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Abstract

 This paper presents some analysis results for incipient crack
detection in a 9-meter CX-100 wind turbine blade that
underwent fatigue loading to failure. The blade was
manufactured to standard specifications, and it underwent
harmonic excitation at its first resonance using a hydraulically-
actuated excitation system until reaching catastrophic failure.
This work investigates the ability of an ultrasonic guided wave
approach to detect incipient damage prior to the surfacing of a
visible, catastrophic crack. The blade was instrumented with
piezoelectric transducers, which were used in an active, pitch-
catch mode with guided waves over a range of excitation
frequencies. The performance results in detecting incipient
crack formation in the fiberglass skin of the blade is assessed
over the range of frequencies in order to determine the point at
which the incipient crack became detectable. Higher excitation
frequencies provide consistent results for paths along the rotor
blade’s carbon fiber spar cap, but performance falls off with
Increasing excitation frequencies for paths off of the spar cap.
Lower excitation frequencies provide more consistent
performance across all sensor paths.
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Outline

« CX-100 wind turbine blade
— Research blade from SNL
— 9m, Composite structure

 Fatigue loading
— harmonic excitation
— ~8.5M cycles to failure

e |Instrumentation

— Sensor Arrays
— Hardware
 Experimental Data drlp:lg ! T
— Diffuse wave-field measurements = <t—*1T )
— Ultrasonic Guided waves ¢
B Py

 Experimental Results

— Fatigue crack detection
performance

— Sensor diagnostics
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SHM system Deployment
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The CX-100 Wind Turbine Blade

 Designed at SNL  Fiberglass Body
 9-meters long e Carbon Fiber Spar Cap
« Balsa wood frame  Thick root section

? !:935!@!!)83 Engineering Institute Slide 4 Jacobs | Engineering



Sensor Arrays for Fatigue Test (LP Side)

 Active arrays on Low-
Pressure Surface
— LP-Al: LASER Inner
— LP-A2: Metis 1
— LP-A3: WASP
— LP-A4: LASER Outer

« Theinner array observes a
0.75 m diameter region
centered 1m from the root

« The outer array observes a
2m diameter region 1.5m
from the blade root
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Fatigue Test Operation

e Fatigue test conducted at
NREL’s National Wind
Technology Center.

e Excitation using Universal
Resonant EXcitation (UREX).

e Moment Distribution Saddles
at 1.om and 6.75m

 Excitation at first natural
frequency (1.8 Hz)

 Multiple Sensing and
Diagnostic Systems Deployed
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Cycle Accumulation and Sensor Failures

L—j

oL

TIONAL

Twelve sensors failed through the
course of the test, one of which
failed near the test start.

Many failures were precipitated by
the blade’s catastrophic failure.

The majority of failures occurred
near the crack (locations LP-3/4).

Almost all failures, including those
at other locations (OL), occurred
after the blade had undergone over

three times (3x) its rated fatigue life.
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Passive/Diagnostic Sensing Systems

National Instruments - cRIO Sensor Diagnhostics (HP4291A)

e Passive sensing at 1.6kHz  Impedance measurement
— Accelerometers Sweeps from 1kHz to 30kHz
— Piezoelectrics « Imaginary part of Admittance
— Internal microphone can indicate sensor bond
condition

« Commercial DAQ for

embedded applications * Measurements taken
approximately once/week
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Active Sensing Systems

Ultrasonic Guided Waves Diffuse Wave Fields

e Metis IntelliConnector « LASER g by LDS Dactron
— 10 MHz Samp”ng rage — White noise excitation from

_ Excited from 50-250 kHz at _}_OO Hz to 40 kHz I
95 kHz intervals — Two sensor arrays low

pressure surface

— One sensor array on each e 0.35-m and 1-m transmission
blade surface; 0.5-m distances, respectively
transmission distances. « Wireless Active Sensing Platform

(WASP)

— Active/Passive sensing with
100 kHz bandwidth

— Multiple sensing modes
» Active, Passive, Impedance

— Autonomous or web-driven
data acquisition

— Onboard processing power

— Externally amplified
excitation
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Sensor Diagnostics Overview

 This test utilized circular PZT T 1

patches bonded to fiberglass. @ |I_ 3 ] P2
« The bonding state of the patches ; : “

Is reflected In their capacitive R I
behavior. 3 Red SMA Patch 5

/
&
&
y;

/

x 10

« Changes in that behavior can be 1
inferred from the slope of the
Imaginary part of the admittance
curve.

* Anincreased slope indicates a
more free-free condition.

 Adecreased slope indicates a
reduction in capacitance, usually

Imaginary Admittance
o
(9]
~

Broken

o

a result of breakage. 0 5 10 15 20 25 30
Frequency (kHz)
| . _ L (w ~
Y(w)=—=iwa| &, — (@) d2yY ©
Vv Z,(0)+ L, ()
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Sensor Diagnostics Examples

. . Em . BIueIBNC | P1
NI Active Sensing Array £8 P2
_ g% , iy
« Patch 5 broke early in the B £ 1| N i
test ::
— Some data were collected S 05124 06118 07/14 08108 09102 08/27 10122 PO
. . . Test Date
during fatigue loading o
— First example of breathing ~ ggx1"  BueBNCPach?
crack behavior in this test £ 6
— The patch was not >4
immediately replaced £ 2y
— Fully broken behavior was £ % 1 (kHz;o 25
exhibited the next day, A
following the lower slope g g x10° Blue BNC Patch 7
o Patch 7 remained healthy M e
. < | -
— This patch sat at 7m, and 25/ - B
saw very low strains gL—" |
E 10 15 20 25
Frequency (kHz)
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o

Sensor Diagnostics Examples

WASP LP Array

 Patch 2 remained healthy.

— Some data were collected
during fatigue loading

Normalized Imaginary
Admittance Slope

Red SMA

-

P1
,,A P2
r P3
i P4
£ P5

:E P6

05/24 06/18 07/14 08/08 09/02 09/27 10/22

. . Test Dat
— Located within 1m of the s
blade root, this patch saw g  x10" Red SMA Patch 2
high fatigue strains. g 4|
. ; £
— The structural impedance is 29
cyclic for data collected g
during fatigue loading. § 3L . .
= 10 15 20 25
e Patch 4 sat directly atop the Frequency (kHz)
ultimate failure. g  x10° Red SMA Patch 4
— As the crack formed, the g I v
blade surface softened. s, i —— oo
— This patch was ultimately g7 s
replaced twice. g . .
= 10 15 20 25
ﬂ Frequency (kHz)
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Test Statistics: Guided Waves

Received Waveform

e Match all test waveforms
with a baseline waveform
minimizing norm of their
difference.

« Compute each residual as
the difference between a
waveform and its baseline. Baseline Waveform

« Compute Test Statistics
— Normalized Residual Energy
(NRE)
— Correlation Coefficient
Complement (CCC)

Voltage

Voltage

2
N RE Z Residual Waveform
ZW 0.2t
o 01¢
g 0
(9 - )(y —H ) g
Yi J Yi 01+
CCC =1- Z j ol
O, 60O -
/\ Yi Y
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Test Statistics: Diffuse Waves

* Measurements are colored Received Waveform
noise; baseline subtraction 10
produces more colored noise.

« Estimate Impulse Response
Function (IRF) as iFFT of FRF

« Use IRF as test waveforms and 10
compute impulse residual

Voltage (mV)

Baseline Waveform

« Compute Test Statistics

— Normalized Impulse Residual
Energy (NIRE)

— Impulse Correlation Coefficient
Complement (ICCC)

Voltage (mV)

2
Z Residual Waveform
NIRE =

Yo/

(vi =, ) w5,
ICCC :1—2 :
A c,0, 107
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Test Statistics: Diffuse Waves

 Measurements are colored Received Waveform

noise; baseline subtraction 3
produces more colored noise. 3
N
« Estimate Impulse Response % iAo

Function (IRF) as iFFT of FRF @
Q
* Use IRF as test waveforms and =

compute impulse residual Baseline Waveform
« Compute Test Statistics 7
— Normalized Impulse Residual 9

Energy (NIRE) ] "
— Impulse Correlation Coefficient % R
Complement (ICCC) 2
Q
E
2

Z Residual Waveform
NIRE = o
Yo :
2
N
( 2
Vi—H, )(WJ' —H, ) &
IcCCC=1-) =3
0,0, E

[\_7 Vi
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Incipient Crack Detection

* Incipient Damage —cyclecownt | |
became detectable 8 o Fanure: ' PS : /ﬂ —
/.

i«

9 T

around 10/20/2011 -l Failure: Other

- Catastrophic crack  £¢

surfaced 11/08/2011 'E,s-
Incipient Crack

2_

Detectable

R
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Choosing a Demarcation Date

© © o o ©
O O N »®

© o
© 0 =
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Fatigue Crack Detection Performance

UGW NRE (200 kHz) ROCs

At 200 kHz, the spar cap may act
as a wave guide

e The crack is detectable in either
direction (1 or 3)

 Proximity to the crack does not
affect the detection performance

( —— ;
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Fatigue Crack Detection Performance

True Positive Rate

True Positive Rate

,
Loz A

1

1

0

UGW NRE (50 kHz) ROCs

IIIIIII

10™

10™

False Positive Rate

Lo

UGW CCC (50 kHz) ROCs
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10™

False Positive Rate

Iaorpog
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e At 50 kHz, detection
performance with guided
waves does not increase
with proximity to the crack.
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Fatigue Crack Detection Performance

. DWF NIRE (Inner) ROCs
« With the Inner Array, the — S
energy detector has higher . ©
sensitivity near the crack. 3
7]
. o]
 The correlation detector has F
somewhat lower performance. * . 5
-2 -1 0
10 10 10
False Positive Rate
DWF ICCC (Inner) ROCs
1f ' T4
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4
>
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Fatigue Crack Detection Performance

. e+ The outer array suffers from poor
77 relative performance.

1

a1+ An actuator replacement limits
the utility of data after 10/31/11

— With the crack forming by 10/20/11,
no new baseline for crack detection

107 10" 10 could be established.
False Positive Rate

DWF ICCC (Outer) ROCs

True Positive Rate
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SHM System Deployment

— PZT sensors —
Integrated inside a :
CX-100 blade

— Accelerometers and o || e |
fiber optic strain
gauges mounted
externally

— Electronics for
acquisition and
communications
mounted on hub

— Operational data
collected June 2011
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Summary

« Demonstrated in the laboratory:
— Fatigue crack detection/location
— Failed sensor detection

o Diffuse wave method provided similar results as guided waves
 Developed a prototype platform for SHM and SD applications
 Deployed that platform on an operating wind turbine

 Next (pending funding): “fly” a damaged blade
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