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Outline

= Intro to important engineering parameters and diffraction
measurements

= Intro to the pressure and temperature dependence of the
crystalline phases of polytetrafluoroethylene (PTFE, Teflon)

= Using SMARTS to measure the lattice strains in the crystalline
domains of a semi-crystalline polymer

= Observation of a new strain path to inducing a phase transition
in PTFE
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When tensile and compressive forces are applied to a
body, stress is the force per unit area upon which it acts
and strain is the unitless deformation

L — 0«
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Engineering Stress = 0 = Force _F il =
Area A |
(Unit is Pascal (Pa) or N/m2) |
displacement 6 : |

Engineering Strain =¢ = =—
initial length L ‘
(Unitless) |

i \ . transverse strain ¢,
Poisson’'s ratio=v = - -

axial strain €
(Unitless, typically 0 to 0.5)
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Hookes’ s Law states the deformation of a spring is
directly proportional to the force. This proportionality in
terms of stress and strain is the Young’s modulus (E)
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Representative Stress-Strain Diagram
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Neutron Diffraction Instruments at the Lujan Center
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SMARTS

s S pectrometer for
terials
esearch at
emperature and
tress

= Spatially resolved measuremern
e Residual strains in components

m In situ measurements

e Strains as a function of stress,
temperature, environment, ...

= Instrument Scientists:
e Donald W. Brown
* Bjgrn Clausen
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SMARTS Operation

The large cave at SMARTS allows for easy installation of ancillary
equipment and large samples

(,5___;“_, - l’ v — . P L S
| [

» Los Alamos

NATIONAL LABORATORY Slide 8
EST.1943

Operated by Los Alamos National Security, LLC for NNSA UNCLASSIFIED T YA I =a3%]
INASE



Diffraction Specifications

= 2"d generation Time-of-Flight (TOF) engineering powder

diffractometer:

o 31 meter primary flight path

* 1.5 meter secondary flight path

e Detector coverage: £13° horizontal and vertical

* Resolution at 90° (wavelength dependent):

* Nominal count time for 1 cm?3 under load at temperature:
e Nominal count time for 1 mm3 in 10-mm-thick Fe plate:

= Time-of-flight:

o Full diffraction pattern (0.4 - 3.75 A)
e Single peak or Rietveld analysis

e Strain resolution (fitting ESD):
— Single peak analysis:

L“v — Rietveld analysis:
» Los Alamos
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Information Obtained from Diffraction
Measurements

Bragg’ s law relates the wavelength, the lattice spacing and the
scattering angle
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Information Obtained from Diffraction
Measurements

D-d }D
oy d -
= Peak position Vo
 Elastic lattice strain from changes in }': tree A
peak position ] \
e Intergranular strains AREREREE \
= Peak intensity
e Texture change from changes in peak
intensities AR :
 Phase transition form appearsofnew .2 °°
peaks and loss of initial peaks cocceee
= Peak width
 Depends on defect concentration . v
and grain size s © 5 ©
— Generally increases with plastic ceseee o o
ya deformation oo cooe
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SMARTS Operation

= In-situ measurements

Strains as a function of stress, temperature, environment, ...

Measurements of 2 strain components simultaneously: Longitudinal and
Transverse

Undeformed Reference — d° Deformed state — d

Far field stress
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SMARTS Operation

= Spatially resolved measurements
e Residual strains in components

e Measurements of 2 to 6 strain components
to determine full strain tensor
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Materials Science and Engineering With Neutron

Diffraction

m Typical issues

Residual stress in processed parts
Intergranular strains

Deformation mechanisms of
advanced materials

Phase stress in multi-phase
materials (composites)

Structural (solid/solid) phase
transformation

Development of texture
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Materials Science and Engineering With Neutron
Diffraction

= Typical issues

e Residual stress in processed parts _ Austenitic stainless steel
e Intergranular strains
e Deformation mechanisms of o Cy;
advanced materials okl -
 Phase stress in multi-phase izoo 5
materials (composites) % ol
e Structural (solid/solid) phase 2 e 111.ND
transformation < 100 A
e Development of texture 50 o Erec
0 . . . I—533,EPSC

0 500 1000 1500 2000 2500 3000
Elastic strain [ue]
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Materials Science and Engineering With Neutron
Diffraction

= Typical issues
e Residual stress in processed parts
e |ntergranular strains

e Deformation mechanisms of
advanced materials

 Phase stress in multi-phase
materials (composites)

e Structural (solid/solid) phase
transformation

e Development of texture

Twinning in hcp materials
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Materials Science and Engineering With Neutron
Diffraction

= Typical issues
* Residual stress in processed pig NG |
* Intergranular strains 7 A

e Deformation mechanisms of
advanced materials

e Phase stress in multi-phase
materials (composites)

o Structural (solid/solid) phase
transformation

* Development of texture
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Materials Science and Engineering With Neutron
Diffraction

= Typical issues
e Residual stress in processed parts
e |ntergranular strains

e Deformation mechanisms of
advanced materials

e Phase stress in multi-phase
materials (composites)

o Structural (solid/solid) phase Y0 : (-200)
transformation

e Development of texture

U 6 wt.% Nb

al’ : (-110)

200MPa 450MPa Unloaded
/\
)
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Materials Science and Engineering With Neutron
Diffraction

Measured Initial

= Typical issues il 12
e Residual stress in processed parts
e Intergranular strains

e Deformation mechanisms of
advanced materials

e Phase stress in multi-phase
materials (composites)

e Structural (solid/solid) phase N
transformation 0002 12

« Development of texture / L
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In-Situ Measurement of Crystalline
Lattice Strains in Fluoropolymers by
Neutron Diffraction
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Polymers and composites offer unique properties and

material design space
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Polymers and composites are finding their way into
many critical applications historically reserved for
metals, many of which involve materials under extremes

Weight percent of composite in aircraft
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The massive human and economic costs from material
failure motivated my interest in deformation, damage
and fracture

.....
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Most studies in the current literature focus on two
equally important BUT segregated areas of study.
Progress lies at the interface.

Polymer Structure Mechanical Behavior
* Crystalline structure + Stress-strain
* Phase transitions + Constitutive modeling
* Crystallinity * Fracture/failure

* Thermal history... * Shock...

i

+ The current work investigates the interplay between mechanical behavior of
semicrystalline polymers with polymer structure, percent crystallinity,
crystalline lattice deformations using

Atomic Force Microscopy (AFM)
Scanning Electron Microscopy (SEM)
Neutron Diffraction

He pycnhometry

Differential Scanning Calorimetry (DSC)
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Multiscale modeling requires multiscale experiments
and attention to QMU

m  Generalized method of cells

| Miarpacale approach
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Polytetrafluoroethylene (PTFE, Teflon) Introduction

= PTFE (CF,-CF,) is semi-crystalline,

with its linear chains forming
complicated phases near room

temperature and ambient pressure

= PTFE possesses a combination of
desirable chemical and physical

properties including:

excellent thermal stability
chemical resistance

dielectric properties

extremely low coefficient of friction

= Applications of PTFE include:

A

surgical implants

aerospace components

motor seals

barriers for hazardous chemicals

—)
» Los Alamos

NATIONAL LABORATORY

This study focuses on PTFE 7C:

Molding powder (DuPont) is pressed and
sintered by Balfor Industries according to
the ASTM standard ASTM-D-4894-98a
Molding powder has the unique feature
of consisting of small (~20 um)
irregularly shaped, fibrous particles
Molding powder is ~85% crystalline (by
density)

Pressed PTFE is ~48% crystalline (by
density)
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Crystalline structure of PTFE for Neutron Diffraction

Crystalline phase defines both the short range (in chain) and long range (chain

folding/packing) structure

From C—C—C bond length and angle the translational advance is consistently 0.13

nm/CF,.

BUT the representative repeat length c (if one exists) is n x 0.13 nm (n = 2,13,15).

Amorphous PTFE has the chemical compositions as crystalline PTFE but without

short or long range order.

15/7 helical PTFE chain

Hexagonal lattice

o 1.95nm basal arc::/chain ~0.28 nm?
= YA v { , 4
ARG £ Iy
- Carbon Fluorine : { L4 : { ’ :
Loaray BEIERLE
SRR PR P
{8 NY
Crystalline ymm S I
Amorphous -1 F. 1. { (. ' (.
- Los Alamos ) S O
NATIONAL LABORATORY Sum = (c) a = 0.566nm (b) Slide 27
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Previously Reported Pressure-Temperature Phase
Diagram for PTFE
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Measurement Methods for Crystallinity

m  Several methods have been reported in the literature, including Raman, IR, X-ray and
NMR

= Moreover, because 100% amorphous and 100% crystalline PTFE are not experimental
obtainable, these constants must often be extrapolated based on one or more methods

DSC < Density
AH _
XC — );) (1) XC — pC p pa (2)
AH; P P Pa
Where AHjs the measured sample heat of Where p is the measured sample density,

fusion, and and
AH{is the theoretical heat of fusion P, and p, are the extrapolated density
for 100% crystalline PTFE for 100% amorphous and 100%

crystalline PTFE respectively
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Manifestation of the Crystalline Phase in theTensile

Behavior
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Neutron Diffraction of Undeformed PTFE 7C

(10.15)
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= All of the observed peaks can be assigned based on literature x-ray data
Kimmig Macromol. 27 (1994)

e Weeks Polymer 22 (1981)
e Clark Z. Kristallogr. 117 (1962)
e Clark J. Macromol. Sci. Phys. B1 (1967)
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Loading conditions

= The response is measured at ambient temperature (phase IV) in tension
and compression and elevated temperature (phase ) in compression

= Relaxation is observed during diffraction measurements at constant
strain

= Reasonable agreement with quasi-static data
P. J. Rae, D. M. Dattelbaum, Polymer 2004, 45, 7615
P. J. Rae, E. N. Brown, Polymer 2005, 46, 8128.
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Stress—strain response of the individual prismatic (/eft) and
pyramidal (right) crystalline lattice planes
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Stress—strain response of the individual prismatic (/eft) and
pyramidal (right) crystalline lattice planes
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Stress—strain response of the individual pyramidal crystalline

lattice planes

» Los Alamos

NATIONAL LABORATORY
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Proposed pyramidal deformation mechanisms

incorporating shear

Transverse Unloaded Axial l-—»
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Stress—strain response of the individual basal
crystalline lattice planes

= Within experimental error the basal response corresponds to

theoretical value

« Bartha F, Bogar F, Peeters A, Van Alsenoy C, Van Doren V (2000) Density functional
calculations of the elastic properties of some polymer chains. Phys Rev B 62(15):10142-10150

Phase 1V in tension
12 :
o~ (00.15)
d_"510 :
= Theoretical :
~— B Chan .
W
o
£g
N
e 4
w .
‘_1:3 2 epxial .-“"Bulk
- Transverse
-5000 0 59’00

Lattice pstrain (107)
(a)

» LOS Alamos

NATIONAL LABORATORY

Phase IV in compression

-20 s
- (00.15)
a . _| Theorstical §
=15 Chain | »
oy
D
=10
75
=
L‘é‘: -5 Bulk :
c e®mAxal @ ..
- 0 Transversa ™
5000 0 -5000
Lattice ustrain (10°)
(h)

-l
o

True End Stress (MPa) |
bk & b x

in compression
(001)
Theoretical 2
Chan :
& Avial B“"'-‘
Transverse |
5000 0 -5000

Lattice ustrain (10°)
(C)

Slide 37

EST.1943

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

TV A a3
N A -4



Composite stiffness can be predicted using a micro-
mechanics approach termed the rule

of mixtures.
= Longitudinal Rule-of-Mixtures (Constant Strain)ec =g =§,=¢
. L =3« F.-F,+F,<0 A =0A +0,A,
~ A
i r—=F Gc=G1V1+$V2©EC=E1V1+EZ(1-V1)
E E E

= Transverse or Inverse Rule-of-Mixtures (Constant Stress)

L — § « G¢:=G1=Gz=(7

O =0 +0 ¢l =¢L +¢ L
c 1 2 c c 1 1 2 2

F -
+ 2V < E -1 iv1+l(1—v1)
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Elastic Constants

m  Assume constant stress

(hkl) Elastic constants (GPa)
Tension RT Compression RT Compression 60 °C
Bulk behavior 0.5' 0.6' 0.2'
Theoretical PTFE chain 220.5° 220.5° ~220°
210 3.8 1.8 54
300 4.8 5.1 3.0
220 2.2 54 2.3
310 4.1 5.8 3.1
00.15 na ~220 —
001 — — ~220

. 1
" E,.,=0.062 [E;iik —0.038 [E1_017 + Eqs + Ef; + Eqyg+ Eqfjg + Esgo+ Eqpg + ESjo+ Egous + Eqgas
= At room temperature the elastic modulus of the amorphous PTFE is 0.32 and
0.38 GPa in tension and compression respectively
= At 60 °C under compression the elastic modulus of the amorphous PTFE is 0.13
GPa.
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d-spacing evolution under uniaxial deformation at
ambient temperature and pressure
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Under small strains Phase lll structure observed

b (hkl) Phase III literature = Measured  Relative
d-space (b) at  d-space (b) intensity
1.2 GPa under uniaxial
a (hkl) Phase IV measured d-space  Relative hydrostatic!'! stress
(b) at zero stress intensity 010 4.89 Off rang e

100 4.902 Off rang e 210 2.97 2.985 W
110 2.822 W 101 2.52 2.541 VS
200 2.423 Under 107 020 245 2482 VS
107 2.424 VS -111 2.31 2.272 VS
108 2.178 VS 111 2.17 2.130 S
117 1.986 M -420 1.94 1.945 VW
210 1.847 S 410 1.90 1.895 VW
118 1.845 Under210 -121 1.84 Under IV 210 S
300 1.631 M 311 1.75 1.754 M
220 1.411 M 420 1.48 1.484 W
310 1.357 M 321 1.42 UnderIV220 M

00.15 1.299 S Under IV
10.15 1.257 S 002 1.31 00.15 S

Under IV
012 1.28 10.15 S
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For More Information

§5J§

E.N. Brown, P.J. Rae, D.M. Dattelbaum, B. Clausen, D.W. Brown.
“In-situ measurement of crystalline lattice strains in

polytetrafluoroethylene” Experimental Mechanics 2008 48 (1)
119-131.

E.N. Brown, D.M. Dattelbaum, D.W. Brown, P.J. Rae, B. Clausen.
“A new strain path to inducing phase transitions in semi-
crystalline polymers” Polymer 2007 48 (9) 2531-2536.

E.N. Brown, B. Clausen, D.W. Brown. “In-Situ Measurement of

Crystalline Lattice Strains in Phase IV Polytetrafluoroethylene,”
Journal of Neutron Research 2007 15 (2) 139-146.
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Conclusions on PTFE

= The lattice strains in the crystalline domains with semi-crystalline PTFE
have been measured in situ during tension and compression

= Assuming constant stress, elastic moduli have been measured

= The stiffness along the polymer chain backbone agree with theoretical
predictions

= Pyramidal plains accommodate a dilatational response through shear

= Deformation is primarily accommodated in the compliant amorphous
domain and inter-chain prismatic deformation in the crystal

= Uniaxial deformation induces a phase transition into a structure
equivalent to phase lll previous only reported under high hydrostatic
pressure
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Conclusions on SMARTS

= Neutron diffraction is a powerful tool in materials science and
engineering providing:
e Bulk residual/internal strain measurements
e Bulk texture measurements

= Large penetration depth enables beam to easily go through
“windows” in ancillary equipment
 Vacuum or environmental chambers
e High temperature furnaces
e Cryogenic temperatures
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Abstract

A novel application of in situ neutron diffraction under applied
uniaxial strain is presented; measuring the crystalline domain
evolution in a semi-crystalline polymer under bulk deformation.
PTFE is shown to respond to uniaxial deformation by undergoing a
crystalline phase transition previously believed to occur only at
very high hydrostatic pressure. Discovery of this phase transition
under applied uniaxial-strain fundamentally changes our
understanding of the deformation mechanisms in semi-crystalline
polymers and how they need to be modeled. Under compression
parallel to the basal plane normal (i.e., parallel to the molecular
axis) the modulus is ~1000x bulk dominated by intra-polymer chain
compression, providing experimental validation of theoretical
predictions. Deformation parallel to the pyramidal plane normal
exhibit both axial and transverse strains of the opposite sign as the
applied load, suggesting the crystalline lattice is accommodating
g,eformation by shearing along the prismatic planes.
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