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Unit Physics Performance of a Mix Model in Eulerian Fluid 
Computations. 

VoId, E. (XCP-2) and Douglass, R. (XCP-I) 
Los Alamos National Laboratory 

Abstract 

In this report, we evaluate the performance of a K-L drag-buoyancy mix model, 
described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The 
model was implemented in an Eulerian multi-material AMR code, and the results are 
discussed here for a series of unit physics tests. The tests were chosen to calibrate the 
model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and 
RM (Richtmyer-Meshkov) experiments, and the present results are compared to 
experiments and to results reported in [D-T]. Results show the Eulerian implementation 
of the mix model agrees well with expectations for test problems in which there is no 
convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of 
homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves 
through the Eulerian computational grid, and there are differences with the previous 
results computed in a Lagrange frame [D-T]. The differences are attributed to the mass 
averaged fluid motion and examined in detail. Shock and re-shock mix are not well 
matched simultaneously. Results are also presented and discussed regarding model 
sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the 
generation of atomically mixed volume fractions. 

Introduction 

In many computational applications involving fluid mixing due to turbulence or fluid 
instabilities, the full range of fluid scales cannot be resolved. It is common to represent 
small scale mixing with a model while the computational simulation resolves mixing at 
the large scales [2]. The mix models incorporate one or more coefficients, which must be 
set by comparison to experimental data, preferably in unit physics tests where each 
coefficient can be set independently [3]. As discussed in the next section, methodologies 
for calibrating multiple coefficients simultaneously in mix models are varied and not 
standardized. 

The K-L drag-buoyancy model 
The K-L drag buoyancy mix model considered here is detailed in [D-T], and the 
equations are summarized in the Appendix for reference. Starting with the compressible 
fluid equations supplemented with a species continuity equation, the mix model can be 
considered to include four components. One, additional terms in the mass averaged flow 
and species equations produce 'mix' by modifying the resolved flow in the computation. 
These new terms depend on the turbulent quantities, K (turbulent kinetic energy) and L 
(turbulent scale length). Two, evolution equations are solved for K and L on the 
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computational grid. Three, closure relations for terms in the K and L equations, use 
coefficients which are adjusted to fit empirical data. Four, self-similarity analysis further 
constrains the remaining model coefficients. The self-similarity analyses apply rigorously 
in the Lagrange frame of the mass averaged fluid, and in the limit as Atwood number, A, 
goes to zero. The results discussed later, suggest that these restrictions may be important 
and do not apply in all applications. 

Analysis in [D-T] combines self-similarity constraints with empirical results to prescribe 
the model coefficients as summarized in their Table 1. The rinc!Jile empirical 
constraints are derived from experiments in Rayleigh-Taylor (Rt ) mix [4-8] and 
experiments in Richtmyer-Meshkov (RM) mix [5 , 6, 9-12]. The constrained coefficients 
are incorporated into the drag-buoyancy source term to the K evolution equation (see 
Appendix). In RT mix experiments, the mix layer width grows as h = aAgr, where a 

has been observed in the range 0.05 - 0.08 [4, 13, 14]. The value of a = 0.06 is chosen 
by [D-T] and in combination with other coefficients, this sets the K-L buoyancy 
coefficient, CB = 0.84. 

In single shock RM experiments, late time mix layer growth verses time is often fit to a 

power law [6, 15, 16]. This growth is expressed in a form, h = ho(l + t v/ (ho8) lin 

order to fit data to initial conditions for perturbation scale length, ho, and initial mix 
velocity, vo, in addition to the exponent for late time growth [6]. The power law 
exponent reported in the literature has a substantial range, typically, 8 - 0.2 - 0.5 
[6,15,16]. In [D-T] , the value of 8 = 0.25 is assumed to apply for small Atwood 
numbers, and this is used to set the model drag coefficient, CD = 1.25. This value of the 
model drag coefficient is also consistent with the decay of HIT (homogeneous isotropic 
turbulence), which is experimentally observed in some cases to follow nearly linear 
decay in time [17]. A self-similarity analysis [D-T] is then used to constrain the 
additional model parameters. 

The coefficient for the turbulent diffusivity, CT, is unity in this model, consistent with the 
self-similarity constraints. The coefficient value cannot be set in the usual way against 
KH (Kelvin- Helmholtz) instability or shear layer mix growth [18] until the deviatoric 
source terms in the turbulent stress are included in the model. This in turn requires a 
shock-stable form for those terms, and would then require rescaling the diffusion term 
coefficients terms as described in [D-T]. 

The turbulent diffusivity coefficient is 'classically ' determined by comparing to K-H 
instability growth [18] and is then found to be - 0.1. In an independent calibration study 
of a similar K-L drag-buoyancy model [19], Chiravalle uses a different methodology to 
set the model coefficients, wherein the RT, RM and KH empirical mix rates were used 
simultaneously to set the three principle model coefficients, CB, Co, and CT. That study 
found the turbulent drag coefficient to be 0.3, however, the drag source term there is 
rormalized differently than in [D-T] , so a direct comparison, assuming the [D-T] form of 
the drag term, would put the Chiravalle coefficient at Cr - 0.15, close to the classical 
value. In another recent mix model calibration, a version of the BHR mix model [20] 
(which is also a K-L based turbulent mix model) found Cr = 0.56 [21]. The range in 
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these results suggests there is no single accepted calibration methodology, nor a universal 
value for turbulent diffusion across turbulence models. 

To evaluate the K-L drag-buoyancy mix model implementation within an Eulerian code, 
the unit-physics tests are adapted from [D-T]. In that study, the mix model is 
implemented within an ALE code and the tests were run in a pure Lagrange mode [22]. 
That allows a direct comparison between the model results within the computational code 
and the expectations from the self-similarity analysis, which sets the model coefficients 
in a Lagrange frame analysis. The model as summarized in the Appendix, is written in 
terms of the convective derivative for all convected quantities, and in that sense it is cast 
in a Lagrange form. In the present study, the K-L model has been implemented within an 
Eulerian code [23], and some mix model results which will be shown to differ from the 
previous work may be attributed to this basic difference in formulation of the underlying 
computational framework. 

Model coefficient default values used here are the same as given in Table I of [D-T]. 
These include the threes~alues, as discussed above, ofCB = 0.84, CD = 1.25 and 
CT = 1. The values of the turbulence variables, K and L, evolve from initial values, Ko 
and Lo, which are specified as model inputs, and then used by the code to initialize K and 
L at all material interfaces in the problem. Results will be shown to depend upon these 
initial values, so these are considered as additional model parameters. 

Eulerian Implementation 
The algorithm in the Eulerian fluid computation used in this study is based on work by 
Scannapieco [23]. It can be considered as a Lagrange phase projection with a full 
advective re-map back to the original grid, similar to that described in [24-26]. The 
Lagrange phase and internal energy require an artificial viscosity to stabilize numerics 
and to better maintain total energy conservation in the presence of shocks. [25]. The 
computational grid is rectilinear and all tests are run in 1-D geometries. An AMR 
(adaptive mesh refinement) capability is turned off to force the test problems to run on a 
uniform grid in order to reduce possible numerical instabilities. 

Interfaces between different materials are tracked with a VOF scheme [27]. As materials 
mix, an unmixed volume fraction for each material evolves to an atomically mixed 
fraction in proportion to the material volume fluxed by the mix velocity [23]. This mix 
velocity is based solely on the turbulent diffusivity in the species mass equation. 
However, the K-L model also modifies the mass averaged velocity, U, through the 
gradient in K, and then the mix width may be modified by this change in u, in addition to 
the atomically mixed fraction generated by the species turbulent diffusion flux. The 
unmixed fractions are used to maintain a 'quasi-interface' for VOF, even as mixing 
evolves, while the mixed fractions (denoted ' atomically mixed volume fractions' in the 
results section) can be used to define mixed volumes for computing reaction rates 
between reactive mixing materials. 

Test Method Basics 
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' Mix' is evaluated as a width or thickness of the mixing fronts verses time in this and in 
the reference study, using in most of our cases, the 5% and the 95% variations in the 
volume fractions of the two mixing materials. In many tests, mix width is evaluated 
separately for the bubbles (light fluid) and the spikes (heavy fluid) relative to the position 
of the unmixed contact discontinuity. This position moves significantly through the 
computational mesh for the RM mix cases. Only binary mixing and 1-D tests are 
considered in this study. 

Results 

RTmix 
The RT problem set-up follows that given in [0-T], with imposed acceleration, g = 

0.00098 cm/llSec2
, and ideal fluids each with heat capacity ratios, y = 5/3. Fluid densities 

are constant initially, with fluid one density, PI = 1 glec, and the density of fluid two is 
varied in different runs to set the desired Atwood number. Initial hydrostatic equilibrium 
is set with a linear variation in internal energy in each fluid region. Pressure at the fluid 
interface is set to be consistent with fluid temperatures of 1 eV. Default K-L model 
parameters were used and the initial values were chosen as Ko = J.e-8 g (cm/llSec/, and 
Lo = 1. e-5 cm. A range of Ie values were evaluated and gave similar results. 

A large suite of runs was examined. An example of results showing self-similarity of the 
profiles of K across the mix layer during RT mix are given in Figure 1, for two of the 
cases examined, with Atwood numbers of 0.05 and 0.8. The results agree with those in 
[0-T], and show the important characteristic of near symmetry at low A, and increasing 
asymmetry at high A, with the profile leaning in the direction of the 'spikes' from the 
heavier fluid. This self similarity is essential to recover the desired RT growth rate 
proportional to r, where the velocity grows as the gradient of K ~ KlL, and therefore both 
K and L must exhibit self-similarity to maintain this constant ratio defining the mix 
acceleration during the mix evolution. Self-similarity in the growth of the turbulent 
length scale, L, was also demonstrated (not shown). 

The mix layer growth and its variation with grid resolution is shown in one example for A 
= 0.8 in Fig.2 (top). Mix growth appears linear with Agi as expected. In plots (not 
shown) of the mix width verses time on a log-log scale it is apparent that the mix width 
grows in time with an exponent slightly less than two ( ~ 7/4) . The convergence behavior 
will be discussed later in the section on Grid Convergence. 

Results for the RT growth rate, alpha, a = WAgr, are summarized in Fig.2 (bottom 
panel) for the full range of Atwood numbers on converged grids. This growth rate 
matches the previous results in [0-T] closely and shows good agreement with 
experiments [4-6], where alpha for the bubbles is near 0.04-0.06 and approaches 0.06 at 
low A, while alpha for the spikes increases significantly from ~ 0.06 as A increases. This 
trend across A is in good agreement with previous work [6,13] . 

HIT (Homogeneous isotropic turbulence) 
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A simple HIT setup assumes a 1-D problem with all zones mixed so that each zone is 
initialized to the prescribed K and L initial conditions, Ko and Lo. We confirmed that the 
results are identical in any of the 1-D problem zones, as they should be. In these tests, Lo 
is set to 1.e-4 cm, and Ko is set to either Ko = 1.e-5 or to Ko = 1.e-8 (cm/ flSec/ These 
two values ofKo correspond loosely to initial conditions defined to be 'turbulent' or 
'quiescent' relative to the thermal energy in the problem, as described in the later section 
on RM mix sensitivity to IC 

Our test results are shown in Figure 3, for the time dependence of the model turbulent 
kinetic energy, K[t] and the turbulent scale length, L[t]. The decay of K fits a power law 
with exponent, e~ -1.12, while L grows with power law exponent, y~ 0.43. These 
results are independent of the initial value of Ko after an early time transient. These 
results are in excellent agreement with the expected values from the self-similarity 
analysis in [D-T] of e ~ 1.1, and y ~ 0.44 appropriate for the value of the drag 
coefficient, CD = 1. 25. The decay of homogeneous isotropic turbulence has been studied 
extensively and it has been shown in analyses that the decay of turbulence should be 
linear in time [17]. This agrees to within 10% with the self-similar result, e ~ -1.1 as 
given in the analysis of [D-T]. 

RMmix 

Shock set-up 
Shocks of specific magnitude are generated using the polytropic gas relations for shocks 
into initially stationary fluids [28]. A shock impinges on a contact discontinuity in the 
RM mix tests, in which the Atwood number is defmed by convention as positive for a 
step up in density at the contact discontinuity and negative for a step down in density. 
Thus, for the shock moving from fluid 1 to fluid 2, the Atwood number is 

A = (P2 - PI) 
(P2+PI) 

Initially, the shock front was specified a distance upstream from the initial contact 
discontinuity (CD) to reproduce the tests as shown in [D-T]. However, this allowed a 
significant time before the shock reached the CD and the mix model produced a small but 
significant amount of mixing prior to the arrival of the shock. To avoid this undesirable 
early time pre-shock mixing by the model we set the shock front to be adjacent (one zone 
upstream) to the CD interface in subsequent tests. 

The 'base case' in the RM shock studies used the shock described by [D-T] in section VI, 
with Mach = 1.57, Vshock = 0.022 cm/fAsec, and shock density = 1.812 glcc, impinging on 
an ideal gas of density 1 glcc and y = 5/3. Density and internal energy, respectively, in 
fluid two are adjusted to set A, and to maintain pressure equilibrium at the CD. The 
initial conditions for Ko and Lo in these tests are not specified in [D-T]. 

RM Mix Sensitivity to Initial Conditions (IC) 
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Extensive studies to explore the basic response of the model to shocks indicated the 
model results for RM mix are sensitive to the initial conditions for K and L, specified in 
the input values, Ko and Lo. Select results from the studies are summarized in Figure 4, 
showing the mix width for A = - 0.2, evaluated separately for bubbles and spikes, for 
several combinations of initial conditions for Ko and Lo. It was found that below a 
certain threshold for Ko, the results were independent ofKo, for example comparing Ka = 

1 e-12 and Ka = 1 e-8 (eml/lsee/. Above this threshold, the mix width increases 
significantly with Ko, as seen comparing Ka = 1.e-8 and Ka = 1.e-5 cases. The threshold 
value, here Ka - 1 e-5, is interpreted as distinguishing initial conditions which are 
'quiescent' (Ka < < 1. e-5) from initial conditions which are 'turbulent' (Ka ~ 1. e-5). This 
threshold defining the 'turbulent IC' corresponds to a turbulent kinetic energy of a few 
percent of the thermal energy in the problems run here. 

In figure 4, the RM mix width for two cases of La = 1.e-2 and La = 2.e-2 em, shows a 
strong and direct dependence on Lo. We have found that varying Lo is a convenient way 
to match mix widths in various RM experiments, typically in the range reported here La -
(1- 2) e-2 em. This range is compared to the value of La -1.e-5 used as IC in the RT 
studies. Since the RM mix results are clearly sensitive to the initial values for K and L, 
these specified input values, Ko and Lo, should be considered as additional parameters in 
the mix model. 

RM single shock, varying Atwood numbers 
Mix width growth is shown in a composite of cases in Fig. 5 for A = +/- 0.2 and for A = 

+/- 0.8, with bubble and spike widths evaluated separately. In this case, the mix front 
positions, indicated by volume fractions of I % and 99 %, are evaluated in relation to the 
position of the unmixed interface in the same shock conditions. As expected in 
comparison to results in [D-T] and in experiments (e.g., [6]), the spikes grow slightly 
faster than the bubbles at the lower value of A, and there is a large spike to bubble 
difference at the higher Atwood numbers. The fitting coefficients, m1, m2, m3 in the 
power law fits for mix width, h, verses time, t, are related to the form proposed in [D-T] 
as, 

(1) 

where, ha, is the initial condition for a perturbation scale length, Va, is an initial mix 
velocity, and e is the exponent for late time growth. (In the examples in Fig.5, there is 
also an initial time shift, fit as m4, but this does not influence the results for the other 
parameters.) The power law exponent, e, fit to the model parameter, m3, is found to be 
0.37 - 0.39 in the cases in Fig. 5 with the smaller Atwood number, with a small 
difference between the bubble and spike values. AtA = 0.8, the exponent, e = m3 - 0.42 
increases for the bubbles and e = m3 - 0.49 - 0.51 and for the spikes. These values are 
significantly higher than expected, e - 0.25, for the bubbles based on the self-similarity 
calibration methodology in [D-T]. The results in figure 5 are representative, and 
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consistent with many other tests not shown, where the power law exponent for late time 
RM mixing falls in the range e ~ 0. 3 - 0.5. 

RM sensitivity to drag coefficient, CD 
This difference in the power law exponent obtained here and in the previous Lagrange 
based calculations in [D-T] prompted investigation into the sensitivity of the RM mix 
results to the drag coefficient, Co. This drag coefficient was varied from the default, 
CD = 1.25, to values as shown in Figure 6. The top panel shows the resulting fits for the 
bubble mix widths using a standard two-parameter power law. The bottom panel shows 
the improved fits from the three-parameter power law model (given in the equation 
above). A small dependence of the mix width on the drag coefficient is seen in the 
figures. The power law exponent has a small variation with CD, and it appears to be less 
sensitive in the two-parameter fit than in the three-parameter fit. A comparison is plotted 
in Figure 7 (top panel), showing the theta value best fit to the mix model width verses the 
specified drag coefficient, for both the 2 and 3 parameter power law fits. 

There were several additional runs varying the drag coefficient, and examples are shown 
in Fig. 7 (bottom), where bubble and spike growth over a long mix time are compared to 
the total mix width growth over a short mix time. The results are similar and show a 
weak sensitivity of mix exponent to the drag coefficient value. This is in contrast to the 
significant sensitivity observed in [D-T] as shown in their figure 24, where theta varies 
from ~ 0.6 down to ~ 0.24 over the same range of CD shown here. In our test runs at 
lower Atwood number ( A = 0.02, not shown) we found the smallest theta value to be, e 
~ 0.28, for CD = 2.5, however at the default drag coefficient of Co = 1.25 , the resulting fit 
for theta at A = 0.02 was found to be, e ~ 0.4. We will return to discuss model sensitivity 
to drag in the section on K-L model sensitivity to a uniform flow velocity. 

RM re-shock 1 - Vetter-Sturtevant experiment 
The K-L mix layer growth rate was evaluated for the Vetter-Sturtevant [V -S] experiment 
[11] , using similar set-up and IC as given in [D-T], where the V-S experiment # 85 was 
modeled . A Mach = 1.5 shock impinges on an air-SF6 interface (A - +0.67). This 
required reducing the ambient pressure at the CD to obtain this Mach number in the 
experiment. Two experimental runs (85 and 90) are reported in [11] for this same Mach 
number where the difference is only in the details of the mylar-wire-mesh interface used 
to establish the discontinuity of the IC. The experimental results were sensitive to the IC 
in ways not well understood, and not easily modeled [29]. 

Mix model results are compared to experimental results in Figure 8. A large difference 
between the two experiments due to the IC is evident. . With the default model parameters 
set, the initial conditions can be varied to best match the data. Two cases for the K-L 
model results are also shown in comparison, with Lo = 0.127 (as in [D-T)), and using a 
larger value, Lo = 0.4 The model can match either the early time single shock RM 
mixing or the later time re-shock mixing by adjusting the initial turbulent scale length, Lo. 

It appears unlikely that a single set of initial conditions with the default model parameters 
can simultaneously match the mixing following the first shock and simultaneously match 
the mixing after re-shock. This is in contrast to the results reported in [D-T] where good 
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agreement was obtained in the first shock and in the re-shock mixing with the same 
model parameter values used here. The different results may be related to the relative 
insensitivity to the drag coefficient seen in the Eulerian implementation of the model. 

RM re-shock 2 - Poggi, et.a!' experiment 
The Poggi, et.al [Poggi] experiment [12] involves a Mach = 1.45 shock initiated in SF6 
and propagating across an SF6-air interface (A ~ - 0.6), and then reflecting from a shock 
tube end-wall to re-shock the SF6-air interface from the air side. The K-L mix layer 
growth rate was evaluated for the Poggi experiment using similar set-up, IC, and model 
parameter settings as given in [D-T]. The model results for the mixing front positions are 
compared to a sub-set of the experimental data in Fig. 9 (top) and the front positions are 
used to determine the mix widths verses time in Fig. 9 (bottom). The top figure shows a 
reasonably good overall match to the experimental mixing front positions, however, the 
bottom figure shows that the mix width for each model case is in poorer agreement with 
the experiment. It is interesting to note that the default model settings (labeled 'base' in 
the figure) match the first shock mix and under predict the re-shock mix? and this result is 
nearly identical to that reported in [D-T] with the same default model parameter values. 
However, they were able to obtain a good fit to both mix regimes simultaneously by 
adjusting the parameters far from their calibrated default values. In our results, even with 
modified coefficients, we were unable to match the mixing in both regimes 
simultaneously. Again, this difference may be related to the observed insensitivity to the 
drag coefficient, CD, seen in the Eulerian model implementation. 

In addition to data on mix front verses time, the Poggi experiment provided data on 
turbulent fluctuation levels, measured at several locations as an average of the axial 
variance, <u/>. This data is compared directly to Lagrange results in [D-T], and can be 
compared to results in the Eulerian frame by converting the time axis to distance using' 
the shocked fluid mean velocity. The results for fluctuations, evaluated as 2K in the 
model, are shown in Figure 10, and these can be compared qualitatively to the results in 
[D-T] or in Poggi [12]. The magnitudes of the model fluctuations are small compared to 
the experimental data for axial fluctuations by a factor of 2 to 4. Anisotropy in the 
experimental fluctuations might account for much of this difference but the anisotropy 
was not measured and so it cannot be quantified. The model results here agree with the 
previous model results [D-T], to within a few tens of percent at most location/times but 
only within about a factor of two at the location of the peak fluctuations, where the 
greatest difference between model results is seen. However, at this same location, 
agreement of either model with experiment is best; the previous Lagrange based 
computations agreed with experiment to within about 50%, and the present model 
implementation agrees with experiment to within a factor of about two. 

Shock amplification of turbulent kinetic energy 
An experiment by Barre, Alem, and Bonnet [30] (denoted BAB) examined the shock 
amplification of turbulent kinetic energy by measuring fluctuation levels in the 
interaction of a normal shock with homogeneous turbulence. Air is driven in a wind 
tunnel through a mesh which generates an initial homogeneous turbulence field and then 
propagates downstream past fixed obstacles which set up a Mach = 3 standing shock 
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wave in the turbulent air. Hot wire anemometry and laser Doppler velocimetry are used 
to measure axial fluctuations, the decay of anisotropy in the fluctuations after passing the 
shocked surface, and also a longitudinal integral turbulent length scale. 

The complex experiment is modeled in a simple way, with mixed materials prescribed in 
all zones, which initializes the turbulence in the K-L model everywhere to Ko. A Mach = 

3 shock is launched and the fluctuation levels, K, relative to the pre-shock initial values 
are determined as a function of distance from the initial shock front, at sufficiently late 
times to span the experimental domain. The model values for amplification of K, post­
shock to pre-shock values, are compared to the experimental post-shock to pre-shock 
values for amplification of the longitudinal fluctuations in Fig.ll. The initial decay of 
the anisotropy, seen in the experimental data out to a distance of about one cm, cannot be 
represented in the isotropic turbulence, K, in the model. The experimental amplification 
values are near a factor of three shortly after the shock passes, in reasonable agreement 
with the model (ignoring a very brief transient amplification of about 6 seen in the 
experiment). After the experimental value decays to the axisymmetric late time value of 
about 1.5, (where the anisotropic ratio of longitudinal to transverse fluctuations is also 
equal to 1.5) then the model result is almost a factor of two greater than the data. If the 
anisotropy is factored in as described in [D-T] then the average K post-shock to pre­
shock values consistent with the experiment are expected to be even smaller and so the 
discrepancy with the model result would be greater. Model results reported in the 
Lagrange work [D-T] were in better agreement with the experiment but still overshot the 
data by about 40% at the point with the best agreement, and by a larger margin at other 
locations. 

Grid Convergence Studies 
Results of the K-L mix model in the base RM mix problem, with A = - 0.2, were 
compared on varying grid resolutions to determine grid convergence. An example is 
shown in Figure 12 (top), where mix width verses time on a log-log plot indicate the 
power law dependence is not changing significantly while varying grid resolution from 
dx = 0.008 down to dx = 0.00025 cm or 2.5 microns. Note that the mix width decreases 
as grid size decreases. In analyses (not shown here) it was determined that the K-L 
model result for the RM problem is converging 'better than linearly', meaning the 
normalized change in solution per change in resolution scaled approximately as: dxY with 
y = 1.2. This is evaluated assuming the solution on the finest grid is the 'accurate 
solution', then plotting a difference in the solutions, each course grid solution minus the 
finest mesh solution, against the course grid resolution, expressed as J/dx. The slope (on 
a log-log plot) then indicates a measure of the convergence rate with resolution and was 
found to be y = 1. 2. Convergence errors are quantified further in the next section. 

For comparison, we examined the grid resolution in an alternate mix model, the multi­
fluid interpenetration mix model reported in SCaImapieco-Cheng [31]. The mix in this 
model is driven by the species pressure gradients at fluid interfaces, and so an interfacial 
pressure gradient driven mix problem is used to test the convergence. In our tests, two 
different fluids of the same density (lglcc) each occupy half of a one cm. domain. Fluid 
temperatures are initialized at 2 ke V and temperature exchange appropriate to this dense 

9 



plasma regime is included. Mix results from this model have similar characteristics 
across a range of test problems, indicating the results here are representative of other 
problems. The mix characteristics from this model are not explicitly sensitive to the type 
of instability expected at the fluid interface. 

Mix results for the Scannapieco-Cheng [31] model are summarized in Fig.l2 (bottom 
panel) as a mix width verses time for a range of grid resolutions. The most course grid 
just barely resolves the domain, while the finest grid at 25 microns has 400 zones across 
the domain. The mix width growth approaches a linear phase at late times, and the slope 
approaches a constant value on the finer grids indicating a convergence for the linear mix 
rate . Note that the mix (width) increases in going to the finer grids. This is presumably 
attributed to the mixing drive in the pressure gradient drive term, where the numerical 
approximation to the pressure gradient scale length is limited by the finite grid resolution, 
and thus the pressure gradient driving mix can increase as dx decreases. 

A grid resolution comparison is summarized in Fig. 13, which includes the K-L model 
results in the RT problem (taken from Fig. 2), the K-L results for the RM problem (Fig. 
12 top), and the interpenetration mix model results for the pressure gradient interfacial 
mixing problem (taken from Fig. 12 bottom panel, and denoted 'trbfl in grad(p1)' in 
Fig.13). The plot reflects a fractional error each time the grid is refined by a factor of 
two. It shows the relative change at a late time in the mix width, h, plotted against grid 
resolution, dx, with the relative change on two grids, evaluated as ((h(dxJ - h(dxi_ 

,) )/h( dxJ where dXi is the courser grid size and dXi-l is the next finer grid, and is half the 
grid size of dXi. This allows a simple convergence comparison of each mix model in a 
type of test problem appropriate to that model. 

The K-L mix model results change across grid resolutions by less than 40% per halving 
dx in the RM problem, and less than 20% change in halving dx in the RT problem on the 
course grids, and with much smaller changes as dx approaches zero. The largest dx 
examined in the RT problem was 100 microns but the result suggests that K-L converges 
in RT at least as well as in RM on grids with dx up to a few hundred microns. On the 
course grids, the interpenetration model [31] in the pressure gradient test problem, 
denoted 'trbfl', had the largest relative change in the solution, of almost 100% between 
the course grids, indicating poor convergence at the course resolutions. At grids of 100 
microns and finer, this model solution changed only slightly indicating good convergence 
at the finer resolutions. The good convergence at the fine grid may be related to 
resolving the species pressure gradients adequately at those resolutions. It may also be 
related to better resolution of the energy exchange, which depends upon temperature 
gradient scale lengths limited by the grid resolution in the numerical approximations. 

K-L model sensitivity to a uniform fluid velocity 
The discrepancies in the RM power law exponent and its sensitivity to the drag 
coefficient seen between the present Eulerian implementation of the K-L model and the 
results in the Lagrange computations [D-T] prompted further study. Possible differences 
exist in the effective fluid drag as seen in the Eulerian frame compared to the Lagrange 
frame used in the self-similarity analysis to set the model coefficients. The Lagrange 
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frame convective derivative for K (see Appendix) is assumed related to the scale length, 
L, and the drag-buoyancy source term, SK[K,L), a function ofK and L. In a simplified 
form the K evolution equation is 

DK 

Dt 

The convective term, ~ u KlL, is irrelevant in the Lagrange frame but can modify the . 
evolution ofK if(KJ L) evolves similarly as u varies. This is expected to be true when u 
represents a W1.iform background motion, uo, if the value of Uo is varied between different 
test cases. 

To test this, a simple contact discontinuity (CD) in pressure equilibrium (the same used in 
the RM mix problem) was re-run while varying a uniform background flow velocity, uo. 

There is no shock, to avoid differences due to the shock impinging on the CD at different 
velocities, so the mix layer forms only in response to the decay of K from its initial value. 
In this problem, A = - 0.2, Lo = 1.e-2 and two initial values ofK are compared, Ko = 1.e-
8 (quiescent IC) and Ko = 1.e-5 (turbulent IC) as introduced in Fig. 4. A uniform 
background flow velocity, uo, is imposed defining three cases as: Uo = 0 (denoted uOO), Uo 

= 0.01 (u01) and Uo = 0.02 (u02), where case u01 corresponds to Mach ~ 0.7 and u02 
corresponds to Mach ~ 1.4, relative to the sound speed of the heavier fluid at the CD. 

The mix widths for these six cases are shown at select times in Figure 14 (top). It is 
evident the mix width increases with the velocity of the uniform background fluid for 
either value of~. This is in contrast to the hypothesis that the increased convective flow 
in the Eulerian frame might create an effective drag, increasing the drag over that 
intended in the Lagrange frame model, and thus decreasing mix with increasing 
background fluid velocity. To examine this further, the model kinetic energy, K, is 
plotted verses time in Fig.14, separately for the two ~ values, for Ko = 1.e-8 (center 
panel) and Ko = 1. e-5 (bottom panel). Kinetic energies at different background velocities 
differ significantly at early time, but tend to converge at late times. The differences are 
greater for the 'quiescent IC' (middle panel) than for the turbulent IC (bottom panel), and 
the differences are greater between Uo = 0, and Uo = 0.01, than between Uo = 0.01 and Uo 
= 0.02. 

In expanded plots (not shown) it is evident at late times, especially in the quiescent IC 
cases, that K does decay faster and to smaller values at a given time as Uo increases. This 
late time behavior is consistent with an increase in the effective drag in proportion to uo, 

the convective flow, as hypothesized above. However, if the early time differences in K 
dominate the mix width behavior, then the early time K drives a larger initial mix 
velocity, vo, with increasing uniform flow, llo. It appears this effect is greater than the 
increase in effective drag at late times. With this interpretation, the behavior of K 
appears consistent with the mix widths seen in the Fig.14 top panel. It is not clear if this 
sensitivity to a uniform flow is a shortcoming of the mix model in an Eulerian frame, or if 
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it results from details of the numerical implementation. This issue might be worth 
examining in future work. 

Sensitivity to turbulent diffusivity, CT 

As a practical matter, it is desirable to be able to vary the turbulent diffusivity coefficient 
to match experiments, and so we examine the sensitivity of the model results to variations 
in the key parameter, the turbulent diffusivity, CT. It is recommended in [D-T] that if the 
value of CT is changed, then the self-similarity coefficients must be reset consistently. 
However, in these tests, the similarity coefficients, Ns, are left at the default values to 
examine the impact of varying CT alone. 

Mix width for the base case RM instability (Mach = 1.5 7, and A = - 0.2 ) is compared in 
Fig. 15 (top), for the default value ofCT = 1.0 and the ' usual ' value calibrated against K­
H shear layer mixing [18,19] of CT = 0.1. The mix width at a late time differs by 27% 
between these two cases. As the turbulent diffusivity decreases further below CT = 0.1 , 
there is no further significant change in the mix width at late times (this is not shown, as 
the volume fraction curves overlie each other for values of CT < 0.1). However, there is a 
change in the 'atomically mixed volume fraction' , seen as 'af.l' in Fig.lS (bottom). This 
quantity continues to decrease in proportion to the value of CT as shown in the figure 
down to CT = 0.01. 

These results show that by varying only the turbulent diffusivity, the mix width and the 
atomically generated mix fraction become weakly coupled for small diffusivities. 
Referring to the model equations in the Appendix, the mix widths (or effectively, the 
profiles of mixed material total volume fractions, Vi) are controlled by a combination of 
the gradient of K in the momentum equation and the turbulent diffusivity in the species 
mass fraction equation. It appears that the diffusivity contribution to the mix width 
becomes negligible as CT is decreased below CT ~ 0.1. On the other hand in this Eulerian 
implementation, the atomically mixed volume fraction is generated directly and only by 
the turbulent diffusive flux in the mass species equation, and so it depends on CT down to 
arbitrarily small values. This is a reasonable consequence of the spread in interfacial 
density by the mass averaged velocity driven by the gradient in K, while the diffusive 
mass contribution to the interfacial density profile becomes negligible as CT approaches 
zero. 

The profiles through the mix layer for the total volume fractions for materials 1 and 2, 
vf.l and vf.2, are compared to the atomically mixed fractions, af.l and af.2, in Fig. 16. 
Also indicated are simple sums and products of these volume fractions which might be 
used to accurately determine the reaction rate between initially unmixed reactants in the 
two mixing fluids. This distinction between the material volume fraction and that portion 
of the material volume fraction, which is actually atomically mixed, is critical to 
understand and to accurately predict reaction rates in reactive fluids. Mixing can produce 
small scale mix structures with very little actual atomic mix when the diffusivity is small, 
or it can produce large atomic mix fractions when the diffusivity is large. For example, a 
detailed model which distinguished the sub-grid structured mix from the atomic mix, was 
described recently [32]. Details of the sub-grid mix components are tied into the 
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numerical representations of the interface between the fluids, the numerical model for 
fluxing masses and volumes of fluids across that interface, and the way the equations of 
state for mixtures and pure fluids are treated. These topics will be explored in future 
work. 

Discussion and Summary 

A K-L turbulence mix model driven with a drag-buoyancy source term was tested in an 
Eulerian code in a series of basic unit-physics tests. The model and the closure 
coefficient values are derived in the work of Dimonte-Tipton [1]. Many of the test 
problems were reported there, where the mix model operated in Lagrange computations. 
For the present work, the drag-buoyancy K-L mix model was implemented within an 
Eulerian code framework by A.J. Scannapieco [23]. Mix model performance is evaluated 
in terms of mix width growth rates compared to experiments in select regimes, and 
compared to the previous Lagrange computational results reported in [D-T]. Results in 
the Eulerian code mix model are presented for several unit-physics 1-D test problems 
including the decay of homogeneous isotropic turbulence (HIT), Rayleigh-Taylor (RT) 
unstable mixing, shock amplification of initial turbulence, Richtmyer-Meshkov (RM) 
mixing in several single shock test cases and in comparison to two RM experiments 
including re-shock (Vetter-S turtevant and Poggi, et.a!.). 

Sensitivity to model parameters, to Atwood number, and to initial conditions (IC) were 
examined. Results here are in good agreement in some tests (HIT, RT) with the previous 
results reported for the mix model in the Lagrange calculations. The HIT turbulent decay 
agrees reasonably well with analytic expectations, and the RT growth rates match 
experimental values using the default values of the model coefficients proposed in [D-T]. 
Results for RM characteri~ed with a power law growth rate exponent differ from the 
results in previous mix model work but are still within the range for reasonable 
agreement with experiments and other models in the literature [6, 15,16]. The larger 
power law exponent in the present Eulerian code implementation is also relatively 
insensitive to variations in the drag coefficient. 

These tests indicate that the Eulerian code K-L model, using the Dimonte-Tipton default 
model closure coefficients, achieves reasonable results across those unit-physics tests 
where there is no net flow, i.e., where the mass average flow in the Lagrange convective 
derivative is zero. The mix model results differed in the Eulerian code implementation 
from those previously reported in the Lagrange frame in [D-T] for the shock driven flows 
(RM) where the mix layer is moving through the computational grid. 

These findings suggested a possible increase in the effective drag coefficient in the fixed 
Eulerian frame relative to the Lagrange frame moving with the fluid. Additional tests 
varied the speed of a uniform background fluid flow in the Eulerian frame. These 
showed a sensitivity to the background flow speed, with differences in the mix width and 
in the early time values of the turbulent kinetic energy. At late times with the different 
uniform flow speeds, the turbulent kinetic energy converged toward a similar profile, 

13 



suggesting the differences are less strongly related to a late time difference in the drag but 
may be related to early time differences in the growth of the kinetic energy which 
increases the initial mix velocity in proportion to a uniform background flow speed. This 
can be related to the convective derivative of the kinetic energy as implemented in the 
Eulerian frame. 

Initial conditions can be adjusted so that single shock RM mix width results match 
experiments but we have not been able to obtain a good match for first shock and re­
shock growth rates in the same experiment with a single set of parameters and IC. Shock 
amplification of turbulence is compared to an experiment and the model results in this 
study compare well to the previous Lagrange calculations. In cases where turbulent 
fluctuations were measured in experiment, agreement with the model results was 
adequate, usually within a factor two. 

Problematic issues with the turbulent diffusivity coefficient, CT, exist as described in [D­
T]. This coefficient is normally calibrated against Kelvin-Helmholtz (KH) shear test 
problems, but in order to achieve this, the viscous tensor must be numerically stabilized 
against shocks. A second concern is that if the coefficient value is modified in this mix 
model, then the self-similarity analysis must be repeated to reset other model coefficients 
consistently. An alternative calibration methodology, which avoids the limits imposed by 
the self-similarity, would be to calibrate the three principle model coefficients, Ca, Co, 
and CT, in the manner described in Chiravalle [19]. 

Sensitivity to IC values in the RM studies are examined. Results are sensitive to initial 
values of L[t=O], which largely determines the RM mix layer growth rate, and generally 
differs from the IC values used in the RT studies. Result sensitivity to initial turbulence, 
K[t=O], is seen to be small but significant above a threshold value. This ' threshold value ' 
loosely distinguishes initially turbulent from initially quiescent fluid conditions relative to 
the thermal energy in the problem. It is reasonable to expect IC sensitivity in 
extrapolating to high energy density regimes. It is unclear how to best set IC in 
experiments with deceleration in arbitrary combinations of RT and RM, and a 
methodology for this needs to be developed in future work. 

Resolution studies for an RM test problem show the K-L mix growth rate decreases as it 
converges at a supra-linear rate, and, convergence requires a fine grid (on the order of 10 
microns) . For comparison, a resolution study of the Scannapieco mix model [31] acting 
on a two fluid interface problem was examined. The mix in this case was found to 
increase with grid resolution at low to moderate resolutions, but converged at comparably 
fine resolutions. The atomically generated mix fraction and the mix width were 
compared for the K-L mix model and the Scannapieco model on an identical RM test 
problem (not shown in figures) . In the Scannapieco model [30], atomic mix fraction and 
mix width grow linearly in time. The K-L model mix fraction and mix width are found to 
grow with a similar power law exponent. In future work, it is proposed to do more head­
to-head comparisons between these two models and other mix model options on a full 
suite of physics test problems, such as the interfacial deceleration during an idealized ICF 
implosion, which introduces a complex combination of RT, RM and KH instabilities. 
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Generally, in a turbulence mix model, one expects to be able to adjust the turbulent 
diffusivity to accommodate experimental results. Atomically generated mix fractions 
were compared to the mix widths in the K-L model for variations in the turbulent 
diffusivity coefficient. This shows that for changes in diffusivity without resetting the 
self-similarity coefficients, there is a non-linear relationship between atomic fractions and 
mix width. Mix width is shown to be weakly sensitive to the diffusivity coefficient 
between values of 1 and 0.1, and independent of diffusivity below 0.1, while the atomic 
fraction is directly proportional to the diffusivity in the limit as the turbulent diffusivity 
approaches zero. Physically, this is reasonable and indicates that a very small diffusive 
mix will not change the bulk profiles significantly. However, this also indicates that 
within the present implementation of the mix model, profiles of the mix width are not a 
good indicator of atomic mixing in the limits of small diffusivity. 

As a final point of discussion, the model results can be compared to the classic RM 
growth rate [9,10] expected in the early time linear phase of the RM mixing. The RM 
mixing layer thickness, hRM, can be expressed as: 

h
RW 

~ 2n ~A vt 
J A J 

o 

where 60 is an initial perturbation amplitude, 1-...0 is the perturbation wavelength, and Vi is a 
post-shock interfacial velocity. The power law fits to the RM mix widths from the K-L 
model provide an estimate of the initial velocity, vo, of the mix layer, given in the fitting 
equation (Eqn.1, p.6) to be Vo = ml *m2 *m3. For example, using the results for the A = 
+1- 0.2 cases shown in Fig. 5, we find Vo ~ 0.00055 cmlfASec, and in these cases the 
contact discontinuity was found to move with the post- shock interfacial velocity, Vi ~ 

0.01 cml,usec. These model results with the classic RM linear growth rate then set a 
unique ratio for the amplitude relative to the wavelength of the initial perturbation. 
Assuming hRM/t ~ VRM[t=O] ~ Vo, then in this example we find 

~~ __ Vo ~ 0.00055 0.04 -0.05 
Au 2n A Vi 2n 0.20.011 

The model results for the early time linear growth are thus consistent with a specific ratio, 
(60 /1-...0), in the IC, in this case about 4 - 5 %. This is a reasonable value but it cannot be 
varied in the model to represent other rcs. 

Conclusions 

A K-L model with a drag-buoyancy source term for turbulent material mixing of fluids 
was implemented in an Eulerian hydrodynamic code, and in this report it is tested in a 
series of I-D unit physics test problems representing several types of RT (Rayleigh­
Taylor), and RM (Richtmyer-Meshkov) instabilities, and other simple flows. Model 
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performance is evaluated using the mix width verses time and in some cases the turbulent 
fluctuation levels. Results are compared with experimentally determined parameters and 
with the results previously reported in a reference study [1]. The present study uses the 
same model coefficients as described in the reference study, however, in that case the mix 
model was run in a Lagrange computation for the resolved flow and shock 
hydrodynamics. 

Our results for parameter self-similarity and for mix width agree closely with the 
previous work [1] for RT unstable mixing and for turbulent decay in HIT (homogeneous 
isotropic turbulence), where in both cases, there is no significant mass averaged fluid 
flow. In the shock driven RM mix studies, as the mixing layer grows it must propagate 
across the computational mesh in the Eulerian implementation. There is a significant 
difference here and in the reference study between the mix growth rates, characterized as 
the power law exponent (8) best fit to the mix width verses time in single shock RM tests. 
The model result in our Eulerian code implementation consistently yields 8 values in the 
range - 0.35- 0.45 for RM instability mix, which is within the range of values reported in 
the literature, but higher than the value, e - 0.25, expected from a self-similarity analysis 
in the Lagrange frame as described in the reference study. These results are consistent 
with a relative insensitivity of the mix width to variations in the drag coefficient in the 
Eulerian framework. Additional tests reported here, with different values of an imposed 
uniform background (mass averaged) fluid velocity, suggest the difference may be related 
to early time differences in the turbulent kinetic energy, which arise from the Eulerian 
frame convective derivative in the K evolution equation. 

Implications are that the model results are sensitive to the implementation details and the 
computational framework, in a Lagrangian or Eulerian computation. Different 
calibrations may apply to the model in Lagrange, Eulerian, or in ALE computations. The 
spreading of a shocked contact discontinuity due to numerics in an Eulerian frame is a 
well known issue. In RM mixing, the numerical spreading of the contact discontinuity 
must be distinguished from the spreading intended in the mix model. This is a significant 
and broad based challenge for mix modeling in an Eulerian code and lies beyond the 
specifics of the present mix model and implementation. 

Sensitivity of the model in several areas was examined. Mix growth rates for RM are 
found to be sensitive to initial conditions (IC) and these IC differ from the model IC 
values used to match RT results. This sensitivity to IC suggests that a methodology 
should be developed to set the IC for a specific regime, especially in arbitrary 
acceleration combinations of RT (constant acceleration) and RM (impUlsive 
acceleration). In comparison to re-shock experiments (Vetter-Sturtevant and 
Poggi,et.al.), we were able to obtain a good match to the first shock or to the re-shock 
growth rates but not both simultaneously with a single set of model parameters. Grid 
convergence for the K-L model in RT and in RM mixing is compared to convergence for 
a multi-fluid mix model in a species-pressure gradient driven mix test. Convergence for 
the K-L model is superior 0 our grids, and comparable on the finer grids. Varying 
the turbulent diffusivity coefficient near the default value of unity has a small influence 
on the mix width, but directly controls the 'atomically mixed fraction' even for very 
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small values of the diffusivity . The model output of fluid volume fractions and 
separately, the atomically mixed volume fractions per material, allows a rigorous 
approach in the calculation of reactivity in transient mixing fluids. 
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Appendix: K-L model equations with drag buoyancy source 

This summary of the model equations are adapted directly from the reference article by 
Dimonte-Tipton [Phys. Fluids, 18,085101 (2006)] denoted here as [DT]. 

The turbulence model modifies transport in the conservation equations for the mass 
average flow density, momentum, and internal energy as, 

Dp 

Dt 
-p V·u 

with an equation for mass fraction, Fr , for species r, given by 

P D F, = V· ('iLr V Fr) 
Dt NF 

The mass averaged velocity, u, defines the convective derivative in each equation as 

DO = ao + u.VO 
Dt at 

Artificial viscosity, qav, can be a tensor quantity and must be defined consistently in the 
momentum equation and in the work term in the internal energy equation. This stabilizes 
the numerics and maintains the shock jump conditions in Lagrange, ALE, and Lagrange 
phase computational methods where energy conservation is expressed in an internal 
energy equation. This is not a feature of the K-L model, but the model must be 
compatible within this computational framework. The subscripted parameters, Ns, are 
turbulent diffusivity parameters set in [D-T] by self-similarity. Other variables have their 
usual meaning. 

The transport equations are closed by relating the turbulent stress tensor, 3ttrb, and the 
turbulent diffusivity, ~T, to the model parameters, K and L, respectively representing the 
turbulent kinetic energy and a turbulent scale length. The turbulent stress tensor, 

2 (T 2 ) Jr1b=-opK -/L Vu+V u--oV·u 
r 3 IJ ,-I 3 lj 

is approximated with a diagonal component in the form, 
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where the 2/3 derives from the usual diagonal form and the coefficient, C'p, is an 
empirical adjustment to approximate the off-diagonal terms as described in [DT] (their Cp 

is our (2/3 + C' p)). This approximation is derived in [33]. The default value for C'p is 
zero. 

The turbulent diffusivity, f,lr, is related to the model parameters, K and L, as 

The equations used to evolve K and L are, 

The turbulent viscous heating, -nrrb : (Vu), in the K equation is simplified in this model 
due to issues associated with numerical instabilities with shear in the presence of shocks, 
as discussed in [D-T]. Consistent with the simplified turbulent stress tensor described 
above, the turbulent viscous heating becomes 

n llb : (Vu) = (2/3)pK V' u 

This restricts the model in its present form because it cannot be calibrated against the K­
H or shear instability since the shear terms required to generate turbulent kinetic energy 
from the K-H instability are omitted. 

The source term for the turbulent kinetic energy, SIG is unique in the Dimonte-Tipton 
version of the K-L model, and is written to explicitly represent the buoyancy and drag 
terms familiar in the R-T and R-M mix community, 

S = (2K)1/2[C A _ C 2K] 
K P B g 0 L 

where the coefficients for buoyancy, CB, and for drag, CD, are set in comparison to 
empirical data. The Atwood number, A, is calculated as a local quantity within the 
computation using, 
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L Jp --- --

as described in detail and justified in [DT]. The model coefficient, CA , is introduced to 
scale the second term contribution to A. 
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Figure 1. Model kinetic energy, normalized at select times during R-T instability mixing 
showing the self-similar growth for low Atwood number (0.05) and high Atwood number 
(0.8) cases. 
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, for the model results in R-T 

instability, showing convergence for results by refining the grid (number of zones = nz = 

l/dx). The bottom panel shows the resulting R-T growth rate, alpha, a = h / Ag( , verses 
Atwood number, A. 
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the decay of homogeneous isotropic turbulence (HIT) for two initial conditions of K = 
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Figure 4, Mix width verses time showing sensitivity of results to initial conditions (IC) 
for select RM cases. Curves for spike and for bubble mix are shown separately for each 
set of IC, where the spike growth is slightly greater than bubble growth in each case. 
'Quiescent' and 'turbulent' IC labels are described further in the text. 
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Figure. 5. Mix widths verses time for the basic single shock RM instability using four 
different values of the Atwood number, A. Spike mix widths are shown in red and 
bubble mix widths are in blue. Negative A indicates a drop in density as the shock 
crosses the initial discontinuity, and positive A is an increase in density as seen by the 
incoming shock. Curve fits are described in the text. 
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Fig. 6 Mix width verses time for varying drag coefficient, Co, showing the two 
parameter power law fits (top panel) to model results (symbols), and the three parameter 
power law fits (bottom panel) to model results. 
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Figure 7. Theta, e, obtained as the best fit power law exponent to the model result for the 
mix width, h, verses time, is shown verses the model drag coefficient. The top figure 
compares results for the two and three parameter power law fits from Fig.6, and the lower 
figure compares results for spikes and bubbles in a long duration mixing test and for total 
mix width in a shorter duration test (see text). 
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Figure 9. Mix model results are compared to experiment for the Poggi, et.al. re-shock 
experiments [12]. Top figure shows mix front positions as given in the Poggi paper, for 
two model settings (lines) and for select experimental data (symbols). The bottom figure 
converts the mix front positions to mix widths, allowing a more detailed comparison 
between model results and these experimental data points. 
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Figure 11. Shock amplification of turbulent kinetic energy in the mix model , K[K-L], 
compared to experimental data by Barre, et.al. (denoted BAB [30]) of the longitudinal 
turbulent fluctuations during anisotropic decay. 
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Figure 12. Grid convergence studies for mix models. (Top panel) Convergence for the 
K-L mix model in a R-M single shock test problem. For comparison, (bottom panel) 
convergence of a multi-fluid interpenetration mix model [Scannapieco and Cheng, 2002] 
is shown for an interfacial pressure gradient driven mix problem, as described in the text. 
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Figure 15. Mix width verses time (top panel) for two values (CT = 1, 0.1) of the 
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fractions (at) for the two fluids (.1 and .2) across the mix layer in a typical RM problem 
calculated in the Eulerian code implementation. These are discussed in the text. 
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