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Ultrafast Dynamic E1lipsometry and Spectroscopy of Laser Shocked Materials 

Ultrafast dynamic ellipsometry is used to measure the material motion and changes 
in the optical refractive index of laser shock compressed materials. This diagnostic 
has shown us that the ultrafast laser driven shocks are the same as shocks on longer 
timescales and larger length scales. We have added spectroscopic diagnostics of 
infrared absorption, ultra-violet - visible transient absorption, and femtosecond 
stimulated Raman scattering to begin probing the initiation chemistry that occurs in 
shock reactive materials. We have also used the femtosecond stimulated Raman 
scattering to measure the vibrational temperature of materials using the Stokes gain 
to anti-Stokes loss ratio. 
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What questions are we trying to answer? 

• Is the initiating shock impulsive? 

• What mechanism transfers shock energy into the reactive molecules? 

• Are anharmonic interactions needed? 

• How quickly does transferred energy move within the excited molecules? 

• Are observed kinetics consistent with Arrhenius or transition state 
theory? 

• Or does the shock wave provide something unique? 

• Is non-equilibrium "temperature" necessary? 

Our experiments are designed to obtain data at the time and length scales 
necessary to answer these questions 
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What resolution is needed? 

• Need time synchronicity better than the required time resolution 

• 8 mm/jJs = 8 nm/ps -- shock transits a chemical bond every 10 fs 

• Shock and diagnostics need to derive from same laser pulse 

• Balance time resolution requirements with laser and target design 

• Need to support a shock for many 1 OO's of ps -- laser design requirement 

• Diagnostics need commensurate time resolution 

• Time resolution requirements imply spatial resolution requirements 

• 8 nm/ps implies nm-scale (axial) sample uniformity in interrogated region 
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Approach and Outline 

• Shaped laser drive for supported shocks 

• Ultrafast dynamic ellipsometry to measure shock state 

• Time-dependent processes also measurable 

• Single pulse variation measures shock state simultaneously at a range of applied 
stresses 

• Ultrafast spectroscopic methods to measure chemistry 

• IR absorption - to monitor specific vibrations 

• Ultrafast single-pulse UV/visible absorption - to observe energy transfer/electronic 
excitation 

• Femtosecond coherent Raman methods - time evolution of reactants and products 
& measure temperature 
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Laser Pulse Shaping for Shock Wave Generation & 
Laser Chirp for Single-Shot Acquisition 
Post-amplification pulse shaping creates a sharp 

intensity rise on the temporally leading edge 
followed by a region of relatively constant intensity 
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Generation of shock waves via frustrated laser ablation 

Laser pulse was focused 
through a glass substrate 
on to the metal film 

Laser energy absorbed 
in the metal creating a 
hot electron gas 
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Laser-shocklUDE experimental schematic 

Probes contain both s- and p-polarized light at each angle 
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Examples of interferograms recorded with our CCO 
cameras 

I mage of the holes created by the shock 
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UDE data from AI and PMMAIAI 

In AI, the phase shift as a function 
of time measures the free surface 

velocity 
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In PMMA, the oscillations result from 
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Analysis of shocked dielectrics data 

Levenberg-Marquardt algorithm for least squares fit. 

Fit uses the thin film equations to calculate ,------""""\.. du = do - ust 
the reflectivity and phase. After the initial ~ ds = (us - Up)t 
acceleration, layer thicknesses change 
linearly as a function of time. 
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~ 25.00 s-polarization 
-=- 25.00 p-polarization 
-+- 63.40 s-polarization 
-+- 63.40 p-polarization 

~ -Fit 

a ..... 
"i 6 
6 

Constant pressure 
Constant shocked refractive 
index 
Negligible variation in refractive ~ 
index of AI ~ 4 

en 
~ s: 

3.0 

o ..... 
:> 
.~ 2.0 
t) 
Q.) 

c;:::: 

~ 1.5 

1.0 

~Alamos o 50 100 150 200 250 0 50 100 150 200 250 
NATIONAL LABORATORY Time [ps] Time [ps] __ EST. 1943 _______________ ~=-"'"-______________ _ 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA r,; A-':SI#~ 



Single Shot Cyclohexane Hugoniot 
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Standard shock physics occurs at nm/ps scales 

Elastic/plastic wave separation in aluminum analogous 
to bulk experiments at longer length and time scales 
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Competing hypotheses of explosive initiation 
.The thermal equilibrium hypothesis: 

-all excitations and chemistry can be described by a single temperature. 

-Predictions: No electronic excitations are expected. Vibrations will be populated according to the 
Boltzmann distribution. 

-The multiphonon up-pumping hypothesis: 

-the delocalized shock wave preferentially excites low frequency phonons which must drive chemistry by 
anharmonic energy transfer to high frequency vibrations. 

-Predictions: No electronic excitations are expected. Vibrational excitations will be athermal and time 
dependent. 

.The mechanochemistry (or shock discontinuity zone) hypothesis: 

-molecular impacts directly excite the molecules. Bonds are compressed and bent, nuclear configuration 
changes rapidly, electronic energy levels shift, and chemistry is essentially dissimilar to chemistry under 
nonshock conditions. 

-Predictions: Electronic excitations or distortions of the electronic structure as well as vibrational 
/j excitations can be athermal, and are expected to occur directly following the shock front. Chemistry is 

unique to shock conditions and should vary with molecular structure and orientation. 
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Investigating explosive initiation 

We seek to: 

1) determine if electronic excitations are, 
or are not, involved in shock induced 
reactions 

2) measure the mechanism(s) of shock 
induced vibrational excitation of 
chemistry in explosives 

< 

3) provide data on the initial evolution of 
temperature and chemistry on scales 
amenable to comparison to molecular < 
dynamics simulations 

4----

broadband transient 
absorption spectroscopy 

Raman spectroscopy 

IR absorption 
spectroscopy 

Completing these goals will help to identify the proper theoretical 
treatment of shock induced initiation at the molecular level 
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We have observed shock induced chemistry in 
poly(vinyl-nitrate) by transient IR absorption 
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Transient absorption comparisons 
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CARS=Coherent anti-Stokes Raman scattering 

RIKES=Raman-induced Kerr Effect Spectroscopy 

SRS=Stimulated Raman scattering 

For T measurement, SRS is a s~ecial ty~e of coherent Raman 
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Spontaneous and Stimulated Raman Temperature 
Measurements 
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Femtosecond stimulated Raman 
scattering (FSRS) 

The intensity of the Raman gain (wpump > 
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{
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FSRS is several orders of magnitude higher 
efficiency that spontaneous Raman and can 
have sub-ps time resolution 
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An anti-Stokes/Stokes ratio avoids the need for 
high spectral resolution 

S ontaneous Raman scatterin of calcite 
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Spontaneous Raman Stokes/anti-Stokes ratios have been used often, can be time resolved 
with pulsed lasers, but suffer from the low efficiency of spontaneous Raman, - 10-8. 
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FSRS{T) experiments validate theoretica predictions 

• Experiment matches theory 
• Low signal to noise in ratio due to small total change with temperature 

and long acquisition time making data sensitive to laser instability 
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Transient FSRS(T) measurements are easier and more 
accurate 

• Shorter acquisition time leads to better signal to noise 

• Slow (30 ps) heating due to vibrational relaxation following 200 
fs electronic pump pulse of 2x400 nm photons 
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For shock studies, FSRS over a broad frequency range can 
measure chemistry and temperature 

• We have recorded singl,e shot 
FSRS on static samples 
• 400 nm pump 0.15 

• Supercontinuum probe 
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Why do we see chemistry on ps time scales where other 
experiments see effects on ns to IJs time scales? 
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Summary of work 

• Ultrafast dynamic ellipsometry (UOe) probes shock-induced material motion and 
changes in refractive index 

• uoe has shown us the we are achieving the same shock states as experiments 
on longer timescales 

• "Induction time" for chemical reaction in PVN is the same using IR absorption 
and transient absorption 

• ps thermometry is possible with stimulate Raman scattering 

Next step: Investigate chemical reaction and temperature with 
single shot FSRS 
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