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1 Introduction 

The pulsating dynamics of gaseous detonations with a model two-step chain-branching kinetic mecha­
nism are studied both numerically and asymptotically. The model studied here was also used in [4], [3] 
and [2] and mimics the attributes of some chain-branching reaction mechanisms. Specifically, the model 
comprises a chain-initiationlbranching zone with an Arrhenius temperature-sensitive rate behind the 
detonation shock where fuel is converted into chain-radical with no heat release. This is followed by a 
chain-termination zone having a temperature insensitive rate where the exothermic heat of reaction is 
released. The lengths of these two zones depend on the relative rates of each stage. It was determined 
in [4] and [3] via asymptotic and numerical analysis that the ratio of the length of the chain-branching 
zone to that of the chain-initation zone relative to the size of the von Neumann state scaled activation 
energy in the chain initiation/branching zone has a primary influence of the stability of one-dimensional 
pulsating instability behavior for this model. In [2], the notion of a specific stability parameter related 
to this ratio was proposed that determines the boundary between stable and unstable waves. 

In [4], a slow-time varying asymptotic study was conducted of pulsating instability of Chapman-Jouguet 
(CJ) detonations with the above two-step rate model, assuming a large activation energy for the chain­

initiation zone and a chain-termination zone longer than the chain-initiation zone. Deviations D~l) (T) 
of the detonation velocity from Chapman-Jouguet were of the order of the non-dimensional activation 
energy. Solutions were sought for a pulsation timescale of the order of the non-dimensional activa­
tion energy times the particle transit time through the induction zone. On this time-scale, the evolution 
of the chain-initation zone is quasi-steady. In [4], a time-dependent non-linear evolution equation for 

D~l) (T) was then constructed via a perturbation procedure for cases where the ratio of the length of the 
chain-termination zone to chain-initiation zone was less than the non-dimensional activation energy. To 
leading order, the steady CJ detonation was found to be unstable; higher-order corrections lead to the 
construction of a stability limit between stable and unsteady pulsating solutions. One conclusion from 
this study is that for a stability limit to occur at leading order, the period of pulsation of the detonation 
must occur on the time scale of particle passage through the longer chain-termination zone, while the 
length of the chain-termination zone must be of order of the non-dimensional activation energy longer 
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than the chain-initiation zone. The relevance of these suggested scalings was verified via numerical so­
lutions of the full Euler system in [3], and formed the basis of the stability parameter criteria suggested 
in [2]. In the following, we formulate an asymptotic study based on these new suggested scales, studying 
the implications for describing pulsating behavior in gaseous chain-branching detonations. Specifically, 
we find that the chain-induction zone structure is the same as that studied in [4]. However, the study of 
unsteady evolution in the chain-termination region is now governed by a set of asymptotically derived 
nonlinear POEs. Equations for the linear stablity behavior of this set of POE's is obtained, while the 
nonlinear POEs are solved numerically using a shock-attached, shock-fitting method developed by Hen­
rick et aJ. [1]. The results thus far show that the stability threshold calculated using the new ratio of the 
chain-termination zone length to that of the chain-initiation zone yields a marked improvement over [2]. 
Additionally, solutions will be compared with predictions obtained from the solution of the full Euler 
system. Finally, the evolution equation previously derived in [4] has been generalized to consider both 
arbitrary reaction orders and any degree of overdrive. 

2 Detonation model and equations 

The reactive Euler equations are used to model the evolution of the perturbations to the fluid density, 
velocity, pressure, reaction progress, and to the shock velocity. These are, 

(I) 

where the two-stage reaction is parametrized by the reaction progress variables Al and A2 E [0,1]. 
Here, To denotes the post-shock temperature for the steady wave, and R is the gas constant. This 
particular form for the reaction rates ensures that the induction zone is characterized by a single reaction. 
Furthermore, the model assumes an ideal gas equation of state and the specific internal energy form i.e. 

(2) 

which leads to c2 = ,,(pip, wehere "( is the specific heats ratio. 

In a frame moving with the steady CJ detonation (n = x - Dt, U -t Un + D), these equations can be 
written as 

The steady state structure for the two stages of reaction is obtained through the conservation relations, 

a () a (2 ) a ( "( p u; " ) = 0 a Ai = r i an PUn = 0, an PUn + p = 0, an "( _ 1 P + 2" - L... f3i Ai , an U 

t 

(4) 
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Although in Ref. [4], a non-dimensional reference system is based on steady post-shock quantities, here 
a system of reference is built upon the CJ propagation velocity, DCl, and the density in the pre-shocked 
area, Pu. Additionally, the relevant length scale is the length of the induction zone, If' and the time scale 
is If / DCl. The scalings are summarized as, 

(5) 

The unannoted symbols above from this point forward refer to dimensionless quantities for ease of no­
tation. Additionally, the tilde appearing above a quantity will henceforth denote a dimensional quantity 
in order to differentiate between dimensional and non-dimensional quantities. 

3 Asymptotic formulation 

We examine the dynamics of pulsating detonation withing the framework of the two-step model, assum­
ing a small non-dimensional activation energy in the chain-initiation zone. A perturbation in the shock 
velocity occurs in the form 

(6) 

where E is the inverse activation energy and E « 1. D~O) is the constant steady detonation velocity, with 
unsteady perturbations occuring on the slow time scale T = Ei. The reason for the choice of the slow 
time scale of O(l/E) is explained below. The new shock position h(t, T), is n = x - h(t, T), where 

h(t, T) = D~O)t + H(T). In the perturbed shock frame, the Euler equations are 

ap a a a 
at + an ((un - ED~l))p) = 0, at(PUn) + an (p(u - ED~l))Un + p) = ° 

1 a>. a>. ri 
+-=---....,.,-;-

Un - ED~l) at an Un - ED~l) 
1 (ae pap) au a (u~ p) 

Un - ED~l) at - p2 at + at + an 2 + e + p = 0, 

In the chain-initiation zone, each quantity is expanded in powers of E, i.e. 

p = p(O) + Ep(l) + O(E2), Un = u~O) + EU~l) + O(E2), p = p(O) + Ep(l) + O(E2), 

>'i = >.~O) + E>.~l) + O( E2) 

(7) 

(8) 

where the leading order quantities are constant and corresponding to post-shock von Neumann state in 
either the CJ or overdriven steady wave. Expanding the Rankine-Hugoniot conditions at the shock using 
(8) leads to the boundary condition that at n = 0, 

U(l) = k D(l) p(l) = k D(l) 
nO Un n' 0 P n . (9) 

As there is no heat release in the induction, these perturbations are transmitted through the chain­
initiation zone without change in form, and define the O( E) ampl itude conditions at the interface between 
the chain-initiation/branching and chain-termination zones. The motion of the aforementioned interface 
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as a result of time-dependent perturbations at the shock is determined by expanding T = c2 = ,p/ p. 
giving 

a).. (0) r(O) (1 ( 1 1)) a).. (0) (p(O)p(1) p(1) ) 

a~ = u~O) with rl = kl exp ~ To - T =? a'~ = - exp ,(p(0))2 - ,prO) 
(10) 

Consequently, the O(E) perturbations in the chain-initiation zone have an 0(1) effect on the reaction 

progress variable spatial derivative, a)..~O) Ian, which in tum has an order 0(1) affect on the location 
of the interface between the reaction and induction zones. Explicitly, one obtains that the induction 

zone length (relative to the shock) is F(T) = - exp(bD~I)). When viewed on the slow time scale 
T, the time-dependent changes in the location of the chain-initiationlchain-termination interface lead 
to the introduction of O(E) pert ns into the chain-branching zone. Since the amplitude of these 
perturbations must be balanc (E) perturbations transmitted through the chain-initation zone 
from the detonation shock, t unlies t 9;90ice of the time variable T = tt. 

I 

The analysis of the corresp evolution of the chain-termination zone proceeds by changing the 
frame of reference to the chain-initiationlchain-termination interface, i.e. 

m = (E/w)(n - F(T)). (1) 

Seeking solutions (8), a set of PDE's is derived at O( E) in which the acoustic terms are linearized 
but have spatially varying coefficients, while nonlinearity enters through the motion of the interface 
(m = 0). One can reform these PDEs into a matrix form (the form of the matrices are omitted for 
brevity) by definingv(l) = (p(1),u(1),p(1),)..(1))T. i.e. 

av(1) a 
wA-----;§t + am (Bv(1)) + Cv(l) - (D~I) + FT)g = 0, (2) 

that are subject to 

v(1)(m = 0 T) = (k k k O)T x D(I) , P' Un' P' n . (3) 

For overdriven waves, the system is closed through an ansatz of an acoustic radiation condition down­
stream of the detonation. CJ detonation waves require special attention due the introduction of a further 
slow time variable in a transonic zone near the end of the detonation wave. The parameter w is essen­
tial to the analysis here and in [4], [3] and [2]. As mentioned earlier, a well-defined stability problem 
requires that the chain-termination zone be longer than the chain-initiation zone. This introduces a 
rescaling of the rate constant in the chain-termination zone to a new modified rate constant defined by 
k = Wk2/E. If E «w « 1, the pulsation frequency of the instability is long on the scale of particle tran­
sit time through the chain-termination zone. With this assumption, [4] and [3] conducted a perturbation 
analysis of the behavior of the chain-termination zone via the expansion p(1) ---t p(l) + wp(2). However, 
the leading-order problem only possesses unstable solutions. In the following, we have extended the 
analysis in [4] and [3] to arbitrary reaction orders in the chain-termination zone as well as to overdriven 
waves. Generally, though, in order to recover a stability limit in the leading order problem, the ratio 
of the length of the chain-termination zone to that of the chain-initiation zone must be O(l/E), i.e. by 
taking w = 0(1). The main purpose of the present work is to solve and analyze the PDE system (2), 
describing pulsating instabilities of the two-step chain-branching detonation. 

4 Generalized slow varying evolution equation 

As noted above, the evolution equation derived in [4] can be generalized to any order v and overdrive. 
The evolution equation is obtained via a regularity condition that is imposed at the end of the reaction 
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zone. In the CJ case, the perturbations have an explicitly non-regular component that is eliminated by 
imposing a certain relation between Dn and its time derivative. One can generalize this by imposing a 

radiation condition for overdriven waves. It can be easily shown that this is equivalent in the limit as 
D --t 1 to the regularization condition imposed by Short in [4]. Typical results for the overdriven case 

and for varying reaction orders in figs. 1 and 2. 
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Figure 1. (Left) The threshold value of k* as a function of the reaction order v for CJ detonation. (Right) The 

effect of increasing the reaction order to v = 1 in the solution obtained for Dn (T) for various values of k. 
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Figure 2. (Left) The effect of increasing overdrive D for various values of von the stability threshold in k. (Right) 
The reaction zone length plotted versus overdrive D. There is a range of values for which the CJ detonation length 
is longer than the overdriven case. This helps explain the increased instability range in k. 

5 Numerical solution of the perturbation PDE system 

The system (12) can be solved subject to the imposition of an initial perturbation to obtain the subsequent 

behavior of D~l) as a function of T. We have chosen a solution strategy based on the shock-fit, shock­

attached approach derived by Henrick et al. [1]. The behavior of D~l)(T) is obtaining through the 

so called "shock change" equation at m = O. The particular scheme used here is a centered 4th order 
spatial scheme in the interior of the computational domain and one-sided differences near the boundaries 

at m = 0 and at the end of the reaction zone. A 5th order temporal Runge-Kutta routine is used to 

integrate in time. Figure 3 shows a preliminary calculation of D~l) (T) calculated using this method for 
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a stable case with Q = 4.0, "f = 1.4, v = 0.5 and D = 1. The stability threshold obtained directly 
via the PDE system is found to be k = 0.415. In [3], the stability threshold was foun9 to be k = 0.43 
obtained via a full numerical solution of the Euler system, while [3] also predicted k = 0.29 for the 
slowly varying evolution system (where w « 1). 
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Figure 3. The evolution of the detonation velocity perturbation for k = 0.41 for a decaying perturbation. 

A formal linear stability analysis of the system (12) has also been conducted via a normal mode analysis. 
The full paper will provide results from this analysis to be compared with the numerical solution of (12). 
The work sheds significant light on the ratio of length and time scales that underlie pulsating detonation 
behavior in a gas-phase chain-branching model system. 
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