

LA-UR-12-24106

Approved for public release; distribution is unlimited.

Title: Toward Joint Hypothesis-Tests Seismic Event Screening Analysis: Ms
mb and Event Depth

Author(s): Anderson, Dale
Selby, Neil

Intended for: CTBT Working Group B, 2012-08-20/2012-08-31 (Vienna, ---, Austria)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Toward Joint Hypothesis-Tests Seismic Event Screening Analysis: Ms|mb and Event Depth

39th Working Group B

Waveform Expert Group

Dale Anderson and Neil Selby¹

Event Screening Framework for a Single Phenomenology

- **H0: Single-point explosion characteristics**
 - Compute test statistic(s) assuming H0 is true
 - Compute p-value, a measure of evidence against H0
 - p-value near zero rejects H0
 - Otherwise, “fail to reject H0”
- **For Ms:mb event screening**
 - H0: Given mb, event has minimal surface wave energy
- **For depth event screening**
 - H0: Event depth $Z \leq Z_0$

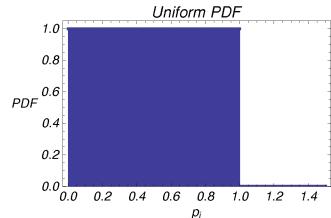
Ms:mb Event Screening

- **H0: Given mb, event has minimal surface wave energy**
 - Single-station (ith station) model to build technical representation of H0
 - $Ms_i - \beta \times mb = \mu_{H0} + Model\ Error + Noise_i$
 - Left side corrects station Ms for event magnitude (Selby et al. prefer $\beta = 1$)
 - Right side is random effects model (Anderson et al. derive test statistic)
 - Model Error is common to all stations observing event ($N(0, \tau^2)$)
(Model Error can include lack of depth correction on left side)
 - Noise is specific to a station ($N(0, \sigma^2)$)
 - Test statistic
 - Variance components in standard error computed from calibration data

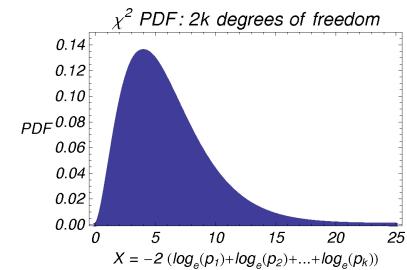
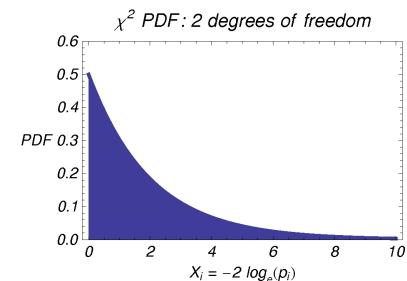
$$Z = \frac{(\bar{Ms} - mb) - \mu_{H0}}{\sqrt{\tau^2 + \sigma^2 / n}}$$

Ms:mb Event Screening: Data for Example Analysis

- **International Data Centre Data (Calendar Year 2008)**
 - 12120 events
 - Current IDC screening criteria applied to 1772 events
 - These events removed from data table when formulating Ms|mb hypothesis test
 - Calibrated Ms|mb test statistic applied to 2009 Democratic Peoples Republic of Korea (DPRK) announced nuclear weapon test
 - Under H0: Explosion Characteristics, the calibrated test statistic is


$$Z = \frac{(\bar{M}s - mb) - (-1.4)}{\sqrt{0.15 + 0.1/n}}$$

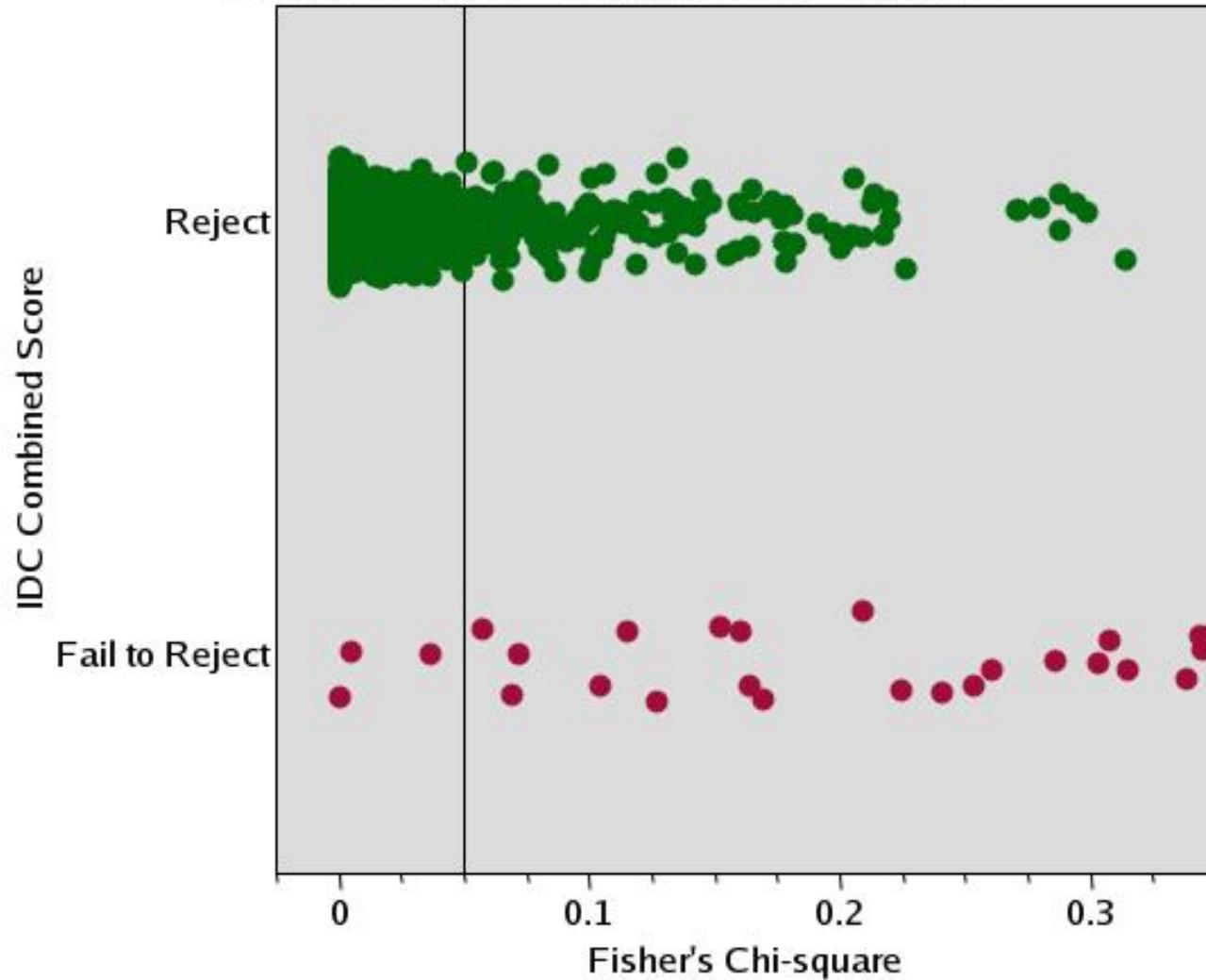
- **To illustrate joint hypothesis test, simulated (fabricated) depth hypothesis test was constructed that closely matches IDC depth screening criteria.**



Event Screening Framework with Multiple (orthogonal) Phenomenologies (Fisher)

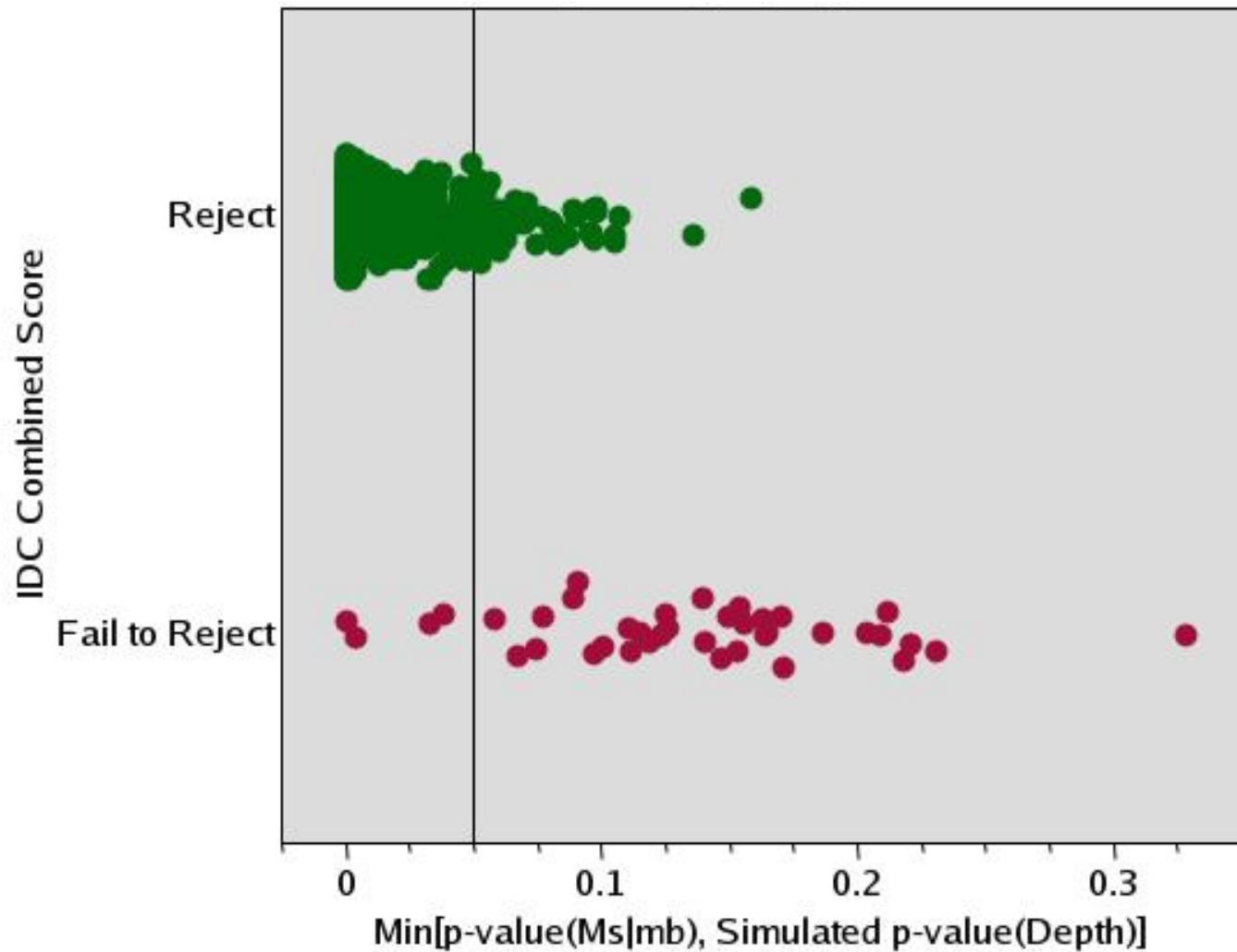
■ Under H0

- Single phenomenology p-values (p_1, p_2, \dots, p_k) have uniform probability distributions

- $X_i = -2 \log_e(p_i)$ is distributed χ^2 with 2 degrees of freedom
- $X = -2 (\log_e(p_1) + \log_e(p_2) + \dots + \log_e(p_k))$ is distributed χ^2 with $2k$ degrees of freedom
- Compute p-value with X , a measure of evidence against H0
 - p-value near zero rejects H0
 - Otherwise, “fail to reject H0”


Event Screening Framework with Multiple (orthogonal) Phenomenologies (Tippett)

- **Under H0**


- Single phenomenology p-values measure support for explosion characteristic
- Screening criteria can be based on $\text{Min}(p_1, p_2, \dots, p_k)$
- Requires multiple hypothesis test adjustment to significance level

$$1 - (1 - \alpha)^{1/k}$$

Fisher's Joint Event Screening: Ms|mb and Simulated Depth Hypothesis Test

Tippett's Joint Event Screening: Ms|mb and Simulated Depth Hypothesis Test

Ms:mb Event Screening for 2009 Announced NWT

■ Contrast

- Commonly used standard error
 - p-value = 0
 - reject H0
- Improved standard error
 - p-value = 0.12
 - fail to reject H0

$$Z = \frac{(\{\bar{M}_s = 3.687\} - \{mb = 4.62\}) - (-1.4)}{\sqrt{0.15 + 0.1/27}}$$

Summary

- Well established theory can be used to combine single-phenomenology hypothesis tests into a multi-phenomenology event screening hypothesis test (Fisher's and Tippett's tests)
- Commonly used standard error in Ms:mb event screening hypothesis test is not fully consistent with physical basis
- Improved standard error
 - Better agreement with physical basis
 - Correctly partitions error to include Model Error as a component of variance
 - Correctly reduces station noise variance through network averaging
- For 2009 DPRK test
 - Commonly used standard error “rejects” H_0 even with better scaling slope ($\beta = 1$, Selby et al.)
 - Improved standard error “fails to rejects” H_0

Next Steps

- **Formulate Depth Hypothesis test**
- **Demonstrate Joint Ms|mb and Depth Hypothesis Test with IDC Operational Data**
 - Fisher
 - Tippett
- **Evaluate Relevance of Fisher's and Tipett's Methods to IDC Event Screening Charter**
- **Other Phenomenologies**

References

- Anderson, D.N., H.J. Patton, S.R. Taylor, J.L. Bonner, and N.D. Selby (2011). “Sources of Error and the Statistical Formulation of Ms|mb Seismic Event Screening Analysis.” *PAGEOPH*, In Review.
- Selby, N. D., P. D. Marshall, and D. Bowers (2012). “mb : Ms event screening revisited.” *Bull. Seism. Soc. Am.* 102, 88-97.
- Anderson, D.N., W.R. Walter, D.K. Fagan, T.M. Mercier, and S.R. Taylor (2009). “Regional multi-station discriminants: Magnitude, distance and amplitude corrections and sources of error.” *Bull. Seism. Soc. Am.* 99, 794–808.
- Fisher, R.A. (1932) “Statistical Methods for Research Workers.”, 4th Edition, Edinburgh: Oliver and Boyd.
- Tippett, L.H. (1931) “The Methods of Statistics.”, London: Williams and Norgate.