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ENERGY Grand Challenge for Core Materials for High
| Burnup and Next Generation LWR Fuels

Nuclear Energy

Develop and test advanced alloys for Develop and test advanced alloys for Next
clad and duct and other high dose Generation LWR Fuels with Enhanced
core components to >400 dpa over Performance and Safety and Reduced

the clad /duct operating conditions  Waste Generation

— Irradiation tolerant — Low Thermal Neutron Crossection
 Resists swelling and creep » Element selection (e.g. Zr, Mg)
« Does not accumulate damage (resists * Reduce cladding wall thickness
hardening and embrittiement) — Irradiation tolerant to 20-40 dpa
» Stable microstructure (resists radiation - Resists swelling and irradiation creep

induced segregation)
* Manages helium or other gas buildup
« Stable with Transmutation impurity

* Does not accumulate damage
 Stable microstructure (resists RIS)

— Mechanically robust under loading and

buildup | L
— Resist chemical interaction with fuel transportation C_ondltlons
(for the cladding) — Compatibility with Fuel and Coolant

* Resists stress corrosion cracking

» Resists accident conditions (e.g. high
temperature steam)

* Not reactive with fuel
* Prevent diffusion into cladding

— Corrosion resistance with coolant - Resists abnormal coolant changes (e.g. salt
* Protective oxide layer water)
* Non reactive with coolant — Weldable and Processed into tube form
— Weldable and Processed into tube form « Maintain hermetic seal under normal/off-normal

conditions
3
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N Develop the knowledge base up to 200 dpa- High
Dose Core Materials Irradiation Data
— ACO-3 Duct Testing

* Rate Jump testing
— FFTF/MOTA testing

N Advanced Material Development
— Develop coatings/liners to Mitigate FCCI

— Develop and test Advanced Cladding materials
* Improved Processing of Advanced ODS Alloys
* Tube forming processes for ODS alloys
e Steam oxidation tests

N International and University Collaborations
N Outlook
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ACO-3 Duct
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DENERGY  Analysis of Specimens from
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* Provides actual data on a component irradiated in a
sodium fast reactor to very high dose (155 dpa)
» Opportunity to perform more detailed analysis
« TEM from FIB’ed specimens
» Atom probe analysis
* SANS analysis
 Aids in physics-based model development
* Provide new data required for model development
* Provides a complete data set for model verification
» Provides direction in future alloy development for
radiation tolerant materials
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Rate Jump testing results
completed at RT on ACO-3 Duct
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«Two rate jump tests performed at each of 6 irradiation conditions for the ACO-3 duct

«Strain rate varied between 1023 and 10%4/s.

*No change in strain rate sensitivity observed for materials after irradiation.
sData is being shared with NEAMS modelers to aid in clad model development.
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1. Continued TEM observations on 110

dpa neutron irradidated MA957 with
focus on identifying relationship
between oxide particles and
dislocations in creep microstructures.

Continued APT examination of oxide
particles in neutron irradiated and ion
irradiated MA957 to study the effect of
irradiation dose and temperature on
o%(ide particle morphology.
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400° C and 500° C, consistent with
neutron irradiated results.

n Continuous swelling from 100 dpa

5 T T T T T T T T T T
| MA957 ion irradiations
4 at KIPT (heat DBB0111)
=3 3' n
E’ ] 450°C irradiation
D 2. i
G “
14 i
O- n
0 100 200 300 400 500
Dose, dpa



, U.S. DEPARTMENT OF

JENERGY

Nuclear Energy

High Dose MA957 ODS Steel — APT
Examinations at PNNL/UC Berkeley

Objective - study effect of irradiation
dose and temperature on oxide particle
morphology.

Using 110-120 dpa neutron irradiated
MA957 from in-reactor pressurized tube
creep specimens.

Preliminary APT examinations
completed on specimens irradiated at

412, 550, 670, and 750°C to 109-121 dpa.

Initial Results

MA957 pressurized tubes have a small
oxide particle size of ~2 nm similar to
newer ODS steels such as 14YWT.

No ballistic dissolution at these
irradiation temperatures, but small
difference in oxide particle population
at 412°C vs higher temperatures.

Cr-rich alpha-prime clusters observed
at 412°C irradiation temperature.
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PENERGY Advanced Material Development
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N Developing Coatings and Liners to prevent FCCI

N Obtaining Irradiation data on Advanced Alloys (international
collaborations)
— MATRIX irradiations- Samples to be shipped in early 20137

— STIP irradiations — Samples from STIP IV being analyzed. Tensile testing
completed at LANL and ORNL.

N Investigating Possible Future irradiations

— Domestic Facilities (MTS (18 dpa/yr) or HFIR) — Collaborating in ATR
irradiations

— International collaborations
» Collaborating with Terrapower for irradiations in BOR-60 in Russia
* |Initial discussions under way for future irradiation in the CEFR in China.

N Advanced Material Development
— Friction stir ODS material processing
— Mechanical alloying ODS material processing
— Development of high temperature steam resistant LWR cladding matls.



Coating and Diffusion Couple Study for FCCI Mitigation

A customer-designed laser deposition system for
inner wall coating of long tube will be available at
Texas A&M University for the FY2012 coating work

Retreating tube with
rotating target pellet holder
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Diffusion Couple Studies on FCCI Mitigation

Re-design for diffusion couple irradiation experiment
in ATR (550 °C for 50 days) to meet the temperature
and post-irradiation-examination requirements.
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Diffusion couple thermal
annealing studies on chemical
compatibility at the cladding —
liner interface (HT-9 vs. V or Zr).
(704 — 815 °C for 50-200 hours)

704 °C for 200 hrs
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) ENERGY High Toughness ODS Alloy

Nuclear Energy Development in FC R&D (I-NERI)

 Development and Characterization of Nanoparticle
Strengthened Dual Phase Alloys for High Temperature
Nuclear Reactor Applications

 To develop high toughness NFAs for high temperature
(700°C) high dose (>300 dpa) applications: 100 MPaVym
over the range of RT - 700°C.

« Use grain boundary strengthening/modification
techniques.

e ORNL (TS Byun & D.T. Hoelzer) — KAERI (JH Yoon)
e Dec. 1, 2010 — Nov. 30, 2013

Nanostructured Ferritic Alloys (NFAs) vs. Oxide Dispersion Strengthened (ODS) Alloys
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Production of Base Materials
(OYWTV)

Two alloy power heats (8 kg each) have
been produced by gas atomization
process at ATlI Powder Metals: -
Fe-9Cr-2W-0.4Ti-0.2V-0.12C+ & - \ . Ball m||||ng for 40
Fe-9Cr-2W-0.4Ti-0.2V-0.05C+ - - hours in Zoz CMO08

! machine (6 loads)/
Canned & degassed
(6 cans, 920g each)

_1

Nuclear Energy

Extruded below 850 °C
Cut into 4 inch long blocks

Characterization

v
Goals of Yrs 2 & 3:

. . e Post-Extrusion TMT Optimization
e * Micro & High Temp. Characterization
* Feedbacks for new processing
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Preliminary Results for

Fracture Toughness
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@ Fracture toughness can be significantly improved by some
controlled TMTs, and the K;, values are between those of
other NFAs and FM steels.

@ Further development/optimization of processing is underway.
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9YWTV-PM2-850C-200m:
Annealed at 850°C for 200
minutes.

9YWTV-PM2-850C-20H:
Annealed at 850°C for 20 hours.

OYWTV-PM2-900C-50%R: Hot-
rolled for multi-step 50% reduction
after annealing at 900°C.



© ENERGY Scale Up Processing Study of
Nuclear Energy 14YWT

N The first ball milling experiment of the large L2314 powder
heat was completed at the Zoz pilot plant

N ~55 kg of powder was separated into 3 size ranges
e Coarse: 150-500 /mm
e Middle: 45-150 /mm
* Fines: <45 mm

N Prior ball milling experiment using CM08 at ORNL indicated

that the middle and fine size particles could be mixed and
ball milled together

N Ball milling of three 15 kg batches of coarse, fine and

medium powder was completed by Zoz
* 40 h in Ar using parameters supplied by FCRD processing team
« Powder samples were taken at 20 h and 40 and chemically analyzed
« EPMA analysis completed on 20 h and 40 h samples
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Coarse powder ball milled using
CM100 (100 liter capacity)

N CM100 and extracted samples for analysis

N Chemical analysis showed
the ball milling condition
achieved the desired goal
of elevated O level and low
N and C levels

Sample Identification | 20hr Milling | 40hr Milling

V540-01 % %
Oxygen 091 A11
Nitrogen .006 .008
Carbon 012 019
Chromium 13.7 13.7
Tungsten 2.90 2.88
Titanium .38 .38
Yttrium .18 19




© ENERGY Electrc_)n Probe Microanalysis of
Nudlear Energy Ball Milled Coarse Powder

N For Medium and fine powders,
uniform mixing observed at 40 h.

N For Coarse powders >40 h ball
milling is required for uniform
mixing
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© ENERGY Production of Thick Walled
Tubing from 14YWT Heats

Nuclear Energy

N Can was designed for producing thick wall tubing of 14YWT
N Design will use a 0.82 inch diameter mandrel

N 3 cans are currently being fabricated in local shop

N Powder is currently being ball milled with CM08

Procedure Lid 1 inch diameter _ _
. _ steel pipe 3.9 inch diameter can
» Steel pipe is welded in the
bored hole in the can | j

» Can is filled with ball
milled powder

e Lid is welded to can and

steel pipe
« Powder is degassed

e Can is extruded with

mandrel through circular 5
die el

 Mandrel removed to form
thick walled tube
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PNNL Innovative Fabrication of
ODS Steel Tubing
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n Objective: Create economical method to schematic of FCE concept friction stir tool face
fabricate ODS steel tubing directly from Ti: Balek e o
powders using a friction stir consolidation and ~——— Rotationsl Tool
extrusion method. | N
| _— Tensioatol
FY12 Activities [ J i e R
n First attempt at consolidating and extruding V A

) =— Tungsten Pl

14YWT gas-atomized powders into rod.

N Powders successfully compacted but did not \
extrude through the throat. N SungleMater.

N Several regions of different microstructure

Baze of
Split Due

——

O :
LTITE

N Regions of nearly equiaxed

grains of desirable size. Region "E" had ultrasmall

| N Good start... awaiting ~2 Um grains
additional funding to
continue.

20-50 um size grains observed in regions 1-4 Friction consolidated gas atomized 14YWT powders



Properly alloyed metals as protective
as Si-based ceramics at 1200° C

» Example from ORNL experiments at 1200° C in steam at 3.4 bar (50 psia) for 8 h
« All low mass gain: 310SS (Cr,0,), FeCrAl, Kanthal APMT (Al,O,), CVD SiC (SiO,)

‘*; OAK RIDGE NATIONAL LABORATORY  MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

FeCrAl. 900h, 1250°C air

S50um

* In the ~1200°C range alumina forming
alloys (AFA’s) compete well with silica
formers (SiC .)

» Above 1200°C it is anticipated that
AFA’s will outperform silica formers,
though to what extend is not known.

Specimen Mass Change (mg/cm?)

20

160
1200°C, 8h, 3.4bar steam
140 -
1204 ..Model Fe-Cralloys...........
100 -
@304L
801 @15Ni
604 | | ‘Austenitic Steels
increasing
40 - Ni content _
. . FeCrAl (APMT)
0- 20Ni+Mn,Si,La ’ 310
14 16 18 20 22 24 26

Cr content (wt.%)
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N Integrate FCRD Core Materials Activities

— Fuels Core Materials Work- (INL, PNNL, LANL, ORNL, LLNL)
* Materials teleconferences monthly

— University Materials Research (attend university review, review quarterly progress
reports)

* UCSB- Optimized Compositional Design and Processing-Fabrication Paths for Larger Heats of Nanostructured
Ferritic Alloys

« TAMU-Bulk nanostructured austenitic stainless steels with enhanced radiation tolerance
* U. Il Urb/Champaign—Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

— ATR Reactor Irradiations (provide materials and preparing to collaborate in testing)
N Working group meetings and Workshops

— LANL will host next NE Materials Cross-cut Meeting through a webinar in August 2012
N International Collaborations

— INERI-GETMAT- 14Cr ODS material development

— INERI-KAERI- 9Cr ODS material development

— Participant in IAEA Coordinated Research Project on “Benchmarking of Structural
Materials Pre-selected for Advanced Nuclear Reactors” — met in Vienna, May 2-6, 2011.

— DOE-CIAE Collaboration — Proposed irradiation in CEFR
— DOE-Russia — Proposed irradiation in BOR-60
— LANL-Terrapower CRADA — proposed irradiation of ACO-3 specimens in BOR-60

21
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300 dpaon
F/M and 100-

150 on Inn.

Material

Data on Advanced Materials to 80-100 dp

A Rev. 6 of AFCI (FCRD) Materials Handbook

A Develop Steel thinf- valled tublng

FY’11 HY'14 | FY’15 FY’'16

Provides data for NEAMS model development of Cladding
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Produce thin walled tubing for ATF
irradiation
FY’'11 FY'12 FY’'13

Report on initial results of LOCA
testing on ATF clad materials

- Develop Steel thin-walled tubing

FY’'14

testi
mate

Qualified weld pr
walled tubing

report of LOCA
hg on ATF clad
rials

ocedure for thin

Report on

FY’15

clad

irradiation
i testing of

materials to

: : : dpa

Summary
report on
corrosion
resistance
of ATF clad
materials

Coordinate and collaborate with ATF fuel development with industry through FOA

FY'16
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N Prepare mechanical test specimens from ACO-3 duct for re-
irradiation in BOR-60

N Perform mechanical testing on STIP-1V irradiated specimens
(total dose up to 24 dpa)

N Complete summary report on FFTF/MOTA specimens tested
up to 200 dpa

N Fabricate coated tube for performing fuels irradiation

N Development and testing of 9Cr NFA and large scale heat of
14YWT



