
LA-UR-
Approved for public release;
distribution is unlimited.

~
Los Alamos
NATIONAL LABORATORY
---- EST.1943 ----

Title: A 3D Front Tracking Method on a CPU/GPU System

Author(s): Wurigen Bo, John Grove

Intended for: CCS-2 Staff Activity Seminar, Jan 27, 2011

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive , royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

A 3D Front Tracking Method on a CPU/GPU System

Presented by: Wurigen Bo, CCS-2

ABSTRACT: We describe the method to port a sequential 3D interface tracking code to a GPU with
CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point
propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The
convergence of the method is assessed from the test problems with given velocity fields. Performance
results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also
briefly describe our ongoing work to couple the interface tracking method with a hydro solver.

A 3D Front Tracking Method on a CPU/GPU

Wurigen 80

In collaboration with
John Grove

CCS-2
Los Alamos National Lab

1

Outline

• Introduction

•

•
•

•
•

Front tracking method
CUDA

Algorithms on CPU/GPU
• Code structure on CPU/GPU
• Curvature calculation, point propagation on GPU
• Redistribution on CPU

Summary
Ongoing Work: Coupling with hydro code

2

Front Tracking Method

• Front tracking method is implemented in code FronTier .

• • • •

•

•

•

• Grid State
• Tracked Points (Ieft,right) States

Courtesy of J.Grove

Major components:
• A moving mesh to represent interface
• Compressible Navier-Stokes equations

Procedure to solve:
• Compute geometry properties
• Propagate interface points
• Req1stribute the interface points
• Resolve the topological change of the

interface
• Solve equations to obtain the fluid states

at cell centers

3

Data Structure of a 3D Front

Both points and triangles are stored in linked lists
• The order in the list has no connection to the actual order on the front.
• The addition and removal of points and triangles is simple.
• A" triangles in a given front must be oriented in the same way.

struct {
float coords[3] ;
float nor[3] ;
float curvature;

} POINT;

struct {
struct POINT *pts[3];
struct TRI *nb[3] ;

} TRI ;

4

Front Tracking Method: Applications

A 3D simulation of jet breakup

•
•
•

4096 bluegene cores
Total running time -12 days
Number of triangles -12 million

5

Basic Issues of Front Tracking on GPU

Why GPU:
• Computing geometry properties, propagating points and solving interior

states constitute most running time of the code. Moving these operations to
GPU will greatly improve the code efficiency.

Challenge
• Redesign existing algorithms so that they are su itable on GPU.

•

•

•

Data dependent memory access in front tracking method has low efficiency
on the current GPU.

Accuracy of single precision floating point calculations on the current GPU.

Some operations of the front tracking method remain on CPU due to their
complexity . We need to study the impact of these operations on the overall
code performance.

6

•

•

•

CUDA Programming Model

CUDA (Compute Unified Device Architecture) is an extension to both C and
Fortran on NVIDIA GPUs.

• A kernel is a function that runs on
GPU

•

•

•

•

A CUDA kernel is executed by an
array of threads at a time

A block is a batch of threads that
can cooperate with each other by
• Sharing data through shared

memory
• Synchronizing their execution

A grid is a 10 or 2D array of blocks

Threads from different blocks can
not cooperate

7

CUDA Memory Model

Three main memory types on NVIDA GPUs

Register memory: accessible to an
individual thread only, high bandwidth and
low latency.

Shared memory: accessible to every
thread in a single block, high bandwidth
and low latency.

Global memory: accessible to every
thread, high latency.
• Global memory coalescing: The

memory throughput can be increased
by an order of magnitude over
random memory access.

8

Device

Grid 1

Ilock
(0, 0)

Block (1, 1)

T d T d n d
(0,0) (I , D) (1,0)

T d Tbr •• d n d
(0. I) (I. \) (1,1)

Tllr .. d T u T d
(0,1) (1,1) (1,1)

GPU GrlCI

Block (0, 0)

Block
(1 , 0)

Block
(1 , 1)

·
Block
(2, 0)

\. Block
\ (2, 1) · .. · , .. \
\ \ ..

nroad T d
(3, 0) (4. 0)

nrud Tbrud
(3,1) (4, I)

nr .. d T oad
(l,l) (4,1)

Block (1, 0)

Front Tracking Code Structure on
CPU/GPU

•

•

Geometry properties calculation and point propagation are ported from CPU
to GPU due to their high computational cost.
Data transfer happens only when the front connectivity is modified by
redistribution.

while(not the final time)
Transfer point and triangle array from CPU to GPU
Determine the number of blocks for kernel launch

//suppose we redistribute every nredis steps
for i :=1 to nredis step 1 do

Compute normal vectors and curvatures
Propagate points
Determine dt

end

Transfer points coordinates from GPU to CPU

Redistribute the front
Reorder point and triangle array

CPU

GPU

CPU

end

9

Normal and Curvature Calculation

• Algorithm: Least square fitting for normals and curvatures* at a point P .
• Construct a local coordinate system at p.
• Transform the coordinates of the two ring adjacent points of P into the local coordinate system.
• Fit a local second order polynomial to the local point positions by least square approximations.

z = f(.x, y) = A.x2 + Bxy+ Cy2 + Dx + Ey
N

min I,:(z; - f(Xi, Yi))2 Least square fitting for the polynomial coefficients

i=l

The local coordinates of the two ring adjacent points

Two ring adjacent points of P

• X. Jiao and H. Zha, Consistent computation of first- and second-order differential quantities for surface meshes,
Proceedings of the ACM Solid and Physical Modeling Symposium, 2008

10

Normal and Curvature Calculation on
GPU

• Three GPU kernels to compute the normals and curvatures at a point.
P6'~---7P~3 __

One and a half ring
adjacent points of P

P4

Kernel 1. Collect the adjacent points of P: one triangle per thread
Add P2 P5 into the one and a half ring of Pi
Add P3 P5 into the one and a half ring of P2
Add Pi P4 into the one and a half ring of P3

P5

Kernel 2. Compute the local coordinate systems: one point per thread

Kernel 3. Compute normals and curvatures: one point per thread
construct and solve normal equations in each point
compute the fi rst and second derivatives of the second order polynomial

11

Accuracy of Curvature

• Relative curvature error with double precision on GPU .

10' ,-------~----~----.....,

10" ~r---:-'------:-.....,
- e- L 1 error A2
_____ max error A2

- FIrst order

--. .. _------- ----
g 10-~
" " :

I,o" f
~
~ 10'" h- ----,-- ------,,-,
0::: -'- Ll errorA2

max en-orAl
_~ --Er- l1 error A 1

10 . • -4- max error A 1
- First order

-....._._--------

1 0" l!:="="=Se=c=On<l===ord=er~ __ ~~~_~~.......J
10' 10' '10' 10'

.. Second order
10··~===~--~~~-~-_..J

10" 10" 10~ 10'
Number of triangles Number of triangles

Static sphere Static torus

Ai: curvature obtained from two ring adjacent points
A2: curvature obtained from one and a half ring adjacent points

12

Accuracy of Curvature

• Relative curvature error with single precision on GPU.

10' 10' ,---~~---~-----. ------------------------------------ --._--. ------ --------

10-4 ~r ___ -'--O-L 1-erro-, A2-:-::--1 1 0·' h----,---~
----*- L 1 error A2
___ rnax error A2

. , -e-L 1 error A 1
10 ' -Q_ max error A 1

max €lrTOf A2

- Firit order - First order

10_6 l!:==-=-- -=sec=o=nd=or=de~r ,-:--_~~~_~~......J
1~ 1 ~ 1~ l~

. Second order
1O- . l'====""'--:--~~~_:__-~--.....J

10' -10' -10' 10'
Number of triangles Number of tri" ngles

Static sphere Static torus

13

Interface point propagation

•

•

•

dxldt = V(X,t)

x: A point on the front
v(x,t): point velocity

In the current test cases, v(x,t) is a given.
• It may depends on the normal vectors and/or curvature on x .
• When coupling with hydro code, v(x,t) can be interpolated from fluid

velocity or solved from a Riemann problem on the front.

Solve the ODE with a fourth order Runge Kutta methods.

It is a pointwise operation : There is no further need to consider the local
connectivity near the points once the front normals and curvatures are
obtained . Global memory access is coalesced.

14

Redistribution

•

•

•

Redistribution is needed because of the surface deformations as the
interface evolves leads to bad geometric properties of the triangles.
Redistribution is performed on CPU due to its complexity.
• Complexity: conditional statements, uncoalesced memory access.
• Redistribution on GPU is a topic under investigation.

Procedure of redistribution
Coarsen : delete an edge if L<dxl3 or its corresponding angle<15 degree.
Refine : divide an edge if L>dx.
Reorder: sort the triangle and point list.

-- --
Refine

Topological validation check is performed before deleting an edge.
The new points in coarsen and refine are computed with LS fitting.
Reorder is aimed to relax cache miss on CPU.

15

Verification: 3D Deformation

• Convergence under mesh refinement on FX 1800.

1024 4096

16384 65536

Interface at the final time
Relative errors at the final time

of l h :lIlglcs L x error Order LI error Order Volume error Order
1024 6. :361 x 1O- ~ 1.5:3 8.938 x 10- :) 2.56 2.985 x 10 - ~ 2.49
4096 2.188 x 10- 2 1.58 1.509 x 10-:) 2.77 5.288 x lO-:l 2.99
16384 7.312 x 1O-:l 1.38 2.197 x 1O- ~ 2.63 6.637 x 10-4 2.76
65536 2.790 x lO- J 3 .545 X 10-5 9.7.'32 x 10-:>

16

Verification: 3D Shear

• Convergence under mesh refinement on FX 1800 .

1024

16384

Interface at the final time
Relative errors at the final time

of TrianglE-s LOG error OrciN LJ error Order Volume E-rror O rder
1024 1.721 x 10 . J 1.83 2.748 x 10 ~ 2.2 1 6.402 x 10 .< 1.76
4096 4.816 x 10- 2 1.63 5.906 x lO- :l 2.60 1.884 x 10-2 2.62
16.'384 1.548 x 10-2 1.72 9.741 x 10--1 2.86 3.065 x 10-3 :3.45
655:l6 4.684 x 10-3 1.340 X 10--1 2.801 X 10- 4

17

Verification: 3D Curvature dependent
velocity

• Velocity field: VeX) = n(x)(O.1- O.OOOlO(x)
n(x): normal vectors at x
O(x) : curvature at x

18

4096

65536

Performance Comparison

• PerformanCe is compared between CPU and GPU for 3D deformation test.

'il 1000

__ Xeon X5500 2.67G

-e-- FX 1800
- Speedup

6 r---------~
u ;
'" E
Ol 100
c
E
c
2

~

10'

r
115

I ~
ral

Is

I
Number of triangles in the initial time

19

Performance Comparison

"\ ,

eo 100 200 lOO °0 100 100 JOO .. 00 sao &00 100 800 900
SlOp

nUlllber of Interface operations Redistribution Total (5)
triangles (propagation, curvature)

CPU 1024 13 .87 (95%) 0.62.')9 (5%) 14.5
4096 10S.1 (95%) 5.141 (5%) 113.3
16384 S7:3.9 (95%) 49.6 (5%) 923.5
655% 7092 (D4%) 419.9 (6%) 7512

CPU 1024 04002 (3S%) 0.6301 (62%) 1.0:30
4096 :3.268 (38%) 5.148 (62%) 8.417
16384 27.12 (35%) 49.60 (65%) 76.73
65536 219.0 (34%) 422.:3 (66%) 641.3

20

Ongoing Work: Coupling

• Coupling with a hydro solver: Solve Euler equations in each side of the
interface with a Ghost Fluid Method* on GPU.

• Compute interface-grid crossings.
• Determine the components of grid points from crossings.
• Solve Euler equations.

---t-- I--:-..

t \ t \
\ f \ f

~ v -- I---"
, ~ r-- I--"

crossings components

·W. Bo, X. Liu, J. Glimm and X. Li, A robust front tracking method : verification and
application to simulation of the primary breakup of liquid jet, SISC, to appear.

21

he st lu d
I--l-

f \
\ I TIl 10 fL }

r-- --
fll id Iz
f- ---

t, ~h, fl, IrI~ \

\ f

:-- --
Solve equations

Comparison of speedup with FronTier

• 3D deformation test
• Calculation on GPU: Point propagation, normals, cUNatures, grid crossings,

components
• Calculation on CPU: redistribution

-100
__ FronTier on Xeon X5500 2.67G

10' -<t- GPU code on FX 1800
- Speedup

eo

r---~~~~------____________ ~70

60 c.

50 ~
8.

40
IJ)

10

10'" 10'~ 10" 10" 10"< 10' :,0
Number of triangles In the initial time

22

Summary

•

•

•

•

Interface operations in the front tracking method is ported from CPU to GPU,
11-14 times speedup is obtained.

Finding the one and half ring adjacent points in CUNature evaluation is the
most time-consuming part in GPU because of the random memory access. It
may benefit from the newer GPUs which have caches.

For CPU code, geometry properties calculations (normals and cUNatures)
dominate the running time. For GPU code, Redistribution dominates the
running time.

Curvature calculations are very sensitive. On very fine grid, double precision
float is necessary for convergent CUNature. For curvature independent
velocity field, single precision float is enough for convergence.

23

