
LA-UR-
Approved for public release; 
distribution is unlimited. 

fo~A'amos 
NATIONAL LABORATORY 

---- EST . 1943 ---

Title: 

Author(s): 

Intended for: 

\k A?f\ Il<t+\O~ crt ~rojeL~ 

Corti tA.3CA ~ ~ .,a.ol, eJ\t. ~D\Vex.s 

~Ct.s 6('{C!fh~~ Y'fOC e $£.\"I'\j 
6ft 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution , however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



The Application of Projected Conjugate Gradient Solvers 
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Graphical processing units introduce the capability for large 
scale computation at the desktop. Presented numerical re­
sults verify that efficiencies and accuracies of basic linear 
algebra subroutines of all levels when implemented in CUDA 
and Jacket are comparable. But experimental results demon­
strate that the basic linear algebra subroutines of level three 
offer the greatest potential for improving efficiency of basic 
numerical algorithms. We consider the solution of the mul­
tiple right hand side set of linear equations using Krylov 
subspace-based solvers. Thus, for the multiple right hand 
side case, it is more efficient to make use of a block im­
plementation of the conjugate gradient algorithm, rather 
than to solve each system independently. Jacket is used 
for the implementation. Furthermore, including projection 
from one system to another improves efficiency. A relevant 
example, for which simulated results are provided, is the re­
construction of a three dimensional medical image volume 
acqu ired from a positron emission tomography scanner. Effi­
ciency of the reconstruction is improved by usin g projection 
across nearby slices. 

Keywords 
High Performance Computing, GPU, Krylov Subspace Meth­
ods, Lanczos-Galerkin Projection, Conj ugate Gradient 

1. INTRODUCTION 
In recent years there has been increasing interest in many 
disciplines on the use of many-core based high performance 
computing (HPC) architectures. The NVIDIA ® graphical 
processing unit (GPU) is one such common ly ava ilable chip. 
Unlike traditional graphical cards, the current generation 
of GPUs is much better suited to scientific computation. 
Initially, GPUs were notorious for requiring users to adopt 
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tedious programing techniques utilizing the graphic appli­
cation programming interface (API) to access the processor 
cores. There was also weak support for floating point ac­
curacy as needed for scientific applications. However, the 
scenario changed completely with the introduction of the 
NVIDIA ® GeForce 8800 GTX (or G80) in 2006. This chip 
comes with the full support for the Institute of Electrical 
and Electronics Engineers (IEEE) single precision floating 
point standard. In the latest NVIDIA GPU series, the 
Tesla C1060, the IEEE double precision standard is also sup­
ported . Moreover, the introduction of CUDA (Computed 
Unified Device Architecture) [4] by NVIDIA in 2007 enables 
programmers to bypass the utilization of the graphics inter­
face, which itself simplifies the programming significantly. 
At this point several GPU accelerated libraries are available 
to augment CUDA, such as CUBLAS and CUFFT [3, 5] 
which are the CUDA implementations of the Basic Linear 
Algebra Subprograms (BLAS) and the Fast Fourier trans­
form (FFT), respectively. There are also several software 
development kits (SDK) from third party vendors specifi­
cally designed for Matlab scripting and built upon CUDA. 
Jacket[6] is of this type. Therefore the development cycle 
utilizing GPUs has been much shortened. 

The enormous capabi lity of a GPU for large computations 
is due to the many core hardware design and high band­
width memory structure. Taking the Tesla CI060 as an 
example, as illustrated by Figure 1, there are 30 streaming 
multiprocessors (SM), each of which has 8 streaming proces­
sors (SP). The clock rate of each individual single precision 
is l.24 GHz. The CI060 chip supports 1024 threads per 
SM, which can reach 30720 threads in the whole chip. In 
contrast, the CPU can only support 2 or 4 threads per core. 
With respect to the memory, in C1060 there is a 4 GB DDR3 
DRAM, the bandwidth of which can be as fast as 102 GB/s, 
while the system DDR2 DRAM bandwidth can only reach 
6 GB/s. To be fair, the communication bandwidth between 
the GPU and host computer through the PCI express bus 
(PCI express V2.0 x16) is 8 GB/s. Although the latency 
of the GPU DRAM is admittedly longer than the system 
DRAM, the large number of working threads can usually 
hide this latency [11]. Therefore, the Tesla C1060 possesses 
a tremendous computational capability. For single precision 
computation, its peak performance is 933 GFLOPS, and for 
double precision it is 78 GFLOPS. Obviously there is still a 
huge gap between single precision and double precision per­
formance for the current GPU. Because of such differences, 



there may be some limitations for certain applications which 
are highly dependent on the accuracy. 
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Figure 1: The structure of NVIDIA C1060 [4]. 

In order to fully take advantage of the computational capa­
bility provided by the CPU, it is reasonable to expect that a 
high portion of the computation should be accomplished in 
the CPU, while a small portion of the computation may be 
completed by the CPU. A significant portion of the applica­
tion should be parallizable such that it can be implemented 
on the CPU. The remaining sequential part of the algorithm 
should run on the CPU. So far, CPUs have been widely ap­
plied to various applications, such as in medical imaging 
[11, 16] and for improving the efficiency of many numerical 
methods [7]. 

We will be focusing on the implementation and optimiza­
tion of the conjugate gradient (CG) [9] algorithm on the 
CPU. Our main contributions are two fold, first, we reveal 
the fact that the current CPU ha.<; much better performance 
for BLAS 3 than BLAS 1 or BLAS 2, which can be taken 
advantage of to reorganize some existing algorithms so as 
to maximize use of BLAS 3 operations. Second we show by 
examples that the projection based CC method [18] can be 
utilized as a linear solver for a particular type of problem on 
a CPU based HPC environment. Some early results of this 
work have been presented in [12]. In this paper, we give the 
specific derivations of our work as well as more nllmerical 
results. The way that we organize the paper is as follows: 
Section 2 focuses on the main numerical background that 
is used in this paper. Section 3 discusses the parallelism 
model and the performance of BLAS on the CPU environ­
ment; Section 4 is concentrated on the specific details of the 
implementation and optimization of the CC solver utilizing 
Lanczos-Calerkin projection; and Section 5 gives the nu­
merical results of our proposed algorithm for a ID synthetic 
problem from [8] and an example for the reconstruction of 
slices of a 3D medical image. 

2. NUMERICAL BACKGROUND AND RE-
LATEDWORK 

2.1 The Multiple Right Hand Side Problem 
We consider the solution of the multiple right hand systems 
of equations 

AX = B = [b(l), ... b(s)], (1) 

where b(i) are the columns of matrix B and solutions XCi) 

are the columns of the matrix X. The challenge of solving 
(1) arises not only due to the massive computation required 
but also due to the desire for real time computation. For 
example, we takes as out test examp'le the case of 3D im­
age reconstruction from projection data, as is typical for 
data from positron emission tomographic scans. Solution of 
this problem using a traclitional high performance comput­
ing (HPC) set up based on a cluster of workstations is not 
practical for a clinical setting. It. is thus of interest to develop 
viable algorithms which take advantage of CPU computing. 
Here we consider the use of a projection basecl conjugate 
gradient solver for the solution of (1) which is optimized for 
the CPU. But first, we need to consider the conditioning of 
the problem which is determined by the system matrix A . 

In many applications, particularly for many examples in im­
age reconstruction or restoration, the formulation is ill-posed 
and the resulting matrix A is ill-conclitioned. Thus in solving 
(1) some regularization needs to be imposed [10]. Because 
our focus is on the CPU implementation we consider here 
the basic Tikhonov regularization, whkh for the solution of 
a single system is given by 

(2) 

We note that this depends on a parameter A, which is the 
regularization parameter. There is a vast literature on how 
to actually find suitable A [13, 14], but here we assume that A 
is provided. This is a reasonable assumption in the clinical 
environment, for which scan protocols are carefully deter­
mined for particular medical conditions and requirements. 
While (2) can be solved using direct methods, practical im­
plementations require iterative formulations. 

2.2 Conjugate Gradient Methods 
For the single equation suppose that reO) is the initial resid­
ual b- Ax(D) for some initial guess x(D). Then the associated 
Krylov subspace generated when using a conjugate gradient 
algorithm, as given in Algorithm 1, is given by 

The solution is in the space spanned by the direction vectors 

x 

K 

'" (i) (i) 
~Ct P , 
i=l 

x E span{p(l), p(2), ... , p(K)}, 

span{ r(D), Ar(D), ... ,A K -lr(D)}. 

(4) 

While this algorithm can be applied immediately for the 
solution of (1), we first investigate the efficiency of the basic 
linear algebra operations (BLAS) on the CPU. 

<I 



-~~----------~----~-=~----~--~--~~~-------Algorithm 1 Canonical CG to solve Ax = b, [9J 

Input: A, b, TOL, x (O) 
Output: x(lc) 

1: Initialize k = 0, r(O) = b - Ax(O), ReIRes = 1 
2: while ReIRes > TOL do 
3: k = k + 1 
4: if k = 1 then 
5: p (l) = r(O) 

6: else {k > I} 
< r(k-l) r(lc-l) > 

7: (3(Ic) - ~~-:~+' ......,..,.= -- < r(k-2), r(Ic-2) > 
8: p(lc) = r(k-I) + (3(k)p(k-l ) 

9: end if 
< r(k-I) r(k-l) > 

l. 0: a( k) = --""""---'-'--'--""";7":--< p(Ic), Ap(k) > 
11: x(k) = x(k-l) + a(k)p(k) 

12: r(k) = r(k-I) _ a(k) Ap(k) 

13: ReIRes = Ilr(k)lldllbIl2 
14: end while 

3. PERFORMANCE OF BLAS ON GPU 
We consider the BLAS 1-3 implemented on the GPU, im­
plementing the matrix-vector operation in both CUDA and 
Jacket. These results are contrasted with Matlab running 
on the CPU. AU our tests are running on a desktop with In­
tel Xeon® quad-core processor with 4M cache and 2.13 GHz 
clock ra te. The GPU used is the NVIDIA ® Tesla C1060. 
In the experiments three computational environments are 
contrasted. These are the standard single core CPU , the 
multiple four-core CPU and the GPU environment, denoted 
throughout by Device, Host (SingleThread) and Host (Mul­
tiThread) , respectively. All the benchmarks are from [1], for 
matrix sizes varied from 817 x 817 to 15439 x 15439 as shown 
in Table 1; the top row is the benchmark matrix, and the 
second is its size. Evaluated is the cost for a matrix-vector 
multiply which is a standard BLAS 2 operation. 

Figure 2 illustrates the comparison results in terms of the 
computational cost, speedup and relative error. To deter­
mine the relat·ive error we take the double precision result 
as the more accurate solution and consider the single pre­
cision as the approximate solution to the double precision 
solution . Mathematically, the rela tive error is computed as 

RelErr = I results? - resulto? I ' 
resulto? 

(5) 

where results? is the result in single precision and resulto? 
is the result in double precision. Recalling that Device and 
Host aliases for the GPU and CPU respectively, the speedup 
is measured with respect to the CPU cost , 

s(n) = Execution time using Host (CPU). (6) 
Execution time using Device (GPU) 

From Figures 2(a)-2(b), the speedup of BLAS 2 is evident, 
and improves with increasing problem size. Figure 2(c) indi­
cat.es that the relative error is quite small, around 1.0 x 10-7 

in all our benchmarks, which is on the order of single pre­
cision accuracy. Jacket and CUDA are comparable for this 
application in terms of computational cost and accuracy. 
Thus, given the relatively lower programming complexity 
for Jacket , it is selected for the further tes ts. 
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Figure 2: Matrix vector multiplication results. Fig­
ures 2(a) to 2(c) compare the computational cost, 
the speedup (6) and the relative error, respectively. 
Note in Figure 2(a) that the cost on the Device is 
independent of implementation via Jacket or CUDA 
and the two graphs with symbol 0 and <> are over­
laid. The same is seen in Figure 2(c) for the relative 
error using CUDA or Jacket. Recall for these tests 
that the multiple core tests refer to the quadcore 
CPU. 



Matrix name bcsstm19 1138_bus bcsstm23 bcsstk16 s1rmt3ml bcsstk18 bcsstk18 
Matrix size 817 1138 3134 4884 5489 11948 15439 

Table 1: Test matrices selected from Matrix Market 1[1]. 

The performance of the GPU with respect to the choice of 
kernel is also of interest. In Figure 3 we report the floating 
point operations per unit time in seconds, or "GFLOP Is" 
for the BLAS 1 (SAXPY, inner product), BLAS 2 (matrix 
vector multiplication) and BLAS 3 (matrix matrix multipli­
cation) kernels. In order to have a fair comparison among 
different kernels, the test problem is formulated so that all 
kernels have have the same number of flops. In particular, 
for BLAS 1, we choose the vectors of size n 3 xI, for BLAS 
2, we choose the matrix of size n 2 x n and vector to be of 
size n x 1, and for BLAS 3, we choose the matrices of size 
n x n. In this way, all the kernels will result in the same 
FLOP count of 2n3

. In Figure 3, the x-axis corresponds to 
the total number of Mega Flops , the y-axis corresponds to 
the Giga Flops per unit time measured in seconds. It is in­
teresting to see that BLAS 3 kernels definitely outperform 
both BLAS 1 or BLAS 2 kernels. This is preserved as n 
increases, but the relative improvement levels off. This sug­
gests that in optimizing the performance of an algorithm for 
use on the GPU is should be formulated to take advantage 
of BLAS 3 kernels. 
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Figure 3: Computational Kernels Comparison. Re­
sults in GFLOPS / Sec for SAXPY, dot product, ma­
trix vector multiplication (Mat-Vee) and matrix ma­
trix multiplication (Mat-Mat). 

4. A PROJECTION BASED KRYLOV SUB­
SPACE ALGORITHM ON GPU 

4.1 Projection Based CG Implementation and 
Performance 

While it is important to optimize for the GPU using BLAS 
3, it is also relevant to consider the specific application in 
mind. Here we seek an algorithm which also takes advan­
tage of the multiple right hand side feature in equation (1). 
Even though in [8] the projection idea is applied success­
fully, the potential loss of accuracy that results when using 
the GPU in single precision in order to optimize efficiency, 

must be considered. In particular, while the convergence of 
the Lanczos-Galerkin projection based solver has been ex­
tensively discussed in the literature [8, 18], the impact of 
single precision on convergence may be significant. 

For clarity of exposition, the Projected Conjugate Gradients 
(PrCG) algorithm for a regular square linear system is pre­
sented in Algorithm 2. Here the subscript q is the index for 
the current system, while the superscript indicates the iter­
ation step. Steps 5 to 11 of Algorithm 2 yield the solution 
x)j< ) which is the solution of the qth system using projection 

onto the Krylov subspace for the 1st system, q = 1. If x~J( ) 
does not satisfy the test for convergence, the CG algorithm 
is restarted using x~K) as initial guess for the Krylov sub­
space associated with right hand side b q . The solution is 
thus obtained on an augmented Krylov subspace of length 
Kq > K. Clearly, the seed space in Algorithm 2 plays an 
important role, since it is used to generate solutions for all 
remaining systems. Building a good seed space ICK (A, r (O») 
is crucial for subsequent updates, but is beyond the scope 
of this work. It is discussed in [8l for the case in which the 
space can be updated each iteration. Here ICg(A , r (O») is 
generated based on the seed and not updated thereafter. 

Algorithm 2 Projected CG (PrCG), [8] 

Input: TOL, i = 0, ReIRes = 1, K, A, b q , x~O), Ap\i) 

and piiJ 1 ( i ( k 
Output: x~g) 
1: if seed system then 
2: Canonical CGO; % and output vectors Ap~i) and 

pii) 1 (i ( K 
3: else 
4: 

5: 
6: 

7: 

% Project onto seed space 
r~i) = b~i) _ AX~i) 

for i = 1 to K do 
(i) (i) 

(i) _ < Pl ,rq > 
Oq - < (i) A (i) > 

P1' PI 
8: X~i) = X~i) + O~i)p\i) 
9 '. (i+1) _ (i) (i)A (i) rq - rq - Oq Pl 

10: end for 
11: ReIRes = IIr~i) IIdllbq ll2 
12: end if 
13: if RelRes > TOL then 
14: % Augment the seed space 
15: Continue the iteration using canonical CG 
16: end if 

A test problem of size 10240 with 2 right hand sides is 
generated, this test problem is selected from Chan's pa­
per [8] with some modifications. The system matrix A is 
a square matrix of size n x n, the entries of which are 
defined as A = diag(I, ... ,n). The right-hand sides are 

b~j)(t) = sin(t + (i + j - 2)6.t), i = 1, ... ,n 6.t = 27f/100 



'" and j = 1,2. The effect of using the PrCG for solving the 
test problem is obvious. The total cost is reduced to 1.91s 
(from 5.49s using Algorithm 1) , and the computational 
cost for Mat-Vec is reduced to LOIs (from 4.0s using Algo­
rithm 1) . Furthermore, as the cost of Mat-Vec is reduced, 
the costs of both Dot-Prod and SAXPY are more signifi­
cant.This is due to the fact that Algorithm 2 mostly relies 
on either Dot-Prod or SAXPY operations . 

4.2 Kernel Optimization: Optimized Projected 
CG 

The operations in Algorithm 2 are mainly BLAS 1 oper­
ations. But we know that we should require that the pro­
jected CG is implemented using BLAS 3 operations. From 
r (i+ I) - r(i) _ ~(i) Ap(i) where r(i) - b - AX(i) and using 

q -q ~q I' q-q q, 

(4) , gives 

i 

r(i+ I) - b _ '"""' a(c) Ap(c) 
q - q ~ q I' (7) 

c=I 

By the orthogonality conditions with respect to matrix A 

0, j =1= i, and 

0, j < i. 

In particular, 0 =< p\i), r~i+I) >. Thus taking the dot 

product with p\i) on both sides of (7), gives 

and 

i 

o = < p\i), b q > - < p\i), L a~c) Apic) > 
c=l 

« i) b > _~(;) < p(i) Ap(i) > PI' q ~q I' 1 , 

(i) < PI , b q > 
« i) A (i) >' 

PI' Pl 
(8) 

[ 
(0) (I) (K)] . fA ' Let P = PI ,PI , ... , PI be the matrIX 0 - conJu-

gate directions. By the A-conjugacy pT AP is diagonal, and 
(pT AP);; =< p~i), Ap~i) >. Thus a~i) in (8) is given by 

(i) < PI , b q > 
(PT AP)ii + t' (9) 

where t is a tolerance parameter, 0 < t « 1, which avoids 
division by zero. 

N · h . P d AP [A (0) A (I) A ([() ] otlce t at matrIces an = Pl' PI' . .. , Pl 
can be stored as the intermediate results [rom solving the 
seed system. Thus a~i) in (9) can be calculated using a 
matrix operation without updating Xq 

a = pTbq ./Vecdiag(pT AP). (10) 

Here Vecdiag(T) is the vector of diagonal entries of T 

Vecdiag(T) = [T(O , 0), T(I, 1), ... , T(n, nW , 

and element-wise division between two vectors is given by 

v. / u = [v(O)/u(O) , v(1)/u(I) , ... , v(n)/u(n)]T 

Therefore solution Xq can be updated using a Mat-Vec up­
date 

i 

x~i) x~O ) + L a~c)p\c), 
c=l 

X~O) + Pa, (11) 

which is the standard column version for a Mat-Vec opera­
tion. Equivalently, we rewrite (11) somewhat unconvention­
ally using a BLAS 3 operation as, 

x~i) = x~O) + sum(P· diag(a)), (12) 

where diag(v) is the diagonal matrix with vector v along 
the diagonal and sum(T) denotes the column-sum of the 
columns of matrix T 

sum(T) = L ti. 
;=1 

Similarly, we can calculate the residual as 

r (i) = r (O) - APa 
q q , 

or, 

r~i) = r~O) - sum(AP· diag(a)). 

(13) 

(14) 

We illustrate the difference in both relative error and com­
putational cost of (11) and (12) in Figure 4 and Figure 5. 
The test matrices and vectors are generated to have entries 
which are i.i .d. normal. Both CUDA + CUBLAS and Jacket 
computing environments are considered. Regardless of the 
computing environment, the scaled column sum formulation 
(11) is more efficient than (12). On the other hand, the rel­
ative error of (12) is much smaller than (11), which may be 
critical for applications in which the accuracy is paramount. 

We now obtain the Optimized Projected CG (OPrCG), 
Algorithm 3, which is Algorithm 2 with BLAS 1 opera­
tions replaced by BLAS 2 and BLAS 3 operations. 

Algorithm 3 Optimized Projected CG (OPrCG) 

Input: TOL, i = 0, RelRes = 1, K, A, bq , x~O), P, 
and q 

Output: x~K ) 
1: if seed system then 
2: Canonical CGO % and output vectors Ap\i) and 

p\i) 1 ~ i ~ K 
3: else 
4: % Project onto seed space 
5: r~i) = b q - AX~i) 
6: a = < P, b q > ./Vecdiag( < P , AP » 
7: Update Xq utilizing either (11) or (12) 
8: Update rq utilizing either (13) or (14) 
9: RelRes = IIrq IIdllbq 112 

10: end if 
11: if RelRes > TOL then 
12: % Augment the seed space 
13: Continue the iteration using canonical CG 
14: end if 

Figure 6 shows the difference in computational cost using 
OPrCG and PrCG. The total computational cost using PrCG 
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Figure 4: Comparison of the relative error and com­
putational cost using (11) and (12) in Jacket. 
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Figure 5: Comparison of the relative error and com­
putational cost using (11) and (12) in CUDA + 
CUBLAS. 

" " is 1.91s, where the projection procedure takes about 27.18% 
as in Figure 6(a) . By using OPr-CG, the total computational 
cost is reduced to 1.50s, where the projection procedure is 
only about 8.02% as in Figure 6(b). A 20% improvement in 
computational cost is obtained in this example . 

f 

(a) Projected CG 

o.o .. ~~L 
(b) Optimized Projected CG 

Figure 6: Comparison in computational cost using 
OPrCG in Algorithm 3 and PrCG in Algorithm 2 . 
The only difference is due to the BLAS 3 imple­
mentation for the projection steps, which is more 
efficient. 

5. NUMERICAL RESULTS 
5.1 3D Shepp-Logan Phantom Reconstruction 
We now turn our attention to the use of the GPU for the re­
construction of the slices for a 3D Shepp-Logan Phantom [2), 
see Figure 7. It is immediately clear that consecutive slices 
are similar and that a projec tion-based approach should be 
used in the reconstruction. We build a projection matrix of 
size 16650 x 16384, which corresponds to an image for one 
slice of size 128 x 128. The condition number of the system 
is 1.1 x 1032. Tikhonov reg-ularization (2) is used to regular­
ize the reconstruction; the regularization parameter is set to 
be A 2 = 0.5 throughout the tests. For this test , we chose to 
compute the reconstructions in batches of four slices. The 
performance of the algorithm therefore relies heavily on the 
accuracy of the projection steps. It is thus appropriate to 
use the more accurate update scheme and so we select (12) 
and (14) for updating in this example. 

T he loss of orthogonality can be a significant issue when the 
system is ill-posed. Specifically, as the problem size increases 
the loss of orthogonality starts to effect the performance of 
OPrCG. This is not surprising because the algorithm de­
pends significantly on the orthogonality of the conjugate di­
rections and residuals. When the problem is ill-posed , the 
loss of orthogonality for the conjugate directions becomes 
more severe [17] and reorthogonalization is needed. This 
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Figure 7: Slice Show of A 3D Shepp-Logan Phantom 

can be accomplished by reorthogonalization applied to ei­
ther the gradient vectors p(i) or to the residual vectors r(i), 
Here we reorthogonalize for the gradient vectors, 

For the simulation we select slice 64 as the seed slice and 
use projection to obtain reconstructions of slices 65 to slice 
68 , The dimension of P used in both PrCG and OPrCG is 
60, the dimension of the augmented space for each of the 
slices is reported in Table 2, Three different approaches 
and their results are reported in Table 2, where three recon­
struction approaches are compared: CG (Algorithm 1), 
PrCG (Algorithm 2) and OPrCG (Algorithm 3), Again, 
the methods are contrasted through measurements of Cost, 
Speedup and SNR. In order to further contrast PrCG and 
OPrCG, we also compute the percentage Improvement Ra­
tio given by 

I Ra 
I 
CostPrCG - CostoPrCG I 1000-/ mp te = x /0, 

CostPrCG 
(15) 

From Table 2, we see that in terms of computational cost the 
projection based approaches achieve a speedup from four to 
eight times depending on the location relative to the seed 
slice. The largest speedup for the two projection based 
methods is at slice 65, which is reasonable considering the 
largest similarity to the seed , As the slice location is fur­
ther away from the seed slice, the speedup is reduced as 
illustrated in Table 2. This is consistent with the discussion 
in [8] that the right hand sides need to be close, To fur­
ther compare between PrCG and OPrCG, we can see that 
OPrCG yields even further speedup than PrCG, while still 
preserving the SNR of the reconstruction, The quality of 
the reconstructed images USing all three approaches is fairly 
comparable, the SNR is preserved independently of the al­
gorithm, To further illustrate, we show the results for slice 
66 in Figure 8, visually the results are comparable, We con­
clude from the results in Table 2 and the reconstruction in 
Figure 8, that the projection based algorithms yield good 
performance, Moreover OPrCG can further speed up the 
algorithm while maintaining good accuracy, We note that 
the seed system should be replaced after some number of 
steps, dependent on the distance of btl) from b(q), q > 1 [8], 

(a) Host 

(b) Device - PrCG 

(c) Device - OPrCG 

Figure 8: Reconstruction Results on Host and De­
vice Using Three Different Approaches. Slice index 
= 66, image size = 128x 128. 8(a): Reconstruction us­
ing CG, SNR = 13,80 dB; 8(b): Reconstruction using 
PrCG, SNR = 13.83 dB; 8(c): Reconstruction using 
OPrCG, SNR = 13.83 dB. 
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CG P rCG OPrCG 

Slice Cost SNR Mat-Vee Cost ,SNR Mat-Vee ! Speedup Cost SNR Mat-Vee Speedup 
ImpRatio 

65 15.79 13.67 83 2.17 13.67 36 7.27 2.06 13.67 36 7.67 5.07% 
66 15.89 13.80 I 77 2.73 13.83 48 5 .80 2.58 13.83 47 6.16 5.49% 
67 13.58 13 .91 76 310 13.95 56 4.37 2.80 13.95 52 4.84 9.68% 
68 15.55 13.80 81 3.55 13.83 65 4.38 3.47 13.83 66 4.49 2.25% 

Table 2: Rec~nstruction of Four Consecutive Slices from 65 to 68. The 64th slice is selected as seed and the 
the others are reconstructed utilizing CG (Algorithm 1), PrCG (Algorithm 2) and OPrCG (Algorithm 3). 
The results are the computational cost (Cost), SNR value (SNR, in dB), speed up (Speedup), the number of 
the matrix vector multiplications (Mat-Vee) and the improvement ratio (ImpRatio). 

6. CONCLUSIONS AND FUTURE WORK 
We discussed implementation issues for a projection based 
CG algoritlun on the GPU. The performance of the GPU for 
BLAS 3 is much better t han for BLAS 1 and 2. Thus the 
projected CG algorithm can be optimized to run on the GPU 
by taking advantage of BLAS 3 operations . The numerical 
tests verify that the optimized algorithm is feasible in terms 
of both accuracy and convergence. This is consistent with 
earlier work on the block CG (BCG ) algorithm [15]. In 
particular, Saad showed that using the projected system is 
mathematically equivalent to st.arting the block CG method 
with the initia l block [bP J, b (2 J], [18, Theorem 4.1], which 
explains the relative success of the approach adopted here. 
It is worth noting, however , that the standard block CG 
approach assumes t hat t he set of right hand sides is avai lable 
simultaneously, which need not always be the case. 

The speedup of the presented a lgorithm depends s ignifi­
cantly on the efficiency of the Mat-Vec multiplication . It 
may be possible to optimize this operation by considering 
the special structure within the system matrix. Further­
more, in the discussion presented here, we acknowledge that 
we have neither addressed the additional s torage require­
ments associated with storing the matrices P and AP, nor 
the communication costs associated with distributing P and 
AP. These considerations are topics for our future research. 
Trade-offs between utilizing structure, increasing storage and 
maintaining sufficient acc uracy most likely exist. Recently, 
there is a new series of GPUs named "Fermi" with new ar­
chitecture released on the market by NVIDIA ®. It is said to 
have much better performance in double precision than all 
the previous generations of GPUs. It would be interest ing 
to see the performance on the new card. 
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