LAUR- /04T

Approved for public release;
distribution is unlimited.

Title: | A 3D Front Tracking Method on a CPU/GPU System

Author(s): | Wurigen Bo, John Grove

Intended for: | CCS-2 Staff Activity Seminar, Jan 27, 2011

,/wj
Los Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

A 3D Front Tracking Method on a CPU/GPU System

Presented by: Wurigen Bo, CCS-2

ABSTRACT: We describe the method to port a sequential 3D interface tracking code to a GPU with
CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point
propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The
convergence of the method is assessed from the test problems with given velocity fields. Performance
results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also
briefly describe our ongoing work to couple the interface tracking method with a hydro solver.

A 3D Front Tracking Method on a CPU/GPU

Wurigen Bo

In collaboration with
John Grove

CcCs-2
Los Alamos National Lab

1

Outline

Introduction
* Front tracking method
* CUDA

Algorithms on CPU/GPU

* Code structure on CPU/GPU

* Curvature calculation, point propagation on GPU
* Redistribution on CPU

Summary
Ongoing Work: Coupling with hydro code

Front Tracking Method

* Front tracking method is implemented in code FronTier.

Major components:
B A moving mesh to represent interface
B Compressible Navier-Stokes equations

Procedure to solve:

Compute geometry properties
Propagate interface points

Redistribute the interface points
Resolve the topological change of the
interface

Grid State Solve equations to obtain the fluid states
Tracked Points (left.right) States at cell centers

Courtesy of J.Grove

Data Structure of a 3D Front

Both points and triangles are stored in linked lists

* The order in the list has no connection to the actual order on the front.
* The addition and removal of points and triangles is simple.

* Alltriangles in a given front must be oriented in the same way.

struct {

float coords[3];
float nor[3];
float curvature;
} POINT,;

struct {
struct POINT *pts[3];
struct TRI *nb[3];
} TR,

Front Tracking Method: Applications

A 3D simulation of jet breakup

= 4096 bluegene cores
= Total running time ~12 days
= Number of triangles ~12 million

Basic Issues of Front Tracking on GPU

Why GPU: .

* Computing geometry properties, propagating points and solving interior
states constitute most running time of the code. Moving these operations to
GPU will greatly improve the code efficiency.

Challenge
" Redesign existing algorithms so that they are suitable on GPU.

* Data dependent memory access in front tracking method has low efficiency
on the current GPU.

= Accuracy of single precision floating point calculations on the current GPU.
*= Some operations of the front tracking method remain on CPU due to their

complexity. We need to study the impact of these operations on the overall
code performance.

W

CUDA Programming Model

CUDA (Compute Unified Device Architecture) is an extension to both C and
Fortran on NVIDIA GPUs.

= A kernel is a function that runs on
GPU

* A CUDA kernel is executed by an
array of threads at a time

* Ablock is a batch of threads that
can cooperate with each other by

* Sharing data through shared r_ .
memory_,) . | Thread | Thread | Thread | Thread | Thread
* Synchronizing their execution oo |an | ey | 60| @0

b * Agridis a 1D or 2D array of blocks Jev|av|av| ey | @y |

|}
* Threads from different blocks can |0y | Ay | @) | 6. | G
not cooperate ’ '

CUDA Memory Model

Three main memory types on NVIDA GPUs

* Register memory: accessible to an
individual thread only, high bandwidth and
low latency.

* Shared memory: accessible to every
thread in a single block, high bandwidth
and low latency.

* Global memory: accessible to every
thread, high latency.

* Global memory coalescing: The
memory throughput can be increased
by an order of magnitude over
random memory access.

Front Tracking Code Structure on
CPU/GPU

* Geometry properties calculation and point propagation are ported from CPU
to GPU due to their high computational cost.

* Data transfer happens only when the front connectivity is modified by
redistribution.

while(not the final time)

Transfer point and triangle array from CPU to GPU
Determine the number of blocks for kernel launch CPU

/lsuppose we redistribute every nredis steps

for i:=1 to nredis step 1 do
Compute normal vectors and curvatures GPU
Propagate points
Determine dt

end

Transfer points coordinates from GPU to CPU
Py

Redistribute the front
Reorder point and triangle array

end

Normal and Curvature Calculation

* Algorithm: Least square fitting for normals and curvatures* at a point P.

® Construct a tocal coordinate system at P.

* Transform the coordinates of the two ring adjacent points of P into the local coordinate system.
Fit a local second order polynomial to the local point positions by least square approximations.

z=f (r y) = Az? + Bzy+ Cy? + Dz + Ey
mmz — f(zi, yl)) Least square fitting for the polynomial coefficients

(zi, Ui, 2;) The local coordinates of the two ring adjacent points

Two ring adjacent points of P

* X. Jiao and H. Zha, Consistent computation of first- and second-order differential quantities for surface meshes,
Proceedings of the ACM Solid and Physical Modeling Symposium, 2008

10

Relatve curvature error

Normal and Curvature Calculation on
GPU

* Three GPU kernels to compute the normals and curvatures at a point.
4 P6 p3
N\ "
One and a half ring A»
adjacent points of P ‘ P2
Aé‘ P

Kernel 1. Collect the adjacent points of P: one triangle per thread

Add P2 P5 into the one and a half ring of P1
Add P3 P5 into the one and a half ring of P2
Add P1 P4 into the one and a half ring of P3

1

P4

Kernel 2. Compute the local coordinate systems: one point per thread

Kernel 3. Compute normals and curvatures: one point per thread

construct and solve normal equations in each point
compute the first and second derivatives of the second order polynomial

11

Accuracy of Curvature

= Relative curvature error with double precision on GPU.

A
o
TR

6:
X

Relative curvature error

10

—&—max ermor Al —i—max error Al
—— First order 1| — First order
| S Second order _.T - -+ Second order

1075 B S s
10 10 10 10° 10°
Number of triangles Number of lriangles

g 107 -
—e— L1 error A2 §|+L1 error A2 i
—e— max error A2 ; ®— max error A2 i
|| —&—L1eror A1 5| | e L1 error A1

<

10

Static sphere Static torus

Al: curvature obtained from two ring adjacent points
A2: curvature obtained from one and a half ring adjacent points

12

Accuracy of Curvature

= Relative curvature error with single precision on GPU.

10° s ey s] 10

Relative curvature errar

107

—e— L1 ermor A2
—®— max error A2
| —e—L1 error Al
10°H i max error A1

First order
<+ - Second order

—e— L1 error A2
@ max error A2
—a—L1 error A1
-3~ max efror A1
First order
------- Second order

= L
3 AP
-

10° 10°
Number of triangles Number of triangles

S

Static sphere Static torus

13

Interface point propagation

dx/dt = v(x,t)
X: A point on the front
v(x,t): point velocity

* Inthe current test cases, v(x,t) is a given.
* It may depends on the normal vectors and/or curvature on x.
* When coupling with hydro code, v(x,t) can be interpolated from fluid
velocity or solved from a Riemann problem on the front.

= Solve the ODE with a fourth order Runge Kutta methods.
* |tis a pointwise operation: There is no further need to consider the local

connectivity near the points once the front normals and curvatures are
obtained. Global memory access is coalesced.

14

Redistribution

* Redistribution is needed because of the surface deformations as the
interface evolves leads to bad geometric properties of the triangles.

* Redistribution is performed on CPU due to its complexity.
* Complexity: conditional statements, uncoalesced memory access.
* Redistribution on GPU is a topic under investigation.

* Procedure of redistribution
Coarsen: delete an edge if L<dx/3 or its corresponding angle<15 degree.
Refine: divide an edge if L>dx.
Reorder: sort the triangle and point list.

— ——
Refine Coarsen

- Topological validation check is performed before deleting an edge.
u The new points in coarsen and refine are computed with LS fitting.
. Reorder is aimed to relax cache miss on CPU.

15

Verification: 3D Deformation

®= Convergence under mesh refinement on FX 1800.

1024

2
-

Interface at the final time

65536

J

- Relative errors at the final time

of Triangles L.x_e@: Order | Ll_erm—zi'oaﬁr | Volume error | Order |
1024 l 6.361 x 1072 | 1.53 8.933 x 1072 | 2.56 2085 x10°2 | 2 ‘ 249 1

4096 2188x 1072 | 1.58 | 1.500x 10-2 | 277 | 5288 x 103 | 200
\ 16384 7312x 1070 | 138 | 2107x 1074 | 263 | 6.637x 1074 | 2.76 |
| 65536 | 2.700 x 10 |ss5x105 | | 9732x 1070

16

Verification: 3D Shear

* Convergence under mesh refinement on FX 1800.

2

1024 4096
16384 65536
Interface at the final time
" RelatD/_e_errors at the final time -
of Triangles | L., error Order | Ly error Order | Volume error Or«']e{ '
1024 1720 x 107 | 183 | 2748 1077 | 2.21 | 6402 102 | 1.76]
4006 4.816 x 10-2 | 1.63 ‘ 5.906 x 10~3 | 2.60 1.884 x 10~2 \ 2.62
16384 1548107 | 172 | O.741x 1074 | 286 | 3.065x 1070 345 |
(65636 | 4684x107| | 1340x107 | | 2801x10-¢ |
17

Verification: 3D Curvature dependent
velocity

* Velocity field: v(x) = n(x)(0.1- 0.00010(x))
n(x): normal vectors at x
(x): curvature at x

18

Performance Comparison

* Performance is compared between CPU and GPU for 3D deformation test.

10000‘— ~20

—e— Xeon X5500 2.67G

I —e&— FX 1800
\ | — Speedup

o 1000k 115
8
3
2 g
o 100t 10§
€ &
s
3
- 1p;, <5
1037 - io" o N :Og
Number of triangles in the initial time
19
Performance Comparison
Y ~Fropagaron | T T i [Froveaen |
‘ / \ tg::l‘:ﬂ:m
7 § \
i | o "
H o2
g1} A P \
/ #
g - e,
‘ g - S e o)
% m we % o w0 @0 w0 s b % W W0 w0 o @ 70 8 %0
Step Siep
nuinber of | Interface operations Redistribution | Total (s) |
]_ triangles (propagation, curvature) i
|' CPU | 1024 13.87 (95%) 0.6259 (5%) | 14.5
4096 108.1 (95%) 5.141 (5%) | 113.3
\ 16384 873.9 (95%) | 49.6 (5%) 923.5
65535 7092 (94%) 419.9 (6%) | 7512 |
| GPU | 1024 0.4002 (38%) 10.6301 (62%) | 1.030
‘ | 4096 3.268 (38%) | 5.148 (62%) 8417 |
} 16384 27.12 (35%) 49.60 (65%) | 76.73 \
L lesess [o100(am) | a223(ee%) | 6413

Ongoing Work: Coupling

B Coupling with a hydro solver: Solve Euler equations in each side of the
interface with a Ghost Fluid Method* on GPU.

B Compute interface-grid crossings.

B Determine the components of grid points from crossings.

® Solve Euler equations. [T dndstfidfak | |
BREPEE l
L L .l
[T E § j
ST SIS gy -8 S [ot rl
NN REEN I 11 1
= LT e T
7 * ol
CETRE H e A S
I I LU)
| 1] srpvenns o
JaRNELAREF INSaNEEp aRgEEEE T3NS
| £ 1 ' Bl { S ? QY S -
L L [(L 1
qh"S!' Tak !
crossings components I1 1
*W. Bo, X. Liu, J. Glimm and X. Li, A robust front tracking method: verification and - I

application to simulation of the primary breakup of liquid jet, SISC, to appear.
21 Solve equations

Comparison of speedup with FronTier

B 3D deformation test

B Calculation on GPU: Point propagation, normals, curvatures, grid crossings,
components

B Calculation on CPU: redistribution

-100

—e— FronTier on Xeon X5500 2.67G]|

10]*{—B—GPUcodeonFX1800

|—speedwp |

5

c

g

3

gmz‘ 2
= ©
= 50 ®
5 <40

o

o

o

10*2 10! 10> 10°* 10
Number of triangles in the initial time

22

107

Summary

* Interface operations in the front tracking method is ported from CPU to GPU,
11-14 times speedup is obtained.

* Finding the one and half ring adjacent points in curvature evaluation is the
most time-consuming part in GPU because of the random memory access. It
may benefit from the newer GPUs which have caches.

* For CPU code, geometry properties calculations (normals and curvatures)
dominate the running time. For GPU code, Redistribution dominates the
running time.

* Curvature calculations are very sensitive. On very fine grid, double precision

float is necessary for convergent curvature. For curvature independent
velocity field, single precision float is enough for convergence.

23

