oY al
LA-UR- /

Approved for public release;

distribution is unlimited.

Title: —WQ, A??\T (oton ﬁ ?T(U QQ-‘-Eek
Conjuga&-e_ Corad tent. So\vens

sn Graphieall Processing Units

Author(s): W>D UZ U0 L ‘\T\
Rosemary Renaut

Intended for: P‘_ oC Q-Q&\\\V\j 'S

.(L)
Los Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Depariment of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

The Application of Projected Conjugate Gradient Solvers
on Graphical Processing Units

*
Youzuo Lin
Mail Stop D443
Los Alamos National Laboratory
Los Alamos, NM 87545
ylin@lanl.gov

ABSTRACT

Graphical processing units introduce the capability for large
scale computation at the desktop. Presented numerical re-
sults verify that efficiencies and accuracies of basic linear
algebra subroutines of all levels when implemented in CUDA
and Jacket are comparable. But experimental results demon-
strate that the basic linear algebra subroutines of level three
offer the greatest potential for improving efficiency of basic
numerical algorithms. We consider the solution of the mul-
tiple right hand side set of linear equations using Krylov
subspace-based solvers. Thus, for the multiple right hand
side case, it is more efficient to make use of a block im-
plementation of the conjugate gradient algorithm, rather
than to solve each system independently. Jacket is used
for the implementation. Furthermore, including projection
[rom one system to another improves efficiency. A relevant
example, for which simulated results are provided, is the re-
construction of a three dimensional medical image volume
acquired from a positron emission tomography scanner. Effi-
ciency of the reconstruction is improved by using projection
across nearby slices.

Keywords
High Performance Computing, GPU, Krylov Subspace Meth-
ods, Lanczos-Galerkin Projection, Conjugate Gradient

1. INTRODUCTION

In recent years there has been increasing interest in many
disciplines on the use of many-core based high performance
computing (HPC) architectures. The NVIDIA® graphical
processing unit (GPU) is one such commonly available chip.
Unlike traditional graphical cards, the current generation
of GPUs is much better suited to scientific computation.
Initially, GPUs were notorious for requiring users to adopt

*Corresponding author

TThis research was supported by the NSEF grant DMS
0652833, 0966270 and 0937737.

T
Rosemary Renaut
School of Mathematical and Statistical Sciences
Arizona State University
Tempe, AZ 85287-1804
renaut@asu.edu

tedious programing techniques utilizing the graphic appli-
cation programming interface (API) to access the processor
cores. There was also weak support for floating point ac-
curacy as needed for scientific applications. However, the
scenario changed completely with the introduction of the
NVIDIA® GeForce 8800 GTX (or G80) in 2006. This chip
comes with the full support for the Institute of Electrical
and Electronics Engineers (IEEE) single precision floating
point standard. In the latest NVIDIA GPU series, the
Tesla C1060, the IEEE double precision standard is also sup-
ported. Moreover, the introduction of CUDA (Computed
Unified Device Architecture) [4] by NVIDIA in 2007 enables
programmers to bypass the utilization of the graphics inter-
face, which itself simplifies the programming significantly.
At this point several GPU accelerated libraries are available
to augment CUDA, such as CUBLAS and CUFFT [3, 5]
which are the CUDA implementations of the Basic Linear
Algebra Subprograms (BLAS) and the Fast Fourier trans-
form (FFT), respectively. There are also several software
development kits (SDK) from third party vendors specifi-
cally designed for Matlab scripting and built upon CUDA.
Jacket[6] is of this type. Therefore the development cycle
utilizing GPUs has been much shortened.

The enormous capability of a GPU for large computations
is due to the many core hardware design and high band-
width memory structure. Taking the Tesla C1060 as an
example, as illustrated by Figure 1, there are 30 streaming
multiprocessors (SM), each of which has 8 streaming proces-
sors (SP). The clock rate of each individual single precision
is 1.24 GHz. The C1060 chip supports 1024 threads per
SM, which can reach 30720 threads in the whole chip. In
contrast, the CPU can only support 2 or 4 threads per core.
With respect to the memory, in C1060 there is a 4 GB DDR3
DRAM, the bandwidth of which can be as fast as 102 GB/s,
while the system DDR2 DRAM bandwidth can only reach
6 GB/s. To be fair, the communication bandwidth between
the GPU and host computer through the PCI express bus
(PCI express V2.0 x16) is 8 GB/s. Although the latency
of the GPU DRAM is admittedly longer than the system
DRAM, the large number of working threads can usually
hide this latency [11]. Therefore, the Tesla C1060 possesses
a tremendous computational capability. For single precision
computation, its peak performance is 933 GFLOPS, and for
double precision it is 78 GFLOPS. Obviously there is still a
huge gap between single precision and double precision per-
formance for the current GPU. Because of such differences,

there may be some limitations for certain applications which
are highly dependent on the accuracy.

GPU (Device)
[

CPU
(Host)

Figure 1: The structure of NVIDIA C1060 [4].

In order to fully take advantage of the computational capa-
bility provided by the GPU, it is reasonable to expect that a
high portion of the computation should be accomplished in
the GPU, while a small portion of the computation may be
completed by the CPU. A significant portion of the applica-
tion should be parallizable such that it can be implemented
on the GPU. The remaining sequential part of the algorithm
should run on the CPU. So far, GPUs have been widely ap-
plied to various applications, such as in medical imaging
[11, 16] and for improving the efficiency of many numerical
methods [7].

We will be focusing on the implementation and optimiza-
tion of the conjugate gradient (CQG) [9] algorithm on the
GPU. Our main contributions are two fold, first, we reveal
the fact that the current GPU has much better performance
for BLAS 3 than BLAS 1 or BLAS 2, which can be taken
advantage of to reorganize some existing algorithms so as
to maximize use of BLAS 3 operations. Second we show by
examples that the projection based CG method [18] can be
utilized as a linear solver for a particular type of problem on
a GPU based HPC environment. Some early results of this
work have been presented in [12]. In this paper, we give the
specific derivations of our work as well as more numerical
results. The way that we organize the paper is as follows:
Section 2 focuses on the main numerical background that
is used in this paper. Section 3 discusses the parallelism
model and the performance of BLAS on the GPU environ-
ment; Section 4 is concentrated on the specific details of the
implementation and optimization of the CG solver utilizing
Lanczos-Galerkin projection; and Section 5 gives the nu-
merical results of our proposed algorithm for a 1D synthetic
problem from [8] and an example for the reconstruction of
slices of a 3D medical image.

2. NUMERICAL BACKGROUND AND RE-
LATED WORK

2.1 The Multiple Right Hand Side Problem

We consider the solution of the multiple right hand systems
of equations

AX = B=[p%,...bY), (1)

where b(® are the columns of matrix B and solutions x*
are the columns of the matrix X. The challenge of solving
(1) arises not only due to the massive computation required
but also due to the desire for real time computation. For
example, we takes as out test example the case of 3D im-
age reconstruction from projection data, as is typical for
data from positron emission tomographic scans. Solution of
this problem using a traditional high performance comput-
ing (HPC) set up based on a cluster of workstations is not
practical for a clinical setting. It is thus of interest to develop
viable algorithms which take advantage of GPU computing.
Here we consider the use of a projection based conjugate
gradient solver for the solution of (1) which is optimized for
the GPU. But first, we need to consider the conditioning of
the problem which is determined by the system matrix A.

In many applications, particularly for many examples in im-
age reconstruction or restoration, the formulation is ill-posed
and the resulting matrix A is ill-conditioned. Thus in solving
(1) some regularization needs to be imposed [10]. Because
our focus is on the GPU implementation we consider here
the basic Tikhonov regularization, which for the solution of
a single system is given by

min {[|Ax — bz + A3} . (2)

We note that this depends on a parameter A\, which is the
regularization parameter. There is a vast literature on how
to actually find suitable A [13, 14], but here we assume that A
is provided. This is a reasonable assumption in the clinical
environment, for which scan protocols are carefully deter-
mined for particular medical conditions and requirements.
While (2) can be solved using direct methods, practical im-
plementations require iterative formulations.

2.2 Conjugate Gradient Methods

For the single equation suppose that r(® is the initial resid-
ual b— Ax© for some initial guess x(®). Then the associated
Krylov subspace generated when using a conjugate gradient
algorithm, as given in Algorithm 1, is given by

Kk (A, r®) = span{r®, Ar'D, 42p@ AK71@) (3)

The solution is in the space spanned by the direction vectors

K
x = Y%, ()
i=1

x € span{p’,p®,...,p"},
= span{r(o),Ar(O),...,AK_lr(O)}.
While this algorithm can be applied immediately for the

solution of (1), we first investigate the efficiency of the basic
linear algebra operations (BLAS) on the GPU.

—
Algorithm 1 Canonical CG to solve Ax = b, [9]

Input: 4, b, TOL, x©
Output: x®
1: Initialize k =0, r'Y = b — 4x{? RelRes = 1
2: while RelRes > TOL do
k=k+1
if k =1 then
p(D = p©
else {k > 1}
b < p*=D | pe-1)
< r(k=2) p(k=2) >
p®) = p(k=1) | g(k) p(k=1)
end if
e
= e A >
11 x® = xE=D { gk
12) = ple=1) _ o 45 (6)
13: RelRes = [|r%®]|2/|Ib]l2
14: end while

(k=1) pb=1)

3. PERFORMANCE OF BLAS ON GPU

We consider the BLAS 1-3 implemented on the GPU, im-
plementing the matrix-vector operation in both CUDA and
Jacket. These results are contrasted with Matlab running
on the CPU. All our tests are running on a desktop with In-
tel Xeon® quad-core processor with 4M cache and 2.13 GHz
clock rate. The GPU used is the NVIDIA® Tesla C1060.
In the experiments three computational environments are
contrasted. These are the standard single core CPU, the
multiple four-core CPU and the GPU environment, denoted
throughout by Device, Host (SingleThread) and Host (Mul-
tiThread), respectively. All the benchmarks are from [1], for
matrix sizes varied from 817 x 817 to 15439 x 15439 as shown
in Table 1; the top row is the benchmark matrix, and the
second is its size. Evaluated is the cost for a matrix-vector
multiply which is a standard BLAS 2 operation.

Figure 2 illustrates the comparison results in terms of the
computational cost, speedup and relative error. To deter-
mine the relative error we take the double precision result
as the more accurate solution and consider the single pre-
cision as the approximate solution to the double precision
solution. Mathematically, the relative error is computed as

resultsp — resultpp

RelErr =
resultpp

) (5)

where resultgp is the result in single precision and resultpp
is the result in double precision. Recalling that Device and
Host aliases for the GPU and CPU respectively, the speedup
is measured with respect to the CPU cost,

o) Execution time using Host (CPU)
" Execution time using Device (GPU)’

From Figures 2(a)-2(b), the speedup of BLAS 2 is evident,
and improves with increasing problem size. Figure 2(c) indi-
cates that the relative error is quite small, around 1.0x 107
in all our benchmarks, which is on the order of single pre-
cision accuracy. Jacket and CUDA are comparable for this
application in terms of computational cost and accuracy.
Thus, given the relatively lower programming complexity
for Jacket, it is selected for the further tests.

(6)

250 —
-8 - Device (Jacket)
- ¢ -Device (CUDA)

% ~ Host (SingleThread) : : |
200/| = © ~Host (MultiThread) |..- R L Rk 4

Time in Seconds
-
o
=]
T

g
°

e f i i i
0 2000 4000 6000 8000 10000 12000 14000 16000
Problem Size

(a) Computational Cost

e — e ——— T —T ’_Tﬁ—fﬁ
=a -Single Core H : : :
- ¢ -Multiple Cores | : i : H "y
10} :)
.
.
.
&5
LIS ot
o
3
3 s
g i
@ :
4r :
% /'
ey
al .- .)..'.,/ -
2y
LG
oY . ; i i ; ; |
o 2000 4000 6000 8000 10000 12000 14000 16000

Problem Size

(b) Speedup

———— =
= a - Device (Jackat)

- ¢ -Device (CUDA) |
% - Host

B, et sl

log(Relative Error)
5

> i IS T S CTSMERE S) (R
0 2000 4000 6000 8000 10000 12000 14000 16000
Problem Size

(c) Relative Error

Figure 2: Matrix vector multiplication results. Fig-
ures 2(a) to 2(c) compare the computational cost,
the speedup (6) and the relative error, respectively.
Note in Figure 2(a) that the cost on the Device is
independent of implementation via Jacket or CUDA
and the two graphs with symbol [0 and ¢ are over-
laid. The same is seen in Figure 2(c) for the relative
error using CUDA or Jacket. Recall for these tests
that the multiple core tests refer to the quadcore
CPU.

Matrix name | besstm19 1138_bus

besstm23 besstk16

-

slrmt3ml besstkl8 besstkl8

Matrix size 817 1138 3134

4884 5489 11948 15439

Table 1: Test matrices selected from Matrix Market [1].

The performance of the GPU with respect to the choice of
kernel is also of interest. In Figure 3 we report the floating
point operations per unit time in seconds, or “GFLOP/s”
for the BLAS 1 (SAXPY, inner product), BLAS 2 (matrix
vector multiplication) and BLAS 3 (matrix matrix multipli-
cation) kernels. In order to have a fair comparison among
different kernels, the test problem is formulated so that all
kernels have have the same number of flops. In particular,
for BLAS 1, we choose the vectors of size n® x 1, for BLAS
2, we choose the matrix of size n2 x n and vector to be of
size n X 1, and for BLAS 3, we choose the matrices of size
n X n. In this way, all the kernels will result in the same
FLOP count of 2n®. In Figure 3, the x-axis corresponds to
the total number of Mega Flops, the y-axis corresponds to
the Giga Flops per unit time measured in seconds. It is in-
teresting to see that BLAS 3 kernels definitely outperform
both BLAS 1 or BLAS 2 kernels. This is preserved as n
increases, but the relative improvement levels off. This sug-
gests that in optimizing the performance of an algorithm for
use on the GPU is should be formulated to take advantage
of BLAS 3 kernels.

GFlops / Sec

‘o Mat-Mat
“Mat-Vec ' i
..~ Dot Product:

Figure 3: Computational Kernels Comparison. Re-
sults in GFLOPS/Sec for SAXPY, dot product, ma-
trix vector multiplication (Mat-Vec) and matrix ma-
trix multiplication (Mat-Mat).

4. A PROJECTION BASED KRYLOV SUB-
SPACE ALGORITHM ON GPU

4.1 Projection Based CG Implementation and

Performance
While it is important to optimize for the GPU using BLAS
3, it is also relevant to consider the specific application in
mind. Here we seek an algorithm which also takes advan-
tage of the multiple right hand side feature in equation (1).
Even though in [8] the projection idea is applied success-
fully, the potential loss of accuracy that results when using
the GPU in single precision in order to optimize efficiency,

must be considered. In particular, while the convergence of
the Lanczos-Galerkin projection based solver has been ex-
tensively discussed in the literature [8, 18], the impact of
single precision on convergence may be significant.

For clarity of exposition, the Projected Conjugate Gradients
(PrCG) algorithm for a regular square linear system is pre-
sented in Algorithm 2. Here the subscript g is the index for
the current system, while the superscript indicates the iter-
ation step. Steps 5 to 11 of Algorithm 2 yield the solution

xE,K) which is the solution of the ¢*" system using projection

onto the Krylov subspace for the 1% system, ¢ = 1. If qul")
does not satisfy the test for convergence, the CG algorithm
is restarted using xf,K) as initial guess for the Krylov sub-
space associated with right hand side b,. The solution is
thus obtained on an augmented Krylov subspace of length
K4 > K. Clearly, the seed space in Algorithm 2 plays an
important role, since it is used to generate solutions for all
remaining systems. Building a good seed space Kx (4, r(®)
is crucial for subsequent updates, but is beyond the scope
of this work. It is discussed in [8] for the case in which the
space can be updated each iteration. Here Kx(A4,r(?) is
generated based on the seed and not updated thereafter.

Algorithm 2 Projected CG (PrCG), [8]

Input: TOL, i =0, RelRes = 1, K, A4, by, x\¥, Ap{"
and pgi) 1€i€k
(K)
Output: x4
1: if seed system then v
2: Canonical CG(); % and output vectors Ap(l") and
p? 1<i<K

3: else
4: % Project onto seed space
5. 1) =bi — Ax{)
6: fori=1to K do

. @ _ _<pi,rg >
LIRS Bt s

. ep e >

8: xf,l) = xf,l) + a((,l)pst)
9: rf,iH) = r,(,i) — ag,i)Ap(,i)
10: end for _
11: RelRes = ||r{” [l2/lbqll2
12: end if

13: if RelRes > TOL then

14: % Augment the seed space

15: Continue the iteration using canonical CG
16: end if

A test problem of size 10240 with 2 right hand sides is
generated, this test problem is selected from Chan’s pa-
per [8] with some modifications. The system matrix A is
a square matrix of size n X n, the entries of which are
defined as A = diag(l,...,n). The right-hand sides are
b (t) = sin(t + (i + j — 2)At), i=1,...,n At = 2r/100

and j = 1,2. The effect of using the PrCG for solving the
test problem is obvious. The total cost is reduced to 1.91s
(from 5.49s using Algorithm 1), and the computational
cost for Mat-Vec is reduced to 1.01s (from 4.0s using Algo-
rithm 1). Furthermore, as the cost of Mat-Vec is reduced,
the costs of both Dot-Prod and SAXPY are more signifi-
cant.This is due to the fact that Algorithm 2 mostly relies
on either Dot-Prod or SAXPY operations.

4.2 Kernel Optimization: Optimized Projected
CG

The operations in Algorithm 2 are mainly BLAS 1 oper-
ations. But we know that we should require that the pro-
jected CG is implemented using BLLAS 3 operations. From
rgi"'l) (') aqz)Aplz), where r,(,) = by, Axgi), and using
(4), gives

(1) _
I'q =

i
b, — Zagc)Ap(lc). (7)
c=1
By the orthogonality conditions with respect to matrix A
<p?, ap? > = 0, j+#4, and
<p§>, > = 0, j<i.

In particular, 0 =< p'{?, r{'*V >. Thus taking the dot

product with p{*’ on both sides of (7), gives

p{, 3ol Ap >

c=1

b, > —af? < p®, Ap >,

0 = <p{?, b,>-<

(1)

and

<p1 ,b >
<p1 vApl

- ()

Let P = [p(o),pgl),...,le)] be the matrix of A- conju-
gate directions. By the A -conjugacy P AP is diagonal, and
(PTAP)i =< p1 : Apl >. Thus af,’) in (8) is given by

@ _ < P(11)» by >
L

(PTAP); + ¢’ ©)

where € is a tolerance parameter, 0 < ¢ < 1, which avoids
division by zero.

Notice that matrices P and AP = [Apgo), Apgl), A Apgl()]
can be stored as the intermediate results {rom solving the

seed system. Thus af,i) in (9) can be calculated using a

matrix operation without updating xq
a = PTb, ./ Vecdiag(PT AP). (10)
Here Vecdiag(T") is the vector of diagonal entries of T
Vecdiag(T) =

[T(0,0),T(1,1),...,T(n,n)]7,

and element-wise division between two vectors is given by

v./u = [0(0)/u(0), v(1) /u(), ..., v(n) /u(n)]

Therefore solution x, can be updated using a Mat-Vec up-
date

7
) = X+ Y alpl?
c=1
= x + P, (11)

which is the standard column version for a Mat-Vec opera-
tion. Equivalently, we rewrite (11) somewhat unconvention-
ally using a BLAS 3 operation as,

x(= x(® + sum(P - diag(ar)), (12)

where diag(v) is the diagonal matrix with vector v along
the diagonal and sum(T") denotes the column-sum of the
columns of matrix T

sum(T)

n
= Zti.
i=1

Similarly, we can calculate the residual as

r) =l — APaq, (13)

or,

r‘(;') = réo) — sum(AP - diag(ax)). (14)

We illustrate the difference in both relative error and com-
putational cost of (11) and (12) in Figure 4 and Figure 5.
The test matrices and vectors are generated to have entries
which are i.i.d. normal. Both CUDA + CUBLAS and Jacket
computing environments are considered. Regardless of the
computing environment, the scaled column sum formulation
(11) is more efficient than (12). On the other hand, the rel-
ative error of (12) is much smaller than (11), which may be
critical for applications in which the accuracy is paramount.

We now obtain the Optimized Projected CG (OPrCG),
Algorithm 3, which is Algorithm 2 with BLAS 1 opera-
tions replaced by BLAS 2 and BLAS 3 operations.

Algorithm 3 Optimized Projected CG (OPrCG)

Input: TOL, 7 = 0, RelRes = 1, K, A, b,, x\¥, P,
and g¢q

Output Xq

1: if seed system then
2: Canonical CG() % and output vectors Ap!” and
pV 1<i<K

3: else

4 % Project onto seed space

5. ry) = by — Ax{

6: a <P by > ./Vecdiag(< P, AP >)

7

8

(K)

Update x4 uti]izing either (11) or (12)
Update r, utilizing either (13) or (14)
RelRes = [|rq|2/|[bq |2

10: end if

11: if RelRes > TOL then

12. % Augment the seed space

13: Continue the iteration using canonical CG
14: end if

Figure 6 shows the difference in computational cost using
OPrCG and PrCG. The total computational cost using PrCG

Relallve Arror {Jacket)
T ——r

.
10 T T T
l‘ Tapru 1
By o : - &= sum (P * diag(wl} |
{

<. UTR) 0 et 1 vore NN PP [M WO SLE0 S a

- L ; ! i . " r
10"

0 1000 2000 3000 4000 3000 6000 7000 8000 9000
Probiem Size

(a) Relative Error Using Jacket

Computational Cost in Time {Jacket)

10' ' : s
t—‘ ‘ lm-Prn
f 6 aum (P (o)
10° s
P
10’ : Ll
»
3 =
S = |
107 b g
2 e
k‘ ¢ A = :
10 ‘..,4,_
2

o 1000 2000 3000 6000 7000 8000 9000

4000 3000
Problem Size

(b) Cost Using Jacket

Figure 4: Comparison of the relative error and com-
putational cost using (11) and (12) in Jacket.

Relative Rrror (CUBLAS)

~BP*a

=4 ~sum (P-* diagia)} |
” g
10 y A 0 i
f
. T
£ I r
-
v
N O T U) -
10 ey -
8 4-0-"
i
!
10l s
0 1000 2000 3000

4000 5000 6000 7000 8000 9000
Problem Size

(a) Relative Error Using CUBLAS

Computational Cost in Time (CUBLAS)
T T T T

10 T T
[~mAPty o
-4 - sum (P dlag(a)

10° LT
.
107" I 7ol
e
% 3=
gm"ro
; =
2 O N ST O (S e 5 =t
10 i s
L b
-4 iy
10 f,
107 i i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Prablem Size

(b) Cost Using CUBLAS

Figure 5: Comparison of the relative error and com-
putational cost using (11) and (12) in CUDA +
CUBLAS.

is 1.91s, where the projection procedure takes about 27.18%
as in Figure 6(a). By using OPrCG, the total computational
cost is reduced to 1.50s, where the projection procedure is
only about 8.02% as in Figure 6(b). A 20% improvement in
computational cost is obtained in this example.

70.0%)
60.0%|
50.0%|

40.0%,

:
:

Projection Augment

(a) Projected CG

& ¢
2 3

Parcentage

0.0%

Projection Augment

(b) Optimized Projected CG

Figure 6: Comparison in computational cost using
OPrCG in Algorithm 3 and PrCG in Algorithm 2.
The only difference is due to the BLAS 3 imple-
mentation for the projection steps, which is more
efficient.

5. NUMERICAL RESULTS
5.1 3D Shepp-Logan Phantom Reconstruction

We now turn our attention to the use of the GPU for the re-
construction of the slices for a 3D Shepp-Logan Phantom (2],
see Figure 7. It is immediately clear that consecutive slices
are similar and that a projection-based approach should be
used in the reconstruction. We build a projection matrix of
size 16650 x 16384, which corresponds to an image for one
slice of size 128 x 128. The condition number of the system
is 1.1 x 10%2. Tikhonov regularization (2) is used to regular-
ize the reconstruction; the regularization parameter is set to
be A% = 0.5 throughout the tests. For this test, we chose to
compute the reconstructions in batches of four slices. The
performance of the algorithm therefore relies heavily on the
accuracy of the projection steps. It is thus appropriate to
use the more accurate update scheme and so we select (12)
and (14) for updating in this example.

The loss of orthogonality can be a significant issue when the
system is ill-posed. Specifically, as the problem size increases
the loss of orthogonality starts to effect the performance of
OPrCG. This is not surprising because the algorithm de-
pends significantly on the orthogonality of the conjugate di-
rections and residuals. When the problem is ill-posed, the
loss of orthogonality for the conjugate directions becomes
more severe [17] and reorthogonalization is needed. This

Figure 7: Slice Show of A 3D Shepp-Logan Phantom

can be accomplished by reorthogonalization applied to ei-
ther the gradient vectors p® or to the residual vectors r(*.
Here we reorthogonalize for the gradient vectors.

For the simulation we select slice 64 as the seed slice and
use projection to obtain reconstructions of slices 65 to slice
68. The dimension of P used in both PrCG and OPrCG is
60, the dimension of the augmented space for each of the
slices is reported in Table 2. Three different approaches
and their results are reported in Table 2, where three recon-
struction approaches are compared: CG (Algorithm 1),
PrCG (Algorithm 2) and OPrCG (Algorithm 3). Again,
the methods are contrasted through measurements of Cost,
Speedup and SNR. In order to further contrast PrCG and
OPrCG, we also compute the percentage Improvement Ra-
tio given by

Costprcc — Costorrca
Costprca

ImpRate = x 100%. (15)

From Table 2, we see that in terms of computational cost the
projection based approaches achieve a speedup from four to
eight times depending on the location relative to the seed
slice. The largest speedup for the two projection based
methods is at slice 65, which is reasonable considering the
largest similarity to the seed. As the slice location is fur-
ther away from the seed slice, the speedup is reduced as
illustrated in Table 2. This is consistent with the discussion
in [8] that the right hand sides need to be close. To fur-
ther compare between PrCG and OPrCG, we can see that
OPrCG yields even further speedup than PrCG, while still
preserving the SNR of the reconstruction. The quality of
the reconstructed images using all three approaches is fairly
comparable, the SNR is preserved independently of the al-
gorithm. To further illustrate, we show the results for slice
66 in Figure 8, visually the results are comparable. We con-
clude from the results in Table 2 and the reconstruction in
Figure 8, that the projection based algorithms yield good
performance. Moreover OPrCG can further speed up the
algorithm while maintaining good accuracy. We note that
the seed system should be replaced after some number of
steps, dependent on the distance of b from b{?, ¢ > 1 18]

(a) Host

(b) Device - PrCG

(c) Device - OPrCG

Figure 8: Reconstruction Results on Host and De-
vice Using Three Different Approaches. Slice index
= 66, image size = 128x128. 8(a): Reconstruction us-
ing CG, SNR = 13.80 dB; 8(b): Reconstruction using
PrCG, SNR = 13.83 dB; 8(c): Reconstruction using
OPrCG, SNR = 13.83 dB.

Solver CG PrCG OPrCG .
Slice Cost [SNR. [Mat-Vec | Cost [SNR [Mat-Vec | Speedup | Cost [SNR | Mat-Vec | Speedup lmpRatio
65 1579\ 13167 83 2.17 [13.67 36 T27 2.06 | 13.67 36 THF 5.07%

66 15.89| 13.80 Vg 2.73 113.83 48 5.80 2.58 [13.83 47 6.16 5.49%

67 13.58 | 13.91 76 3.10 | 13.95 56 4.37 2.80 [13.95 52 4.84 9.68%

68 15.55| 13.80 81 3.55 | 13.83 65 4.38 3.47 [13.83 66 4.49 2.25%

Table 2: Reconstruction of Four Consecutive Slices from 65 to 68. The 64" slice is selected as seed and the
the others are reconstructed utilizing CG (Algorithm 1), PrCG (Algorithm 2) and OPrCG (Algorithm 3).
The results are the computational cost (Cost), SNR value (SNR, in dB), speed up (Speedup), the number of
the matrix vector multiplications (Mat-Vec) and the improvement ratio (ImpRatio).

6. CONCLUSIONS AND FUTURE WORK
We discussed implementation issues for a projection based
CG algorithm on the GPU. The performance of the GPU for
BLAS 3 is much better than for BLAS 1 and 2. Thus the
projected CG algorithm can be optimized to run on the GPU
by taking advantage of BLAS 3 operations. The numerical
tests verify that the optimized algorithm is feasible in terms
of both accuracy and convergence. This is consistent with
earlier work on the block CG (BCG) algorithm [15]. In
particular, Saad showed that using the projected system is
mathematically equivalent to starting the block CG method
with the initial block [b(l), b(z)], (18, Theorem 4.1], which
explains the relative success of the approach adopted here.
It is worth noting, however, that the standard block CG
approach assumes that the set of right hand sides is available
simultaneously, which need not always be the case.

The speedup of the presented algorithm depends signifi-
cantly on the efficiency of the Mat-Vec multiplication. It
may be possible to optimize this operation by considering
the special structure within the system matrix. Further-
more, in the discussion presented here, we acknowledge that
we have neither addressed the additional storage require-
ments associated with storing the matrices P and AP, nor
the communication costs associated with distributing P and
AP. These considerations are topics for our future research.
Trade-offs between utilizing structure, increasing storage and
maintaining sufficient accuracy most likely exist. Recently,
there is a new series of GPUs named “Fermi” with new ar-
chitecture released on the market by NVIDIA®. It is said to
have much better performance in double precision than all
the previous generations of GPUs. It would be interesting
to see the performance on the new card.

7. ACKNOWLEDGEMENT

This research is supported by the NSF research grants (DMS
0652833, 0966270 and 0937737) and the graduate student
research grant from the Graduate Professional Student As-
sociation (GPSA), Arizona State University. We would like
to thank NVIDIA® for the generous donation of a NVIDIA®
Tesla C1060 GPU, Dr. Wolfgang Stefan from Rice Univer-
sity for discussions on the GPU and Jacket, and Dr. Nathan
Bell from NVIDIA for his general advice on the paper.

8. REFERENCES
[1] Matrix market. A repository of matrix test data for
use in comparative studies of algorithms.
http://math.nist.gov/MatrixMarket/.
[2] 3D Shepp-Logan phantom, 2005.
http://wuw.mathworks.com/matlabcentral/

fileexchange/9416-3d-shepp-logan-phantom.

[3] NVIDIA CUBLAS Library, Version 2.3., 2009.
http://developer.download.nvidia.com/compute/
cuda/2_3/toolkit/docs/CUBLAS_Library_2.3.pdf.

[4] NVIDIA CUDA Computed Unified Device
Architecture Programming Guide, Version 2.3.1.,
2009. http://developer.nvidia.com/object/cuda_
2_3_downloads.html.

[5] NVIDIA CUFFT Library, Version 2.3., 2009.
http://developer.download.nvidia.com/compute/
cuda/2_3/toolkit/docs/CUFFT_Library_2.3.pdf.

[6] Jacket - The GPU Acceleration Engine for MATLAB,
Version 1.2.2., 2010. http://wuw.accelereyes.com/.

[7] N. Bell and M. Garland. Implementing sparse
matrix-vector multiplication on throughput-oriented
processors. In Proceedings of the Conference on High
Performance Computing Networking, 2009.

[8] T. F. Chan and W. L. Wan. SIAM Journal on

Scientific Computing, 18(6):1698-1721, 1997.

G. H. Golub and C. F. Van Loan. Matriz

Computations. The Johns Hopkins University Press,

third edition, 1996.

[10] P. C. Hansen. Rank-Deficient and Discrete [ll-Posed
Problems. STAM, 1997.

[11] D. B. Kirk and W. Hwu. Programming Massively
Parallel Processors. Morgan Kaumann, 2010.

[12] Y. Lin and R. Renaut. Projected conjugate gradient
solvers on GPU and its applications. In GPU
Technology Conference, 2010.

[13] Y. Lin, B. Wohlberg, and H. Guo. Signal Processing,
90(8):2546-2551, August 2010.

[14] J. Mead and R. A. Renaut. [nverse Problems,
25(2):025002 -025020, 2009.

[15] D. P. O’Leary. Numerical Linear Algebra with
Applications, 29:293-322, 1980.

[16] D. Riabkov, X. Xue, D. Tubbs, and A. Cheryauka.
Accelerated cone-beam backprojection using
GPU-CPU hardware. In Proceedings of the 9th
IntéAZl Meeting Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine,
2007.

[17] F.-X. Roux. Acceleration of the outer conjugate
gradient by reorthogonalization for a domain
decomposition method for structural analysis
problems. In International Conference on
Supercomputing, 1989.

[18] Y. Saad. Mathematics of Computation,
48(178):651-662, 1987.

[0

