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Outline

1 the Virtual Element Method (VEM) for the Laplace operator:

- the degrees of freedom and the local Virtual Element (VE) space;
- the abstract VE formulation;
- the convergence theorem; consistency, stability;
- the mimetic approximation of the VE bilinear form;
- high-order and high-regular extensions.

2. A numerical experiment.

3. Final remarks, future work.
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The linear diffusion problem

Differential formulation:

−∇u = f in Ω,

u = g on Γ,

Variational formulation:

Find u ∈ H1
g (Ω) such that:∫

Ω

∇u · ∇v dV =

∫
Ω

fv dV ∀v ∈ H1
0 (Ω),
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The Virtual Element approach

The Virtual Element approach for the Mimetic Finite Difference (MFD)
method is based on a local finite element space Vh,P on P such that:

I the degrees of freedom are the vertex values; dimVh,P = NV
P ;

I on triangles Vh,P must be the linear Galerkin finite element space
⇒ Vh,P must contain the linear polynomials 1, x , y ;

I the local spaces Vh,P glue gracefully to give a conformal global
finite element space Vh.

Remarks:

I we will specify the behavior of the functions of Vh,P on ∂P, the
boundary of P;

I we will not ask to be able to compute the functions of Vh,P!
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The local finite element space

We define the local finite element space Vh,P through a basis.
For each vertex vi we define a function ϕi ∈ H1(P):

1. let δi be the function defined on ∂P such that:

I δi(vj) = 1 if i = j , and 0 otherwise;
I δi is continuous;
I δi is linear on each edge.

2. we set: ϕi |∂P = δi ;

3. we formally extend ϕi |∂P inside P by the harmonic lifting:

⇒ the functions ϕi are uniquely determined by the corresponding δi
(we can prove the unisolvency!)

Eventually, we set: Vh,P := span{ϕ1, . . . , φNP}.
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The harmonic lifting

ϕi is the harmonic function on P having δi as boundary value:

{
−∆ϕi = 0 in Ω

ϕi = δi on ∂Ω.

I the functions {ϕi} are linearly independent;

I if wh ∈ Vh,P, then wh =
∑NP

i=1 wh(vi) ϕi ;
I 1, x , y ∈ Vh,P;
I the local spaces Vh,P glue together giving a conformal finite element

space Vh ⊂ H1
0 (Ω).

Remarks:
I if P is a triangle, we recover the P1 Galerkin elements;
I if P is a parallelogram, we recover the Q1 bilinear elements.
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The Harmonic Finite Element Method

The Harmonic Finite Element approximation of our elliptic problems is
formally given by:

Find uh ∈ Vh such that

A
(
uh, vh

)
= Fh(vh) for all vh ∈ Vh

where (as usual)

A
(
uh, vh

)
=

∫
Ω

∇uh · ∇vh

and Fh(vh) is a suitable (and computable!) approximation of
∫

Ω

fv (that uses

only the vertex values of vh and f ).
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The Harmonic Finite Element Method

Now, we are very happy, because. . .

. . . under reasonable assumptions on the mesh, the harmonic finite
element approximation of an elliptic problem using the harmonic space
Vh enjoys the usual convergence properties!

Which assumptions?

I all geometric objects must scale properly: |P| ' h2, |e| ' h;

I each polygon is star-shaped (or the union of a uniformly bounded
number of star-shaped subcells) with respect to an internal ball of
points (see Brenner-Scott, etc);

I . . .
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Polygonal meshes
Examples: convex and non-convex polygonal cells
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The Virtual Element Method
→ So, we have a very nice method that works on polygonal meshes with

very general shapes (also non-convex cells) and with a solid
mathematical foundation (a priori error estimates, etc);

→ we can also extend it to higher order polynomials (considering additional
degrees of freedom). . .

. . . BUT. . .

→ . . . if we do not know how to compute explicitly the basis
functions. . .

→ . . . we don’t know how to compute the stiffness matrix

A
(
ϕi , ϕj

)
=

∫
Ω

∇ϕi · ∇ϕj

and the right-hand side Fh(vh)!

→ Here, the mimetic technology comes into play!
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Mimetic approximation of the bilinear form A
(
ϕi , ϕj

)
Let Ah be such approximation, i.e., Ah

(
ϕi , ϕj

)
≈ A

(
ϕi , ϕj

)
.

If AP is the restriction of A to the polygon P

A
(
vh, wh

)
=
∑

P

AP
(
v|P , w|P

)
=
∑

P

∫
P
∇v · ∇w

it is natural to assume that Ah can be split in the same way:

Ah
(
vh, wh

)
=
∑

P

Ah,P
(
vh|P , wh|P

)
.

Now, we give two conditions on Ah,P that will guarantee the
convergence: consistency and stability.
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Consistency and Stability ⇒ Convergence
Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear

Theorem. Assume that for each polygonal cell P the bilinear form
Ah,P

(
·, ·
)

satisfies the following properties:

I Consistency: for all q ∈ P1(P) and for all vh ∈ Vh,P:

Ah,P
(
vh, q

)
= A

(
vh, q

)
(an exactness property on linear polynomials).

I Stability: there exist two positive constants α∗ and α∗
independent of P, such that

α∗AP
(
vh, vh

)
≤ Ah,P

(
vh, vh

)
≤ α∗AP

(
vh, vh

)
.
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independent of P, such that

α∗AP
(
vh, vh

)
≤ Ah,P

(
vh, vh

)
≤ α∗AP

(
vh, vh

)
.

Let uh ∈ Vh be such that Ah
(
uh, vh

)
= Fh(vh) for all vh ∈ Vh.

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 13 / 28



Consistency and Stability ⇒ Convergence
Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear

Theorem. Assume that for each polygonal cell P the bilinear form
Ah,P

(
·, ·
)

satisfies the following properties:

I Consistency: for all q ∈ P1(P) and for all vh ∈ Vh,P:

Ah,P
(
vh, q

)
= A

(
vh, q

)
(an exactness property on linear polynomials).

I Stability: there exist two positive constants α∗ and α∗
independent of P, such that

α∗AP
(
vh, vh

)
≤ Ah,P

(
vh, vh

)
≤ α∗AP

(
vh, vh

)
.

Then: ‖u − uh‖H1(Ω) ≤ Ch‖u‖H2(Ω) .
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A crucial remark

How can we define a local bilinear form Ah,P
(
·, ·
)

with the properties of
consistency and stability? (Remember that we know the functions vh of
Vh,P only on the boundary of P).

If vh ∈ Vh,P, we can compute the following quantity

∇vh :=
1
|P|

∫
P
∇vh

using only the vertex values.

In fact,

∇vh is a constant vector in R2.
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∇vh :=
1
|P|

∫
P
∇vh

using only the vertex values.

In fact,

∫
P
∇vh =

∫
∂P

vhnP︸ ︷︷ ︸
(Gauss−Green)

∇vh is a constant vector in R2.
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)
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vh|e∈P1(e)
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NP∑
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2
|ei |︸ ︷︷ ︸

trapezoidal rule
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The local projector Πh,P

Now, we are really tempted to say that∫
P
∇ϕi · ∇ϕj ≈

∫
P
∇ϕi · ∇ϕj

Why not? If P is a triangle, we get the stiffness matrix of the linear
Galerkin FEM!

Key idea: define a local projection operator for each polygonal cell P

Πh,P : Vh,P −→ P1(P)

that
I approximates the gradients using only the vertex values:

∇ (Πh,Pvh) = ∇vh

I and preserves the linear polynomials:

Πh,Pq = q for all q ∈ P1(P).
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The mimetic bilinear form Ah,P

We start writing that

Ah,P
(
uh, vh

)
= Ah,P

(
Πh,Puh, vh

)
+Ah,P

(
uh−Πh,Puh, vh

)
.

With an easy computation it can be shown that

Ah,P
(
Πh,Puh, vh

)
= AP

(
Πh,Puh,Πh,Pvh

)
:= A0

h,P
(
uh, vh

)
and

Ah,P
(
(I − Πh,P)uh, vh

)
= AP

(
(I − Πh,P)uh, (I − Πh,P)vh

)
−→ A1

h,P
(
uh, vh

)
We will set:

Ah,P = A0
h,P +A1

h,P = CONSISTENCY + STABILITY
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Πh,Puh, vh

)
= AP

(
Πh,Puh,Πh,Pvh

)
:= A0

h,P
(
uh, vh

)
and

Ah,P
(
(I − Πh,P)uh, vh

)
= AP

(
(I − Πh,P)uh, (I − Πh,P)vh

)
−→ A1

h,P
(
uh, vh

)
We will set:

Ah,P = A0
h,P +A1

h,P = CONSISTENCY + STABILITY
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The consistency term A0
h,P

Recall that: ∇Πh,Pvh = ∇vh ∀vh ∈ Vh,P and Πh,Pq = q ∀q ∈ P1(P).

A0
h,P is the “constant gradient approximation” of the stiffness matrix:

A0
h,P ensures the consistency condition: Ah,P

(
vh, q

)
= AP

(
vh, q

)
for all

q ∈ P1(P); in fact,

A0
h,P
(
vh, q

)
=

∫
P
∇vh · ∇q = |P|∇vh · ∇q =

(∫
P
∇vh

)
· ∇q

=

∫
P
∇vh · ∇q =

∫
P
∇vh · ∇q = AP

(
vh, q

)
.

the remaining term is zero because (I − Πh,P)q = 0 if q ∈ P1(P).
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The stability term A1
h,P

We need to correct A0
h,P in such a way that:

I consistency is not upset;
I we get stability;
I we can compute the correction!

In the six-name paper we show that we can substitute the (non
computable!) term AP

(
(I − Πh,P)uh, (I − Πh,P)vh

)
with

A1
h,P
(
uh, vh

)
:= Sh,P

(
(I − Πh,P)uh, (I − Πh,P)vh

)
where Sh,P can be any symmetric and positive definite bilinear form
that behaves (asymptotically) like AP on the kernel of Πh,P.

Hence:

Ah,P
(
uh, vh

)
:= AP

(
Πh,Puh,Πh,Pvh

)
+ Sh,P

(
(I − Πh,P)uh, (I − Πh,P)vh

)
CONSISTENCY STABILITY
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Arbitrary-order polynomials

Let us integrate by parts on cell P:∫
P
∇u ·∇v = −

∫
P

∆u v +
∑
e∈∂e

∫
e
∇u · nP,e v .
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∫
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∑
e∈∂e

∫
e
∇u · nP,e v .

If u is a polynomial of degree m on P:

• ∆u is a polynomial of degree m − 2;
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∇u ·∇v = −

∫
P

∆u︸︷︷︸
not zero!

v +
∑
e∈∂e

∫
e

∇u ·nP,e︸ ︷︷ ︸
not constant!

v .

If u is a polynomial of degree m on P:

• ∆u is a polynomial of degree m − 2;

• ∇u ·nP,e is a polynomial of degree m − 1;
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Divergence term: internal degrees of freedom

1. We use the moments of v to express the integral over P:

if
∆u = a01 + a1x + a2y + . . . ∈ Pm−2(P)

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 20 / 28



Divergence term: internal degrees of freedom

1. We use the moments of v to express the integral over P:

if
∆u = a01 + a1x + a2y + . . . ∈ Pm−2(P)

then∫
P

∆u v = a0

∫
P

1v︸ ︷︷ ︸
v̂P,0

+a1

∫
P

xv︸ ︷︷ ︸
v̂P,1,x

+a2

∫
P

yv︸ ︷︷ ︸
v̂P,1,y

+ . . .

= a0v̂P,0 + a1v̂P,1,x + a2v̂P,1,y + . . .
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if
∆u = a01 + a1x + a2y + . . . ∈ Pm−2(P)

then∫
P

∆u v = a0

∫
P

1v︸ ︷︷ ︸
v̂P,0

+a1

∫
P

xv︸ ︷︷ ︸
v̂P,1,x

+a2

∫
P

yv︸ ︷︷ ︸
v̂P,1,y

+ . . .

= a0v̂P,0 + a1v̂P,1,x + a2v̂P,1,y + . . .

This choice suggests us to define

- m(m − 1)/2 internal degrees of freedom ≈ v̂P,0, v̂P,1,x, v̂P,1,y, . . .
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C0 high-order approximations

• The “C0 −P1” approximation requires:

- one real number per mesh vertex v;

m=1
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• The “C0 −P1” approximation requires:

- one real number per mesh vertex v;

m=1

• the “C0 −Pm” approximations for m > 1 require

- one real number per mesh vertex v;

- (m − 1) real numbers per mesh edge e;

- m(m − 1)/2 real numbers per mesh cell P;

=0, m=2α

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 21 / 28



Approximations with high regularity

• The “C1 −P2” approximation requires:

- vertex dofs → solution and derivatives at
each vertex;

- cell dofs → solution moments inside the
cells;

=1, m=2α
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Approximations with high regularity

• The “C1 −P3” approximation requires:

- vertex dofs → solution and derivatives at
each vertex;

- cell dofs → solution moments inside the
cells;

- edge dofs → solution and normal
derivatives along the edges;

=1, m=3α
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Approximations with high regularity

• The “C2 −P3” approximation requires:

- vertex dofs → solution and derivatives at
each vertex;

- cell dofs → solution moments inside the
cells;

=2, m=3α

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 22 / 28



Approximations with high regularity

• The “C2 −P4” approximation requires:

- vertex dofs → solution and derivatives at
each vertex;

- cell dofs → solution moments inside the
cells;

- edge dofs → solution and normal
derivatives along the edges;

=2, m=4α
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Numerical experiments
Meshes with non-convex polygons

• Meshes:

• Exact solution: u(x , y) = e−2πy sin(2πx)

• Diffusion tensor

K(x , y) =

(
(x + 1)2 + y2 −xy

−xy (x + 1)2

)
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Continuous approximations
α = 0, non-convex polygons, || · ||1,h errors, non-constant K

m = 1 m = 2
n h Error Rate Error Rate
0 1.458 10−1 3.544 −− 3.007 −−
1 7.289 10−2 3.046 0.22 8.081 10−1 1.89
2 3.644 10−2 1.887 0.69 2.071 10−1 1.96
3 1.822 10−2 1.000 0.92 5.303 10−2 1.97
4 9.111 10−3 5.154 10−1 0.98 1.348 10−2 1.98
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High-regular approximations
α = 1, 2; non-convex polygons, || · ||1,h errors, non-constant K

α = 1, m = 2 α = 2, m = 3
n h Error Rate Error Rate
0 1.458 10−1 8.901 10−2 −− 1.054 10−2 −−
1 7.289 10−2 1.983 10−2 2.26 4.543 10−4 4.72
2 3.644 10−2 4.815 10−3 2.08 4.663 10−5 3.36
3 1.822 10−2 1.198 10−3 2.03 5.528 10−6 3.11
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Summary

VEM is a family of schemes on polygonal meshes: new schemes are
generated by changing the stabilization term;

VEM works for any order of accuracy:
I we can use Pk (P) polynomials for the local VE space;
I ”dofs” are vertex values, nodal values on the edges of ∂P and

moments inside P;
I the behavior on ∂P is given by a polynomial interpolation;
I optimal error estimates in the energy norm are confirmed by

experiments.

VEM works for any order of regularity:
I we use also derivatives as degrees of freedom at vertices and edge

nodes
I the behavior on ∂P is given by a Hermite-like polynomial

interpolation;
I optimal error estimates in the energy norm are confirmed by

experiments.
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Summary

VEM works on degenerate meshes (experiments):
I meshes with convex and non-convex elements;
I meshes with very stretched elements;
I meshes with hanging nodes;
I meshes with collapsing nodes.

VEM can be generalized to 3-D polyhedral mesh (in progress):
I C0 −P1 works in 3-D just using vertex values as degrees of

freedom (dofs);
I C0 −Pm (m > 1) requires vertex values and moments on edges,

faces, and inside P;
I no need of numerical integration, VEM does not use the basis

functions explicitly;
I no need of isoparametric mappings, VEM works in the physical

domain.

There is no difference between VEM and the mimetic finite difference
method, the two families of schemes coincide.
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Current/future developments

full extension to three dimensional problems;

other differential equations: elasticity, advection-diffusion, Stokes, etc;

understand the role of the mimetic stabilization;

justify the numerical results for degenerate meshes (not covered by the
theory);

Thank for your attention.

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 28 / 28



Current/future developments

full extension to three dimensional problems;

other differential equations: elasticity, advection-diffusion, Stokes, etc;

understand the role of the mimetic stabilization;

justify the numerical results for degenerate meshes (not covered by the
theory);

Thank for your attention.

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 28 / 28



Current/future developments

full extension to three dimensional problems;

other differential equations: elasticity, advection-diffusion, Stokes, etc;

understand the role of the mimetic stabilization;

justify the numerical results for degenerate meshes (not covered by the
theory);

Thank for your attention.

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 28 / 28



Current/future developments

full extension to three dimensional problems;

other differential equations: elasticity, advection-diffusion, Stokes, etc;

understand the role of the mimetic stabilization;

justify the numerical results for degenerate meshes (not covered by the
theory);

Thank for your attention.

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 28 / 28



Current/future developments

full extension to three dimensional problems;

other differential equations: elasticity, advection-diffusion, Stokes, etc;

understand the role of the mimetic stabilization;

justify the numerical results for degenerate meshes (not covered by the
theory);

Thank for your attention.

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 28 / 28



Current/future developments

full extension to three dimensional problems;

other differential equations: elasticity, advection-diffusion, Stokes, etc;

understand the role of the mimetic stabilization;

justify the numerical results for degenerate meshes (not covered by the
theory);

Thank for your attention.

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 28 / 28


