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Case for Coupled MCNP/FDTD for 
urban EMP

• In case of a terrorist nuclear attack in a metropolitan area, EMP 
measurement could provide
– a prompt confirmation of the nature of the explosion (chemical or nuclear) for 

emergency response
– and characterization parameters of the device (reaction history, yield) for 

technical forensics
• However, urban environment could affect the fidelity of the prompt EMP 

measurement (as well as all other types of prompt measurement)
– Nuclear EMP wavefront would no longer be coherent, due to incoherent 

production, attenuation, and propagation of gamma and electrons
– EMP propagation from source region outward would undergo complicated 

transmission, reflection, and diffraction processes
• EMP simulation for electrically‐large urban environment

– Coupled MCNP/FDTD (Finite‐difference time domain Maxwell solver) approach
– FDTD tends to be limited to problems that are not “too” large compared to the 

wavelengths of interest because of numerical dispersion and anisotropy. We use a 
higher‐order low‐dispersion, isotropic FDTD algorithm for EMP propagation.
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• Developed two new high‐order, isotropic algorithms for electrically 
large problems.

– Smith et al., “A hierarchy of explicit low‐dispersion FDTD methods for electrically large 
problems, IEEE trans. Antenna propagat., 2012 (in print)

• Corrected air chemistry package
– compared to EM propagation from HEMPV

• Continuing work on high‐order FDTD algorithms for discrete dielectric 
interfaces and objects:

– Discrete boundaries 
– Thin planes, slits
– Thin wire
– Vent holes

• MCNP integration with MCNP(Simple tests show the integration is working)
– Electrons with/without magnetic field
– Gamma induced Compton currents with magnetic field in MCNP
– Compton current city model

• Implementation of Houston and Boston studies
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Secondary electron – ion package based on 
existing legacy (Unimax, HEMPV) code:

• secondary electron production
• Electron avalanche
• 2,3‐body attachment
• Electron‐ion
• ion‐ion recombination
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Two new High‐order isotropic 
algorithms for FDTD

Fig. 1. Propagation of planewave gaussian waveform. Yee (2,2), Fang (2,4), general (2,4), and general (4,4) algorithms are 
compared to the original Gaussian waveform (yeeref in the legend) at 1780m from source. The x-axis is nano-seconds and the y-
axis is z-component of the electric field in V m-1. (a) Gaussian pulse propagated with α=0.15. All of the schemes with 4th order 
spatial accuracy retain the pulse shape compared to the reference Gaussian pulse.  (b) Same, but α=0.5. The Fang and general 
(2,4) schemes exhibit similar dispersion compared to the reference Gaussian. The general (4,4) pulse shape remains un-degraded 
compared to the reference Gaussian.  
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Fig. 1. Relative phase velocity for wave propagation along the x-axis. Yee, IDFDTD-III, Fang, general (2,4), and general (4,4) 
schemes are shown. Computations were done at α=0.5 (solid lines) and  α=0.15 (dashed lines). The Yee scheme and the 
IDFDTD III scheme exhibit essentially identical dispersion. The general (2,4) scheme and the Fang (2,4) scheme have essentially 
identical dispersion behavior. The general (4,4) scheme shows only weak dependence on α. 
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• FDTD integration into MCNP6 build system (Completed)
• FDTD interface being fine tuned
• FDTD model depend variables moved to interface and input 

deck
• MCNP – FDTD simple test cases being developed
• Direct access of MCNP current tally by FDTD (Completed)
• Magnetic field mesh in MCNP (Completed)
• Updating MCNP magnetic field from FDTD under testing
• Time stepping in MCNP under testing

Slide 11
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20MeV electron beam in 0.0025T magnetic field

0 . 3 7 4 8   m  0.3748 m 

Computed trajectory of 
Compton electron beam in 
vacuum (MCNP and FDTD 
representations shown). 

Electron beam deflection 
simulated by MCNP is correct 
(within 0.58%) compared to 
analytic calculation
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MCNP gamma simulation with 0.0025 T 
magnetic field in x‐direction

Slide 13
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MCNP/FDTD coupled EMP simulation
Boston area and model grid


Do trees affect    and electron 
distribution?  

Boston commons detonation (generic fatman) 
Time/space varying current densities from MCNP
FDTD 6400x400x200, 1m resolution (N=10 for 30MHz)
160 processors, 12hrs
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Ez (x distance) for selected
points in Boston area
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Figure	1.	Left:	Google	image	of	downtown	Houston.	Right:	Corresponding	model	grid	
representation.	The	modeled	Houston	area	is	approximately	2.5km	x	2.5km.
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NUDET location and surrounding 
buildings

NUDET location
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Horizontal cross section of 
downtown Houston ‐
expanded inset showing the 
maximum magnitude EMP 
(V/m).

Slide 26

EMP is channeled outward along street 
canyons. Yellow and red contoured areas 
experience maximum electromagnetic 
field values above 20 kV / m.
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downtown Houston, TX
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downtown Houston, TX
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downtown Houston, TX
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• Developed two new high‐order, isotropic algorithms for electrically 
large problems.

– Smith et al., “A hierarchy of explicit low‐dispersion FDTD methods for electrically large 
problems, IEEE trans. Antenna propagat., 2012 (in print)

• Corrected air chemistry package
– compared to EM propagation from HEMPV

• Continuing work on high‐order FDTD algorithms for discrete dielectric 
interfaces and objects:

– Discrete boundaries 
– Thin planes, slits
– Thin wire
– Vent holes

• MCNP integration with MCNP(Simple tests show the integration is working)
– Electrons with/without magnetic field
– Gamma induced Compton currents with magnetic field in MCNP
– Compton current city model

• Implementation of Houston and Boston studies


