LA-UR- /) -0O573

Approved for public release;
distribution is unlimited.

Title: | Scout: High-Performance Heterogeneous Computing Made
Simple

Author(s): | James Jablin, Patrick McCormick, Maurice Herlihy

Intended for: | |PDPS 2011 PhD Forum

» Los Alamos
NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Scout: High-Performance Heterogeneous Computing Made Simple

Grad: James A. Jablin, 3"¢ year
Brown University
Jjablin@cs.brown.edu

Abstract—Researchers must often write their own simulation
and analysis software. During this process they simultaneously
confront both computational and scientific problems. Current
strategies for aiding the generation of performance-oriented
programs do not abstract the software development from the
science. Furthermore, the problem is becoming increasingly
complex and pressing with the continued development of
many-core and heterogeneous (CPU-GPU) architectures. To
achieve high performance, scientists must expertly navigate
both software and hardware. Co-design between computer
scientists and research scientists can alleviate but not solve
this problem. The science community requires better tools
for developing, optimizing, and future-proofing codes, allowing
scientists to focus on their research while still achieving high
computational performance.

Scout is a parallel programming language and extensible
compiler framework targeting heterogeneous architectures. It
provides the abstraction required to buffer scientists from
the constantly-shifting details of hardware while still realizing
high-performance by encapsulating software and hardware
optimization within a compiler framework.

Keywords-GPU; high-performance; parallel programming
language; compilers

I. INTRODUCTION

Advances in hardware trends of multicore and heteroge-
neous architectures have outpaced software development.
Previously, programmers could expect increasing perfor-
mance without intervention based on regular increases
in clock frequency. Clock frequency increases eventually
stopped due to concemn about heat dissipation while Moore’s
Law continued unabated. Consequently, chip manufacturers
used the extra transistors to create multiple cores with-
out increasing overall clock speed rather than a single
faster core. The advent of multicore architectures drastically
changed the architectural landscape. The number of cores
has increased while clock frequency has either remained
constant or decreased.

These radical architectural changes are supported by im-
proved CPU performance. Results achieved on the GPU are
equally impressive [1]. Unfortunately, high performance on
multicore and heterogeneous architectures often demands
expert manual optimization. Programs written in current
programming languages are a challenge for automatic paral-
lelization and provide no hardware abstraction. Static com-
piler optimizations produce conservative results. Without
hardware abstraction the programmer must acquire target
architecture knowledge to aid optimization. Programmers

Advisor: Patrick McCormick
Los Alamos National Laboratory
pat@lanl.gov

Advisor: Maurice Herlihy
Brown University
mph@cs.brown.edu

require better programming abstractions for developing, op-
timizing, and future-proofing codes.

The most common programming languages for scientific
workloads are C/C++ and Fortran. Invented in a time when
single-core CPUs dominated, these languages contain con-
structs to improve single-core performance but foil autopar-
allelization techniques. For example in C/C++, pointer ma-
nipulation and subversive typecasting thwart alias analysis
creating missed opportunities for optimization. Inadequate
programmer education about parallel processing compounds
the problem, yielding programs that defy static optimization.

A programming language should reflect the ease of use
and intuitiveness of sequential programming and still admit
directed compiler optimization and parallelization. Domain-
specific languages have limited use cases. Parallel pro-
gramming languages deliver a highly parallel and scalable
programming model but not one has gained widespread
appeal. Sequential languages with parallel extensions better
exploit concurrency but still contain sequential language
pitfalls.

For developing GPU codes, programmers use CUDA
C [10] or OpenCL [4]. Both require explicit management
of data between CPU and GPU, a tedious and error-prone
process. Management of linked-data structures poses an even
greater challenge than arrays, further limiting utility. CUDA
C and OpenCL are extensions of C. As such the programmer
must balance between avoiding C’s problems and exploiting
the performance potential of the GPU.

This paper presents Scout, a parallel language and exten-
sible compiler framework. It shares similar concepts and the
same name with its predecessor [8]. New contributions focus
on a refactored programming language and completely re-
designed compiler framework and optimization techniques.
Scout combines the effective strategy of explicitly identify-
ing concurrency with program directives with an extensible
compiler framework for profiling, statically optimizing, and
tuning. These new modifications enable Scout to provide
a high-level programming abstraction and still generate
efficient executable code for heterogeneous architectures.

II. ScouT PROGRAMMING LANGUAGE

The Scout parallel programming language facilitates anal-
ysis and simulation of computationally intensive data sets
by providing constructs for describing concurrency while
abstracting architectural details and data management. It is

Listing 1: CUDA 2D Heat Simulation

Listing 2: Scout 2D Heat Simulation

W __global__ void heat2d(unsigned N, float heatIn[N][N],
[] float heatOut[N][N]) {
int row = blockldx.x * blockDim.x + threadldx.x;
int col = blockldx.y * blockDim.y + threadldx.y;
if(row < N && col < N) {
float delta = 0.0;
if(row > 0) delta += heatlnfrow][col+1];
if(col < N-1) delta += heatIn[row][col-1];
if(row < N-1) delta += heatIn[row+1][col];
if(col > 0) delta += heatIn[row-1][col];
heatOQut{row][col] = heatln[row][col] + 0.25 * (delta -
4 * heatln[row][col]);
}

}

__host__ void main(unsigned COUNT) {
/* Declare 2D array of data structure of 1,048,576 elements ¥/
float heatIn[1024][1024], heatOut[1024][1024];

/* Initialize heatIn and heatOut*/

/* Malloc memory on the GPU ¥/

float **d_heatln, **d_heatOut;

int const N_BYTES = 1024 * 1024 * sizeof(float);
cudaMalloc(d_heatin, 1024);
cudaMalloc(d_heatQOut, 1024),

/* Copy 2D arrays from the CPU 1o the GPU */
cudaMemcpy(heatln, d_heatln, N_BYTES,
cudaMemcpyHostToDevice);
cudaMemcpy(heatOut, d_heatOut, N_BYTES,
cudaMemcpyHostToDevice);
for(unsigned i = 0; i < COUNT; ++i) {
/* Define grid and block size to generate 1,048,576 threads */
dim3 grid(64, 64, 0), block(16, 16, 0);

/* Perform 2D heat simulation */
| hear2d< << grid, block >>>(1024, d_heatln, d_heatOut);

d_heatln = d_heatOut;

[NAN]

MERR

/* Copy the 2D array back from GPU 1o CPU */

cudaMemcpy(d_heaiOut, heatOut, N_BYTES,
cudaMemcpyDeviceToHost),

/* Free the 2D arrays */

cudaFree(d_heatln);

cudaFree(d_heatOut);

88 BB

B GPU kermel & CPU-GPU communication [Memory (de)allocation

an imperative language providing strong type information,
an abstract data layout, and explicit concurrency constructs.

Listing 1 is an example program written in CUDA and
Listing 2 is an example of the same program written in
Scout. The code in the listings simulates two-dimensional
heat transfer of a point source. When compiled, both codes
execute on the GPU with equivalent performance. Compar-
ing listings highlights Scout’s ability to hide architectural
detail behind an abstract yet descriptive language. Scout
programs are easier to program, debug, and maintain without
loss of performance.

In Listing 1, memory for GPU variables must be mal-
loc’ed. Next, there is code to copy the variables from CPU
to GPU. The number of GPU threads per grid and per block
is declared. Then GPU kemel hear2d is executed. Finally,

void main(unsigned COUNT) {
/* Declare 2D array of data structure of 1,048,576 elements*/
uniform grid Grid[1024,1024];
/* Declare a 2D variables of type float ¥/
float@cell Grid:Grid heatln, heatOut;

/* Initialize heatin and heatOut¥/

for(unsigned i = 0; i < COUNT; ++i) {
/* Perform 2D heat simulation */
forall cells in Grid
heatOut = heatln + 0.25 * (north(heatln, 0.0) +
south(heatln, 0.0) +
east(heatln, 0.0) +
west(heatln, 0.0) -4 * heatln);

heatln = heatQOut;
}
}

B GPU kemel

N CPU-GPU communication A Memory (de)allocation

the results are copied from GPU to CPU and GPU memory
is freed.

The Scout version in Listing 2 is noticeably more concise.
Scout abstracts the tasks related to GPU initialization and
CPU-GPU communication. Initially, a Scout grid type is
defined. Scout grid types define a multidimensional stati-
cally allocated data structure. The rank of each dimension
need not be the same. Next, the type of each grid element is
declared. The forall keyword identifies an explicitly concur-
rent block of code. The Grid type beside forall indicates that
lines nested within forall execute on all 1,048,576 elements.

In addition, the Scout GPU kernel is slimmer and more
abstract compared to the CUDA GPU kernel. The GPU
kernel of each listing is marked with black squares. Notice
the declaration of GPU threads in the CUDA GPU kernel
and the absence of thread declarations in the Scout example.
In the CUDA example, perimeter elements must be explicitly
handled. By contrast, Scout’s GPU kernel implicitly han-
dles GPU threads, and the comer cases of the perimeter
elements are defined with the intrinsic stencil operations:
north, south, east, and west. Stencil operations perform
a query of a neighbor element’s value without explicit
reference to data structure. The second parameter represents
the value returned if an element beyond the dimension’s
size is accessed. Scout also includes a circular version of
handling out-of-bounds access. Abstracting data reference
enables optimization of data structure to target architecture.

Scout leverages an efficient and powerful programming
abstraction to allow the programmer to easily write pro-
grams for heterogeneous architectures. The following section
details the work performed in the compiler to transform a
Scout program into a high-performing executable.

III. SCOUT TOOLCHAIN

Scout bootstraps from the LLVM [5] compiler infrastruc-
ture. LLVM provides common compiler parts as modules
assembled based upon user discretion. A schematic diagram
of Scout’s toolchain appears in Figure 1. The current status

Section Il
Inputs sources.sc
i I I S S S - N I IS B . e

Optimization

Section 1l
ANTLR-generated
Frontend

1
! AMD IL Backend !
1
[)

--------- -

P -
§ Section v [}

'
AT Profiler raly

[4
Yes
|
I
Sectlon IH
' Section lILB
] GPU Optimization
Section INI.C
]
1 ICUDA Declarations Section LA
pmm—bomceee i
Sectlon V 1 CPU Op tiol
1 : OpenCL H ? Section Il
I : Declarations l- - PTX Backend
i R - {Section v S
|
1
L

---------1

Outputs
= / GPU Code

B Current status M Future work

Figure 1. Scout toolchain

of the toolchain is marked in solid black, and future work is
marked in dashed grey. Implementing Scout in LLVM facil-
itates portability. LLVM maintains many CPU architecture
backends. Future work on Scout will expand the number of
GPU backends.

The Scout compiler takes a Scout source program, like
Listing 2, as input and outputs executable CPU and GPU
code. The frontend parses and translates the Scout program
into LLVM assembly language, the input and output of all
LLVM modules. Sections of concurrent code in a Scout
program amenable to GPU execution are identified within
the frontend.

Kernel identification partitions LLVM assembly into
GPU-bound and CPU-bound codes. Each code receives
target-specific optimization. For GPU kemels CUDA dec-
larations "are automatically inserted based on each GPU
kernel’s characteristics. After GPU optimization, LLVM
assembly is lowered to PTX by Scout’s PTX backend, a
branch of Rhodin’s backend [11]. PTX is the intermediate
assembly language for NVIDIA GPUs. Likewise, after CPU
optimization, LLVM assembly is lowered to the target CPU
architecture.

A. CPU Optimization

Common compiler optimizations are applied to the CPU
code. Because the bus connecting CPU and GPU has char-
acteristics of high bandwidth and high latency, GPU kernels
tend to dominate runtime, and the work of the CPU is

often restricted to copying data and starting GPU kernels.
Accordingly, minimizing the number of CPU-GPU commu-
nications, rather than the volume of data communicated, will
achieve best performance. Consequently, improvements to
performance for heterogeneous architectures reduce the CPU
workload to CPU-GPU communication and synchronization.

B. GPU Optimization

The important factors for maximizing GPU kernel perfor-
mance are coalescing memory operations, removing control
flow, and distributing work to all GPU cores.

All these factors accentuate the GPU’s single-instruction,
multiple-thread (SIMT) architecture and are more fully
discussed in “CUDA C Best Practices” [9]. The compiler
supports the different kinds of GPU memory. The data
layout of the GPU kemel’s arguments is first optimized for
coalesced memory access for the GPU. Coalesced mem-
ory operations achieve maximum throughput for the same
latency as a single memory access. This optimization is
possible by transforming the variable’s data footprint in
memory. In C/C++, changing the data layout of variables
and enforcing pointer arithmetic semantics is impractical.

The GPU’s SIMT architecture forces every GPU thread
to execute in lock step. Control flow within a GPU kernel
will degrade performance by introducing branch divergence.
Only threads that succeed the conditional will execute while
the rest idle until the successful threads finish the branch.
Removing control flow from within a kernel prevents branch
divergence.

Distributing work between GPU cores hides latency by
overlapping processes stalled on memory accesses with
processes able to compute. Uncoalesced memory operations
and under-utilization of GPU cores have severe performance
implications for a memory-bound kernel.

Finally, variables with high dimensionality present a diffi-
cult problem for efficient memory access. Scout has a special
optimization for this case. The variable is tiled into two-
dimensional blocks. This process has the added benefit of
enabling better cache coherence.

C. CUDA Declarations

The CUDA declarations facilitate GPU kernel manage-
ment. As shown in Listing 1, CUDA declarations allocate
and deallocate GPU memory and provide routines for CPU-
GPU communication.

Inefficient CPU-GPU communication patterns result in
poor overall performance. Where possible the compiler op-
timizes communication to minimize redundant copies. Also,
the compiler transforms cyclic CPU-GPU communication
patterns into acyclic ones.

CUDA declarations set the number of threads per grid
and per block. Poor choices of grid and block size decrease
GPU utilization and consequently decrease performance.
The compiler sets the number of threads based upon kernel
arguments. Programmers have difficulty choosing an appro-
priate thread count because the choice depends on code

and GPU architecture. Automatically defining thread count
relieves this burden from the programmer. As shown in
Listing 1, branch statements must be manually calculated
and inserted in the kernel to prevent out-of-bound errors.
The Scout compiler automates this process.

IV. RESULTS

Collaborations are underway with several groups from Los
Alamos National Laboratory to use Scout to aid in analysis
and visualization of large-scale data sets. With the Physics
and Chemistry of Materials group, short-range molecular
dynamics codes are being adapted to run on a GPU cluster.
Additionally, with the cooperation of the Space Science and
Applications, Nuclear and Particle Physics, and Astrophysics
and Cosmology groups work continues on cosmology codes.

The Rodinia Benchmark Suite [3] is composed of pro-
grams with parallelized versions using OpenMP and CUDA
for multicore CPUs and GPUs respectively. Work continues
manually porting the CUDA versions to Scout and compar-
ing performance. Results are encouraging.

V. FUTURE WORK

Scout eases the transition for programmers to leverage
GPUs for high-performance. Future work will continue to
improve performance and portability. Additions to Scout’s
toolchain include an AMD IL backend, OpenCL declara-
tions, and a JIT profiler. An AMD IL backend and OpenCL
declarations would enable Scout to target AMD GPUs.
AMD IL is analogous to PTX but for AMD GPUs. It is
the intermediate assembly language for AMD GPUs.

LLVM has a module for JIT compilation of LLVM
assembly. As depicted in the Scout toolchain diagram in
Figure 1, the JIT could be used to profile and tune GPU
kemels for performance based on the number of threads
allocated per grid and per block. Profiling could also identify
CPU codes sandwiched between GPU codes causing a long
latency chain. Lowering these sandwiched CPU codes to
the GPU will improve performance by removing communi-
cation. To further enhance performance, kemel fusion and
fission optimizations would improve cache coherence via
locality of reference.

Currently, the Scout compiler does not statically analyze
programs for parallelizable loops, relying solely on Scout’s
concurrent annotations. Prior work to automatically detect
parallelizable loops in programs complements Scout’s an-
notations and could further improve performance.

Besides high computational performance, data visualiza-
tion is also important. The Scout programming language will
integrate performance and visualization directives, providing
facilities for analysis and simulation of computationally
intensive data sets.

VI. RELATED WORK

Prior work on automatic parallelization for GPUs focuses
on improving codes written in a mixture of C and CUDA.

No prior work abstracts details about concurrency or mem-
ory management. For programs written in CUDA, CUDA-
lite [13] improves GPU kernel performance by optimizing
GPU memory access. Using the polyhedral model “C-to-
CUDA for Affine Programs” [2] and “A mapping path for
GPGPU” [7] optimize C codes into efficient CUDA C. For a
less portable solution, “OpenMP to GPGPU” [6] translates
programs annotated with OpenMP pragmas to CUDA C.
The PGI Fortran and C compiler [12] advertises semi-
automatic GPU parallelization. Users must mark loops and
the optimization is not tolerant to general pointer arithmetic.

VII. CONCLUSION

Current programming languages and tools divert atten-
tion away from science to software development. Scout
showcases how a mix of language abstraction and compiler
automation result in high-performance without the burden of
manual optimization. Using an explicitly parallel language
with few universal primitives results in a less computa-
tionally intensive analysis and broader application of paral-
lelization techniques. Future work focuses on optimization
opportunities not targeted by the current framework and
improvements to portability.

REFERENCES

[1] CUDA Community Showcase.
http://www.nvidia.com/object/cuda_showcase_html.html.

[2) M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-
CUDA code generation for affine programs. In R. Gupta, editor, CC,
volume 6011 of Lecture Notes in Computer Science. Springer, 2010.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous comput-
ing. In /EEE International Symposium on Workload Characterization,
2009. 1ISWC 2009., pages 44-54, October 2009.

[4] Khronos OpenCL Working Group. The OpenCL Specification,
September 2010.
[5]1 C. Lattner and V. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In CGO °04: Proceedings of
the International Symposium on Code Generation and Optimization,
page 75, Washington, DC, USA, 2004. IEEE Computer Society.

[6] S.Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a compiler

framework for automatic translation and optimization. In PPoPP '09:

Proceedings of the 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, New York, NY, USA, 2009.

A. Leung, N. Vasilache, B. Meister, M. Baskaran, D. Wohlford,

C. Bastoul, and R. Lethin. A mapping path for multi-GPGPU acceler-

ated computers from a portable high level programming abstraction.

In GPGPU ’10: Proceedings of the 3rd Workshop on General-Purpose

Computation on Graphics Processing Units, pages 51-61, New York,

NY, USA, 2010.

[8] P. McCormick, J. Inman, J. Ahrens, J. Mohd-Yusof, G. Roth, and
S. Cummins. Scout: a data-parallel programming language for
graphics processors. Parallel Comput., 33:648-662, November 2007.

[9] NVIDIA Corporation. CUDA C Best Practices Guide 3.2, 2010.

[10] NVIDIA Corporation. NVIDIA CUDA C Programming Guide 3.2,
Nov. 2010.

[11] H. Rhodin. LLVM PTX Backend.
http://sourceforge.net/projects/llvmptxbackend.

[12] The Portland Group. PGI Fortran & C Accelator Programming Model.
White Paper, 2010.

[13] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W.-M. W. Hwu.
Languages and compilers for parallel computing. chapter CUDA-
Lite: Reducing GPU Programming Complexity, pages 1-15. Springer-
Verlag, Berlin, Heidelberg, 2008. .

[7

—

