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Abstract-Researchers must often write their own simulation 
and analysis software. During this process they simultaneously 
confront both computational and scientific problems. Current 
strategies for aiding the generation of performance-oriented 
programs do not abstract the software development from the 
science. Furthermore, the problem is becoming increasingly 
complex and pressing with the continued development of 
many-core and heterogeneous (CPU-GPU) architectures. To 
acbieve high performance, scientists must expertly navigate 
both software and hardware. Co-design between computer 
scientists and research scientists can alleviate but not solve 
this problem. The science community requires better tools 
for developing, optimizing, and future-proofing codes, allowing 
scientists to focus on their research while still achieving high 
computational performance. 

Scout is a parallel programming language and extensible 
compiler framework targeting heterogeneous architectures. It 
provides tbe abstraction required to buffer scientists from 
the constantly-shifting details of hardware while still realizing 
higb-performance by encapsulating software and hardware 
optimization within a compiler framework. 

Keywords-GPU; high-performance; parallel programming 
language; compilers 

1. INTRODUCTION 

Advances in hardware trends of multicore and heteroge­
neous architectures have outpaced software development. 
Previously, programmers could expect increasing perfor­
mance without intervention based on regular increases 
in clock frequency. Clock frequency increases eventually 
stopped due to concern about heat dissipation while Moore's 
Law continued unabated. Consequently, chip manufacturers 
used the extra transistors to create multiple cores with­
out increasing overall clock speed rather than a single 
faster core. The advent of multicore architectures drastically 
changed the architectural landscape. The number of cores 
has increased while clock frequency has either remained 
constant or decreased. 

These radical architectural changes are supported by im­
proved CPU performance. Results achieved on the GPU are 
equally impressive [l]. Unfortunately, high performance on 
multicore and heterogeneous architectures often demands 
expert manual optimization. Programs written in current 
programming languages are a challenge for automatic paral­
lelization and provide no hardware abstraction. Static com­
piler optimizations produce conservative results. Without 
hardware abstraction the programmer must acquire target 
architecture knowledge to aid optimization. Programmers 

require better programming abstractions for developing, op­
timizing, and future-proofing codes. 

The most common programming languages for scientific 
workloads are C/C++ and Fortran. Invented in a time when 
single-core CPUs dominated, these languages contain con­
structs to improve single-core performance but foil autopar­
allelization techniques. For example in C/C++, pointer ma­
nipulation and subversive typecasting thwart alias analysis 
creating missed opportunities for optimization. Inadequate 
programmer education about parallel processing compounds 
the problem, yielding programs that defy static optimization. 

A programming language should reflect the ease of use 
and intuitiveness of sequential programming and still admit 
directed compiler optimization and parallelization. Domain­
specific languages have limited use cases. Parallel pro­
gramming languages deliver a highly parallel and scalable 
programming model but not one has gained widespread 
appeal. Sequential languages with parallel extensions better 
exploit concurrency but still contain sequential language 
pitfalls. 

For developing GPU codes, programmers use CUDA 
C [10] or OpenCL [4]. Both require explicit management 
of data between CPU and GPU, a tedious and error-prone 
process. Management of linked-data structures poses an even 
greater challenge than arrays, further limiting utility. CUDA 
C and OpenCL are extensions of C. As such the programmer 
must balance between avoiding C's problems and exploiting 
the performance potential of the GPU. 

This paper presents Scout, a parallel language and exten­
sible compiler framework. It shares similar concepts and the 
same name with its predecessor [8]. New contributions focus 
on a refactored programming language and completely re­
designed compiler framework and optimization techniques. 
Scout combines the effective strategy of explicitly identify­
ing concurrency with program directives with an extensible 
compiler framework for profiling, statically optimizing, and 
tuning. These new modifications enable Scout to provide 
a high-level programming abstraction and still generate 
efficient executable code for heterogeneous architectures. 

II. SCOUT PROGRAMMING LANGUAGE 

The Scout parallel programming language facilitates anal­
ysis and simulation of computationally intensive data sets 
by providing constructs for describing concurrency while 
abstracting architectural details and data management. It is 



Listing 1: CUDA 2D Heat Simulation 
• ---&lobal_ void heat2d(unsigned N, float heatln[N][N], 
• float heatOut[N][N]) ( 
• int row = blockldx.x * blockDim.x + threadldx.x; 
• int col = blockldx.y • blockDim.y + threadldx.y; 
• if(row < N && col < N) ( 
• float delta = 0.0; 
• if(row > 0) delta += heatln(row ][col+l]; 
• if(col < N-I) delta += heatln[row ][col- I] ; 
• if(row < N- I) delta += heatln(row+ I][col ]; 
• if(col > 0) delta += heatln[row- I][col ]; 
• heatOut[row][col] = heatln[row][col] + 0.25 * (delta -
• 4 * heatln[row][col]) ; · } .} 

_host_ void main(unsigned COUNT) ( 
1* Declare 2D arra), of data structure of 1,048,576 elements */ 
float heatln[J024][1024], heatOut[1024][1024]; 

1* lnitialize healln and heatOut*/ 

/* Malloc memory on the GPU */ 
float **d_heatln, **d_heatOut; 
int const N_BYTES = 1024 * 1024 * sizeof(lIoat): 

IZI cudaMalloc(d_heatln, 1024); 
IZI cudaMalloc(d_heatOut, 1024); 

1* Cop), 2D arrays from the CPU to the GPU */ 
~ cudaMemcpy(heatln, d_heatln, N_B YTES, 
~ cudaMemcpyHostToDevice); 
~ cudaMemcpy(heatOut, d_heatOut, NJWTES, 
~ cudaMemcpyHos(foDevice); 

for(unsigned i = 0; i < COUNT; ++i) ( 
/* Define grid and block size to generate 1,048,576 threads */ 
dim3 grid(64, 64, 0), block( 16, 16, 0); 

/* Perform 2D heat simulation */ 
• heat2d«< grid, block »>(1024, d_heatln, d_heatOut); 

d_heatln = djJeatOut: 
} 

1* Copy the 2D array back from GPU 10 CPU */ 
~ cudaMemcpy(d_heatOut, heatOut, N_BYTES, 
~ cudaMemcpyDeviceToHost); 

1* Free the 2D arrays */ 
IZI cudaFree(d_heatln); 
IZI cudaFree(djJeatOut): 

} 

• GPU kernel ~ CPU-GPU communication IZI Memory (de)allocation 

an imperative language providing strong type information, 
an abstract data layout, and explicit concurrency constructs. 

Listing I is an example program written in CUDA and 
Listing 2 is an example of the same program written in 
Scout. The code in the listings simulates two-dimensional 
heat transfer of a point source. When compiled, both codes 
execute on the GPU with equivalent performance. Compar­
ing listings highlights Scout's ability to hide architectural 
detail behind an abstract yet descriptive language. Scout 
programs are easier to program, debug, and maintain without 
loss of performance. 

In Listing I, memory for GPU variables must be rnal­
loc'ed. Next, there is code to copy the variables from CPU 
to GPU. The number of GPU threads per grid and per block 
is declared. Then GPU kernel heat2d is executed. Finally, 

Listing 2: Scout 2D Heat Simulation 
void main(unsigned COUNT) ( 

/* Declare 2D array of data structure of 1,048,576 elements*/ 
uniform grid Grid[J024,1024]; 
1* Declare a 2D variables of type float */ 
float@ceU Grid:Grid heatln, heatOut; 

/* Initialize heatln and heatOut*/ 

for (unsigned i = 0; i < COUNT; ++i) { 
/* Perform 2D heat simulation */ 

• for aU ceUs in Grid 
• heatOut = heatln + 0.25 * (north(heatln, 0.0) + 
• south(heatln, 0.0) + 
• east(heatln, 0.0) + 
• west(heatln, 0.0) -4 * heatln); 

heat In = heatOut; 
} 

} 

• GPU kemel ~ CPU-GPU communication IZI Memory (de)allocation 

the results are copied from GPU to CPU and GPU memory 
is freed . 

The Scout version in Listing 2 is noticeably more concise. 
Scout abstracts the tasks related to GPU initialization and 
CPU-GPU communication. Initially, a Scout grid type is 
defined. Scout grid types define a multidimensional stati­
cally allocated data structure. The rank of each d.imension 
need not be the same. Next, the type of each grid element is 
declared. The forall keyword identifies an explicitly concur­
rent block of code. The Grid type beside forall indicates that 
lines nested within forall execute on all 1,048,576 elements. 

In addition, the Scout GPU kernel is slimmer and more 
abstract compared to the CUDA GPU kernel. The GPU 
kernel of each listing is marked with black squares. Notice 
the declaration of GPU threads in the CUDA GPU kernel 
and the absence of thread declarations in the Scout example. 
In the CUDA example, perimeter elements must be explicitly 
handled. By contrast, Scout's GPU kernel implicitly han­
dles GPU threads, and the comer cases of the perimeter 
elements are defined with the intrinsic stencil operations: 
north, south, east, and west. Stencil operations perform 
a query of a neighbor element's value without explicit 
reference to data structure. The second parameter represents 
the value returned if an element beyond the dimension's 
size is accessed. Scout also includes a circular version of 
handling out-of-bounds access. Abstracting data reference 
enables optimization of data structure to target architecture. 

Scout leverages an efficient and powerful programming 
abstraction to allow the programmer to easily write pro­
grams for heterogeneous architectures. The following section 
details the work performed in the compiler to transform a 
Scout program into a high-performing executable. 

III. SCOUT TOOLCHAIN 

Scout bootstraps from the LLVM [5] compiler infrastruc­
ture. LLVM provides common compiler parts as modules 
assembled based upon user discretion. A schematic diagram 
of Scout's toolchain appears in Figure I. The current status 
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Figure I. Scout toolchain 

of the toolchain is marked in solid black, and future work is 
marked in dashed grey. Implementing Scout in LLVM facil­
itates portability. LLVM maintains many CPU architecture 
backends. Future work on Scout will expand the number of 
GPU backends. 

The Scout compiler takes a Scout source program, like 
Listing 2, as input and outputs executable CPU and GPU 
code. The frontend parses and translates the Scout program 
into LLVM assembly language, the input and output of aU 
LLVM modules. Sections of concurrent code in a Scout 
program amenable to GPU execution are identified within 
the frontend. 

Kernel identification partitions LLVM assembly into 
GPU-bound and CPU-bound codes. Each code receives 
target-specific optimization. For GPU kernels CUDA dec­
larations are automatically inserted based on each GPU 
kernel's characteristics. After GPU optimization, LLVM 
assembly is lowered to PTX by Scout's PTX backend, a 
branch of Rhodin's backend [11]. PTX is the intermediate 
assembly language for NVIDIA GPUs. Likewise, after CPU 
optimization, LLVM assembly is lowered to the target CPU 
architecture. 

A. CPU Optimization 

Common compiler optimizations are applied to the CPU 
code. Because the bus connecting CPU and GPU has char­
acteristics of high bandwidth and high latency, GPU kernels 
tend to dominate runtime, and the work of the CPU is 

often restricted to copying data and starting GPU kernels. 
Accordingly, minimizing the number of CPU-GPU commu­
nications, rather than the volume of data communicated, will 
achieve best performance. Consequently, improvements to 
performance for heterogeneous architectures reduce the CPU 
workload to CPU-GPU communication and synchronization. 

B. GPU Optimization 

The important factors for maximizing GPU kernel perfor­
mance are coalescing memory operations, removing control 
flow, and distributing work to all GPU cores. 

All these factors accentuate the GPU's single-instruction, 
multiple-thread (SIMT) architecture and are more fully 
discussed in "CUDA C Best Practices" [9]. The compiler 
supports the different kinds of GPU memory. The data 
layout of the GPU kernel's arguments is first optimized for 
coalesced memory access for the GPU. Coalesced mem­
ory operations achieve maximum throughput for the same 
latency as a single memory access. This optimization is 
possible by transforming the variable's data footprint in 
memory. In C/C++, changing the data layout of variables 
and enforcing pointer arithmetic semantics is impractical. 

The GPU's SIMT architecture forces every GPU thread 
to execute in lock step. Control flow within a GPU kernel 
will degrade performance by introducing branch divergence . 
Only threads that succeed the conditional will execute while 
the rest idle until the successful threads finish the branch. 
Removing control flow from within a kernel prevents branch 
divergence. 

Distributing work between GPU cores hides latency by 
overlapping processes stalled on memory accesses with 
processes able to compute. Uncoalesced memory operations 
and under-utilization of GPU cores have severe performance 
implications for a memory-bound kernel. 

Finally, variables with high dimensionality present a diffi­
cult problem for efficient memory access. Scout has a special 
optimization for this case. The variable is tiled into two­
dimensional blocks. This process has the added benefit of 
enabling better cache coherence. 

C. CUDA Declarations 

The CUDA declarations facilitate GPU kernel manage­
ment. As shown in Listing 1, CUDA declarations allocate 
and deallocate GPU memory and provide routines for CPU­
GPU communication. 

Inefficient CPU-GPU communication patterns result in 
poor overall performance. Where possible the compiler op­
timizes communication to minimize redundant copies. Also, 
the compiler transforms cyclic CPU-GPU communication 
patterns into acyclic ones. 

CUDA declarations set the number of threads per grid 
and per block. Poor choices of grid and block size decrease 
GPU utilization and consequently decrease performance. 
The compiler sets the number of threads based upon kernel 
arguments. Programmers have difficulty choosing an appro­
priate thread count because the choice depends on code 



and GPU architecture. Automatically defining thread count 
relieves this burden from the programmer. As shown in 
Listing I, branch statements must be manually calculated 
and inserted in the kernel to prevent out-of-bound errors. 
The Scout compiler automates this process. 

IV. RESULTS 

Collaborations are underway with several groups from Los 
Alamos National Laboratory to use Scout to aid in analysis 
and visualization of large-scale data sets. With the Physics 
and Chemistry of Materials group, short-range molecular 
dynamics codes are being adapted to run on a GPU cluster. 
Additionally, with the cooperation of the Space Science and 
Applications, Nuclear and Particle Physics, and Astrophysics 
and Cosmology groups work continues on cosmology codes. 

The Rodinia Benchmark Suite [3] is composed of pro­
grams with parallelized versions using OpenMP and CUDA 
for multicore CPUs and GPUs respectively. Work continues 
manually porting the CUDA versions to Scout and compar­
ing performance. Results are encouraging. 

V. FUTURE WORK 

Scout eases the transition for programmers to leverage 
GPUs for high-performance. Future work will continue to 
improve performance and portability. Additions to Scout's 
toolchain include an AMD IL backend, OpenCL declara­
tions, and anT profiler. An AMD IL backend and OpenCL 
declarations would enable Scout to target AMD GPUs. 
AMD IL is analogous to PTX but for AMD GPUs. It is 
the intermediate assembly language for AMD GPUs. 

LLVM has a module for nT compilation of LLVM 
assembly. As depicted in the Scout toolchain diagram in 
Figure I, the JIT could be used to profile and tune GPU 
kernels for performance based on the number of threads 
allocated per grid and per block. Profiling could also identify 
CPU codes sandwiched between GPU codes causing a long 
latency chain. Lowering these sandwiched CPU codes to 
the GPU will improve performance by removing communi­
cation. To further enhance performance, kernel fusion and 
fission optimizations would improve cache coherence via 
locality of reference. 

Currently, the Scout compiler does not statically analyze 
programs for parallelizable loops, relying solely on Scout's 
concurrent annotations . Prior work to automatically detect 
parallelizable loops in programs complements Scout's an­
notations and could further improve performance. 

Besides high computational performance, data visualjza­
tion is also important. The Scout programming language will 
integrate performance and visualization directives, providing 
facilities for analysis and simulation of computationally 
intensive data sets. 

VI. RELATED WORK 

Prior work on automatic parallelization for GPUs focuses 
on improving codes written in a mixture of C and CUDA. 

No prior work abstracts details about concurrency or mem­
ory management. For programs written in CUDA, CUDA­
lite [13] improves GPU kernel performance by optimizing 
GPU memory access. Using the polyhedral model "C-to­
CUDA for Affine Programs" [2] and "A mapping path for 
GPGPU" [7} optimize C codes into efficient CUDA C. For a 
less portable solution, "OpenMP to GPGPU" [6] translates 
programs annotated with OpenMP pragmas to CUDA C. 
The PGI Fortran and C compiler [12] advertises semi­
automatic GPU parallelization. Users must mark loops and 
the optimization is not tolerant to general pointer arithmetic. 

VII . CONCLUSION 

Current programming languages and tools divert atten­
tion away from science to software development. Scout 
showcases how a mix of language abstraction and compiler 
automation result in high-performance without the burden of 
manual optimization. Using an exphcitly parallel language 
with few universal primitives results in a kss computa­
tionally intensive analysis and broader application of paral­
lelization techniques. Future work focuses on optimization 
opportunities not targeted by the current framework and 
improvements to portability. 
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