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Outline 

  Intro to important engineering parameters and diffraction 
measurements 

  Intro to the pressure and temperature dependence of the 
crystalline phases of polytetrafluoroethylene (PTFE, Teflon) 

  Using SMARTS to measure the lattice strains in the crystalline 
domains of a semi-crystalline polymer 

  Observation of a new strain path to inducing a phase transition 
in PTFE 
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Hookes’s Law states the deformation of a spring is 
directly proportional to the force. This proportionality in 
terms of stress and strain is the Young’s modulus (E) 
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Representative Stress-Strain Diagram 
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Neutron Diffraction Instruments at the Lujan Center 

Slide 6 
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SMARTS 
  Spectrometer for 

MAterials 
Research at 
Temperature and 
Stress 

  Spatially resolved measurements 
•  Residual strains in components 

  In situ measurements 
•  Strains as a function of stress,  

temperature, environment, … 

  Instrument Scientists: 
•  Donald W. Brown 
•  Bjørn Clausen 
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SMARTS Operation 

The large cave at SMARTS allows for easy installation of ancillary 
equipment and large samples 
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Diffraction Specifications 

  2nd generation Time-of-Flight (TOF) engineering powder 
diffractometer: 
•  31 meter primary flight path 
•  1.5 meter secondary flight path 
•  Detector coverage: ±13° horizontal and vertical 
•  Resolution at 90° (wavelength dependent):  ~0.4% FWHM 
•  Nominal count time for 1 cm3 under load at temperature:  ~10 minutes 
•  Nominal count time for 1 mm3 in 10-mm-thick Fe plate:  ~60 minutes 

  Time-of-flight: 
•  Full diffraction pattern (0.4 - 3.75 Å) 
•  Single peak or Rietveld analysis 
•  Strain resolution (fitting ESD): 

—  Single peak analysis:  ±50µε

—  Rietveld analysis:  ±20µε
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Information Obtained from Diffraction 
Measurements 

Bragg’s law relates the wavelength, the lattice spacing and the 
scattering angle 

λ = 2dsinθ


K i 
K d Q 

2 θ 
d 
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Information Obtained from Diffraction 
Measurements 

  Peak position 
•  Elastic lattice strain from changes in 

peak position 
•  Intergranular strains 

  Peak intensity 
•  Texture change from changes in peak 

intensities 
•  Phase transition form appears of new 

peaks and loss of initial peaks 

  Peak width 
•  Depends on defect concentration 

and grain size 
—  Generally increases with plastic 

deformation 
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SMARTS Operation 

  In-situ measurements 
•  Strains as a function of stress, temperature, environment, … 
•  Measurements of 2 strain components simultaneously: Longitudinal and 

Transverse 
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SMARTS Operation 

  Spatially resolved measurements 
•  Residual strains in components 
•  Measurements of 2 to 6 strain components 

to determine full strain tensor 
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Materials Science and Engineering With Neutron 
Diffraction 

  Typical issues 
•  Residual stress in processed parts 
•  Intergranular strains 
•  Deformation mechanisms of  

advanced materials 
•  Phase stress in multi-phase  

materials (composites) 
•  Structural (solid/solid) phase  

transformation 
•  Development of texture 

LASER 
ENGINEERED 
NET 
SHAPING 
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Materials Science and Engineering With Neutron 
Diffraction 

  Typical issues 
•  Residual stress in processed parts 
•  Intergranular strains 
•  Deformation mechanisms of  

advanced materials 
•  Phase stress in multi-phase  

materials (composites) 
•  Structural (solid/solid) phase  

transformation 
•  Development of texture 
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Materials Science and Engineering With Neutron 
Diffraction 

  Typical issues 
•  Residual stress in processed parts 
•  Intergranular strains 
•  Deformation mechanisms of  

advanced materials 
•  Phase stress in multi-phase  

materials (composites) 
•  Structural (solid/solid) phase  

transformation 
•  Development of texture Twinning in hcp materials 
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Materials Science and Engineering With Neutron 
Diffraction 

  Typical issues 
•  Residual stress in processed parts 
•  Intergranular strains 
•  Deformation mechanisms of  

advanced materials 
•  Phase stress in multi-phase  

materials (composites) 
•  Structural (solid/solid) phase  

transformation 
•  Development of texture 1 1 µµmm
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Materials Science and Engineering With Neutron 
Diffraction 

  Typical issues 
•  Residual stress in processed parts 
•  Intergranular strains 
•  Deformation mechanisms of  

advanced materials 
•  Phase stress in multi-phase  

materials (composites) 
•  Structural (solid/solid) phase  

transformation 
•  Development of texture 
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Materials Science and Engineering With Neutron 
Diffraction 

  Typical issues 
•  Residual stress in processed parts 
•  Intergranular strains 
•  Deformation mechanisms of  

advanced materials 
•  Phase stress in multi-phase  

materials (composites) 
•  Structural (solid/solid) phase  

transformation 
•  Development of texture 
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In-Situ Measurement of Crystalline 
Lattice Strains in Fluoropolymers by 

Neutron Diffraction 
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Polymers and composites offer unique properties and 
material design space 

Slide 21 

Tension finally 
becomes a 

design option 
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Polymers and composites are finding their way into 
many critical applications historically reserved for 
metals, many of which involve materials under extremes 

Slide 22 



Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D


The massive human and economic costs from material 
failure motivated my interest in deformation, damage 
and fracture 
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Most studies in the current literature focus on two 
equally important BUT segregated areas of study. 
Progress lies at the interface. 

Mechanical Behavior Polymer Structure 

•  Stress-strain 
•  Constitutive modeling 
•  Fracture/failure 
•  Shock… 

•  Crystalline structure 
•  Phase transitions 
•  Crystallinity 
•  Thermal history… 

•  The current work investigates the interplay between mechanical behavior of 
semicrystalline polymers with polymer structure, percent crystallinity, 
crystalline lattice deformations using 

•  Atomic Force Microscopy (AFM) 
•  Scanning Electron Microscopy (SEM) 
•  Neutron Diffraction 
•  He pycnometry 
•  Differential Scanning Calorimetry (DSC) 

?
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Multiscale modeling requires multiscale experiments 
and attention to QMU 

  Generalized method of cells 

  Explicate microstructure modeling 
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Polytetrafluoroethylene (PTFE, Teflon) Introduction 

  PTFE (CF2-CF2) is semi-crystalline, 
with its linear chains forming 
complicated phases near room 
temperature and ambient pressure 

  PTFE possesses a combination of 
desirable chemical and physical 
properties including: 
•  excellent thermal stability 
•  chemical resistance 
•  dielectric properties 
•  extremely low coefficient of friction 

  Applications of PTFE include: 
•  surgical implants 
•  aerospace components 
•  motor seals 
•  barriers for hazardous chemicals 

 

  This study focuses on PTFE 7C: 
•  Molding powder (DuPont) is pressed and 

sintered by Balfor Industries according to 
the ASTM standard ASTM-D-4894-98a 

•  Molding powder has the unique feature 
of consisting of small (~20 µm) 
irregularly shaped, fibrous particles 

•  Molding powder is ~85% crystalline (by 
density) 

•  Pressed PTFE is ~48% crystalline (by 
density) 
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Crystalline structure of PTFE for Neutron Diffraction 
  Crystalline phase defines both the short range (in chain) and long range (chain 

folding/packing) structure  
  From C—C—C bond length and angle the translational advance is consistently 0.13 

nm/CF2. 
  BUT the representative repeat length c (if one exists) is n x 0.13 nm (n = 2,13,15). 
  Amorphous PTFE has the chemical compositions as crystalline PTFE but without 

short or long range order.  
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Previously Reported Pressure-Temperature Phase 
Diagram for PTFE 
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Where  is the measured sample density, 
and 

 
  and  are the extrapolated density 
for 100% amorphous and 100% 
crystalline PTFE respectively





Measurement Methods for Crystallinity 

  Several methods have been reported in the literature, including Raman, IR, X-ray and 
NMR 

  Moreover, because 100% amorphous and 100% crystalline PTFE are not experimental 
obtainable, these constants must often be extrapolated based on one or more methods 
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Neutron Diffraction of Undeformed PTFE 7C 

  All of the observed peaks can be assigned based on literature x-ray data 
•  Kimmig Macromol. 27 (1994) 
•  Weeks Polymer 22 (1981) 
•  Clark Z. Kristallogr. 117 (1962) 
•  Clark J. Macromol. Sci. Phys. B1 (1967) 
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Loading conditions 
  The response is measured at ambient temperature (phase IV) in tension 

and compression and elevated temperature (phase I) in compression 

  Relaxation is observed during diffraction measurements at constant 
strain 

  Reasonable agreement with quasi-static data 
•  P. J. Rae, D. M. Dattelbaum, Polymer 2004, 45, 7615 
•  P. J. Rae, E. N. Brown, Polymer 2005, 46, 8128. 
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Stress–strain response of the individual prismatic (left) and 
pyramidal (right) crystalline lattice planes 
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Stress–strain response of the individual prismatic (left) and 
pyramidal (right) crystalline lattice planes 
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Stress–strain response of the individual pyramidal crystalline 
lattice planes 
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Proposed pyramidal deformation mechanisms 
incorporating shear 
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Stress–strain response of the individual basal 
crystalline lattice planes 

  Within experimental error the basal response corresponds to 
theoretical value 
•  Bartha F, Bogar F, Peeters A, Van Alsenoy C, Van Doren V (2000) Density functional 

calculations of the elastic properties of some polymer chains. Phys Rev B 62(15):10142–10150 
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  Longitudinal Rule-of-Mixtures (Constant Strain) 

  Transverse or Inverse Rule-of-Mixtures (Constant Stress) 

Composite stiffness can be predicted using a micro-
mechanics approach termed the rule  
of mixtures.  
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Elastic Constants 

  Assume constant stress 

    
  At room temperature the elastic modulus of the amorphous PTFE is 0.32 and 

0.38 GPa in tension and compression respectively 
  At 60 °C under compression the elastic modulus of the amorphous PTFE is 0.13 

GPa. 

(hkl) Elastic constants (GPa) 

 Tension RT Compression RT Compression 60 °C 

Bulk behavior 0.51 0.61 0.21 

Theoretical PTFE chain 220.52 220.52 ~2203 

2 1 0  3.8 1.8 5.4 

3 0 0  4.8 5.1 3.0 

2 2 0  2.2 5.4 2.3 

3 1 0  4.1 5.8 3.1 

00 .15  na ~220 — 

0 0 1  — — ~220 
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d-spacing evolution under uniaxial deformation at 
ambient temperature and pressure 
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Under small strains Phase III structure observed 

a  (hkl)  Phase IV measured d-space 

(! ) at zero str e s s  

Relative 

intensity 

1 0 0  4.902  Off rang e  

1 1 0  2.822  W 

2 0 0  2.423  Under 1 0 7  

1 0 7  2.424  V S  

1 0 8  2.178  V S  

1 1 7  1.986  M  

2 1 0  1.847  S  

1 1 8  1.845  Under 2 1 0  

3 0 0  1.631  M  

2 2 0  1.411  M  

3 1 0  1.357  M  

00.15  1.299  S  

10.15  1.257  S  

 

b  (hkl)  Phase III literature 

d-space (! ) at 

1.2 GPa 

hydrostatic
[ 1 ]  

Measured 

d-space (! ) 

under uniaxial 

str e s s  

Relative 

intensity 

0 1 0  4 . 8 9  Off rang e  

2 1 0  2 . 9 7  2.985  W 

1 0 1  2 . 5 2  2.541  V S  

0 2 0  2 . 4 5  2.482  V S  

- 1 1 1  2 . 3 1  2.272  V S  

1 1 1  2 . 1 7  2.130  S  

- 4 2 0  1 . 9 4  1.945  VW 

4 1 0  1 . 9 0  1.895  VW 

- 1 2 1  1 . 8 4  Under IV 210  S  

3 1 1  1 . 7 5  1.754  M  

4 2 0  1 . 4 8  1.484  W 

3 2 1  1 . 4 2  Under IV 220  M  

0 0 2  1 . 3 1  

Under IV 

00 .15  S  

0 1 2  1 . 2 8  

Under IV 

10 .15  S  

 



Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D


Slide 42 

For More Information 

  E.N. Brown, P.J. Rae, D.M. Dattelbaum, B. Clausen, D.W. Brown. 
“In-situ measurement of crystalline lattice strains in 
polytetrafluoroethylene” Experimental Mechanics 2008 48 (1) 
119–131. 

  E.N. Brown, D.M. Dattelbaum, D.W. Brown, P.J. Rae, B. Clausen. 
“A new strain path to inducing phase transitions in semi-
crystalline polymers” Polymer 2007 48 (9) 2531–2536. 

  E.N. Brown, B. Clausen, D.W. Brown. “In-Situ Measurement of 
Crystalline Lattice Strains in Phase IV Polytetrafluoroethylene,” 
Journal of Neutron Research 2007 15 (2) 139–146. 
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Conclusions on PTFE 

  The lattice strains in the crystalline domains with semi-crystalline PTFE 
have been measured in situ during tension and compression 

  Assuming constant stress, elastic moduli have been measured 
  The stiffness along the polymer chain backbone agree with theoretical 

predictions 
  Pyramidal plains accommodate a dilatational response through shear 
  Deformation is primarily accommodated in the compliant amorphous 

domain and inter-chain prismatic deformation in the crystal 
  Uniaxial deformation induces a phase transition into a structure 

equivalent to phase III previous only reported under high hydrostatic 
pressure 
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Conclusions on SMARTS 

  Neutron diffraction is a powerful tool in materials science and 
engineering providing: 
•  Bulk residual/internal strain measurements 
•  Bulk texture measurements 

  Large penetration depth enables beam to easily go through 
“windows” in ancillary equipment 
•  Vacuum or environmental chambers 
•  High temperature furnaces 
•  Cryogenic temperatures 

Slide 44 
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A novel application of in situ neutron diffraction under applied 
uniaxial strain is presented; measuring the crystalline domain 
evolution in a semi-crystalline polymer under bulk deformation.  
PTFE is shown to respond to uniaxial deformation by undergoing a 
crystalline phase transition previously believed to occur only at 
very high hydrostatic pressure.  Discovery of this phase transition 
under applied uniaxial-strain fundamentally changes our 
understanding of the deformation mechanisms in semi-crystalline 
polymers and how they need to be modeled.  Under compression 
parallel to the basal plane normal (i.e., parallel to the molecular 
axis) the modulus is ~1000× bulk dominated by intra-polymer chain 
compression, providing experimental validation of theoretical 
predictions.  Deformation parallel to the pyramidal plane normal 
exhibit both axial and transverse strains of the opposite sign as the 
applied load, suggesting the crystalline lattice is accommodating 
deformation by shearing along the prismatic planes. 

Abstract 


