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Ultrafast Dynamic Ellipsometry and Spectroscopy of Laser Shocked Materials

Ultrafast dynamic ellipsometry is used to measure the material motion and changes
in the optical refractive index of laser shock compressed materials. This diagnostic
has shown us that the ultrafast laser driven shocks are the same as shocks on longer
timescales and larger length scales. We have added spectroscopic diagnostics of
infrared absorption, ultra-violet - visible transient absorption, and femtosecond
stimulated Raman scattering to begin probing the initiation chemistry that occurs in
shock reactive materials. We have also used the femtosecond stimulated Raman
scattering to measure the vibrational temperature of materials using the Stokes gain
to anti-Stokes loss ratio.
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What questions are we trying to _apsyver?

= Is the initiating shock impulsive?

= What mechanism transfers shock energy into the reactive molecules?

Are anharmonic interactions needed?

How quickly does transferred energy move within the excited molecules?

m Are observed kinetics consistent with Arrhenius or transition state
theory?

Or does the shock wave provide something unique?

Is non-equilibrium “temperature” necessary?

Our experiments are designed to obtain data at the time and length scales
necessary to answer these questions
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What resolution is needed?

=  Need time synchronicity better than the required time resolution
8 mm/us = 8 nm/ps -- shock transits a chemical bond every 10 fs

Shock and diagnostics need to derive from same laser pulse

= Balance time resolution requirements with laser and target design

Need to support a shock for many 100’s of ps -- laser design requirement

Diagnostics need commensurate time resolution

= Time resolution requirements imply spatial resolution requirements

8 nm/ps implies nm-scale (axial) sample uniformity in interrogated region
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Approach and Outline

s Shaped laser drive for supported shocks

m Ultrafast dynamic ellipsometry to measure shock state
Time-dependent processes also measurable

Single pulse variation measures shock state simultaneously at a range of applied
stresses

= Ultrafast spectroscopic methods to measure chemistry
IR absorption — to monitor specific vibrations

Ultrafast single-pulse UV/visible absorption - to observe energy transfer/electronic
excitation

Femtosecond coherent Raman methods - time evolution of reactants and products
& measure temperature
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Laser Pulse Shaping for Shock Wave Generation &
Laser Chirp for Single-Shot Acquisition

Post-amplification pulse shaping creates a sharp
intensity rise on the temporally leading edge
followed by a region of relatively constant intensity

Shaped Spectrum

Temporal shaping creates a supported
z shock wave with a sharp shock front
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Generation qfshock waves via frustrated laser ablatio_n B

Laser pulse was focused Laser energy absorbed

through a glass substrate in the metal creating a

on to the metal film hot electron gas

= = = =

i = B : R
Energy transferred from Hot lattice expands to
the hot electrons to the generate a shock wave
metal lattice
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Laser-shock/UDE experimental schematic

Probes contain both s- and p-polarized light at each angle
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Examples of interferograms recorded with our CCD

cameras
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Image of the holes created by the shock

Spectrometer slits
select region through
the center of the holes
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UDE data from Al and PMMA/AI

In Al, the phase shift as a function In PMMA, the oscillations result from
of time measures the free surface interference of the probe light from the
velocity multiple time-dependant layers
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6{13|¥Sis of shocked dielectrics data

Levenberg-Marquardt algorithm for least squares fit.

Fit uses the thin film equations to calculate
the reflectivity and phase. After the initial
acceleration, layer thicknesses change
linearly as a function of time.
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Single Shot Cyclohexane Hugoniot

Hugoniot data collected from 1 laser shot using
the intensity distribution of the drive laser
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Standard shock physics occurs at nm/ps scales

Elastic/plastic wave separation in aluminum analogous
to bulk experiments at longer length and time scales

Effect of drive energy on 8 um Al Effect of run distance

3.0 ! } " o 3.0 .
z g A —
€ 25+ x 25 Y S pm
< —02mJ > | A — 8um
2 20 S | e 05 md S 2.0 A
Q — 1.0 mJ o [\I
o - 15mJ R
2 15 [|=m| =15 5 ;
2 |
8101 v § 10 \Qasyc%_e 1 i/
3 5 ey |
® 051 @ 05
[0}]
: 3 | |

[<}]
0.0 : . , = 00 { v v i
0 100 200 300 400 0 200 400 600 800 1000 1200
Time (ps)
- Los Alamos
NATIONAL LABGRATORY UNCLASSIFIED v H.Whitley, et al., J. Appl. Phys. 109, 013505 (2011)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA NL‘@
4




Laser-induced phase transition: Melting of Si(111)
100 fs drive pulse

Dynamic Si refractive index shows the material is
ellipsometry solid on the sides of the pulse and liquid
probes in the center
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Competing hypotheses of explosive initiation

-The thermal equilibrium hypothesis:

-all excitations and chemistry can be described by a single temperature.

Predictions: No electronic excitations are expected. Vibrations will be populated according to the
Boltzmann distribution.

«The multiphonon up-pumping hypothesis:

the delocalized shock wave preferentially excites low frequency phonons which must drive chemistry by
anharmonic energy transfer to high frequency vibrations.

-Predictions: No electronic excitations are expected. Vibrational excitations will be athermal and time
dependent.

-The mechanochemistry (or shock discontinuity zone) hypothesis:

-molecular impacts directly excite the molecules. Bonds are compressed and bent, nuclear configuration
changes rapidly, electronic energy levels shift, and chemistry is essentially dissimilar to chemistry under
nonshock conditions.

-Predictions: Electronic excitations or distortions of the electronic structure as well as vibrational

excitations can be athermal, and are expected to occur directly following the shock front. Chemistry is
unique to shock conditions and should vary with molecular structure and orientation.
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Investigating explosive initiation

e —— = R —

We seek to:

1) determine if electronic excitations are, broadband transient

or are not, involved in shock induced absorption spectroscopy
reactions

2) measure the mechanism(s) of shock

induced vibrational excitation of Raman spectroscopy
chemistry in explosives ;

3) provide data on the initial evolution of |

temperature and chemistry on scales IR absorption

amenable to comparison to molecular spectroscopy
dynamics simulations

Completing these goals will help to identify the proper theoretical
treatment of shock induced initiation at the molecular level

A

EST.1943
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA N IE‘



We have observed shock induced chemistry in
poly(vinyl-nitrate) by transient IR absorption
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S. D. McGrang, D. S. Moore, D. J. Funk, J. Phys. Chem. A, 108, 9342 (2004)

IR directly monitors breaking and
making of bonds

Reaction required 10s of ps

However, spectral range was limited and
species were not definitively identified

uncL S.D.McGrane, et al., J. Phys. Chem. A, 108, 9342-9347 (2004)
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Time (ps)

Transient absorption comparisons

RDX ~23 GPa shock PETN ~21 GPa shock

PVN 16 Gpa shock
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LAN TR =

SRS=Stimulated Raman scattering

For T measurement, SRS is a special type of coherent Raman

-Bose-Einstein phonon number
n(w)=1/(exp(hw /kT)—1)

-Spontaneous Raman

15" o< n(w)+1
I o< n(w)

IR 11" oc exp(~hw | kT)

-Ratio is a function of T

-Stimulated Raman anti-Stokes to Stokes ratio
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-Third order coherent Raman

Im(x\") o< =1/ (n(@)+1) = exp(-hew / kT) - 1
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Spontaneous and Stlmulated Raman Temperature

Measurements
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FSRS pump cryostat FSRS
Spectrometer
532 nm CW. - I ‘ | Spontaneous
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Femtosecond stlmulated Raman
scattering (FSRS)

The intensity of the Raman gain (w,,,, >
wp,obe) or loss (wpump <wp,obe) is:

3w ro eL
I(wl)mbe’L) = I(wprobeo) exXp— {—_Ei—_[ﬁ()—) Im (XI Lii ) I(wl’“'"l’)}

n pump n probe 80

{XI Vi (=@ probe s@ probe v~ O pump @ pump ) }

4 h 2
nc (eﬁmp.,,",, ~Opane) 1} 0o,

Where: b0 @ Q8Aw

pump ™~ probe

which has a T dependence

FSRS is several orders of magnitude higher
efficiency that spontaneous Raman and can
have sub-ps time resolution
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An anti-Stokes/Stokes ratio avoids the need for
high spectral resolution

Spontaneous Raman scattering of calcite
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Spontaneous Raman Stokes/anti-Stokes ratios have been used often, can be time resolved
with pulsed lasers, but suffer from the low efficiency of spontaneous Raman, ~ 108,
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FSRS(T) experiments validate theoretical predictions

= Experiment matches theory

* Low signal to noise in ratio due to small total change with temperature
and long acquisition time making data sensitive to laser instability
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Transient FSRS(T) measurements are easier and more
acouraly

= Shorter acquisition time leads to better signal to noise

= Slow (30 ps) heating due to vibrational relaxation following 200
fs electronic pump pulse of 2x400 nm photons
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For shock studies, FSRS over a broad frequehcy range can

measure chemistry and temperature

= We have recorded single shot
FSRS on static samples

e 400 nm pump
* Supercontinuum probe
e 1 mm nitromethane

to spectrometer

 —

polarizer

\ 5 E | § ,
700 nm shortpass filter caf2 crystal

1 mm nitromethane
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Concentration

Concentration

Why do we see chemistry on ps time SCaIes where other

experiments see effects on ns to ys time scales?
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B—» C + heat
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Summarny af werk
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= Ultrafast dynamic ellipsometry (UDE) probes shock-induced material motion and
changes in refractive index

s UDE has shown us the we are achieving the same shock states as experiments
on longer timescales

= “Induction time” for chemical reaction in PVN is the same using IR absorption
and transient absorption

= ps thermometry is possible with stimulate Raman scattering

Next step: Investigate chemical reaction and temperature with
single shot FSRS
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