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Outline

1 the Virtual Element Method (VEM) for the Laplace operator:

- the degrees of freedom and the local Virtual Element (VE) space;
- the abstract VE formulation;

- the convergence theorem; consistency, stability;

- the mimetic approximation of the VE bilinear form;

- high-order and high-regular extensions.

2. A numerical experiment.

3. Final remarks, future work.
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The linear diffusion problem

@ Differential formulation:

—Vu=f in Q,
u=g onl,

@ Variational formulation:

Find u € H}(Q) such that:

/Vu‘VvdV:/fvdV Yv € H}(Q),
Q Q
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Marini, A. Russo;

» the "Los Alamos team”: K. Lipnikov, D. Svyatskiy, M. Shashkov;

@ Papers:

1. F. Brezzi, A. Buffa, K. Lipnikov, M2AN (2009): the low-order
node-based MFD;

2. L. Beirdo da Veiga, K. Lipnikov, G. Manzini, SINUM (2011): the
arbitrary-order node-based MFD;

3. the "six-name paper”, M3AS (to appear in January 2013): basic
principles of VEM; abstract formulation
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The Virtual Element approach

@ The Virtual Element approach for the Mimetic Finite Difference (MFD)
method is based on a local finite element space V, p on P such that:
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The Virtual Element approach

@ The Virtual Element approach for the Mimetic Finite Difference (MFD)
method is based on a local finite element space V, p on P such that:

» the degrees of freedom are the vertex values; dimVsp = N¥;
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The Virtual Element approach

@ The Virtual Element approach for the Mimetic Finite Difference (MFD)
method is based on a local finite element space V, p on P such that:

» the degrees of freedom are the vertex values; dimV,p = N¥;

» on triangles V, p must be the linear Galerkin finite element space
= Vhp must contain the linear polynomials 1, x, y;
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The Virtual Element approach

@ The Virtual Element approach for the Mimetic Finite Difference (MFD)
method is based on a local finite element space V, p on P such that:

» the degrees of freedom are the vertex values; dimV,p = N¥;

» on triangles V, p must be the linear Galerkin finite element space
= Vhp must contain the linear polynomials 1, x, y;

» the local spaces Vp, p glue gracefully to give a conformal global
finite element space V.
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The Virtual Element approach

@ The Virtual Element approach for the Mimetic Finite Difference (MFD)
method is based on a local finite element space V, p on P such that:

» the degrees of freedom are the vertex values; dimV,p = N¥;

» on triangles V, p must be the linear Galerkin finite element space
= Vhp must contain the linear polynomials 1, x, y;

» the local spaces Vp, p glue gracefully to give a conformal global
finite element space V.

@ Remarks:
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The Virtual Element approach

@ The Virtual Element approach for the Mimetic Finite Difference (MFD)
method is based on a local finite element space V, p on P such that:

» the degrees of freedom are the vertex values; dimV,p = N¥;
» on triangles V, p must be the linear Galerkin finite element space
= Vhp must contain the linear polynomials 1, x, y;

» the local spaces Vp, p glue gracefully to give a conformal global
finite element space V.

@ Remarks:

» we will specify the behavior of the functions of V, p on 9P, the
boundary of P;
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The Virtual Element approach

@ The Virtual Element approach for the Mimetic Finite Difference (MFD)
method is based on a local finite element space V, p on P such that:

» the degrees of freedom are the vertex values; dimV,p = N¥;

» on triangles V, p must be the linear Galerkin finite element space
= Vhp must contain the linear polynomials 1, x, y;

» the local spaces Vp, p glue gracefully to give a conformal global
finite element space V.

@ Remarks:

» we will specify the behavior of the functions of Vj, p on 0P, the
boundary of P;

» we will not ask to be able to compute the functions of V, p!
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The local finite element space

We define the local finite element space V), p through a basis.
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The local finite element space

We define the local finite element space V), p through a basis.
For each vertex v; we define a function ¢; € H'(P):
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The local finite element space

We define the local finite element space V;, p through a basis.
For each vertex v; we define a function ¢; € H'(P):

1. let ¢; be the function defined on 9P such that:
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The local finite element space

We define the local finite element space V;, p through a basis.
For each vertex v; we define a function ¢; € H'(P):

1. let ¢; be the function defined on 9P such that:

» 0;(vj) = 1if i = j, and 0 otherwise;
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The local finite element space

We define the local finite element space V;, p through a basis.
For each vertex v; we define a function ¢; € H'(P):

1. let ¢; be the function defined on 9P such that:

» 0;(vj) = 1if i = j, and 0 otherwise;
» 4 is continuous;
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The local finite element space

We define the local finite element space V;, p through a basis.
For each vertex v; we define a function ¢; € H'(P):

1. let ¢; be the function defined on 9P such that:

» 0;(vj) = 1if i = j, and 0 otherwise;
» 4 is continuous;
» J;is linear on each edge.
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The local finite element space

We define the local finite element space Vj p through a basis.
For each vertex v; we define a function ¢; € H'(P):

1. let ¢; be the function defined on 9P such that:

» 0;(vj) = 1if i = j, and 0 otherwise;
» 4 is continuous;
» J;is linear on each edge.

2. weset:  pjjop = 0j;
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The local finite element space

We define the local finite element space Vj p through a basis.
For each vertex v; we define a function ¢; € H'(P):

1. let ¢; be the function defined on 9P such that:

» 0;(vj) = 1if i = j, and 0 otherwise;
» 4 is continuous;
» J;is linear on each edge.

2. we set: @;‘3P:5,-;

3. we formally extend ; p inside P by the harmonic lifting:

= the functions ; are uniquely determined by the corresponding J;
(we can prove the unisolvency!)
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The local finite element space

We define the local finite element space Vj p through a basis.
For each vertex v; we define a function ¢; € H'(P):

1. let ¢; be the function defined on 9P such that:

» 0;(vj) = 1if i = j, and 0 otherwise;
» 4 is continuous;
» J; is linear on each edge.

2. weset:  pjjop = 0j;

3. we formally extend ; p inside P by the harmonic lifting:

= the functions ; are uniquely determined by the corresponding J;
(we can prove the unisolvency!)

Eventually, we set: Vhp = span{y1,...,on7 -
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The harmonic lifting

@ ¢, is the harmonic function on P having ¢; as boundary value

{—Awi =0

in Q
v = 0;

on 02.
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The harmonic lifting

@ ¢, is the harmonic function on P having ¢; as boundary value

{—Awi =0

in Q
v = 0;

on 99Q.
» the functions {y;} are linearly independent;
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The harmonic lifting

@ ¢, is the harmonic function on P having §; as boundary value:

~Ap;i=0 inQ
©wi = i on 909.

» the functions {¢;} are linearly independent;

P
> if wy € Vhp, then wy = Z,’L wWh(Vi) ¢i;
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The harmonic lifting

@ ¢; is the harmonic function on P having §; as boundary value:

~Ap;i=0 inQ
©wi = i on 909.

» the functions {¢;} are linearly independent;

P
> if Wy € Vip, then wy = SN wi(Vi) 0
» 1,X,y € Vpp;
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The harmonic lifting

@ ¢; is the harmonic function on P having §; as boundary value:

~Ap;i=0 inQ
©wi = i on 909.

» the functions {¢;} are linearly independent;
> if wp € Vhp, then wy, = Zfiﬁ Wh(Vi) @i
> 1,X,y € Vnp;

» the local spaces Vp p glue together giving a conformal finite element
space V, C H}(Q).
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The harmonic lifting

@ ; is the harmonic function on P having ¢; as boundary value:

“Api=0 inQ
©wi = i on 909.

» the functions {¢;} are linearly independent;
> if wp € Vhp, then wy, = Zf\g Wh(Vi) @i
> 1,X,Y € Vhp;

» the local spaces V, p glue together giving a conformal finite element
space V, C H}(Q).

@ Remarks:
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The harmonic lifting

@ ; is the harmonic function on P having ¢; as boundary value:

“Api=0 inQ
©wi = i on 909.

» the functions {¢;} are linearly independent;
> if wp € Vhp, then wy, = Zf\g Wh(Vi) @i
> 1,X,Y € Vhp;

» the local spaces V, p glue together giving a conformal finite element
space V, C H}(Q).

@ Remarks:
» if P is a triangle, we recover the Py Galerkin elements;
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The harmonic lifting

@ ; is the harmonic function on P having ¢; as boundary value:

“Api=0 inQ
©wi = i on 909.

» the functions {¢;} are linearly independent;

> if wp € Vhp, then wy, = Zf\g Wh(Vi) @i

» 1,X,¥ € Vnp;

» the local spaces V, p glue together giving a conformal finite element

space V, C H}(Q).

@ Remarks:

» if P is a parallelogram, we recover the Q1 bilinear elements.
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The Harmonic Finite Element Method

The Harmonic Finite Element approximation of our elliptic problems is
formally given by:

Find up € Vy, such that
A(Up, V) = Fr(vn) forall v, € Vp

where (as usual)

A(Un, vh) =/QVU,,~VV,7

and Fp(vy) is a suitable (and computable!) approximation of / fv (that uses
Q
only the vertex values of v; and f).
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formally given by:

Find u, € Vy, such that
A(Up, V) = Fr(v) forall vy € Vp
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The Harmonic Finite Element Method

The Harmonic Finite Element approximation of our elliptic problems is
formally given by:

Find u, € Vy, such that
A(up, vn) = Fy(v) forall vy € Vy

where (as usual)

A(Un, vh) =/QVU,,~VV,7

and Fp(vy) is a suitable (and computable!) approximation of / fv (that uses
Q
only the vertex values of v} and f).
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The Harmonic Finite Element Method

Now, we are very happy, because. ..
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The Harmonic Finite Element Method

Now, we are very happy, because. ..

@ ...under reasonable assumptions on the mesh, the harmonic finite
element approximation of an elliptic problem using the harmonic space
Vj enjoys the usual convergence properties!
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The Harmonic Finite Element Method

Now, we are very happy, because. ..

@ ...under reasonable assumptions on the mesh, the harmonic finite
element approximation of an elliptic problem using the harmonic space
Vj enjoys the usual convergence properties!

@ Which assumptions?
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The Harmonic Finite Element Method

Now, we are very happy, because. ..

@ ...under reasonable assumptions on the mesh, the harmonic finite
element approximation of an elliptic problem using the harmonic space
Vj enjoys the usual convergence properties!

@ Which assumptions?

» all geometric objects must scale properly: |P| ~ h, |e| ~ h;
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The Harmonic Finite Element Method

Now, we are very happy, because. ..

@ ...under reasonable assumptions on the mesh, the harmonic finite
element approximation of an elliptic problem using the harmonic space
Vj enjoys the usual convergence properties!

@ Which assumptions?

» all geometric objects must scale properly: |P| ~ h, |e| ~ h;

» each polygon is star-shaped (or the union of a uniformly bounded
number of star-shaped subcells) with respect to an internal ball of
points (see Brenner-Scott, etc);
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Polygonal meshes

Examples: convex and non-convex polygonal cells




The Virtual Element Method

— So, we have a very nice method that works on polygonal meshes with
very general shapes (also non-convex cells) and with a solid
mathematical foundation (a priori error estimates, etc);
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The Virtual Element Method

— So, we have a very nice method that works on polygonal meshes with
very general shapes (also non-convex cells) and with a solid
mathematical foundation (a priori error estimates, etc);

— we can also extend it to higher order polynomials (considering additional
degrees of freedom). . .
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The Virtual Element Method

— So, we have a very nice method that works on polygonal meshes with
very general shapes (also non-convex cells) and with a solid
mathematical foundation (a priori error estimates, etc);

— we can also extend it to higher order polynomials (considering additional
degrees of freedom). . .

..BUT...
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The Virtual Element Method

— So, we have a very nice method that works on polygonal meshes with
very general shapes (also non-convex cells) and with a solid
mathematical foundation (a priori error estimates, etc);

— we can also extend it to higher order polynomials (considering additional
degrees of freedom). . .

..BUT...

— ...if we do not know how to compute explicitly the basis
functions...
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The Virtual Element Method

— So, we have a very nice method that works on polygonal meshes with
very general shapes (also non-convex cells) and with a solid
mathematical foundation (a priori error estimates, etc);

— we can also extend it to higher order polynomials (considering additional
degrees of freedom). ..

..BUT...

— ...if we do not know how to compute explicitly the basis
functions...

— ...we don’t know how to compute the stiffness matrix

A(pi, o)) :/QVW'V%'

and the right-hand side F,(v;)!
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The Virtual Element Method

— So, we have a very nice method that works on polygonal meshes with
very general shapes (also non-convex cells) and with a solid
mathematical foundation (a priori error estimates, etc);

— we can also extend it to higher order polynomials (considering additional
degrees of freedom). ..

..BUT...

— ...if we do not know how to compute explicitly the basis
functions...

— ...we don’t know how to compute the stiffness matrix
A(pis ¢j) = /Q Vi - Vo;
and the right-hand side Fj(v)!

— Here, the mimetic technology comes into play!
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Mimetic approximation of the bilinear form A(y;, ¢;)

@ Let Aj, be such approximation, i.e., Ax(;, ¢j) =~ A(pi, ¢)).
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Mimetic approximation of the bilinear form A(y;, ¢;)

@ Let Aj, be such approximation, i.e., Ax(;, ¢j) =~ A(pi, ¢)).

@ If Ap is the restriction of A to the polygon P

A(Vh, wp) = ;AP(V‘F:, wp) = Z//;VV.VW

P
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Mimetic approximation of the bilinear form A(y;, ¢;)

@ Let Aj, be such approximation, i.e., Ax(;, ¢j) =~ A(pi, ¢)).
@ If Ap is the restriction of A to the polygon P

A(Vh, wp) = ;AP(V‘F:, wp) = ;/F"VV~VW

it is natural to assume that A, can be split in the same way:

Ap(Vh, wh) = ZAh,P(Vh\Pa Whip).
P
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Mimetic approximation of the bilinear form A(y;, ¢;)

@ Let Aj, be such approximation, i.e., Ax(;, ¢j) =~ A(pi, ¢)).
@ If Ap is the restriction of A to the polygon P

A(Vh, wp) = ;AP(V‘F:, wp) = ;L’VV-VW

it is natural to assume that A, can be split in the same way:

Ap(Vh, wh) = ZAh,P(Vh\Pa Whip).
P

@ Now, we give two conditions on A p that will guarantee the
convergence: consistency and stability.

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 12/28



Consistency and Stability = Convergence

Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear

Theorem. Assume that for each polygonal cell P the bilinear form
App(-,-) satisfies the following properties:

-
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Consistency and Stability = Convergence

Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear

Theorem. Assume that for each polygonal cell P the bilinear form
App(-,-) satisfies the following properties:

» Consistency: for all g € P1(P) and for all v, € Vjp:

Anp(Vh,q) = A(Vh, q)

(an exactness property on linear polynomials).

-
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Consistency and Stability = Convergence

Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear

Theorem. Assume that for each polygonal cell P the bilinear form
App(-,-) satisfies the following properties:

» Consistency: for all g € P1(P) and for all v, € Vjp:
Anp(Vh, q) = A(Vh, q)
(an exactness property on linear polynomials).

» Stability: there exist two positive constants o* and a.
independent of P, such that

o Ap (Vi, Vi) < App (Vi, Vi) < a* Ap (Vi V).

-
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Consistency and Stability = Convergence

Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear

Theorem. Assume that for each polygonal cell P the bilinear form
App(-,-) satisfies the following properties:

» Consistency: for all g € P1(P) and for all v, € Vp:
Anp(Vh,q) = A(vh, q)
(an exactness property on linear polynomials).

» Stability: there exist two positive constants o* and a.
independent of P, such that

e Ap (Vi, Vi) < Anp (Vi Vi) < a*Ap(Vh, V).

Let up € Vj, be such that An(Un, Vi) = Fr(vh) for all v, € Vp,.

i
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Consistency and Stability = Convergence

Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear

Theorem. Assume that for each polygonal cell P the bilinear form
Anp(-,-) satisfies the following properties:

» Consistency: for all g € P1(P) and for all v, € Vy p:
Anp(Vh,q) = A(vh, q)
(an exactness property on linear polynomials).

» Stability: there exist two positive constants a* and a.
independent of P, such that

o Ap (Vi, Vi) < App (Vi, Vi) < a* Ap (Vi V).

Then: 1y~ nlling) < Chllull e |

Id
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A crucial remark

@ How can we define a local bilinear form A, p (-, -) with the properties of
consistency and stability? (Remember that we know the functions v;, of
Vhp only on the boundary of P).
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A crucial remark
@ How can we define a local bilinear form A, p (-, -) with the properties of

consistency and stability? (Remember that we know the functions v;, of
Vhp only on the boundary of P).

@ If vy € Yy p, we can compute the following quantity

— 1
Vv = ﬁ/vah

using only the vertex values.
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A crucial remark

@ How can we define a local bilinear form A p (-, -) with the properties of
consistency and stability? (Remember that we know the functions v;, of
Vhp only on the boundary of P)

@ If vy € Yy p, we can compute the following quantity

— 1
Vv = —/Vvh
P Jp
using only the vertex values.

@ In fact,

/Vvh:/ Vanp
P aP

(Gauss— Green)

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 14/28



A crucial remark

@ How can we define a local bilinear form A p (-, -) with the properties of
consistency and stability? (Remember that we know the functions v;, of
Vhp only on the boundary of P)

@ If vy € Yy p, we can compute the following quantity

— 1
Vv = —/Vvh
P Jp
using only the vertex values.

@ In fact,

3 N” 3
Vvp = / VpNp = </ Vh> Np ;
/P oP Z e :

i=1

split the boundary integral
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A crucial remark

@ How can we define a local bilinear form A p (-, -) with the properties of
consistency and stability? (Remember that we know the functions v;, of
Vhp only on the boundary of P)

@ If vy € Yy p, we can compute the following quantity

— 1
Vv = —/Vvh
P Jp
using only the vertex values.

@ In fact,

N'P

N” ;
Vh(Vi) + ValVi
P oP =1 Jej

i=1

trapezoidal rule
Vhe€P1(e)
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A crucial remark

@ How can we define a local bilinear form A p (-, -) with the properties of
consistency and stability? (Remember that we know the functions v;, of
Vhp only on the boundary of P)

@ If vy € Yy p, we can compute the following quantity

— 1
Vv = —/Vvh
P Jp
using only the vertex values.

@ In fact,

N‘P

v ZNP 3 (Vi) + Vn(Vii1)
Vh Vi Vh(Vi
P oP e

i=1 i=1

@ Vv, is a constant vector in R2.
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The local projector MMy p

@ Now, we are really tempted to say that
[ver Ve~ Vo4
P P

Why not? If P is a triangle, we get the stiffness matrix of the linear
Galerkin FEM!

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 15/28



The local projector MMy p

@ Now, we are really tempted to say that
Aelnier) = [ Vor- Vo~ | For- Vg = Ane(on )

Why not? If P is a triangle, we get the stiffness matrix of the linear
Galerkin FEM!
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The local projector MMy p

@ Now, we are really tempted to say that
Ap (i, ©)) :=/PVs0i-Vs01% /PV_<P/'V_<P/'=1 Anp (00 ©))

But A, p (¢, ;) would have rank 2 for any kind of polygons, thus leading
to a singular approximation for 4!
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The local projector MMy p
@ Now, we are really tempted to say that
Ap (i, ©)) :=/PV<pi-V<pj% /PV_WV_%-:: Anp (i, ¢5)

But App (i, j) would have rank 2 for any kind of polygons, thus leading
to a singular approximation for 4!

@ Key idea: define a local projection operator for each polygonal cell P
Mpp: Vhp — P4(P)
that
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The local projector MMy p

@ Now, we are really tempted to say that
Ap (i, 9)) :=/PV<pi-V<pj% /PV_W'V_%:Z Anp (01, ¢))

But App (i, j) would have rank 2 for any kind of polygons, thus leading
to a singular approximation for Ap!
@ Key idea: define a local projection operator for each polygonal cell P
I'Ih,p o Vh,p — IP1(P)

that
» approximates the gradients using only the vertex values:

V (Mppvh) = Vp
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The local projector MMy p

@ Now, we are really tempted to say that
Ap (i, 9)) :=/PV<pi-V<pj% /PV_W'V_%:Z Anp (01, ¢))

But App (i, j) would have rank 2 for any kind of polygons, thus leading
to a singular approximation for Ap!
@ Key idea: define a local projection operator for each polygonal cell P
I'Ih,p o Vh,p — IP1(P)

that
» approximates the gradients using only the vertex values:

V (Mppvh) = Vp
» and preserves the linear polynomials:
Mppq=q forall g e Py(P).
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The mimetic bilinear form App

= & - = DA
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The mimetic bilinear form A, p
We start writing that

Anp(Un, Vi) = App (MhpUn, Va) + Anp (Un—TppUn, Vh).

= & - = DA
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The mimetic bilinear form A, p

We start writing that

Anp(Un, Vi) = App (MhpUn, Va) + Anp (Un—TppUn, Vh).

With an easy computation it can be shown that

App (Nppup, Vi) = Ap (MapUn, Mppvh):= A%p (Un, vh)
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The mimetic bilinear form A, p
We start writing that

Anp(Un, Vi) = App (MhpUn, Va) + Anp (Un—TppUn, Vh).
With an easy computation it can be shown that

Anp(Mhpun, Vi) = Ap(MhpUn, MnpVe):= Ap p (Un, Vh)
and

Anp ((I=Thp)un, Vi) = Ap (I = Mpp)tn, (I = Mpp)Va)— Abp (Un, Vi)
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The mimetic bilinear form A, p
We start writing that

Anp(Un, Vi) = App (MhpUn, Va) + Anp (Un—TppUn, Vh).
With an easy computation it can be shown that

App (Nppun, Vi) = Ap(Mppun, Mppvh):= A%,p (Un, vh)
and

Anp ((I=Thp)un, Vi) = Ap (I = Mpp)tn, (I = Mpp)Va)— Abp (Un, Vi)

We will set:

Anp = A9 p + A} p = CONSISTENCY + STABILITY
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The consistency term AP

Recallthat:  VMppvh=VVvy, Vv, €Vhp and Mupg=q VqePq(P).

) A%,P is the “constant gradient approximation” of the stiffness matrix:
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%,P is the “constant gradient approximation” of the stiffness matrix:

A p (i, 07) = Ap(Mnpei, Nhpy))
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%P is the “constant gradient approximation” of the stiffness matrix:

Ab p (i, 07) = Ap (Mppei, Mipe;) = /PVﬂh,P%' -Vlppep;
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%P is the “constant gradient approximation” of the stiffness matrix:

A?LP(QOI')SD]‘) = Ap(nh,ngiynh,PSOj) = /PVI_Ih,pcp,' . vnh,ngj = /;V_SDIV_QOJ
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%P is the “constant gradient approximation” of the stiffness matrix:

@ A, ensures the consistency condition: A p(vh, q) = Ap(vh, q) for all
g € P4(P); in fact,
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%P is the “constant gradient approximation” of the stiffness matrix:

@ A, ensures the consistency condition: A p(vh, q) = Ap(vh, q) for all
g € P4(P); in fact,

Ahp Vh, /vvh VQ
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%P is the “constant gradient approximation” of the stiffness matrix:

@ A, ensures the consistency condition: A p(vh, q) = Ap(vh, q) for all
g € P4(P); in fact,

e () = [ TV T~ |PIT%-
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%P is the “constant gradient approximation” of the stiffness matrix:

@ A, ensures the consistency condition: A p(vh, q) = Ap(vh, q) for all
g € P4(P); in fact,

A%,p(vh,q)z/’pv_w,-ﬁz\mw,.wz (/Pv‘,h> g
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%P is the “constant gradient approximation” of the stiffness matrix:

@ A, ensures the consistency condition: A p(vh, q) = Ap(vh, q) for all
g € P4(P); in fact,

A p(vh Q) :/Pv_vh-W;: P| Vv, - Vg = (/Pwh) g

:/VnyViq
P
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%P is the “constant gradient approximation” of the stiffness matrix:

@ A, ensures the consistency condition: A p(vh, q) = Ap(vh, q) for all
g € P4(P); in fact,

A (vh, q) :/Pv_vh-W;: IP| Vv, Vg = (/Pwh) g

:/VVh'W:/VVh.Vq
P P
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%P is the “constant gradient approximation” of the stiffness matrix:

@ A, ensures the consistency condition: A p(vh, q) = Ap(vh, q) for all
g € P4(P); in fact,

A (vh, q) Z/PV_Vh-V_q: IP| Vv, -Vq= (/vah) Vg

Z/PVVh'WI/PVVh'Vq:AP(VmCI)-
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The consistency term AP

Recall that:  VIMypvh=VVvy VYvyeVhp and [Mppg=q VqeP¢(P).
) A%P is the “constant gradient approximation” of the stiffness matrix:

° A%,P ensures the consistency condition: A p (s, q) = Ap(vh, q) for all
g € P4(P); in fact,

A (vh, q) :/Pv_vh-W;: IP| Vv, Vg = (/Pwh) g

@ the second term A},’P is zero because (I — Myp)g = 0if g € P4(P).
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The stability term Aj

@ We need to correct A ; in such a way that:

» consistency is not upset;
» we get stability;
» we can compute the correction!
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The stability term Aj

@ We need to correct A9 , in such a way that:

» consistency is not upset;
» we get stability;
» we can compute the correction!

@ In the six-name paper we show that we can substitute the (non
computable!) term Ap ((/ — My p)un, (I — My p)Vvh) with

A p (Un, Vi) = Shp ((I = Nap)Un, (I = Mpp)Vh)

where Spp can be any symmetric and positive definite bilinear form
that behaves (asymptotically) like Ap on the kernel of M, p.
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The stability term Aj

@ We need to correct A ; in such a way that:

» consistency is not upset;
» we get stability;
» we can compute the correction!

@ In the six-name paper we show that we can substitute the (non
computable!) term Ap ((/ — My p)un, (I — My p)Vvh) with

A p (Un, Vi) = Shp ((I = Nap)Un, (I = Mpp)Vh)

where Spp can be any symmetric and positive definite bilinear form
that behaves (asymptotically) like Ap on the kernel of M, p.

@ Hence:

Anp(Un, Vi) = ‘ Ap (Mppun, Nppva) [+ | Shp (I = Map)un, (I = Npp)vh)

CONSISTENCY STABILITY
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Arbitrary-order polynomials

Let us integrate by parts on cell P:

/Vu~Vv:—/Auv+ > [ Vu-npev.
P P

ecoe”®
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Arbitrary-order polynomials

Let us integrate by parts on cell P:

/VU-VV:—/ Au, v+ > [ Vu-npgv.
P P ecoe”®
not zero!

If uis a polynomial of degree m on P:

e Auis a polynomial of degree m — 2;
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Arbitrary-order polynomials

Let us integrate by parts on cell P:

/VU~VV= —/ Au v+ Z Vunpe V.
P P 1 ecoe e ’
not zero! not constant!

If uis a polynomial of degree m on P:
e Auis a polynomial of degree m — 2;

e Vu-np is a polynomial of degree m — 1;
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Divergence term: internal degrees of freedom

1. We use the moments of v to express the integral over P:

Au=ayl +a1x+ay+...c¢ Pps(P)
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Divergence term: internal degrees of freedom

1. We use the moments of v to express the integral over P:

if
Au=ayl +a1x+ay+...c¢ Pps(P)
then
/Auv_ao/1v+a1/xv+a2/yv+
VP1X VP1y

=apVpo+aiVp1x +aVp 1y +...
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Divergence term: internal degrees of freedom

1. We use the moments of v to express the integral over P:

if
Au=apl +aix+ay+...cPp_s(P)
then
/Auv_ao/1v+a1/xv+a2/yv+
Vwa VP1y

= agVpo + aVp1x + aVpqy+...

This choice suggests us to define

- m(m — 1)/2 internal degrees of freedom ~ Vp o, Vp 1 x, Vp 1y, - .-
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C° high-order approximations

m=1

e The “C° — P4” approximation requires:

- one real number per mesh vertex v;
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C° high-order approximations

m=1

e The “C° — IP4” approximation requires:
- one real number per mesh vertex v;

a=0, m=2
e the “C° — IP,,,” approximations for m > 1 require

- one real number per mesh vertex v;
- (m— 1) real numbers per mesh edge e;

- m(m— 1)/2 real numbers per mesh cell P;
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Approximations with high regularity

e The “C' — IP,” approximation requires: a=1, m=2

- vertex dofs — solution and derivatives at
each vertex;

- cell dofs — solution moments inside the
cells;
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Approximations with high regularity

e The “C' — IP3” approximation requires:
- vertex dofs — solution and derivatives at
each vertex;

- cell dofs — solution moments inside the
cells;

- edge dofs — solution and normal
derivatives along the edges;
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Approximations with high regularity

e The “C? — IP,” approximation requires:

- vertex dofs — solution and derivatives at
each vertex;

- cell dofs — solution moments inside the
cells;

- edge dofs — solution and normal
derivatives along the edges;
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Numerical experiments
Meshes with non-convex polygons

o Meshes:

e Exact solution: u(x, y) = e 2™ sin(27x)

o Diffusion tensor

2 2 o
o= (I ()
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Continuous approximations

a = 0, non-convex polygons, || - ||1,» errors, non-constant K
m=1 m=2
n h Error Rate Error Rate
0 1.45810° 3.544 —— 3.007 ——
1 7.2891072 3.046 0.22 | 8.08110°" 1.89
2 3.64410°2 1.887 0.69 | 2.07110~" 1.96
3 1.82210°2 1.000 0.92 | 5.3031072 1.97
4 91111072 | 5.15410~' 098 | 1.34810°2 1.98
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High-regular approximations

a = 1,2; non-convex polygons, || - ||1,» errors, non-constant K
a=1m=2 a=2m=3
n h Error Rate Error Rate
0 1.45810° " |890110° —— [ 1.05410°2 ——
1 7.2891072 | 1.9831072 2.26 | 4.54310~* 4.72
2 36441072 | 4815102 2.08 | 4.66310°° 3.36
3 18221072 | 1.19810~% 2.03 | 552810°° 3.11

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods

July 27, 2012 25/28



Summary

@ VEM is a family of schemes on polygonal meshes: new schemes are
generated by changing the stabilization term;
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Summary

@ VEM is a family of schemes on polygonal meshes: new schemes are
generated by changing the stabilization term;

@ VEM works for any order of accuracy:
» we can use P, (P) polynomials for the local VE space;
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Summary

@ VEM is a family of schemes on polygonal meshes: new schemes are
generated by changing the stabilization term;

@ VEM works for any order of accuracy:

» we can use P, (P) polynomials for the local VE space;
» “dofs” are vertex values, nodal values on the edges of 9P and
moments inside P;
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Summary

@ VEM is a family of schemes on polygonal meshes: new schemes are
generated by changing the stabilization term;

@ VEM works for any order of accuracy:

» we can use P, (P) polynomials for the local VE space;

» “dofs” are vertex values, nodal values on the edges of 9P and
moments inside P;

» the behavior on OP is given by a polynomial interpolation;
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Summary

@ VEM is a family of schemes on polygonal meshes: new schemes are
generated by changing the stabilization term;

@ VEM works for any order of accuracy:

» we can use P, (P) polynomials for the local VE space;

» “dofs” are vertex values, nodal values on the edges of 9P and
moments inside P;

» the behavior on OP is given by a polynomial interpolation;

» optimal error estimates in the energy norm are confirmed by
experiments.
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Summary

@ VEM is a family of schemes on polygonal meshes: new schemes are
generated by changing the stabilization term;

@ VEM works for any order of accuracy:

» we can use P, (P) polynomials for the local VE space;

» “dofs” are vertex values, nodal values on the edges of 9P and
moments inside P;

» the behavior on OP is given by a polynomial interpolation;

» optimal error estimates in the energy norm are confirmed by
experiments.

@ VEM works for any order of regularity:
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Summary

@ VEM is a family of schemes on polygonal meshes: new schemes are
generated by changing the stabilization term;

@ VEM works for any order of accuracy:

» we can use P, (P) polynomials for the local VE space;

» “dofs” are vertex values, nodal values on the edges of 9P and
moments inside P;

» the behavior on OP is given by a polynomial interpolation;

» optimal error estimates in the energy norm are confirmed by
experiments.

@ VEM works for any order of regularity:

» we use also derivatives as degrees of freedom at vertices and edge
nodes

Manzini, G. (LANL & IMATI-CNR) MFD and VE Methods July 27, 2012 26/28



Summary

@ VEM is a family of schemes on polygonal meshes: new schemes are
generated by changing the stabilization term;

@ VEM works for any order of accuracy:

» we can use P, (P) polynomials for the local VE space;

» “dofs” are vertex values, nodal values on the edges of 9P and
moments inside P;

» the behavior on OP is given by a polynomial interpolation;

» optimal error estimates in the energy norm are confirmed by
experiments.

@ VEM works for any order of regularity:

» we use also derivatives as degrees of freedom at vertices and edge
nodes

» the behavior on 9P is given by a Hermite-like polynomial
interpolation;
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Summary

@ VEM is a family of schemes on polygonal meshes: new schemes are
generated by changing the stabilization term;

@ VEM works for any order of accuracy:

» we can use P, (P) polynomials for the local VE space;

» “dofs” are vertex values, nodal values on the edges of 9P and
moments inside P;

» the behavior on OP is given by a polynomial interpolation;
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Summary

@ VEM works on degenerate meshes (experiments):
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@ VEM works on degenerate meshes (experiments):

» meshes with convex and non-convex elements;
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Summary

@ VEM works on degenerate meshes (experiments):

» meshes with convex and non-convex elements;
» meshes with very stretched elements;
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Summary

@ VEM works on degenerate meshes (experiments):

» meshes with convex and non-convex elements;
» meshes with very stretched elements;
» meshes with hanging nodes;
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Summary

@ VEM works on degenerate meshes (experiments):

meshes with convex and non-convex elements;
meshes with very stretched elements;

meshes with hanging nodes;

meshes with collapsing nodes.

v vy VvYy
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Summary

@ VEM works on degenerate meshes (experiments):

meshes with convex and non-convex elements;
meshes with very stretched elements;

meshes with hanging nodes;

meshes with collapsing nodes.

v vy VvYy

@ VEM can be generalized to 3-D polyhedral mesh (in progress):

» C° — 1Py works in 3-D just using vertex values as degrees of
freedom (dofs);
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Summary

@ VEM works on degenerate meshes (experiments):

meshes with convex and non-convex elements;
meshes with very stretched elements;

meshes with hanging nodes;

meshes with collapsing nodes.

v vy VvYy

@ VEM can be generalized to 3-D polyhedral mesh (in progress):
» C° — 1Py works in 3-D just using vertex values as degrees of
freedom (dofs);
» C° — P, (m > 1) requires vertex values and moments on edges,
faces, and inside P;
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Summary

@ VEM works on degenerate meshes (experiments):
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Summary

@ VEM works on degenerate meshes (experiments):

v vy VvYy

meshes with convex and non-convex elements;
meshes with very stretched elements;

meshes with hanging nodes;

meshes with collapsing nodes.

@ VEM can be generalized to 3-D polyhedral mesh (in progress):

>

C° — Py works in 3-D just using vertex values as degrees of
freedom (dofs);

C° — P, (m > 1) requires vertex values and moments on edges,
faces, and inside P;

no need of numerical integration, VEM does not use the basis
functions explicitly;

no need of isoparametric mappings, VEM works in the physical
domain.

@ There is no difference between VEM and the mimetic finite difference
method, the two families of schemes coincide.
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@ full extension to three dimensional problems;
@ other differential equations: elasticity, advection-diffusion, Stokes, etc;
@ understand the role of the mimetic stabilization;

@ justify the numerical results for degenerate meshes (not covered by the
theory);

Thank for your attention.
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