

LA-UR- 11-00503

Approved for public release;
distribution is unlimited.

Title: Modal Analysis and SHM Investigation of CX-100 Wind Turbine Blade

Author(s): Krystal E. Deines, INST-OFF, LANL
Timothy Marinone, INST-OFF, LANL
Ryan A. Schultz, INST-OFF, LANL
Kevin M. Farinholt, AET-1, LANL
Gyuhae (NMI) Park, INST-OFF, LANL

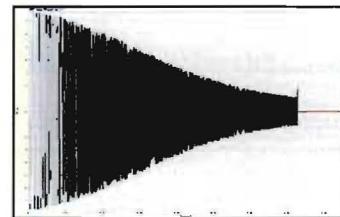
Intended for: IMAC XXIX A CONFERENCE AND EXPOSITION ON STRUCTURAL DYNAMICS, Jacksonville, FL, January 31-February 3, 2011.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Vibration Testing and Structural Damage Identification of Wind Turbine Blades

Krystal Deines¹, Timothy Marinone², Ryan Schultz³, Kevin Farinholt⁴, Gyuhae Park⁴

1. Dept. of Aerospace Eng., New Mexico State University, Las Cruces, NM, 88003
2. Dept. of Mechanical Eng., University of Massachusetts Lowell, Lowell, MA 01854
3. Dept. of Mechanical Eng., Michigan Technological University, Houghton, MI 49931
4. The Engineering Institute, Los Alamos National Laboratory, Los Alamos, NM 87545

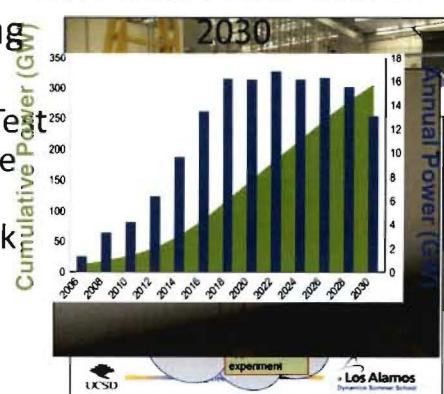

Abstract

This paper presents the dynamic characterization of a CX100 blade using modal testing. Obtaining a thorough dynamic characterization of these turbine blades is important because they are complex structures, making them difficult to monitor for damage initiation and subsequent growth. This dynamic characterization was compared to a numerical model developed for validation. Structural Health Monitoring (SHM) techniques involving Lamb wave propagation, frequency response functions, and impedance based methods were also used to provide insight into blade dynamic response. SHM design parameters such as traveling distance of the wave, sensing region of the sensor and the power requirements were examined. Results obtained during modal and SHM testing will provide a baseline for future damage detection and mitigation techniques for wind turbine blades.

Modal Analysis and SHM Investigation of CX-100 Wind Turbine Blade

Krystal Deines
Timothy Marinone
Ryan Schultz

Kevin Farinholt & Gyuhae Park


Engineering Institute

[Introduction](#) [Free-Free](#) [Free-Free w/Mass](#) [Fixed-Free](#) [SHM](#) [Conclusions](#)

Agenda

- Introduction
- CX-100 Modal Testing
 - Background
 - Objective Test
 - SHM
 - Previous w/Mass Test
 - Fixed Frequency Test
 - Conclusions
 - Environmental
 - Future Work
 - Variability

Engineering Institute

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

20% Wind Power Goal for 2030

- Aim for 20% of electricity by 2030
- Due to cost to produce 20% Wind energy from wind
- lighter and more efficient blades. Lower Safety Factor makes them more likely to fail
- When turbine does not run due to failure, power is not produced.
- Power = \$

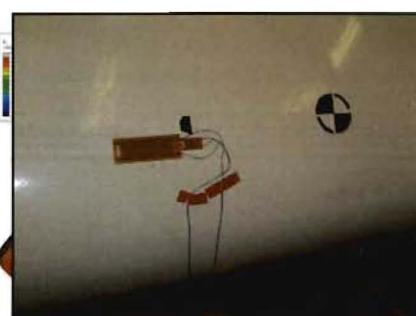
Year	Cumulative Power (GW)	Annual Power (GW)
2006	0	0
2008	10	0.5
2010	25	1.0
2012	45	1.5
2014	65	2.0
2016	85	2.5
2018	105	3.0
2020	125	3.5
2022	145	4.0
2024	165	4.5
2026	185	5.0
2028	205	5.5
2030	225	6.0

UCSD Engineering Institute Los Alamos Dynamics Summer School

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Wind Turbine Blade Failure

- Rotor Blade Failure is not common (6%)
- However, Rotor Blade Failure is often catastrophic and expensive
- Failure of blades often causes failure of turbine

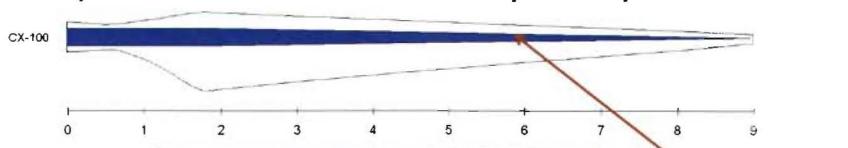

<http://www.innovensys.com/en/what-we-do/design-for-six-sigma>

UCSD Engineering Institute Los Alamos Dynamics Summer School

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Predicting Blade Failure

- Structural Health Monitoring
 - Analytical modeling using blade health prediction
 - Models based on blade resonance with test data


<http://www.nsecomposites.com/projects/wind-energy.html>

UCSD Engineering Institute Los Alamos Dynamics Summer School 5

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

CX-100 Description

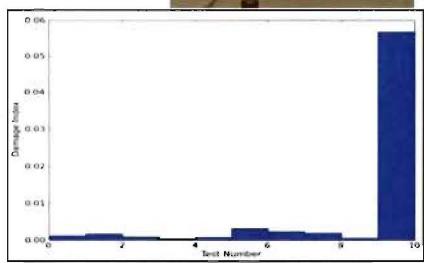
- 9 Meter Experimental Blade designed by Sandia National Laboratories
 - TX-100, CX-100, BSDS
- Key Feature: Carbon Fiber Spar Cap

UCSD Engineering Institute Los Alamos Dynamics Summer School 6

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Previous Work - Modal Testing of Wind Turbine Blades

- Griffith and Gartee (2010)
 - Modal Testing of B70S Blade
 - w/Seismic Mass
 - Demonstrated support has effect on frequencies
 - Approach to simulate fixed boundary condition without fixed apparatus



UCSD Engineering Institute Los Alamos Dynamics Summer School 7

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Previous Work - Structural Health Monitoring of CX-100

- Light-Marquez et al
 - Lamb Wave, Frequency and Time SHM techniques examined
 - Simulated Damage on 1 Meter Section
 - Good local damage detection

Light-Marquez, A., Sabin, A., Park, G., Farinholt, K., "Structural Damage Identification in Wind Turbine Blades using Piezoelectric Active-sensing," Proceedings of the IMAC XXVIII, Feb. 1-4, 2010, Jacksonville, FL.

UCSD Engineering Institute Los Alamos Dynamics Summer School 8

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Terminology

Low-Pressure Surface

Trailing Edge

Leading Edge

High-Pressure Surface

Chord

Engineering Institute

Los Alamos Dynamics Summer School

UCSD

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Terminology

Lead/Lag

Span-Wise

Flap-Wise

Torsion

Engineering Institute

Los Alamos Dynamics Summer School

UCSD

Image from http://www.compositesworld.com/cdn/cms/HPC1108_Windbladepart1_1.jpg

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

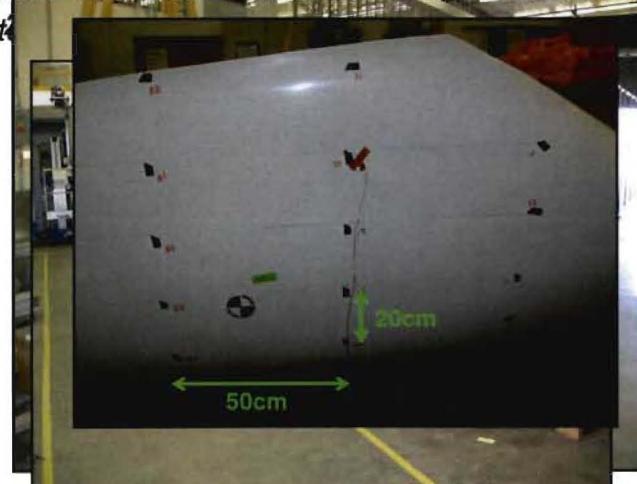
Free-Free

Q: Why Free-Free?

Q: What are some difficulties with Free-Free?

1. Simple setup
2. Easy to correlate model

to 1. There's no such thing as free-free testing.


2. Care must be taken in the supporting of the blade to not distort modes of interest

UCSD Engineering Institute Los Alamos Dynamics Summer School 11

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Free-Free Modal Test #1

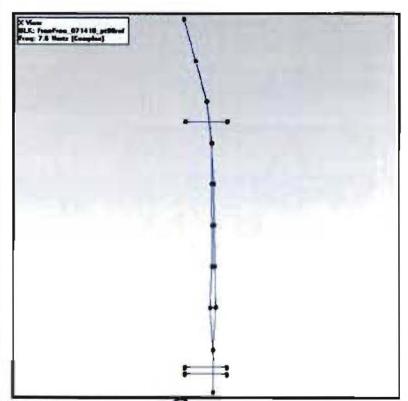
Use Impact excitation to measure natural length of blade to capture modes

UCSD Engineering Institute Los Alamos Dynamics Summer School 12

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Impact & Measurement Directionality

➤ Impact & measure parallel with Y-axis



UCSD Engineering Institute Los Alamos Dynamics Summer School 13

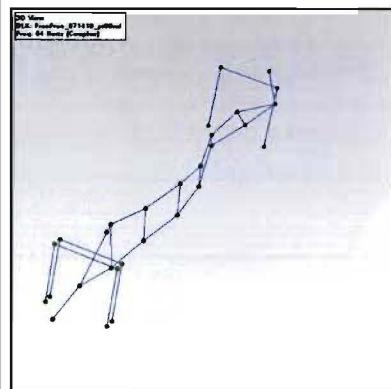
Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Free-Free #1 Mode Shapes & Frequencies

Mode	Frequency (Hz)	Description
1	7.61	1 st Flap Bending
2	18.1	1 st Lag Bending
3	20.2	2 nd Flap Bending
4	32.2	3 rd Flap Bending
5	45.1	2 nd Lag Bending
6	50.5	4 th Flap Bending
7	63.9	1 st Torsion
8	70.1	3 rd Lag Bending

video

UCSD Engineering Institute Los Alamos Dynamics Summer School 13


Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Free-Free #1 Mode Shapes & Frequencies

Mode	Frequency (Hz)	Description
1	7.61	1 st Flap Bending
2	18.1	1 st Lag Bending
3	20.2	2 nd Flap Bending
4	32.2	3 rd Flap Bending
5	45.1	2 nd Lag Bending
6	50.5	4 th Flap Bending
7	63.9	1 st Torsion
8	70.1	3 rd Lag Bending

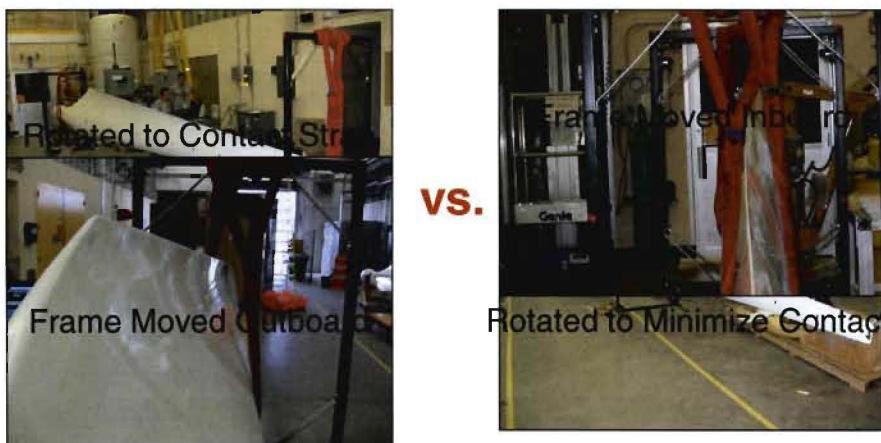
video

UCSD Engineering Institute Los Alamos Dynamics Summer School 15

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Do the Supports Effect the Modes?

Rotated to Contact Strain


Frame Moved Outboard

VS.

Frame Moved Inboard

Rotated to Minimize Contact

UCSD Engineering Institute Los Alamos Dynamics Summer School 16

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Do the Supports Effect the Modes?

Baseline (Black) vs.
Bracketed Flange (orange) 0.41, 0.57 & 6.5m, tip vertical

Baseline (Black) vs.
Moved Out to Tip (Blue) Final Flange 7.5m

All plots: FRF Magnitude vs. Frequency

Engineering Institute

Los Alamos
Dynamics Summer School 17

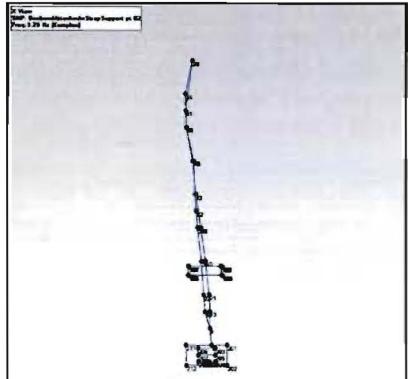
UCSD

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Free-Free Test #2

- Want to induce strain at root absent in Test #1
- Bolt Blade to Fixture (mass added to root)
- Fixture NOT bolted down

Engineering Institute


Los Alamos
Dynamics Summer School 17

UCSD

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Free-Free #2 Mode Shapes & Frequencies

Mode	Frequency (Hz)	Description
1	3.29	1 st Flap Bending
2	8.72	2 nd Flap Bending
3	17.6	3 rd Flap Bending
4	30.7	4 th Flap Bending
5	45.0	5 th Flap Bending
6	50.9	1 st Torsion

video

Engineering Institute

Los Alamos
Dynamics Summer School 19

UCSD

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Fixed-Free

Q: Why Fixed-Free?

Q: What are some difficulties with Fixed-Free?

1. There's no such thing as fixed-free testing

2. Care must be taken to determine coupling of blade with fixture

3. Fixture must also be accurately modeled

Engineering Institute

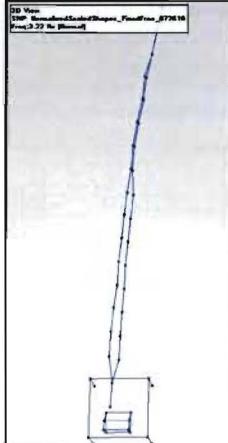
Los Alamos
Dynamics Summer School 20

UCSD

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Fixed-Free Test

- Cantilevered as in service
- Blade bolted to Fixture
- Fixture bolted to Frame



UCSD Engineering Institute Los Alamos
Dynamics Summer School 21

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Fixed-Free Mode Shapes & Frequencies

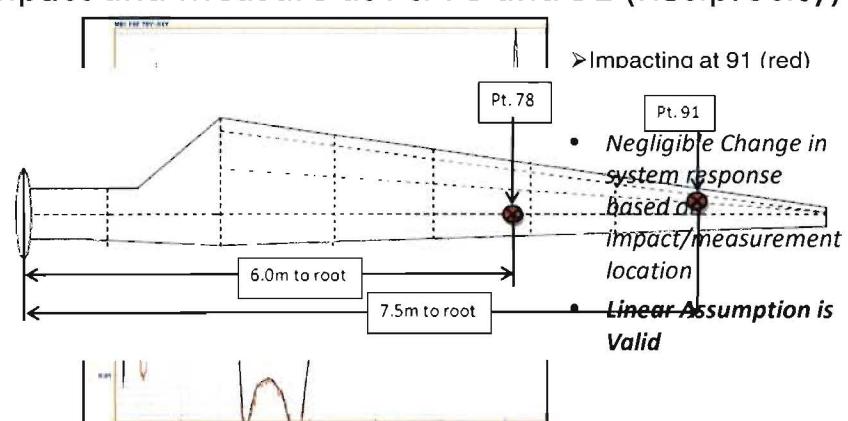
Mode	Frequency (Hz)	Description
1	3.22	1 st Flap Bending
2	4.15	1 st Lag Bending
3	8.81	2 nd Flap Bending
4	16.8	2 nd Lag Bending
5	19.2	3 rd Flap Bending
6	30.8	4 th Flap Bending
7	37.2	3 rd Lag Bending
8	43.9	1 st Torsion

video Los Alamos
Dynamics Summer School 22

Introduction Free-Free Free-Free w/Mass **Fixed-Free** SHM Conclusions

Fixed-Free: Nonlinear?

- Linearity assumption needed for 250N (black) vs. 510N (red) simplicity, modal testing
- Change Impact Force and note change in FRF
- Negligible Change in
- Impact & Measure at point 78
- System Response due to range of impact forces


Plot: FRF Magnitude vs. Frequency

UCSD Engineering Institute Los Alamos Dynamics Summer School 23

Introduction Free-Free Free-Free w/Mass **Fixed-Free** SHM Conclusions

Fixed-Free: Nonlinear?

- Impact and Measure at Pt. 78 and 91 (Reciprocity)

Plot: FRF Magnitude vs. Frequency

UCSD Engineering Institute Los Alamos Dynamics Summer School 24

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Modal Tests Results

Test:	Mode Frequency (Hz)			
	1st Flap	2nd Flap	3rd Flap	4th Flap
Free-Free # 1 (Straps Only)	7.6	17.9	32.1	50.4
Free-Free #2 (Fixture + Strap)	3.3	8.7	17.6	30.7
Fixed-Free (bolted to fixture, frame)	3.2	8.8	19.2	30.8

Free #1

Free #2

Fixed

UCSD Engineering Institute Los Alamos Dynamics Summer School 25

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

SHM Investigation

- 9 MFC patches glued to high-pressure surface
 - 1 Large Actuation Patch
 - 8 Small Sensor Patches

#1: 0.75m #2: 1.25m #7: 7.0m #8: 8.5m

UCSD Engineering Institute Los Alamos Dynamics Summer School 26

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

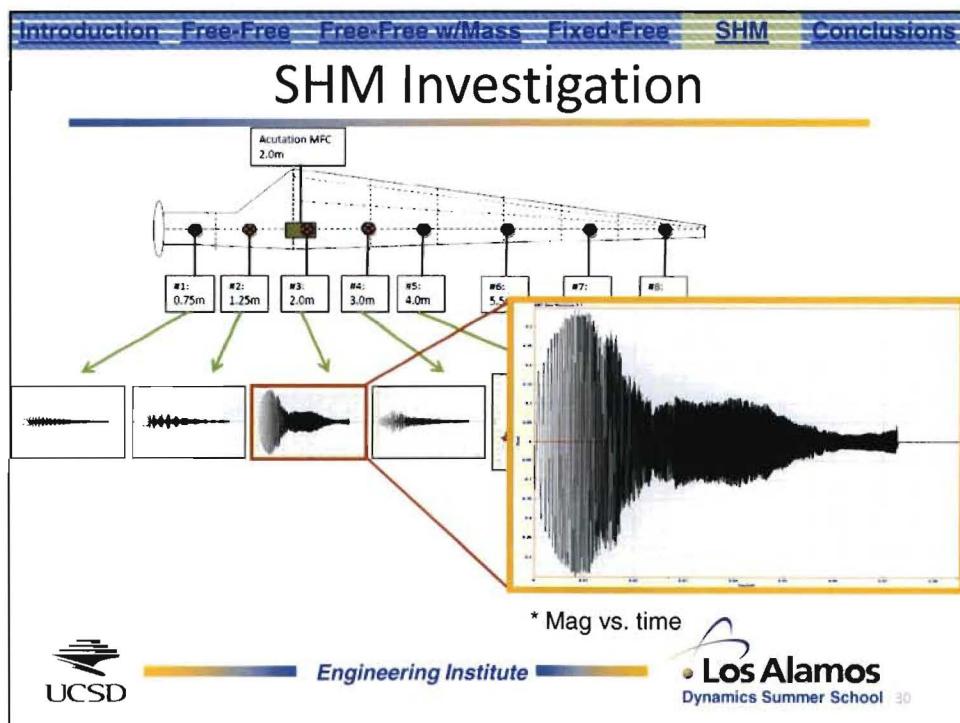
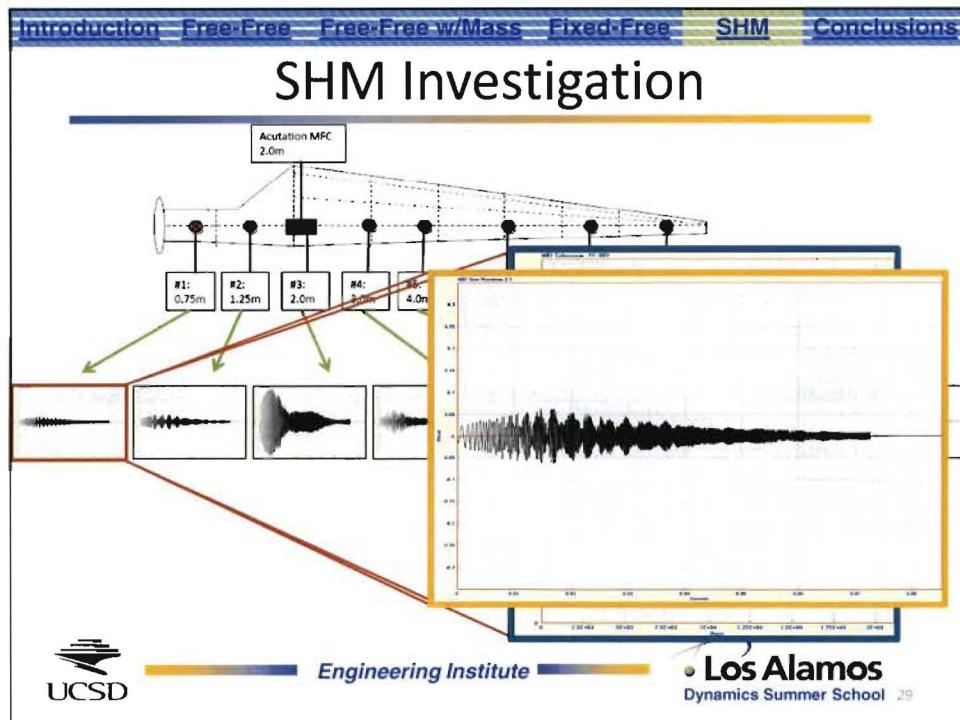
SHM Investigation

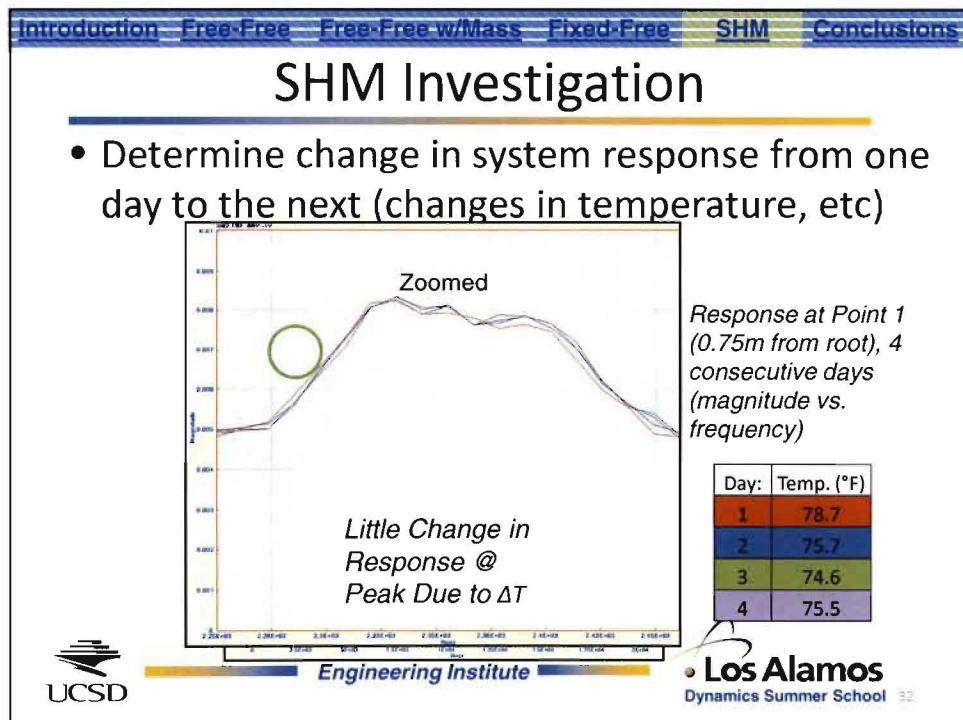
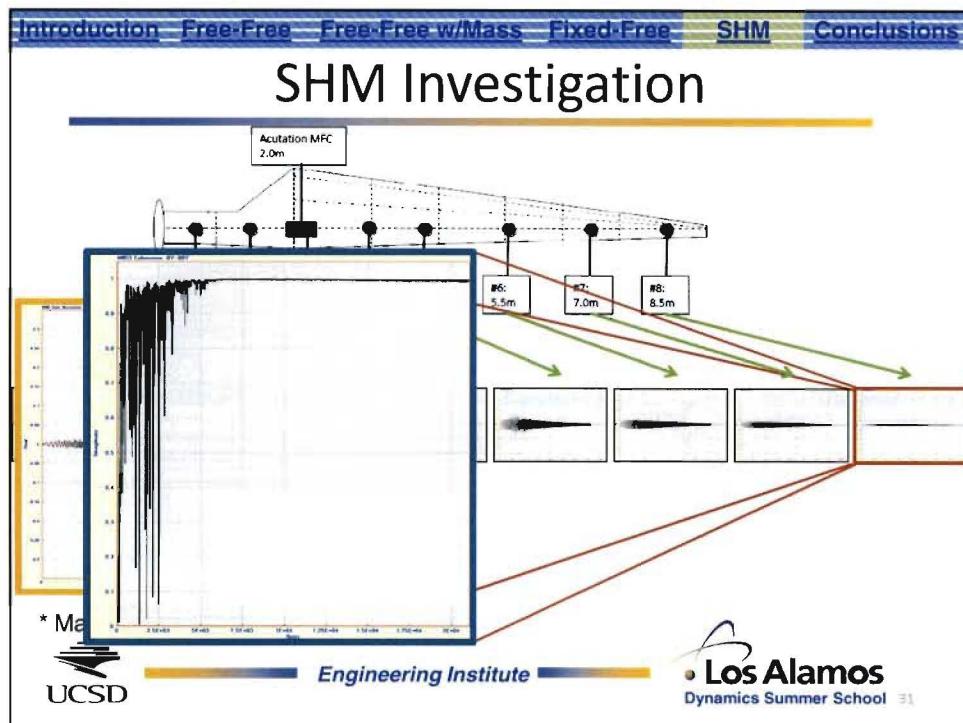
- Actuation MFC supplied with amplified sine chirp (154.8V peak) or burst random signal (179.8V peak) from 10Hz to 20kHz

-OR-

UCSD Engineering Institute Los Alamos Dynamics Summer School 27

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions



SHM Investigation



- Compare time response at various points
 - Amplitude of response maximum closest to actuation sensor

Actuation MFC 2.0m

#1: 0.75m #2: 1.25m #3: 2.0m #4: 3.0m #5: 4.0m #6: 5.5m #7: 7.0m #8: 8.5m

UCSD Engineering Institute Los Alamos Dynamics Summer School 28

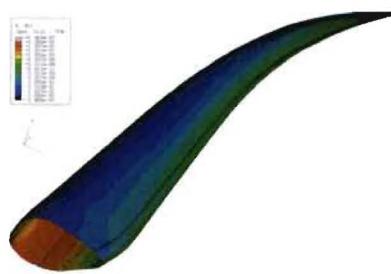
Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Conclusions

Problem:

Wind Turbine Blade Predictive Reliability

<http://wind-power-revolution.blogspot.com/2008/11/wind-turbine-failure-photos.html>

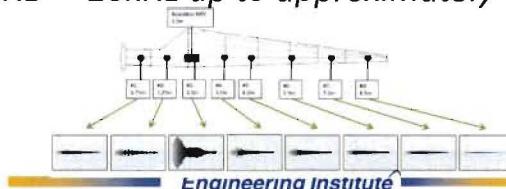

UCSD — Engineering Institute — Los Alamos
Dynamics Summer School 33

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Conclusions

Solution:

Validate Numerical Models and Design Effective SHM



<http://www.nsecomposites.com/projects/wind-energy.html>

UCSD — Engineering Institute — Los Alamos
Dynamics Summer School 34

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Conclusions

Our Contribution:

- Determined mode shapes and frequencies of CX-100 blade in 3 different BC configurations to drive V&V

- Determined that MFC patches may be used to excite 5kHz -> 20kHz up to approximately 4m from actuator

UCSD Engineering Institute Los Alamos Dynamics Summer School 35

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Future

• Modal Testing

- Integrate results of modal tests into numerical model of blade for V & V
- Perform uncertainty quantification study
- Better represent fixed-free condition with improved fixture

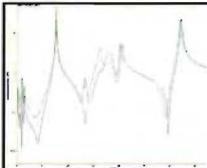
• Structural Health Monitoring

- Simulate damage on blade and detect with MFC sensor patches
- Relocate actuator/sensors and monitor for optimal signal transfer

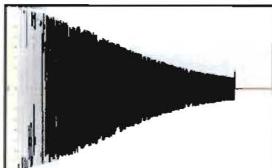
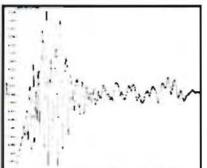
UCSD Engineering Institute Los Alamos Dynamics Summer School 35

Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Acknowledgments


- Engineering Institute (Los Alamos National Laboratory)
 - Dr. Charles Farrar
- Vibrant Technology Inc. (ME'scope Software)
- Abaqus, Inc. (ABAQUS Finite Element Software)
- Dr. Peter Avitabile (University of Massachusetts Lowell)

UCSD — Engineering Institute — Los Alamos
Dynamics Summer School 57



Introduction Free-Free Free-Free w/Mass Fixed-Free SHM Conclusions

Questions?

Deines, Marinone, Schultz
Modal Analysis and SHM Investigation of
CX-100 Wind Turbine Blade

UCSD — Engineering Institute — Los Alamos
Dynamics Summer School 58