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FDTD for electrically large problems.
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"%t Case for Coupled MCNP/FDTD for
urban EMP

* In case of a terrorist nuclear attack in a metropolitan area, EMP
measurement could provide

— a prompt confirmation of the nature of the explosion (chemical or nuclear) for
emergency response

— and characterization parameters of the device (reaction history, yield) for
technical forensics

 However, urban environment could affect the fidelity of the prompt EMP
measurement (as well as all other types of prompt measurement)

— Nuclear EMP wavefront would no longer be coherent, due to incoherent
production, attenuation, and propagation of gamma and electrons

— EMP propagation from source region outward would undergo complicated
transmission, reflection, and diffraction processes

e EMP simulation for electrically-large urban environment
— Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach

— FDTD tends to be limited to problems that are not “too” large compared to the
wavelengths of interest because of numerical dispersion and anisotropy. We use a
higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.
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Urban EMP efforts

Developed two new high-order, isotropic algorithms for electrically
large problems.

— Smith et al., “A hierarchy of explicit low-dispersion FDTD methods for electrically large
problems, IEEE trans. Antenna propagat., 2012 (in print)

e Corrected air chemistry package
— compared to EM propagation from HEMPV

e Continuing work on high-order FDTD algorithms for discrete dielectric
interfaces and objects:

— Discrete boundaries
— Thin planes, slits

— Thin wire

— Vent holes

e MCNP integration with MCNP(Simple tests show the integration is working)
— Electrons with/without magnetic field
— Gamma induced Compton currents with magnetic field in MCNP
— Compton current city model

Implementation of Houston and Boston studies
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\a%ﬂaw Corrected air chemistry with inputs from MCNP
™ Time/space varying current and air conductivity
(Ax, Ay, Az=1m, At=1.7 ns)

Secondary electron —ion package based on
existing legacy (Unimax, HEMPV) code:

e secondary electron production
on

e Electron avalanche 8ts =rIn, +rn —an —ann,
* 2,3-body attachment a;* =N, + LN 40— NN, —gnn.
e Electron-ion on
. ] ] i a—t_zans —ain+n_
* jon-ion recombination
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Ex: HEMPV vs FDTD with air chemistry
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Conductivity: HEMPV vs FDTD with air chemistry
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Two new High-order isotropic
algorithms for FDTD
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Fig. 1. Propagation of planewave gaussian waveform. Yee (2,2), Fang (2,4), general (2,4), and general (4,4) algorithms are
compared to the original Gaussian waveform (yeeref in the legend) at 1780m from source. The x-axis is nano-seconds and the y-
axis is z-component of the electric field in V m™. (a) Gaussian pulse propagated with a=0.15. All of the schemes with 4" order
spatial accuracy retain the pulse shape compared to the reference Gaussian pulse. (b) Same, but «a=0.5. The Fang and general
(2,4) schemes exhibit similar dispersion compared to the reference Gaussian. The general (4,4) pulse shape remains un-degraded
compared to the reference Gaussian. /\
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High-order isotropic algorithm for FDTD
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Fig. 1. Relative phase velocity for wave propagation along the x-axis. Yee, IDFDTD-III, Fang, general (2,4), and general (4,4)
schemes are shown. Computations were done at a=0.5 (solid lines) and oa=0.15 (dashed lines). The Yee scheme and the
IDFDTD Il scheme exhibit essentially identical dispersion. The general (2,4) scheme and the Fang (2,4) scheme have essentially
identical dispersion behavior. The general (4,4) scheme shows only weak dependence on a.
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- Fu Anisotropy error
Yee, Fang, ID-FDTD and LANL schemes
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MCNP/FDTD Integration Progress

e FDTD integration into MCNP6 build system (Completed)
e FDTD interface being fine tuned

e FDTD model depend variables moved to interface and input
deck

e MCNP —FDTD simple test cases being developed

* Direct access of MCNP current tally by FDTD (Completed)
e Magnetic field mesh in MCNP (Completed)

e Updating MCNP magnetic field from FDTD under testing
e Time stepping in MCNP under testing

A,
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Computed trajectory of
Compton electron beam in
vacuum (MCNP and FDTD
representations shown).

Electron beam deflection
simulated by MCNP is correct
(within 0.58%) compared to
analytic calculation

MCNP magnetic field integration test
20MeV electron beam in 0.0025T magnetic field
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03/07/12 13:12:21
simulate current along wire
(void) in mag field
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MCNP/FDTD coupled EMP simulation
Boston area and model grid
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PDTD 6400x400x200, 1m resolution (N=10 for 30MHz)

160 processors, 12hrs

Do trees affect and electro
distribution?

NV » Los Alamos



2% N
L )

i)
r«@WW

Ez magnitude from NUDET

zheight
4000
151.632

3500

, o £2R ."r. ‘@
- 1 W
L
3000
2500 |
> fmel - e TR
2500 4500

X
il
CYR T > Los Alamos



4000

3500
" ‘”t'.' > S
}@-@\. \Q}j‘

== y \
=Rl = 7
AR~ > <5
h : L W S
9 " .,
\

3000

Ihl

zheight

151.632
134.895
118.158
101.421
84.6842
67.9474
51.2105
34.4737
177368
1

Ez

1E+06
56234 .1
3162.28
177.828
10

2500 ~2500
X

A
=
» Los Alamos



4000

3500

3000

zheight

151.632
134.895
118.158
101.421
84.6842
67.9474
51.2105
34.4737
177368
1

Ez

1E+06
56234 .1
3162.28
177.828
10

A
=
» Los Alamos




4000

3500

2 . 5
o g e

P
A

zheight

151.632
134.895
118.158
101.421
84.6842
51.2105
34.4737
1

Ez

1E+06
56234.1
3162.28
177.828
10

X

A,




zheight
151.632
134.895
118.158
101.421
84.6842
67.9474
51.2105
344737
17.7368
1

Ez

1E+06
56234 .1
3162.28
177.828
10

x
P
AILYOA > Los Alamos




zheight

151.632
134.895
118.158
101.421
84.6842
67.9474
51.2105
344737
17.7368
1

8

Ez

1E+06
56234.1
3162.28
177.828
10

X

2
=y
» Los Alamos



4000

3500

3000

v Qe

zheight

151.632
134.895
118.158
101.421
84.6842
67.9474
51.2105
34.4737
17.7368
1

| 56234.1

Ez
1E+06

3162.28
177.828
10

X

g
=
» Los Alamos



zheight

151.632
134.895
118.158
101.421
84.6842
67.9474
51.2105
34.4737
- 17,7368

Ez

1E+06

| 56234.1
3162.28
177.828
10

x
A
AILYOA > Los Alamos




%N
7 i)

9=  Ez (x distance) for selected
points in Boston area
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Figure 1. Left: Google image of downtown Houston. Right: Corresponding model grid
representation. The modeled Houston area is approximately 2.5km x 2.5km.
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NUDET location and surrounding
buildings
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downtown Houston, TX

Compton currents and maximum magnitude EMP
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downtown Houston, TX

Compton currents and maximum magnitude EMP
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g 2= Compton currents and maximum magnitude EMP
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Summary

Developed two new high-order, isotropic algorithms for electrically
large problems.

— Smith et al., “A hierarchy of explicit low-dispersion FDTD methods for electrically large
problems, IEEE trans. Antenna propagat., 2012 (in print)

e Corrected air chemistry package
— compared to EM propagation from HEMPV

e Continuing work on high-order FDTD algorithms for discrete dielectric
interfaces and objects:

— Discrete boundaries
— Thin planes, slits

— Thin wire

— Vent holes

e MCNP integration with MCNP(Simple tests show the integration is working)
— Electrons with/without magnetic field
— Gamma induced Compton currents with magnetic field in MCNP
— Compton current city model

Implementation of Houston and Boston studies
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