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A 3D Front Tracking Method on a CPU/GPU System 

Presented by: Wurigen Bo, CCS-2 

ABSTRACT: We describe the method to port a sequential 3D interface tracking code to a GPU with 
CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point 
propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The 
convergence of the method is assessed from the test problems with given velocity fields. Performance 
results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also 
briefly describe our ongoing work to couple the interface tracking method with a hydro solver. 
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Front Tracking Method 

• Front tracking method is implemented in code FronTier . 

• • • • 

• 

• 

• 

• Grid State 
• Tracked Points (Ieft,right) States 

Courtesy of J.Grove 

Major components: 
• A moving mesh to represent interface 
• Compressible Navier-Stokes equations 

Procedure to solve: 
• Compute geometry properties 
• Propagate interface points 
• Req1stribute the interface points 
• Resolve the topological change of the 

interface 
• Solve equations to obtain the fluid states 

at cell centers 
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Data Structure of a 3D Front 

Both points and triangles are stored in linked lists 
• The order in the list has no connection to the actual order on the front. 
• The addition and removal of points and triangles is simple. 
• A" triangles in a given front must be oriented in the same way. 

struct { 
float coords[3] ; 
float nor[3] ; 
float curvature; 

} POINT; 

struct { 
struct POINT *pts[3]; 
struct TRI *nb[3] ; 

} TRI ; 
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Front Tracking Method: Applications 

A 3D simulation of jet breakup 

• 
• 
• 

4096 bluegene cores 
Total running time -12 days 
Number of triangles -12 million 
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Basic Issues of Front Tracking on GPU 

Why GPU: 
• Computing geometry properties, propagating points and solving interior 

states constitute most running time of the code. Moving these operations to 
GPU will greatly improve the code efficiency. 

Challenge 
• Redesign existing algorithms so that they are su itable on GPU. 

• 

• 

• 

Data dependent memory access in front tracking method has low efficiency 
on the current GPU. 

Accuracy of single precision floating point calculations on the current GPU. 

Some operations of the front tracking method remain on CPU due to their 
complexity . We need to study the impact of these operations on the overall 
code performance. 
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• 

• 

• 

CUDA Programming Model 

CUDA (Compute Unified Device Architecture) is an extension to both C and 
Fortran on NVIDIA GPUs. 

• A kernel is a function that runs on 
GPU 

• 

• 

• 

• 

A CUDA kernel is executed by an 
array of threads at a time 

A block is a batch of threads that 
can cooperate with each other by 
• Sharing data through shared 

memory 
• Synchronizing their execution 

A grid is a 10 or 2D array of blocks 

Threads from different blocks can 
not cooperate 
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CUDA Memory Model 

Three main memory types on NVIDA GPUs 

Register memory: accessible to an 
individual thread only, high bandwidth and 
low latency. 

Shared memory: accessible to every 
thread in a single block, high bandwidth 
and low latency. 

Global memory: accessible to every 
thread, high latency. 
• Global memory coalescing: The 

memory throughput can be increased 
by an order of magnitude over 
random memory access. 

8 

Device 

Grid 1 

Ilock 
(0, 0) 

Block (1, 1) 

T ....... d T ...... d n .... d 
(0,0) (I , D) (1,0) 

T ...... d Tbr •• d n .... d 
(0. I) (I. \) (1,1) 

Tllr .. d T ..... u T ...... d 
(0,1) (1,1) (1,1) 

GPU GrlCI 

Block (0, 0) 

Block 
(1 , 0) 

Block 
(1 , 1) 

· 
Block 
(2, 0) 

\. Block 
\ (2, 1) · .. · , .. \ 
\ \ .. 

nroad T ...... d 
(3, 0) (4. 0) 

nrud Tbrud 
(3,1) (4, I) 

nr .. d T .... oad 
(l,l) (4,1) 

Block (1, 0) 



Front Tracking Code Structure on 
CPU/GPU 

• 

• 

Geometry properties calculation and point propagation are ported from CPU 
to GPU due to their high computational cost. 
Data transfer happens only when the front connectivity is modified by 
redistribution. 

while(not the final time) 
Transfer point and triangle array from CPU to GPU 
Determine the number of blocks for kernel launch 

//suppose we redistribute every nredis steps 
for i :=1 to nredis step 1 do 

Compute normal vectors and curvatures 
Propagate points 
Determine dt 

end 

Transfer points coordinates from GPU to CPU 

Redistribute the front 
Reorder point and triangle array 

CPU 

GPU 

CPU 

end 
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Normal and Curvature Calculation 

• Algorithm: Least square fitting for normals and curvatures* at a point P . 
• Construct a local coordinate system at p. 
• Transform the coordinates of the two ring adjacent points of P into the local coordinate system. 
• Fit a local second order polynomial to the local point positions by least square approximations. 

z = f(.x, y) = A.x2 + Bxy+ Cy2 + Dx + Ey 
N 

min I,:(z; - f(Xi, Yi))2 Least square fitting for the polynomial coefficients 

i=l 

The local coordinates of the two ring adjacent points 

Two ring adjacent points of P 

• X. Jiao and H. Zha, Consistent computation of first- and second-order differential quantities for surface meshes, 
Proceedings of the ACM Solid and Physical Modeling Symposium, 2008 
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Normal and Curvature Calculation on 
GPU 

• Three GPU kernels to compute the normals and curvatures at a point. 
P6'~---7P~3 __ 

One and a half ring 
adjacent points of P 

P4 

Kernel 1. Collect the adjacent points of P: one triangle per thread 
Add P2 P5 into the one and a half ring of Pi 
Add P3 P5 into the one and a half ring of P2 
Add Pi P4 into the one and a half ring of P3 

P5 

Kernel 2. Compute the local coordinate systems: one point per thread 

Kernel 3. Compute normals and curvatures: one point per thread 
construct and solve normal equations in each point 
compute the fi rst and second derivatives of the second order polynomial 
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Accuracy of Curvature 

• Relative curvature error with double precision on GPU . 

10' ,-------~----~----....., 

10" ~r---:-'------:-....., 
- e- L 1 error A2 
_____ max error A2 

- FIrst order 
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Ai: curvature obtained from two ring adjacent points 
A2: curvature obtained from one and a half ring adjacent points 
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Accuracy of Curvature 

• Relative curvature error with single precision on GPU. 

10' 10' ,---~~---~-----. ------------------------------------ --._--. ------ --------
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Interface point propagation 

• 

• 

• 

dxldt = V(X,t) 

x: A point on the front 
v(x,t): point velocity 

In the current test cases, v(x,t) is a given. 
• It may depends on the normal vectors and/or curvature on x . 
• When coupling with hydro code, v(x,t) can be interpolated from fluid 

velocity or solved from a Riemann problem on the front. 

Solve the ODE with a fourth order Runge Kutta methods. 

It is a pointwise operation : There is no further need to consider the local 
connectivity near the points once the front normals and curvatures are 
obtained . Global memory access is coalesced. 
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Redistribution 

• 

• 

• 

Redistribution is needed because of the surface deformations as the 
interface evolves leads to bad geometric properties of the triangles. 
Redistribution is performed on CPU due to its complexity. 
• Complexity: conditional statements, uncoalesced memory access. 
• Redistribution on GPU is a topic under investigation. 

Procedure of redistribution 
Coarsen : delete an edge if L<dxl3 or its corresponding angle<15 degree. 
Refine : divide an edge if L>dx. 
Reorder: sort the triangle and point list. 

-- --
Refine 

Topological validation check is performed before deleting an edge. 
The new points in coarsen and refine are computed with LS fitting. 
Reorder is aimed to relax cache miss on CPU. 
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Verification: 3D Deformation 

• Convergence under mesh refinement on FX 1800. 

1024 4096 

16384 65536 

Interface at the final time 
Relative errors at the final time 

# of l h :lIlglcs L x error Order LI error Order Volume error Order 
1024 6. :361 x 1O- ~ 1.5:3 8.938 x 10- :) 2.56 2.985 x 10 - ~ 2.49 
4096 2.188 x 10- 2 1.58 1.509 x 10-:) 2.77 5.288 x lO-:l 2.99 
16384 7.312 x 1O-:l 1.38 2.197 x 1O- ~ 2.63 6.637 x 10-4 2.76 
65536 2.790 x lO- J 3 .545 X 10-5 9.7.'32 x 10-:> 
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Verification: 3D Shear 

• Convergence under mesh refinement on FX 1800 . 

1024 

16384 

Interface at the final time 
Relative errors at the final time 

# of TrianglE-s LOG error OrciN LJ error Order Volume E-rror O rder 
1024 1.721 x 10 . J 1.83 2.748 x 10 ~ 2.2 1 6.402 x 10 .< 1.76 
4096 4.816 x 10- 2 1.63 5.906 x lO- :l 2.60 1.884 x 10-2 2.62 
16.'384 1.548 x 10-2 1.72 9.741 x 10--1 2.86 3.065 x 10-3 :3.45 
655:l6 4.684 x 10-3 1.340 X 10--1 2.801 X 10- 4 
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Verification: 3D Curvature dependent 
velocity 

• Velocity field: VeX) = n(x)(O.1- O.OOOlO(x) 
n(x): normal vectors at x 
O(x) : curvature at x 
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4096 

65536 



Performance Comparison 

• PerformanCe is compared between CPU and GPU for 3D deformation test. 
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Performance Comparison 

"\ , 

eo 100 200 lOO °0 100 100 JOO .. 00 sao &00 100 800 900 
SlOp 

nUlllber of Interface operations Redistribution Total (5) 
triangles (propagation, curvature) 

CPU 1024 13 .87 (95%) 0.62.')9 (5%) 14.5 
4096 10S.1 (95%) 5.141 (5%) 113.3 
16384 S7:3.9 (95%) 49.6 (5%) 923.5 
655% 7092 (D4%) 419.9 (6%) 7512 

CPU 1024 04002 (3S%) 0.6301 (62%) 1.0:30 
4096 :3.268 (38%) 5.148 (62%) 8.417 
16384 27.12 (35%) 49.60 (65%) 76.73 
65536 219.0 (34%) 422.:3 (66%) 641.3 
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Ongoing Work: Coupling 

• Coupling with a hydro solver: Solve Euler equations in each side of the 
interface with a Ghost Fluid Method* on GPU. 

• Compute interface-grid crossings. 
• Determine the components of grid points from crossings. 
• Solve Euler equations. 

---t-- I--:-.. 

t \ t \ 
\ f \ f 

~ v -- I---" 
, ~ ...... r-- I--" 

crossings components 

·W. Bo, X. Liu, J. Glimm and X. Li, A robust front tracking method : verification and 
application to simulation of the primary breakup of liquid jet, SISC, to appear. 
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Comparison of speedup with FronTier 

• 3D deformation test 
• Calculation on GPU: Point propagation, normals, cUNatures, grid crossings, 

components 
• Calculation on CPU: redistribution 
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Summary 

• 

• 

• 

• 

Interface operations in the front tracking method is ported from CPU to GPU, 
11-14 times speedup is obtained. 

Finding the one and half ring adjacent points in CUNature evaluation is the 
most time-consuming part in GPU because of the random memory access. It 
may benefit from the newer GPUs which have caches. 

For CPU code, geometry properties calculations (normals and cUNatures) 
dominate the running time. For GPU code, Redistribution dominates the 
running time. 

Curvature calculations are very sensitive. On very fine grid, double precision 
float is necessary for convergent CUNature. For curvature independent 
velocity field, single precision float is enough for convergence. 
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