1/2 <= a > 3, (68)

So the condition for the mean to be greater than 1/2 is the same as the
condition for the mode to be greater than 1/2.

Next, we will show that the mean being greater than 1/2 is also equivalent
to the median being greater than 1/2. Although there is no analytical formula
for the median of the beta distribution, we can show that the median is
greater than to 1/2 if and only if @ > ( by showing that the condition on
a and (3 is equivalent to the probability that € is less than or equal to 1/2
being less than the probability that 6 is greater than 1/2. Thus, we are
interested in the relative magnitudes of the two quantities P[0 < 1/2|a, 3]
and P[G > 1/2|a, 6]. These quantities are:

1/2
P[G < 1/2|a,ﬁ} E/O df Be(0|a, )

. 12 Cla+B) jos -1
- [ a0

and

1

P[0 > 1/2|a, f] E/2d9Be(9|a,ﬂ)

1/

. ! Lla+08) 0 -1
_/1/2d9F(a)F(ﬁ)0 S

Since we are only interested in the relative magnitudes of these quantities,
we may ignore the normalization factor, which is identical in the two cases,
and work with the two quantities,

1/2
Jo(a,ﬂ)z/o doe~1(1—g)°~1
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and

1

Ji(a, ) = / dee~—1(1— )"
1/2

We wish to show that Jy(«, §) is less than J;(«, ) if and only if a > (.

We may show that the integral J, is less than the integral .J; if we can
rewrite both as integrals over the same domain with the integrand for J;
being, at every point except possibly on a set of measure zero, greater than
the integrand for Jy. Thus, we make the substitutions

1
= 3~ 6, in the integral for Jy,

and

1
p=0— 2 in the integral for J;.

Then, we have

0 a—1 B—1
was)==[ o (5-0)  (5+)
1/2 1 a—1 1 B—1
— do [ = — :
fre(e) (o)

1/2 a—1 B-1
nam= [ (540) (5-0) -

These are integrals over the same domain so now we want to find the condi-
tions under which the integrand for J; is always greater than the integrand
for Jy. In other words, we want to find the conditions under which

<% +¢>a1 (% - ¢)51 > (% _¢>“ <% +¢>51

Since the factor (% + ¢) in this inequality is always greater than 0, the in-
equality is equivalent to

() )

o4

and



The factor (% — gb) is less than or equal to 0 only at the point ¢ = 1/2, which
we may safely ignore, since behavior of the integrand on a set of measure zero
has no effect on the integral. Thus, our inequality is equivalent to

1 a=p 1 a=b
(W) >(5‘¢) -

1 1
§+¢>§—¢> (69)

This is equivalent to

provided the exponent o — (3 is positive or, equivalently, provided
a > f.
The relation in Equation 69 is equivalent to
o > 0.

Since this condition is satisfied over the domain of integration, except at the
single point ¢ = 0, we see that the condition that o > 3 imposed above is
equivalent to Jy(a, 3) being less than Ji(a, §) and thus, to the median of 6
being greater than 1/2.

A.5 A Useful Predictive Probability

There are several places in this work where we need to compute predictive
probabilities of the form,

Pls e U6, <0 <06 (70)

for U some subset of the possible values of the data, s, and 6y and #; some
limits on @ such that 0 < 6, < 6; < 1.1 We may use the law of total
probability and the definition of conditional probability to write,

0
Pbea%<ega}:/lwppeaﬂ

0

o, (71)
:/‘wppemﬂmw

)

6Tn practice, we always have either (6,6;) = (0,1/2) or (6o,601) = (1/2,1), but the
general problem is no more difficult to solve than these special cases.
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where p(0) is our prior for 6,

['(ag + 5o) poo—1
F(ao)r(ﬁo)

The quantity P [s eU \0} is just the predictive probability that s will be in
U, given the true value of #, which is given by the likelihood (Equation 48),
summed over the values of s in U,

PkeUWLZEZCﬁWG—ﬂW”. (73)

S
seU

p(6) = Be(0|ap, Bo) = (1— )1, (72)

Then, we have,

Pls € U8, < 6 <6,]

— . n S(1 _ p\n—s F(Oéo‘i‘ﬁo) apg—1 _ 0\bBo—1
-/, d@;(s)”l O ot | (74

seU

Writing the integrand in terms of the beta distribution through its definition
in Equation 53, we have,

P[s elU, 0y <0< 61}
I + o)
['(co)I'(Bo)

01 B
: Z (Z) /0 do I'(s ?(ZOZFFO(ZJF ;5 5o) Be(d|s + ag,n — s + Bo).
seU 0

(75)

56



Moving the fraction out of the integral and writing the integral in terms of
the regularized incomplete beta function, I,(«, ), we have,

Pls €U0y <0<0,]

(ao + ﬁo)
T'(ao)T'(fo)
(Z) T :élo—i— Bo + ;0;— = (IHI(S +ao,n =5+ )
< —[90(s+a0,n—s+ﬂo)>
I'(ap + Bo) n!

(o)L (Bo)I'(n + Bo + o)
['(s+ ag)l'(n — s+ By
3 (s + ) T( + 6o)

sl (n—s)!

([91(8+Oéo,n — S+ﬁ0)
— Iy, (s + ap,mn — s+ﬁo)>.

(76)

When we have a flat prior (ag = o = 1), this expression simplifies to

P[SEU,90<9§01} for ag = Gy = 1,
L 77
=2 (s +1n—s+1) = Ip(s+1,n—s+1)). (77)
seU

Unfortunately, there is no equivalent simplification for the general case.

A.6 The Predictive Mean and Variance of the Confi-
dence

We seek to compute the predictive mean value of the confidence when the
true value of 6 is less than or equal to 1/2 and when our test has correctly
confirmed this, in other words, when s is less than or equal to % (n+ By — ayp).
In order to do this, we need to compute the confidence for each possible
outcome (value of s) and then add these quantities for all the outcomes on
the “right” side, weighted by the probability of each outcome. Then, we
need to normalize by dividing by the total probability to be on the right
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side. Thus, we seek to calculate:

E(C(s) | s € Sy, 0) for 6 <1/2, s correct

- ZsESO ( Z O

SESO
1 ©

e — P(s|0) I 2(s + ag,n — s + (),
ZSESOP(S‘H);) (|) 1/2( 0 0)

where we have substituted the explicit value for C(s) from Equation 20 and
Sop is defined by Equation 16.

Similarly, we seek to compute the mean value of the confidence when the
true value of @ is less than or equal to 1/2 and when our test has incorrectly
failed to confirm this, in other words, when s is greater than 3 (n + 5y — ay).
In order to do this, we need to compute the confidence for each possible
outcome (value of s) and then add these quantities for all the outcomes on
the “wrong” side, weighted by the probability of each outcome. Then, we
need to normalize by dividing by the total probability to be on the wrong
side. Thus, we seek to calculate:

E(C(s)|s € S, 9) for 6 < 1/2, s incorrect
= C(s
ZSESI Z

sESl

(79)

— ZP s0) (1 — Iij2(s + ag,n — s+ o)),
23651 sES

where we have substituted the explicit value for C(s) from Equation 21 and
Sy is defined by Equation 16.

Of course, we want to compute the same quantities when the true value
of 6 is greater than 1/2. The mean value of the confidence when the true
value of 6 is greater than 1/2 and when our test has correctly confirmed this,
in other words, when s is greater than 3 (n + fy — ay), is:

E(C(s)|s€ S, 0) for 6 > 1/2, s correct, (80)

but notice that this is functionally the same as the quantity in Equation 79
above, although we will be evaluating it over a different region of 6.

Finally, we seek to compute the mean value of the confidence when the
true value of € is greater than 1/2 and when our test has incorrectly failed to
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confirm this, in other words, when s is less than or equal to % (n+ By — ap).
This quantity is:

E(C(s) | s € So, 0) for # > 1/2, s incorrect, (81)

but notice, again, that this is functionally the same as the quantity in Equa-
tion 78, although we will be evaluating it over a different region of 6.
We also want to compute the corresponding variances. They are:

Var(C(s) | s € S, 0) for 0 < 1/2, s correct

: m S P(sl0) (Cls) ~ B(Cls)is € 50.6)) s (s2)

and
Var(C(s) | s € Sy, 0) for # < 1/2, s incorrect

- m > P(slo) (O(s) —E(C(s)]s € 51,9))2_ (83)

As was with the case with the mean values, the quantity
Var(C(s) | s € Sy, 0) for § > 1/2, s correct, (84)

is functionally the same as the quantity in Equation 83. Similarly, the quan-
tity

Var(C(s) | s € Sp, 0) for 6 > 1/2, s incorrect, (85)

is functionally the same as the quantity in Equation 82. In all these compu-
tations, we get the values for the expectations from Equations 78 through 81
above, and we get the value for C(s) from Equations 20 or 21 depending
on whether s is less than or equal to %(n + o — ap) or s is greater than
1 (n+ Bo — ayp), respectively.

A.7 The Predictive Mean of the Posterior Standard
Deviation

We seek to compute the predictive mean of the posterior standard deviation.
We begin, as should now be familiar, by computing this predictive quantity
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conditioned on the true value of 6. Given the data, s, the posterior stan-
dard standard deviation, 3(s), is obtained by taking the square root of the
posterior variance given by Equation 62,

ms):\/ RO Tt BT (50

(n+ap+ Fo)?(n+apg+ o+ 1)

Then, the predictive mean of this quantity is,
0) = " Sy(s) P(s]0). (87)
which gives, using Equation 1 for P(s|9),
E (34(5)|0)
—ZZG ( )95 1—)s

. S+ n_s—{_ﬁﬂ) s(1 _ pyn—s
Z\/n+ao+ﬁo (n+ao+ﬁo+1)<)9( R
(88)

which is straightforward to compute numerically.

We may next compute the overall version of the predictive mean of the
posterior standard deviation, averaged over 6, E (34(s)). We need only mul-
tiply the quantity above by the prior for 8, given by Equation 3, and integrate
over all @, thusly,

E(S4(s))
/ dHZEe ( ) (1 — 6)"*Be(0]ao, Fo)

OéO + BO Z 26 ( ) /1 de 95—‘,—010—1(1 o e)n—s-i-ﬁo—l‘
0

The integral is a beta function that evaluates to,

['(s+ag)l(n—s+f)
['(n+ Go+ ) '

B(s+ag,n—s+ ) =
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Thus, we have,

E(Z(s))

~ T+ o) < n\ I'(s+ o) I'(n — s+ fo)
~ T(ao)T(Bo) ES:ZG( ) <5) I'(n+ Bo + ao) '

Moot flnl s~ Dls+aolDln=s+ /i)
) .

I'(ao)I'(Bo)I" (n + Bo + o sl(n — s)!
(ao+50)”'
I'(n+ By + ao)
Z (s+ap)(n—s+ Bo) F(s+ay)l'(n—s+ F)
(n+ao+ Fo)?(n+ g+ fo+ 1) sl(n — s)!
I'(ag + Go) n! 1

I'(ao)L'(Bo)I" (n + Bo + @0) \/(n + ag + Bo)2(n + g + B + 1)
.Z\/(S‘i‘ao)(n_s_'_ﬁ(])F(S—i‘OéQ)F(n—S—i‘ﬁo)

sl(n — s)!

which is straightforward, if tedious, to compute numerically.
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