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Unit Physics Performance of a Mix Model in Eulerian Fluid
Computations.

Vold, E. (XCP-2) and Douglass, R. (XCP-1)
Los Alamos National Laboratory

Abstract

In this report, we evaluate the performance of a K-L drag-buoyancy mix model,
described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The
model was implemented in an Eulerian multi-material AMR code, and the results are
discussed here for a series of unit physics tests. The tests were chosen to calibrate the
model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and
RM (Richtmyer-Meshkov) experiments, and the present results are compared to
experiments and to results reported in [D-T]. Results show the Eulerian implementation
of the mix model agrees well with expectations for test problems in which there is no
convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of
homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves
through the Eulerian computational grid, and there are differences with the previous
results computed in a Lagrange frame [D-T]. The differences are attributed to the mass
averaged fluid motion and examined in detail. Shock and re-shock mix are not well
matched simultaneously. Results are also presented and discussed regarding model
sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the
generation of atomically mixed volume fractions.

Introduction

In many computational applications involving fluid mixing due to turbulence or fluid
instabilities, the full range of fluid scales cannot be resolved. It is common to represent
small scale mixing with a model while the computational simulation resolves mixing at
the large scales [2]. The mix models incorporate one or more coefficients, which must be
set by comparison to experimental data, preferably in unit physics tests where each
coefficient can be set independently [3]. As discussed in the next section, methodologies
for calibrating multiple coefficients simultaneously in mix models are varied and not
standardized.

The K-L drag-buoyancy model

The K-L drag buoyancy mix model considered here is detailed in [D-T], and the
equations are summarized in the Appendix for reference. Starting with the compressible
fluid equations supplemented with a species continuity equation, the mix model can be
considered to include four components. One, additional terms in the mass averaged flow
and species equations produce ‘mix’ by modifying the resolved flow in the computation.
These new terms depend on the turbulent quantities, K (turbulent kinetic energy) and L
(turbulent scale length). Two, evolution equations are solved for K and L on the



computational grid. Three, closure relations for terms in the K and L equations, use
coefficients which are adjusted to fit empirical data. Four, self-similarity analysis further
constrains the remaining model coefficients. The self-similarity analyses apply rigorously
in the Lagrange frame of the mass averaged fluid, and in the limit as Atwood number, A,
goes to zero. The results discussed later, suggest that these restrictions may be important
and do not apply in all applications. '

Analysis in [D-T] combines self-similarity constraints with empirical results to prescribe
the model coefficients as summarized in their Table 1. The principle empirical
constraints are derived from experiments in Rayleigh-Taylor (RT) mix [4-8] and
experiments in Richtmyer-Meshkov (RM) mix [5, 6, 9-12]. The constrained coefficients
are incorporated into the drag-buoyancy source term to the K evolution equation (see
Appendix). In RT mix experiments, the mix layer width grows as 4 = a4 gt’, where o
has been observed in the range 0.05 — 0.08 [4, 13, 14]. The value of a = 0.06 is chosen
by [D-T] and in combination with other coefficients, this sets the K-L buoyancy
coefficient, Cg = 0.84.

In single shock RM experiments, late time mix layer growth verses time is often fit to a
power law [6, 15, 16]. This growth is expressed in a form, 4 = hy(1 + ¢ vy/(h,6) )0 in
order to fit data to initial conditions for perturbation scale length, #,, and initial mix
velocity, v,, in addition to the exponent for late time growth [6]. The power law
exponent reported in the literature has a substantial range, typically, 6~ 0.2 — 0.5
[6,15,16]. In [D-T], the value of 8= 0.25 is assumed to apply for small Atwood
numbers, and this is used to set the model drag coefficient, Cp = 1.25. This value of the
model drag coefficient is also consistent with the decay of HIT (homogeneous isotropic
turbulence), which is experimentally observed in some cases to follow nearly linear
decay in time [17]. A self-similarity analysis [D-T] is then used to constrain the
additional model parameters.

The coefficient for the turbulent diffusivity, Cr, is unity in this model, consistent with the
self-similarity constraints. The coefficient value cannot be set in the usual way against
KH (Kelvin- Helmholtz) instability or shear layer mix growth [18] until the deviatoric
source terms in the turbulent stress are included in the model. This in turn requires a
shock-stable form for those terms, and would then require rescaling the diffusion term
coefficients terms as described in [D-T].

The turbulent diffusivity coefficient is ‘classically” determined by comparing to K-H
instability growth [18] and is then found to be ~ 0.1. In an independent calibration study
of a similar K-L drag-buoyancy model [19], Chiravalle uses a different methodology to
set the model coefficients, wherein the RT, RM and KH empirical mix rates were used
simultaneously to set the three principle model coefficients, Cg, Cp, and Ct. That study
found the turbulent drag coefficient to be 0.3, however, the drag source term there is
normalized differently than in [D-T], so a direct comparison, assuming the [D-T] form of
the drag term, would put the Chiravalle coefficient at Cy~ (.15, close to the classical
value. In another recent mix model calibration, a version of the BHR mix model [20]
(which is also a K-L based turbulent mix model) found Cr = 0.56 [21]. The range in



these results suggests there is no single accepted calibration methodology, nor a universal
value for turbulent diffusion across turbulence models.

To evaluate the K-L drag-buoyancy mix model implementation within an Eulerian code,
the unit-physics tests are adapted from [D-T]. In that study, the mix model is
implemented within an ALE code and the tests were run in a pure Lagrange mode [22].
That allows a direct comparison between the model results within the computational code
and the expectations from the self-similarity analysis, which sets the model coefficients
in a Lagrange frame analysis. The model as summarized in the Appendix, is written in
terms of the convective derivative for all convected quantities, and in that sense it is cast
in a Lagrange form. In the present study, the K-L model has been implemented within an
Eulerian code [23], and some mix model results which will be shown to differ from the
previous work may be attributed to this basic difference in formulation of the underlying
computational framework.

Model coefficient default values used here are the same as given in Table I of [D-T].
These include the threecprinciplevalues, as discussed above, of Cp = 0.84, Cp = 1.25 and
Cr = 1. The values of the turbulence variables, K and L, evolve from initial values, K,
and L,, which are specified as model inputs, and then used by the code to initialize K and
L at all material interfaces in the problem. Results will be shown to depend upon these
initial values, so these are considered as additional model parameters.

FEulerian Implementation

The algorithm in the Eulerian fluid computation used in this study is based on work by
Scannapieco [23]. It can be considered as a Lagrange phase projection with a full
advective re-map back to the original grid, similar to that described in [24-26]. The
Lagrange phase and internal energy require an artificial viscosity to stabilize numerics
and to better maintain total energy conservation in the presence of shocks. [25]. The
computational grid is rectilinear and all tests are run in 1-D geometries. An AMR
(adaptive mesh refinement) capability is turned off to force the test problems to run on a
uniform grid in order to reduce possible numerical instabilities.

Interfaces between different materials are tracked with a VOF scheme [27]. As materials
mix, an unmixed volume fraction for each material evolves to an atomically mixed
fraction in proportion to the material volume fluxed by the mix velocity [23]. This mix
velocity is based solely on the turbulent diffusivity in the species mass equation.
However, the K-L model also modifies the mass averaged velocity, u, through the
gradient in K, and then the mix width may be modified by this change in », in addition to
the atomically mixed fraction generated by the species turbulent diffusion flux. The
unmixed fractions are used to maintain a ‘quasi-interface’ for VOF, even as mixing
evolves, while the mixed fractions (denoted ‘atomically mixed volume fractions’ in the
results section) can be used to define mixed volumes for computing reaction rates
between reactive mixing materials.

Test Method Basics



‘Mix’ is evaluated as a width or thickness of the mixing fronts verses time in this and in
the reference study, using in most of our cases, the 5% and the 95% variations in the
volume fractions of the two mixing materials. In many tests, mix width is evaluated
separately for the bubbles (light fluid) and the spikes (heavy fluid) relative to the position
of the unmixed contact discontinuity. This position moves significantly through the
computational mesh for the RM mix cases. Only binary mixing and 1-D tests are
considered in this study.

Results

RT mix

The RT problem set-up follows that given in [D-T], with imposed acceleration, g =
0.00098 cm/usec’, and ideal fluids each with heat capacity ratios, y = 5/3. Fluid densities
are constant initially, with fluid one density, p; = I g/cc, and the density of fluid two is
varied in different runs to set the desired Atwood number. Initial hydrostatic equilibrium
is set with a linear variation in internal energy in each fluid region. Pressure at the fluid
interface is set to be consistent with fluid temperatures of 1 eV. Default K-L model
parameters were used and the initial values were chosen as K, = /.e-8 g (cm/usec)’, and
L, = 1.e-5 cm. A range of IC values were evaluated and gave similar results.

A large suite of runs was examined. An example of results showing self-similarity of the
profiles of K across the mix layer during RT mix are given in Figure 1, for two of the:
cases examined, with Atwood numbers of 0.05 and 0.8. The results agree with those in
[D-T], and show the important characteristic of near symmetry at low A, and increasing
asymmetry at high A, with the profile leaning in the direction of the ‘spikes’ from the
heavier fluid. This self similarity is essential to recover the desired RT growth rate
proportional to #°, where the velocity grows as the gradient of K ~ K/L, and therefore both
K and L must exhibit self-similarity to maintain this constant ratio defining the mix
acceleration during the mix evolution. Self-similarity in the growth of the turbulent
length scale, L., was also demonstrated (not shown).

The mix layer growth and its variation with grid resolution is shown in one example for 4
= 0.8 in Fig.2 (top). Mix growth appears linear with Agt® as expected. In plots (not
shown) of the mix width verses time on a log-log scale it is apparent that the mix width
grows in time with an exponent slightly less than two ( ~ 7/4). The convergence behavior
will be discussed later in the section on Grid Convergence.

Results for the RT growth rate, alpha, a = #/4gt’, are summarized in Fig.2 (bottom
panel) for the full range of Atwood numbers on converged grids. This growth rate
matches the previous results in [D-T] closely and shows good agreement with
experiments [4-6], where alpha for the bubbles is near 0.04-0.06 and approaches 0.06 at
low A, while alpha for the spikes increases significantly from ~ 0.06 as A increases. This
trend across A is in good agreement with previous work [6,13].

HIT (Homogeneous isotropic turbulence)



A simple HIT setup assumes a 1-D problem with all zones mixed so that each zone is
initialized to the prescribed K and L initial conditions, K, and L,. We confirmed that the
results are identical in any of the 1-D problem zones, as they should be. In these tests, L,
is set to 1.e-4 cm, and K, is set to either K, = l.e-5 orto K, = /.e-8 (cm/usec)z. These
two values of K, correspond loosely to initial conditions defined to be ‘turbulent’ or
‘quiescent’ relative to the thermal energy in the problem, as described in the later section
on RM mix sensitivity to IC.

Our test results are shown in Figure 3, for the time dependence of the model turbulent
kinetic energy, K[t] and the turbulent scale length, L[t]. The decay of K fits a power law
with exponent, 8~ - 1.12, while L grows with power law exponent, y~ 0.43. These
results are independent of the initial value of K, after an early time transient. These
results are in excellent agreement with the expected values from the self-similarity
analysis in [D-T] of 6~ 1.1, and y ~ 0.44 appropriate for the value of the drag
coefficient, Cp = 1.25. The decay of homogeneous isotropic turbulence has been studied
extensively and it has been shown in analyses that the decay of turbulence should be
linear in time [17]. This agrees to within 10% with the self-similar result, 6~ - 1./ as
given in the analysis of [D-T].

RM mix

Shock set-up

Shocks of specific magnitude are generated using the polytropic gas relations for shocks
into initially stationary fluids [28]. A shock impinges on a contact discontinuity in the
RM mix tests, in which the Atwood number is defined by convention as positive for a
step up in density at the contact discontinuity and negative for a step down in density.
Thus, for the shock moving from fluid 1 to fluid 2, the Atwood number is

_(e-p)
A_(p2+pl)

Initially, the shock front was specified a distance upstream from the initial contact
discontinuity (CD) to reproduce the tests as shown in [D-T]. However, this allowed a
significant time before the shock reached the CD and the mix model produced a small but
significant amount of mixing prior to the arrival of the shock. To avoid this undesirable
early time pre-shock mixing by the model we set the shock front to be adjacent (one zone
upstream) to the CD interface in subsequent tests.

The ‘base case’ in the RM shock studies used the shock described by [D-T] in section VI,
with Mach = 1.57, Vg = 0.022 cm/usec, and shock density = 1.812 g/cc, impinging on
an ideal gas of density 1 g/cc and y = 5/3. Density and internal energy, respectively, in
fluid two are adjusted to set A, and to maintain pressure equilibrium at the CD. The
initial conditions for K, and L, in these tests are not specified in [D-T].

RM Mix Sensitivity to Initial Conditions (IC)



Extensive studies to explore the basic response of the model to shocks indicated the
model results for RM mix are sensitive to the initial conditions for K and L, specified in
the input values, K, and L,. Select results from the studies are summarized in Figure 4,
showing the mix width for A = - 0.2, evaluated separately for bubbles and spikes, for
several combinations of initial conditions for K, and L,. It was found that below a
certain threshold for K,, the results were independent of K, for example comparing K, =
le-12 and K, = Ie-8 (cm/usec)’. Above this threshold, the mix width increases
significantly with K,, as seen comparing K, = /.e-8 and K, = /.e-5 cases. The threshold
value, here K, ~ /e-3, is interpreted as distinguishing initial conditions which are
‘quiescent’ (K, << [.e-5) from initial conditions which are ‘turbulent’ (K, = /.e-5). This
threshold defining the ‘turbulent IC’ corresponds to a turbulent kinetic energy of a few
percent of the thermal energy in the problems run here.

In figure 4, the RM mix width for two cases of L, = /.e-2 and L, = 2.e-2 ¢m, shows a
strong and direct dependence on L,. We have found that varying L, is a convenient way
to match mix widths in various RM experiments, typically in the range reported here L, ~
(1 —2) e-2 cm. This range is compared to the value of L, ~ /.e-5 used as IC in the RT
studies. Since the RM mix results are clearly sensitive to the initial values for K and L,
these specified input values, K, and L,, should be considered as additional parameters in
the mix model.

RM single shock, varying Atwood numbers

Mix width growth is shown in a composite of cases in Fig. 5 for 4 = +/- (0.2 and for 4 =
+/- 0.8, with bubble and spike widths evaluated separately. In this case, the mix front
positions, indicated by volume fractions of 1 % and 99 %, are evaluated in relation to the
position of the unmixed interface in the same shock conditions. As expected in
comparison to results in [D-T] and in experiments (e.g., [6]), the spikes grow slightly
faster than the bubbles at the lower value of A, and there is a large spike to bubble
difference at the higher Atwood numbers. The fitting coefficients, m/, m2, m3 in the
power law fits for mix width, A, verses time, #, are related to the form proposed in [D-T]
as,

6
tv
h=ho(1.+ GhD] =ml(l.+ m2 ty*m3 (1)

[

where, A, is the initial condition for a perturbation scale length, v,, is an initial mix
velocity, and 6 is the exponent for late time growth. (In the examples in Fig.5, there is
also an initial time shift, fit as m4, but this does not influence the results for the other
parameters.) The power law exponent, 6, fit to the model parameter, m3, is found to be
0.37 - 0.39 in the cases in Fig. 5 with the smaller Atwood number, with a small
difference between the bubble and spike values. At A4 = 0.8, the exponent, 6 = m3 ~ (.42
increases for the bubbles and 8 = m3 ~ 0.49 — 0.51 and for the spikes. These values are
significantly higher than expected, 8 ~ 0.25, for the bubbles based on the self-similarity
calibration methodology in [D-T]. The results in figure 5 are representative, and



consistent with many other tests not shown, where the power law exponent for late time
RM mixing falls in the range 8~ 0.3 — 0.5.

RM sensitivity to drag coefficient, Cp

This difference in the power law exponent obtained here and in the previous Lagrange
based calculations in [D-T] prompted investigation into the sensitivity of the RM mix
results to the drag coefficient, Cp. This drag coefficient was varied from the default,

Cp = 1.25, to values as shown in Figure 6. The top panel shows the resulting fits for the
bubble mix widths using a standard two-parameter power law. The bottom panel shows
the improved fits from the three-parameter power law model (given in the equation
above). A small dependence of the mix width on the drag coefficient is seen in the
figures. The power law exponent has a small variation with Cp, and it appears to be less
sensitive in the two-parameter fit than in the three-parameter fit. A comparison is plotted
in Figure 7 (top panel), showing the theta value best fit to the mix model width verses the
specified drag coefficient, for both the 2 and 3 parameter power law fits.

There were several additional runs varying the drag coefficient, and examples are shown
in Fig. 7 (bottom), where bubble and spike growth over a long mix time are compared to
the total mix width growth over a short mix time. The results are similar and show a
weak sensitivity of mix exponent to the drag coefficient value. This is in contrast to the
significant sensitivity observed in [D-T] as shown in their figure 24, where theta varies
from ~ 0.6 down to ~ 0.24 over the same range of Cp shown here. In our test runs at
lower Atwood number ( A = 0.02, not shown) we found the smallest theta value to be,
~0.28, for Cp = 2.5, however at the default drag coefficient of Cp = 1.25, the resulting fit
for theta at A = 0.02 was found to be, 8~ 0.4. We will return to discuss model sensitivity
to drag in the section on K-L model sensitivity to a uniform flow velocity.

RM re-shock 1 — Vetter-Sturtevant experiment

The K-L mix layer growth rate was evaluated for the Vetter-Sturtevant [V-S] experiment
[11], using similar set-up and IC as given in [D-T], where the V-S experiment # 85 was
modeled. A Mach = 1.5 shock impinges on an air-SF6 interface (A ~+0.67). This
required reducing the ambient pressure at the CD to obtain this Mach number in the
experiment. Two experimental runs (85 and 90) are reported in [11] for this same Mach
number where the difference is only in the details of the mylar-wire-mesh interface used
to establish the discontinuity of the IC. The experimental results were sensitive to the IC
in ways not well understood, and not easily modeled [29].

Mix model results are compared to experimental results in Figure 8. A large difference
between the two experiments due to the IC is evident. . With the default model parameters
set, the initial conditions can be varied to best match the data. Two cases for the K-L
model results are also shown in comparison, with L, = 0.1/27 (as in [D-T]), and using a
larger value, L, = 0.4 The model can match either the early time single shock RM
mixing or the later time re-shock mixing by adjusting the initial turbulent scale length, L,.
[t appears unlikely that a single set of initial conditions with the default model parameters
can simultaneously match the mixing following the first shock and simultaneously match
the mixing after re-shock. This is in contrast to the results reported in [D-T] where good



agreement was obtained in the first shock and in the re-shock mixing with the same
model parameter values used here. The different results may be related to the relative
insensitivity to the drag coefficient seen in the Eulerian implementation of the model.

RM re-shock 2 — Poggi, et.al. experiment

The Poggi, et.al [Poggi] experiment [12] involves a Mach = 1.45 shock initiated in SF6
and propagating across an SF6-air interface (4 ~ - 0.6), and then reflecting from a shock
tube end-wall to re-shock the SF6-air interface from the air side. The K-L mix layer
growth rate was evaluated for the Poggi experiment using similar set-up, IC, and model
parameter settings as given in [D-T]. The model results for the mixing front positions are
compared to a sub-set of the experimental data in Fig. 9 (top) and the front positions are
used to determine the mix widths verses time in Fig. 9 (bottom). The top figure shows a
reasonably good overall match to the experimental mixing front positions, however, the
bottom figure shows that the mix width for each model case is in poorer agreement with
the experiment. It is interesting to note that the default model settings (labeled ‘base’ in
the figure) match the first shock mix and under predict the re-shock mix, and this result is
nearly identical to that reported in [D-T] with the same default model parameter values.
However, they were able to obtain a good fit to both mix regimes simultaneously by
adjusting the parameters far from their calibrated default values. In our results, even with
modified coefficients, we were unable to match the mixing in both regimes
simultaneously. Again, this difference may be related to the observed insensitivity to the
drag coefficient, Cp, seen in the Eulerian model implementation.

In addition to data on mix front verses time, the Poggi experiment provided data on
turbulent fluctuation levels, measured at several locations as an average of the axial
variance, <u,”>. This data is compared directly to Lagrange results in [D-T], and can be
compared to results in the Eulerian frame by converting the time axis to distance using’
the shocked fluid mean velocity. The results for fluctuations, evaluated as 2K in the
model, are shown in Figure 10, and these can be compared qualitatively to the results in
[D-T] or in Poggi [12]. The magnitudes of the model fluctuations are small compared to
the experimental data for axial fluctuations by a factor of 2 to 4. Anisotropy in the
experimental fluctuations might account for much of this difference but the anisotropy
was not measured and so it cannot be quantified. The model results here agree with the
previous model results [D-T], to within a few tens of percent at most location/times but
only within about a factor of two at the location of the peak fluctuations, where the
greatest difference between model results is seen. However, at this same location,
agreement of either model with experiment is best; the previous Lagrange based
computations agreed with experiment to within about 50%, and the present model
implementation agrees with experiment to within a factor of about two.

Shock amplification of turbulent kinetic energy

An experiment by Barre, Alem, and Bonnet [30] (denoted BAB) examined the shock
amplification of turbulent kinetic energy by measuring fluctuation levels in the
interaction of a normal shock with homogeneous turbulence. Air is driven in a wind
tunnel through a mesh which generates an initial homogeneous turbulence field and then
propagates downstream past fixed obstacles which set up a Mach = 3 standing shock



wave in the turbulent air. Hot wire anemometry and laser Doppler velocimetry are used
to measure axial fluctuations, the decay of anisotropy in the fluctuations after passing the
shocked surface, and also a longitudinal integral turbulent length scale.

The complex experiment is modeled in a simple way, with mixed materials prescribed in
all zones, which initializes the turbulence in the K-L model everywhere to K,. A Mach =
3 shock is launched and the fluctuation levels, K, relative to the pre-shock initial values
are determined as a function of distance from the initial shock front, at sufficiently late
times to span the experimental domain. The model values for amplification of K, post-
shock to pre-shock values, are compared to the experimental post-shock to pre-shock
values for amplification of the longitudinal fluctuations in Fig.11. The initial decay of
the anisotropy, seen in the experimental data out to a distance of about one cm, cannot be
represented in the isotropic turbulence, K, in the model. The experimental amplification
values are near a factor of three shortly after the shock passes, in reasonable agreement
with the model (ignoring a very brief transient amplification of about 6 seen in the
experiment). After the experimental value decays to the axisymmetric late time value of
about 1.5, (where the anisotropic ratio of longitudinal to transverse fluctuations is also
equal to 1.5) then the model result is almost a factor of two greater than the data. If the
anisotropy is factored in as described in [D-T] then the average K post-shock to pre-
shock values consistent with the experiment are expected to be even smaller and so the
discrepancy with the model result would be greater. Model results reported in the
Lagrange work [D-T] were in better agreement with the experiment but still overshot the
data by about 40% at the point with the best agreement, and by a larger margin at other
locations.

Grid Convergence Studies

Results of the K-L mix model in the base RM mix problem, with 4 = - 0. 2, were
compared on varying grid resolutions to determine grid convergence. An example is
shown in Figure 12 (top), where mix width verses time on a log-log plot indicate the
power law dependence is not changing significantly while varying grid resolution from
dx = 0.008 down to dx = 0.00025 cm or 2.5 microns. Note that the mix width decreases
as grid size decreases. In analyses (not shown here) it was determined that the K-L
model result for the RM problem is converging ‘better than linearly’, meaning the
normalized change in solution per change in resolution scaled approximately as: dx” with
y = 1.2. This is evaluated assuming the solution on the finest grid is the ‘accurate
solution’, then plotting a difference in the solutions, each course grid solution minus the
finest mesh solution, against the course grid resolution, expressed as //dx. The slope (on
a log-log plot) then indicates a measure of the convergence rate with resolution and was
found to be y = 1.2. Convergence errors are quantified further in the next section.

For comparison, we examined the grid resolution in an alternate mix model, the multi-
fluid interpenetration mix model reported in Scannapieco-Cheng [31]. The mix in this
model is driven by the species pressure gradients at fluid interfaces, and so an interfacial
pressure gradient driven mix problem is used to test the convergence. In our tests, two
different fluids of the same density (1g/cc) each occupy half of a one cm. domain. Fluid
temperatures are initialized at 2 keV and temperature exchange appropriate to this dense



plasma regime is included. Mix results from this model have similar characteristics
across a range of test problems, indicating the results here are representative of other
problems. The mix characteristics from this model are not explicitly sensitive to the type
of instability expected at the fluid interface.

Mix results for the Scannapieco-Cheng [31] model are summarized in Fig.12 (bottom
panel) as a mix width verses time for a range of grid resolutions. The most course grid
just barely resolves the domain, while the finest grid at 25 microns has 400 zones across
the domain. The mix width growth approaches a linear phase at late times, and the slope
approaches a constant value on the finer grids indicating a convergence for the linear mix
rate. Note that the mix (width) increases in going to the finer grids. This is presumably
attributed to the mixing drive in the pressure gradient drive term, where the numerical
approximation to the pressure gradient scale length is limited by the finite grid resolution,
and thus the pressure gradient driving mix can increase as dx decreases.

A grid resolution comparison is summarized in Fig. 13, which includes the K-L model
results in the RT problem (taken from Fig. 2), the K-L results for the RM problem (Fig.
12 top), and the interpenetration mix model results for the pressure gradient interfacial
mixing problem (taken from Fig. 12 bottom panel, and denoted ‘trbfl in grad(pl)’ in
Fig.13). The plot reflects a fractional error each time the grid is refined by a factor of
two. It shows the relative change at a late time in the mix width, h, plotted against grid
resolution, dx, with the relative change on two grids, evaluated as ((h(dx;) — h(dx..
))/h(dx;) where dx; is the courser grid size and dx;. is the next finer grid, and is half the
grid size of dx;. This allows a simple convergence comparison of each mix model in a
type of test problem appropriate to that model.

The K-L mix model results change across grid resolutions by less than 40% per halving
dx in the RM problem, and less than 20% change in halving dx in the RT problem on the
course grids, and with much smaller changes as dx approaches zero. The largest dx
examined in the RT problem was 100 microns but the result suggests that K-L converges
in RT at least as well as in RM on grids with dx up to a few hundred microns. On the
course grids, the interpenetration model [31] in the pressure gradient test problem,
denoted ‘trbf1’, had the largest relative change in the solution, of almost 100% between
the course grids, indicating poor convergence at the course resolutions. At grids of 100
microns and finer, this model solution changed only slightly indicating good convergence
at the finer resolutions. The good convergence at the fine grid may be related to
resolving the species pressure gradients adequately at those resolutions. It may also be
related to better resolution of the energy exchange, which depends upon temperature
gradient scale lengths limited by the grid resolution in the numerical approximations.

K-L model sensitivity to a uniform fluid velocity

The discrepancies in the RM power law exponent and its sensitivity to the drag
coefficient seen between the present Eulerian implementation of the K-L model and the
results in the Lagrange computations [D-T] prompted further study. Possible differences
exist in the effective fluid drag as seen in the Eulerian frame compared to the Lagrange
frame used in the self-similarity analysis to set the model coefficients. The Lagrange
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frame convective derivative for K (see Appendix) is assumed related to the scale length,
L, and the drag-buoyancy source term, Sx[K,L], a function of K and L. In a simplified
form the K evolution equation is

K
%= %+u-VK~a—+ u£~ SIK L]
Dt ot ot L

The convective term, ~ u K/L, is irrelevant in the Lagrange frame but can modify the
evolution of K if (K/ L) evolves similarly as u varies. This is expected to be true when u
represents a uniform background motion, u,, if the value of u, is varied between different
test cases.

To test this, a simple contact discontinuity (CD) in pressure equilibrium (the same used in
the RM mix problem) was re-run while varying a uniform background flow velocity, u,.
There is no shock, to avoid differences due to the shock impinging on the CD at different
velocities, so the mix layer forms only in response to the decay of K from its initial value.
In this problem, 4 = - 0.2, L, = l.e-2 and two initial values of K are compared, K, = /.e-
8 (quiescent IC) and K, = /.e-5 (turbulent IC) as introduced in Fig. 4. A uniform
background flow velocity, u,, is imposed defining three cases as: u, = 0 (denoted u00), u,
= 0.01 (u01) and u, = 0.02 (u02), where case u01 corresponds to Mach ~ 0.7 and u02
corresponds to Mach ~ 1.4, relative to the sound speed of the heavier fluid at the CD.

The mix widths for these six cases are shown at select times in Figure 14 (top). It is
evident the mix width increases with the velocity of the uniform background fluid for
either value of K,. This is in contrast to the hypothesis that the increased convective flow
in the Eulerian frame might create an effective drag, increasing the drag over that
intended in the Lagrange frame model, and thus decreasing mix with increasing
background fluid velocity. To examine this further, the model kinetic energy, K, is
plotted verses time in Fig.14, separately for the two K, values, for K, = /.e-8 (center
panel) and K, = /.e-5 (bottom panel). Kinetic energies at different background velocities
differ significantly at early time, but tend to converge at late times. The differences are
greater for the ‘quiescent IC’ (middle panel) than for the turbulent IC (bottom panel), and
the differences are greater between u, = 0, and u, = 0.0/, than between u, = 0.0/ and u,
=0.02.

In expanded plots (not shown) it is evident at late times, especially in the quiescent IC
cases, that K does decay faster and to smaller values at a given time as u, increases. This
late time behavior is consistent with an increase in the effective drag in proportion to u,,
the convective flow, as hypothesized above. However, if the early time differences in K
dominate the mix width behavior, then the early time K drives a larger initial mix
velocity, v,, with increasing uniform flow, u,. It appears this effect is greater than the
increase in effective drag at late times. With this interpretation, the behavior of K
appears consistent with the mix widths seen in the Fig.14 top panel. It is not clear if this
sensitivity to a uniform flow is a shortcoming of the mix model in an Eulerian frame, or if
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it results from details of the numerical implementation. This issue might be worth
examining in future work.

Sensitivity to turbulent diffusivity, Cr

As a practical matter, it is desirable to be able to vary the turbulent diffusivity coefficient
to match experiments, and so we examine the sensitivity of the model results to variations
in the key parameter, the turbulent diffusivity, Cr. It is recommended in [D-T] that if the
value of Ct is changed, then the self-similarity coefficients must be reset consistently.
However, in these tests, the similarity coefficients, N, are left at the default values to
examine the impact of varying Cr alone.

Mix width for the base case RM instability (Mach = 1.57, and 4 = - 0.2 ) is compared in
Fig. 15 (top), for the default value of Cy = 1.0 and the ‘usual’ value calibrated against K-
H shear layer mixing [18,19] of Cy = 0.1. The mix width at a late time differs by 27%
between these two cases. As the turbulent diffusivity decreases further below Cr = 0.1,
there is no further significant change in the mix width at late times (this is not shown, as
the volume fraction curves overlie each other for values of C7 < 0.1). However, there is a
change in the ‘atomically mixed volume fraction’, seen as ‘af.1’ in Fig.15 (bottom). This
quantity continues to decrease in proportion to the value of Cr as shown in the figure
down to Cr = 0.01.

These results show that by varying only the turbulent diffusivity, the mix width and the
atomically generated mix fraction become weakly coupled for small diffusivities.
Referring to the model equations in the Appendix, the mix widths (or effectively, the
profiles of mixed material total volume fractions, V) are controlled by a combination of
the gradient of K in the momentum equation and the turbulent diffusivity in the species
mass fraction equation. It appears that the diffusivity contribution to the mix width
becomes negligible as Cr is decreased below Cr ~ 0.1. On the other hand in this Eulerian
implementation, the atomically mixed volume fraction is generated directly and only by
the turbulent diffusive flux in the mass species equation, and so it depends on Ct down to
arbitrarily small values. This is a reasonable consequence of the spread in interfacial
density by the mass averaged velocity driven by the gradient in K, while the diffusive
mass contribution to the interfacial density profile becomes negligible as Ctapproaches
Zero.

The profiles through the mix layer for the total volume fractions for materials 1 and 2,
vf.l and vf.2, are compared to the atomically mixed fractions, af.1 and af.2, in Fig. 16.
Also indicated are simple sums and products of these volume fractions which might be
used to accurately determine the reaction rate between initially unmixed reactants in the
two mixing fluids. This distinction between the material volume fraction and that portion
of the material volume fraction, which is actually atomically mixed, is critical to
understand and to accurately predict reaction rates in reactive fluids. Mixing can produce
small scale mix structures with very little actual atomic mix when the diffusivity is small,
or it can produce large atomic mix fractions when the diffusivity is large. For example, a
detailed model which distinguished the sub-grid structured mix from the atomic mix, was
described recently [32]. Details of the sub-grid mix components are tied into the
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numerical representations of the interface between the fluids, the numerical model for
fluxing masses and volumes of fluids across that interface, and the way the equations of
state for mixtures and pure fluids are treated. These topics will be explored in future
work.

Discussion and Summary

A K-L turbulence mix model driven with a drag-buoyancy source term was tested in an
Eulerian code in a series of basic unit-physics tests. The model and the closure
coefficient values are derived in the work of Dimonte-Tipton [1]. Many of the test
problems were reported there, where the mix model operated in Lagrange computations.
For the present work, the drag-buoyancy K-L mix model was implemented within an
Eulerian code framework by A.J. Scannapieco [23]. Mix model performance is evaluated
in terms of mix width growth rates compared to experiments in select regimes, and
compared to the previous Lagrange computational results reported in [D-T]. Results in
the Eulerian code mix model are presented for several unit-physics 1-D test problems
including the decay of homogeneous isotropic turbulence (HIT), Rayleigh-Taylor (RT)
unstable mixing, shock amplification of initial turbulence, Richtmyer-Meshkov (RM)
mixing in several single shock test cases and in comparison to two RM experiments
including re-shock (Vetter-Sturtevant and Poggi, et.al.).

Sensitivity to model parameters, to Atwood number, and to initial conditions (IC) were
examined. Results here are in good agreement in some tests (HIT, RT) with the previous
results reported for the mix model in the Lagrange calculations. The HIT turbulent decay
agrees reasonably well with analytic expectations, and the RT growth rates match
experimental values using the default values of the model coefficients proposed in [D-T].
Results for RM characterized with a power law growth rate exponent differ from the
results in previous mix model work but are still within the range for reasonable
agreement with experiments and other models in the literature [6, 15,16]. The larger
power law exponent in the present Eulerian code implementation is also relatively
insensitive to variations in the drag coefficient.

These tests indicate that the Eulerian code K-L model, using the Dimonte-Tipton default
model closure coefficients, achieves reasonable results across those unit-physics tests
where there is no net flow, i.e., where the mass average flow in the Lagrange convective
derivative is zero. The mix model results differed in the Eulerian code implementation
from those previously reported in the Lagrange frame in [D-T] for the shock driven flows
(RM) where the mix layer is moving through the computational grid.

These findings suggested a possible increase in the effective drag coefficient in the fixed
Eulerian frame relative to the Lagrange frame moving with the fluid. Additional tests
varied the speed of a uniform background fluid flow in the Eulerian frame. These
showed a sensitivity to the background flow speed, with differences in the mix width and
in the early time values of the turbulent kinetic energy. At late times with the different
uniform flow speeds, the turbulent kinetic energy converged toward a similar profile,
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suggesting the differences are less strongly related to a late time difference in the drag but
may be related to early time differences in the growth of the kinetic energy which
increases the initial mix velocity in proportion to a uniform background flow speed. This
can be related to the convective derivative of the kinetic energy as implemented in the
Eulerian frame.

Initial conditions can be adjusted so that single shock RM mix width results match
experiments but we have not been able to obtain a good match for first shock and re-
shock growth rates in the same experiment with a single set of parameters and IC. Shock
amplification of turbulence is compared to an experiment and the model results in this
study compare well to the previous Lagrange calculations. In cases where turbulent
fluctuations were measured in experiment, agreement with the model results was
adequate, usually within a factor two.

Problematic issues with the turbulent diffusivity coefficient, Cr, exist as described in [D-
T]. This coefficient is normally calibrated against Kelvin-Helmholtz (KH) shear test
problems, but in order to achieve this, the viscous tensor must be numerically stabilized
against shocks. A second concern is that if the coefficient value is modified in this mix
model, then the self-similarity analysis must be repeated to reset other model coefficients
consistently. An alternative calibration methodology, which avoids the limits imposed by
the self-similarity, would be to calibrate the three principle model coefficients, Cg, Cp,
and Cr, in the manner described in Chiravalle [19].

Sensitivity to IC values in the RM studies are examined. Results are sensitive to initial
values of L[t=0], which largely determines the RM mix layer growth rate, and generally
differs from the IC values used in the RT studies. Result sensitivity to initial turbulence,
K[t=0], is seen to be small but significant above a threshold value. This ‘threshold value’
loosely distinguishes initially turbulent from initially quiescent fluid conditions relative to
the thermal energy in the problem. It is reasonable to expect IC sensitivity in
extrapolating to high energy density regimes. It is unclear how to best set IC in
experiments with deceleration in arbitrary combinations of RT and RM, and a
methodology for this needs to be developed in future work.

Resolution studies for an RM test problem show the K-L. mix growth rate decreases as it
converges at a supra-linear rate, and, convergence requires a fine grid (on the order of 10
microns). For comparison, a resolution study of the Scannapieco mix model [31] acting
on a two fluid interface problem was examined. The mix in this case was found to
increase with grid resolution at low to moderate resolutions, but converged at comparably
fine resolutions. The atomically generated mix fraction and the mix width were
compared for the K-L mix model and the Scannapieco model on an identical RM test
problem (not shown in figures). In the Scannapieco model [30], atomic mix fraction and
mix width grow linearly in time. The K-L model mix fraction and mix width are found to
grow with a similar power law exponent. In future work, it is proposed to do more head-
to-head comparisons between these two models and other mix model options on a full
suite of physics test problems, such as the interfacial deceleration during an idealized ICF
implosion, which introduces a complex combination of RT, RM and KH instabilities.
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Generally, in a turbulence mix model, one expects to be able to adjust the turbulent
diffusivity to accommodate experimental results. Atomically generated mix fractions
were compared to the mix widths in the K-L model for variations in the turbulent
diffusivity coefficient. This shows that for changes in diffusivity without resetting the
self-similarity coefficients, there is a non-linear relationship between atomic fractions and
mix width. Mix width is shown to be weakly sensitive to the diffusivity coefficient
between values of 1 and 0.1, and independent of diffusivity below 0.1, while the atomic
fraction is directly proportional to the diffusivity in the limit as the turbulent diffusivity
approaches zero. Physically, this is reasonable and indicates that a very small diffusive
mix will not change the bulk profiles significantly. However, this also indicates that
within the present implementation of the mix model, profiles of the mix width are not a
good indicator of atomic mixing in the limits of small diffusivity.

As a final point of discussion, the model results can be compared to the classic RM
growth rate [9,10] expected in the early time linear phase of the RM mixing. The RM
mixing layer thickness, hrm, can be expressed as:

o
he, ~2m —ZAvt
RM )\, i

0

where §, is an initial perturbation amplitude, A, is the perturbation wavelength, and v;is a
post-shock interfacial velocity. The power law fits to the RM mix widths from the K-L
model provide an estimate of the initial velocity, v,, of the mix layer, given in the fitting
equation (Eqn.1, p.6) to be v, = mI*m2*m3. For example, using the results for the A =
+/- 0.2 cases shown in Fig. 5, we find v, ~ 0.00055 cm/usec, and in these cases the
contact discontinuity was found to move with the post- shock interfacial velocity, v; ~
0.01cm/usec. These model results with the classic RM linear growth rate then set a
unique ratio for the amplitude relative to the wavelength of the initial perturbation.
Assuming hrm/t ~ vem[t=0] ~ v,, then in this example we find

& L v, 000055 o oo
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The model results for the early time linear growth are thus consistent with a specific ratio,
(8o/A), in the IC, in this case about 4 — 5 %. This is a reasonable value but it cannot be
varied in the model to represent other ICs.

Conclusions
A K-L model with a drag-buoyaﬁcy source term for turbulent material mixing of fluids
was implemented in an Eulerian hydrodynamic code, and in this report it is tested in a

series of 1-D unit physics test problems representing several types of RT (Rayleigh-
Taylor), and RM (Richtmyer-Meshkov) instabilities, and other simple flows. Model
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performance is evaluated using the mix width verses time and in some cases the turbulent
fluctuation levels. Results are compared with experimentally determined parameters and
with the results previously reported in a reference study [1]. The present study uses the
same model coefficients as described in the reference study, however, in that case the mix
model was run in a Lagrange computation for the resolved flow and shock
hydrodynamics.

Our results for parameter self-similarity and for mix width agree closely with the
previous work [1] for RT unstable mixing and for turbulent decay in HIT (homogeneous
isotropic turbulence), where in both cases, there is no significant mass averaged fluid
flow. In the shock driven RM mix studies, as the mixing layer grows it must propagate
across the computational mesh in the Eulerian implementation. There is a significant
difference here and in the reference study between the mix growth rates, characterized as
the power law exponent (0) best fit to the mix width verses time in single shock RM tests.
The model result in our Eulerian code implementation consistently yields 8 values in the
range ~ 0.35- 0.45 for RM instability mix, which is within the range of values reported in
the literature, but higher than the value, 8 ~ 0.25, expected from a self-similarity analysis
in the Lagrange frame as described in the reference study. These results are consistent
with a relative insensitivity of the mix width to variations in the drag coefficient in the
Eulerian framework. Additional tests reported here, with different values of an imposed
uniform background (mass averaged) fluid velocity, suggest the difference may be related
to early time differences in the turbulent kinetic energy, which arise from the Eulerian
frame convective derivative in the K evolution equation.

Implications are that the model results are sensitive to the implementation details and the
computational framework, in a Lagrangian or Eulerian computation. Different
calibrations may apply to the model in Lagrange, Eulerian, or in ALE computations. The
spreading of a shocked contact discontinuity due to numerics in an Eulerian frame is a
well known issue. In RM mixing, the numerical spreading of the contact discontinuity
must be distinguished from the spreading intended in the mix model. This is a significant
and broad based challenge for mix modeling in an Eulerian code and lies beyond the
specifics of the present mix model and implementation.

Sensitivity of the model in several areas was examined. Mix growth rates for RM are
found to be sensitive to initial conditions (IC) and these IC differ from the model IC
values used to match RT results. This sensitivity to IC suggests that a methodology
should be developed to set the IC for a specific regime, especially in arbitrary
acceleration combinations of RT (constant acceleration) and RM (impulsive
acceleration). In comparison to re-shock experiments (Vetter-Sturtevant and
Poggi,et.al.), we were able to obtain a good match to the first shock or to the re-shock
growth rates but not both simultaneously with a single set of model parameters. Grid
convergence for the K-L model in RT and in RM mixing is compared to convergence for
a multi-fluid mix model in a species-pressure gradient driven mix test. Convergence for
the K-L model is superior on g:pu[sé grids, and comparable on the finer grids. Varying
the turbulent diffusivity coefficient near the default value of unity has a small influence
on the mix width, but directly controls the ‘atomically mixed fraction” even for very
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small values of the diffusivity. The model output of fluid volume fractions and
separately, the atomically mixed volume fractions per material, allows a rigorous
approach in the calculation of reactivity in transient mixing fluids.
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Appendix: K-L model equations with drag buoyancy source

This summary of the model equations are adapted directly from the reference article by
Dimonte-Tipton [Phys. Fluids, 18, 085101 (2006)] denoted here as [DT].

The turbulence model modifies transport in the conservation equations for the mass
average flow density, momentum, and internal energy as,

=P oV-u

Dt 3

Du

pa—= _Vp - V:‘nlrb V qav+pg

with an equation for mass fraction, F;, for species r, given by

Dt N,

The mass averaged velocity, u, defines the convective derivative in each equation as

2l = 9 + u-V()

Dt ot

Artificial viscosity, qay, can be a tensor quantity and must be defined consistently in the
momentum equation and in the work term in the internal energy equation. This stabilizes
the numerics and maintains the shock jump conditions in Lagrange, ALE, and Lagrange
phase computational methods where energy conservation is expressed in an internal
energy equation. This is not a feature of the K-L model, but the model must be
compatible within this computational framework. The subscripted parameters, N, are
turbulent diffusivity parameters set in [D-T] by self-similarity. Other variables have their
usual meaning.

The transport equations are closed by relating the turbulent stress tensor, my, and the
turbulent diffusivity, wr, to the model parameters, K and L, respectively representing the

h

turbulent kinetic energy and a turbulent scale length. The turbulent stress tensor,
2 2
T, = —3—6,ij —u | Vu+V u- gal,jv U

is approximated with a diagonal component in the form,
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where the 2/3 derives from the usual diagonal form and the coefficient, C'p, is an
empirical adjustment to approximate the off-diagonal terms as described in [DT] (their C,
is our (2/3 + C’,) ). This approximation is derived in [33]. The default value for C'; is
zZero.

The turbulent diffusivity, ur, is related to the model parameters, K and L, as
w, = C,pL(2K)""*
The equations used to evolve K and L are,

p%= —7,, - (Vu)+V-

+ .S
Dt K

Ll v
N

K
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The turbulent viscous heating, -z, , : (Vu), in the K equation is simplified in this model
due to issues associated with numerical instabilities with shear in the presence of shocks,
as discussed in [D-T]. Consistent with the simplified turbulent stress tensor described
above, the turbulent viscous heating becomes

7, (V)= (2/3)pK V- u

This restricts the model in its present form because it cannot be calibrated against the K-
H or shear instability since the shear terms required to generate turbulent kinetic energy
from the K-H instability are omitted.

The source term for the turbulent kinetic energy, Sk, is unique in the Dimonte-Tipton
version of the K-L model, and is written to explicitly represent the buoyancy and drag
terms familiar in the R-T and R-M mix community,

S, = p(2K)”2[CBA g-C, 2TK]

where the coefficients for buoyancy, Cg, and for drag, Cp, are set in comparison to
empirical data. The Atwood number, A, is calculated as a local quantity within the
computation using,
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as described in detail and justified in [DT]. The model coefficient, C,, is introduced to
scale the second term contribution to A.
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Figure 1. Model kinetic energy, normalized at select times during R-T instability mixing

showing the self-similar growth for low Atwood number (0.05) and high Atwood number
(0.8) cases.
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Figure 2. (Top) Mix width verses scaled distance, Agt®, for the model results in R-T

instability, showing convergence for results by refining the grid (number of zones = nz =
1/dx). The bottom panel shows the resulting R-T growth rate, alpha, @ = h/ Ag’, verses
Atwood number, A.
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Figure 3. Turbulent kinetic energy, K, (left) and turbulent scale length, L, (right panel)
verses time on log-log plots showing, respectively, power law decay and growth during
the decay of homogeneous isotropic turbulence (HIT) for two initial conditions of K =

K.
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Figure 4. Mix width verses time showing sensitivity of results to initial conditions (IC)
for select RM cases. Curves for spike and for bubble mix are shown separately for each
set of IC, where the spike growth is slightly greater than bubble growth in each case.

‘Quiescent’ and ‘turbulent’ IC labels are described further in the text.
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Figure. 5. Mix widths verses time for the basic single shock RM instability using four

different values of the Atwood number, A. Spike mix widths are shown in red and
bubble mix widths are in blue. Negative A indicates a drop in density as the shock
crosses the initial discontinuity, and positive A is an increase in density as seen by the
incoming shock. Curve fits are described in the text.
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Fig. 6 Mix width verses time for varying drag coefficient, Cp, showing the two
parameter power law fits (top panel) to model results (symbols), and the three parameter
power law fits (bottom panel) to model results.
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Figure 7. Theta, 0, obtained as the best fit power law exponent to the model result for the
mix width, h, verses time, is shown verses the model drag coefficient. The top figure
compares results for the two and three parameter power law fits from Fig.6, and the lower
figure compares results for spikes and bubbles in a long duration mixing test and for total
mix width in a shorter duration test (see text).
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Figure 8. Mix model results are compared to experimental data from the Vetter-
Sturtevant re-shock experiment [11]. Heavy dark lines indicate experimental data for two
similar experiments (85 and 90), and the lines with symbols show mix model results for
two parameter settings described in the text.
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Figure 9. Mix model results are compared to experiment for the Poggi, et.al. re-shock
experiments [12]. Top figure shows mix front positions as given in the Poggi paper, for
two model settings (lines) and for select experimental data (symbols). The bottom figure
converts the mix front positions to mix widths, allowing a more detailed comparison
between model results and these experimental data points.
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Figure 10. Turbulent kinetic energy levels, given as 2K, from the mix mode] at
downstream locations for comparison to the experimental data in Poggi, et.al. [12].
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Figure 11. Shock amplification of turbulent kinetic energy in the mix model, K[K-L],
compared to experimental data by Barre, et.al. (denoted BAB [30]) of the longitudinal
turbulent fluctuations during anisotropic decay.
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Figure 12. Grid convergence studies for mix models. (Top panel) Convergence for the
K-L mix model in a R-M single shock test problem. For comparison, (bottom panel)

convergence of a multi-fluid interpenetration mix model [Scannapieco and Cheng, 2002]
is shown for an interfacial pressure gradient driven mix problem, as described in the text.
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grid convergence comparison
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Figure 13. Grid convergence comparison between the K-L model results for an RT
problem (taken from Fig. 2A), the K-L results for RM problems (from Fig.12 top) and the
interpenetration model of Scannapieco and Cheng in the pressure gradient driven mix
problem (taken from Fig.12 bottom, and labeled here as ‘trbfl in grad(p1)’). The results
are plotted as the fractional change in mix width resulting from a refinement in the mesh
resolution by a factor of two.
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Figure 14. Model results for mix width in time (top panel) due to variations in a
uniform background flow speed and for two initial condition (IC) values for K,. Model
turbulent kinetic energy (K) verses time for the different background flow speeds, shown
separately for the two IC values for K, (bottom two panels).
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Figure 15. Mix width verses time (top panel) for two values (Cy =1, 0.1) of the
model coefficient multiplying turbulent diffusivity, Cy. Atomically mixed fraction
(bottom panel) of the heavier fluid across the mix layer for five values of the turbulent
diffusivity coefficient in decreasing sequence for Ct =1, 0.5, 0.1, 0.05, and 0.01. This is
discussed in the text in comparison to mix width.
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Figure 16. Comparison of the total volume fractions (vf) and the atomically mixed
fractions (af) for the two fluids (.1 and .2) across the mix layer in a ty pical RM problem
calculated in the Eulerian code implementation. These are discussed in the text.
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