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ABSTRACT 
I/O-intensive applications are becoming increasingly com­
mon on today's high-performance computing systems. While 
performance of compute-bound applications can be effec­
tively guaranteed with techniques such as space sharing or 
QoS-aware process scheduling, it remains a challenge to meet 
QoS requirements for end users of I/O-intensive applications 
using shared storage systems because it is difficult to differ­
entiate I/O services for different applications with individ­
ual quality requirements. Furthermore, it is difficult for end 
users to accurately specify performance goals to the storage 
system using I/O-related metrics such as request latency or 
throughput. As access patterns, request rates, and the sys­
tem workload change in time, a fixed I/O performance goal, 
such as bounds on throughput or latency, can be expensive 
to achieve and may not lead to a meaningful performance 
guarantees such as bounded program execution time. 

We propose a scheme supporting end-users' QoS goals, 
specified in terms of program execution time, in shared stor­
age environments. We automatically translate the users' 
performance goals into instantaneous I/O throughput bounds 
using a machine learning technique, and use dynamically de­
termined service time windows to efficiently meet the through­
put bounds. We have implemented this scheme in the PVFS2 
parallel file system and have conducted an extens ive evalua­
tion. Our results show that this scheme can satisfy realistic 
end-user QoS requirements by making highly efficient use of 
the I/O resources. The scheme seeks to balance programs ' 
attainment of QoS requirements, and saves as much of the 
remaining I/O capacity as possible for best-effort programs. 

Keywords 
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1. INTRODUCTION 
Provision of QoS guarantees to high-performance appli­

cations, such as climate and weather forecasting [12], mod-
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eling financial data [4), combustion simulation [36], human 
genome analysis [28], and even chess-playing [14), can be 
critical to the success of the services provided to their users. 
For example, for an application predicting the timing for a 
hurricane reaching land, users usually have firm deadlines 
for receiving the prediction results because of the potential 
for life and property losses if the deadline is passed. "Vhen it 
is not feasible to dedicate a powerful parallel computing sys­
tem and I/O subsystem to a single application, a mechanism 
for ensuring service quality in terms of execution deadlines 
in a shared execution environment should be provided by a 
production parallel computing installation. 

It is relatively easy to satisfy the QoS requirement for a 
compute-bound application by allocating a dedicated par­
tition of compute nodes (space sharing), or by ensuring a 
sufficient fraction of CPU time allocation (time sharing). 
However, if t.he application is I/O-intensive, or I/ O services 
constitute a substantial portion of its total execution time, 
it is much more difficult to satisfy the application 's QoS re­
quirements on a parallel computing system using a shared 
storage system. There are several challenges. 

First, for end users, execution time or response time of 
an application is usually the first choice for QoS specifica­
tion. For compute-bound applications the time can gener­
ally be translated to a number of compute nodes or CPU 
time slices in a relatively straightforward manner. For 1/0-
intensive applications, users currently must determine the 
I/O service quality commensurate with the required exe­
cution time, assuming the computational resource is I"ully 
supplied, and then reserve resources in the storage syste~l 
according to the derived I/ O service requirement. However, 
users may not have the expertise or knowledge to derive the 
service requirements. For example, users may not. know the 
actual amount of data requested or the service time spent. 
on data access in a program's run. 

Second, currently QoS assurance, or resource reservation, 
is provided by maintaining an upper bound on request la­
tency, or a lower bound on throughput, specified for each ap­
plication. Maintaining a single latency bound or a through­
put bound cannot guarantee user-observed performance and 
may not allow the shared storage system to be used effi­
ciently for the following reasons. (1) Request size can be 
highly variable. Requests of different sizes may need differ­
ent latency bounds to reRect applications ' true demands on 
storage resources imposed by their QoS requirements. (2) 
I/O requests can be very bursty. A bound on latency, or re­
quest response time, that includes request waiting time, may 



have to vary accord ingly. If the bound is specified in terms 
of throughput , a single bound would not serve the end-user's 
performance goal. If the average throughput is taken as the 
bound, the application's demand may not be well served 
when the request arrival rate is high because the bound is 
effectively under-estimated, and an application's reserved re­
source may be under-utilized when the arrival rate is low. 
Though taking the highest possible throughput as a bound 
can safely meet an application's QoS requirement, the stor­
age resource could be excessively over-provisioned and the 
global efficiency of the storage system significantly compro­
mised. (3) The spatial locality of requests can vary. Spatial 
locality describes the sequentiality of requested data on the 
storage device. Hard-disk-based storage is highly sensitive 
to this workload characteristic because significant seek time 
is usually required when accessing non-sequential data. Spa­
tial locality is a highly elusive property that is difficult for 
users to characterize. Tf an average latency or throughput 
bound is used regardless of spatial locality, the application 
may be over-provisioned for its sequential accesses, and the 
I/ Osystem could be overly st ressed for its random accesses. 
All of these dynamics exhibited in a program's run show 
that using a single I/ O performance bound for QoS guar­
antee is less than ideal. On the other hand, in general it is 
too difficult to manually derive bounds associated with the 
aforementioned factors. 

Third, a shared storage system usually consists of multi­
ple disks, or multiple data servers, where files are striped. 
While each data server or even each disk has its own I/O 
scheduling, the I/ O performance expe rienced by an individ­
ual program is the aggregate effect of scheduling its requests 
at different data servers. To maintain a throughput bound 
for a program, common wisdom to improve disk efficiency is 
to dedicate a t ime window for exclusively serving requests 
from the same program to minimize the interference from re­
quests it'sued by other concurrently running programs. How­
ever, implementing service windows for a program indepen­
dently at each data server will usually lead to unacceptably 
low disk efficiency. When file data are striped over multi­
ple data servers, contiguous requests from a program may 
be spread over mUltiple servers. Therefore, if the requests 
are synchronous, a data server may have a relatively long 
wait between completing the program's current request and 
receiving its next request, as intervening requests are ser­
viced by other servers that may be busy serving other pro­
grams' requests. Because of the long wait the disk head 
must move to serve requests from other programs instead of 
idly waiting for the program's next request. Thus the disks 
cannot be dedicated to serving one program at a time when 
using non-work-conserving I/O schedulers such as anticipa­
tory [15], leaving the disk heads to constantly seek between 
disk regions accessed by different programs. This makes re­
source allocation according to QoS requirements yet more 
difficult, and causes undue interference among programs. 

We propose a scheme supporting end-user-specified QoS 
goals in terms of program execution time. To derive in­
stantaneous I/O performance goals from the specified execu­
tion time for a program, we first capture the storage perfor­
mance characteristics-the relationship between access pat­
terns and instantaneous throughout-both by running the 
program of interest, and with a probing program, in a stor­
age environment where either the entire storage system, or a 
fixed fraction of it , is dedicated for use in the profiling. The 

measured characteristics are then used to train machine­
learning models so that, in an ac tual run of the program on 
a shared storage environment, the model can estimate the 
instantaneous I/O throughput required to meet the speci­
fied deadline according to the observed access patte rn. The 
I/O resource is then dynamically allocated to the program 
according to estimated instantaneous throughputs. To effec­
tively allocate the resource, we coordinate the I/O schedul­
ing at different data servers for dedicated service to one or 
multiple programs to implement QoS goals presented to the 
storage system by the trained machine learning models. 

In summary, we make the following contributions. 

• We propose a QoS performance interface for end users 
to conveniently specify their QoS requirements in terms 
of program execution times. We use a machine learn­
ing technique to automatically characterize the stor­
age system and convert the end-user QoS requirements 
into instantaneous 1/0 performance goals at run time. 

• We coordinate the I/O scheduling at different data 
servers to facilitate effective QoS-aware resource allo­
cation. We take both I/O QoS requirements and over­
all storage system efficiency into account by oppor­
tunistically dedicating disk services to requests from 
one or multiple programs. While the ultimate goal is to 
meet user-defined deadlines, we allow reduced resource 
commitment to a program when the storage system is 
overloaded and seek to make up corresponding perfor­
mance loss when the system has unused capacity. 

• We have implemented the design in the PVFS2 paral­
lel system as a prototype, named V-Shape, that allows 
Vsers to Shape the I/O scheduling implicitly to meet 
their QoS goals specified with execution times. Our 
extensive evaluation of U-Shape shows that it can effi­
ciently implement end-user-specified performance goals 
and provide strong isolation among programs sharing 
a common storage system. 

The rest of this paper is organized as follows. Section 2 
uses a motivating example to demonstrate the efficacy of 
automatic derivation of I/O performance goals. Sedion 3 
gives a detailed description of the design of U-Shape. Sec­
tion 4 presents and analyzes experiment results. Section 5 
describes related work and Section 6 concludes. 

2. A MOTIVATING EXAMPLE 
Here we demonstrate how conventional I/ O performance 

requirements, such as average I/O throughput , can mislead 
the scheduling policy of a storage system and violate end­
users' QoS goals, and give an initial indication of U-Shape's 
potential benefits. 

Our experimental cluster consists of 13 nodes , four config­
ured as compute nodes and the other nine as data servers, 
managed by a PVFS2 parallel file system, using PVFS2's de­
fault striping size of 64KB. One of data servers also serves 
as the metadata server for the file system. More details of 
the platform are given in Section 4. 

Two MPI programs used as micro benchmarks in the ex­
periments. The first, full-seq, sequentially reads a 10GB file 
using collective I/O, wherein each MPI process reads 64KB 
per request. The second, seq-rand, is designed to simulate 
1/0 access patterns alternating between sequential access 
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Figure 1: Throughput of programs full-seq and seq-rand in different environments: (a) Each program runs 
exclusively on the storage system. (b) Both programs run together, both using average throughput as 
performance goals. The averages for each are marked "average". (c) Both programs run together using U­
Shape dynamically-derived throughput as performance goals. The derived throughputs are marked "derived". 

(such as reading a large data file) and random access (such 
as searching index files) . Specifically, the program uses col­
lective I/O to sequentially read 500MB from the file, and 
then randomly reads another 500MB from the same file. The 
size of requests from each process is 64KB. This access pat­
tern repeats until the entire 10GB file has been read. Each 
program runs as eight processes, two per compute node. 

Figure l(a) shows the instantaneous throughput within 
each one-second time window for each of the programs when 
it has dedicated use of the data servers. For full-seq the 
system delivers an average throughput of 242~'lB/s, close 
to the peak throughput of the system (270MB/s), and its 
execution time is 42.3s. The execution time of seq-rand is 
much greater (320s) and the average throughput is 32MB/s. 

Assuming users of the programs expect reduced resource 
committed to each of their programs when both run concur­
rently on a shared storage system, such that they can tol­
erate up to 2.5-times slowdown, they set their performance 
goals as execution times of 106s and 800s for programs full­
seq and seq-rand, respectively. If average throughput is used 
as the QoS requirement on the storage system, the sys­
tem must consistently maintain 96.6MB/s and 12.8MB/s 
throughputs for full-seq and seq-rand, respectively. In the 
experiment we also run a best-effort program in the back­
ground, whose requests are served only when the system 
has excess capacity. Run concurrently, the execution times 
for full-seq and seq-rand are 126s and 1009s, exceeding their 
user-required times by 19% and 26%, respectively. 

vVhen we use the instantaneous throughputs derived by 
the machine learning model in the U-Shape scheme as the 
I/O performance goals, the execution times are 104s and 
804s, which are very close to the QoS requirements of 106s 
and 800s, respectively. 

To investigate the disparity between the two performance 
interfaces, we plot instantaneous throughputs of the two con­
currently running programs using constant average through­
put (Figure l(b)), and using throughput derived by the 
trained machine learning models to prescribe QoS require­
ments (Figure l (c)). As Figure l(b) shows, the through­
put of full- seq exhibits periodicity resonating with changes 
in seq-rand's access pattern. vVhen seq-rand issues sequen­
tial requests (from Os to 38s and from 100s to 124s) , full-

seq mostly receives throughput near its required 96.6MB/s , 
and seq-rand can mostly meet its requirement. However, 
when seq-rand is issuing random requests (from 385 to 100s) , 
full- seq's throughput plummets and seq-rand also receives 
lower throughput. This is because mainta ining the required 
12.8MB/s throughput-the average of both sequential and 
random throughputs-when the access pattern is fully ran­
dom, demands disproportionate resources and causes the 
system to be over-committed. Consequently, full-seq's through­
put is severely degraded. When seq-rand issues sequential re­
quests the required throughput, which is in part determined 
by considering random access, appears to be too conserva­
tive in demanding system resources to meet its deadline. 
The result is that both programs miss their deadlines. 

In the U-Shape scheme, the derived throughput of a pro­
gram is always proportional to that for its dedicated run. In­
stead of maintaining a fixed throughput, u-Shape attempts 
to maintain a fixed resource allocation calculated from the 
end-users' QoS requirement. Accordingly, when access is 
sequential a higher throughput goal is used, and a lower 
throughput goal is used when access is random. This allows 
the system to be able to consistently meet varying through­
put requirements as shown in Figure l (c). 

3. THE DESIGN OF V-SHAPE 
Next we describe the design of the U-Shape scheme, whose 

objective is to meet QoS goals specified by end users in terms 
of program execution time through effiCiently implementing 
automatically derived I/O performance requ irement.s in a 
shared st.orage system. To this end, U-Shape first takes as 
inputs the end-users' QoS goals and I/O behaviors collected 
in profiling runs of their programs to train a machine lea rn­
ing model. It then uses the models on-line t.o derive I/O 
throughput bounds for each time interval (epoch) and seeks 
to achieve the bounds t hrough effective resource allocation. 

3.1 Derivation of Instantaneous Throughput 
Bounds 

In this work we asslUne that a user has reserved a cer­
tain dedicated computing resource for running his/her pro­
gram in the hope of achieving bounded execution time. For 



a program with substantial I/ O activity the objective can 
be achieved only when the program's I/O service time is 
also bounded. From the perspective of the storage system , 
the share of resource committed to the program should be 
bounded as there may be other programs concurrently run­
ning with their own demands on I/ O service quality. As 
shown in the motivating example, the resource demand can 
differ by an order of magnitude between sequential and ran­
dom access to deliver the same throughput. Therefore, we 
need to determine throughput bounds at different times dur­
ing a program's execution such that (1) the resource demand 
for achieving the throughput is bounded; and, (2) the pro­
gram's total I/ O time is bounded. For this purpose we take 
a profiling run of the program with a fixed share (which 
may be 100%) of the storage system service time dedicated 
to serving its requests . The results of the profiling run give 
the fraction of execution time that is I/ O time for a given 
share of storage service. 

We also collect spatial locality information in each epoch 
and its corresponding throughput during a profiling run. 
Specifically, we collect on-disk data locations, for every re­
quest R;, from the program, in terms of logical block number 
LBN. and size Si, as well as its service time ServTimei at 
each data server. Because we evenly partition the program 
execution period into a series of time epochs, its requests 
are grouped by epoch . We quantify spatial locality of the 
requests in each epoch with two metrics: average distance 
AvgDist between two consecutive requests and average re­
quest size AvgSize, assuming there are n requests in the 
epoch [Rl, R2, . .. , Rn], as 

L::_2[LBNi - (LBNi _ 1 + Si-ill 
AvgDist 

n-l 

AvgSize 

In addition, the throughput Bpro/ile in an epoch in the pro­
filing run is calculated as 

B L:~-I S, 
profil e = "''' S T' . 

L....." .i=l en; 'lme i 

l\'ote tha t in the calculation of the throughput we do not 
count. compute times between consecutive requests, so the 
metric is not affected by request arrival rate. This is the 
throughput that contributes to the program's execution time 
T{. rvfile in the profiling run, which is the sum of compute time 
Tcomp and I/ O time Tprofile_'io. Assume that the end-user­
required program execution time for a real run is T,~o.l , which 
is the sum of compute time T comp and I/ O time T",oLio in the 
run. vVe assume that the program has its dedicated compute 
resource , so the compute time does not change across runs. 
We also assume that requests are synchronous. Therefore, 
the ratio a between the two I/ O times is 

a = TreaLio = T,.en.J. - Tco-mp 

Tprojilc_io Tprofile - Tcom p 

To ensure tha t the storage resource requested by the pro­
gram is bounded, we consistently apply the ratio to the 
throughput of each epoch to obtain the required through­
put bound Breal for a real run , i.e., 

B 
Bprofile 

real == ---. 
a 

We use statistics on the locality and the derived through­
put bound for real runs to train the widely used machine 
learning model CART (classification and regression tree) [311. 
In the training session we treat (AvgDist,AvgSize) of an 
epoch as the epoch's feature vector. We feed the feature 
vector and corresponding throughput bound B real of each 
epoch to the model so that it can 'learn' the association 
between spatial locality and throughput. The training al­
gorithm recursively constructs a decision tree, starting with 
the root node, and grows the tree by adding child nodes to 
a leaf node at each step until its mis-prediction error rate 
measured in the cross-validation step is smaller than a pre­
defined error threshold. For a given feature vector, a well­
trained model is expected to provide a relat ively accurate 
estimate of throughput that is suitable as a bound in real 
runs. A trained model is deployed in the storage system 
to predict instantaneous throughput. Figure 2 illustrates 
the major steps in training the model and using it to derive 
throughput bounds. 

Training 
Woridoads 

(EpodIo) 

Train. CART model 

~ 
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(2) Measure througnput (B,) for epoch E, 

Q) Feed pailS ( FV~ Bj I mto the C':'~T model 
® The CA.RT model predicts thrOllghpul (B, ) for E, 

Figure 2: The major steps involved in training a CART 
model with a feature vector for requests in each time 
epoch, and the steps for deriving throughput bounds for 
epochs of known request locality. 

\Nith the use of profiling runs we make the assumption 
that I/O intensity and access locality are usually consistent 
across different runs of a program. The assumption is often 
valid, especially when the bulk of the input remains con­
stant. This is common, for example, in the usage of many 
scientific applications wherein ensembles are run and only 
init ial conditions are va ried. 

For the trained model to make accurate predict.ions the 
training data must provide sufficient coverage of potential 
workload characteristics . To this end we use a synthetic 
I/ O workload in addition to real workloads in the profiling 
runs to generate the training data. We developed a syn­
thetic I/O request generator to create a workload covering a 
spectrum of request sizes, spatial localities, and read/write 
ratios. In the workload, request size is uniformly distributed 
between one block (4KB) and a threshold size (I28KB). Re­
quests exceeding the threshold are split into a series of se-



quential requests of 128KB or smaller before feeding them 
into the model. Spatial locality is considered to be the prob­
ability that two successively served requests are contiguous 
on disk. In the generation of synthetic I/O workloads, we 
use a predefined probability to dictate whether two succes­
sive requests are sequential. The ratio of read and write 
requests is uniformly distributed between 100% reads and 
100% writes. In a real run , we run a daemon at each data 
server to track the spatial locality of requests to the server 
and regenerate the feature vector periodically. The daemon 
then runs the model with an epoch 's locality to derive the 
required throughput bound B,'eat. On the assumption that 
locality does not frequently make abrupt changes, we apply 
the bound on the serving of requests in the following epoch . 

3.2 Impiemention of Derived Instantaneous 
Throughput Bounds 

The CART model calculates a program's throughput bounds 
individually for each data server. However, in a shared stor­
age system consisting of mUltiple servers over which files 
are striped, the resource needed for maintaining a mini­
mal throughput bound at a server not only depends on the 
bound, and the spatial locality of requests to the server, but 
also is affected by the program's requests on other servers 
and requests of other programs sharing the servers. There­
fore, request scheduling for the storage system is concerned 
not only with implementing throughput bounds for individ­
ual programs, but also with the efficiency of the implementa­
tion to jointly accommodate mUltiple concurrent programs 
with QoS goals. 

3.2.1 Coordination of Request Scheduling across 
Data Servers 

In the implementation of a throughput bound for a pro­
gram on one server, it is desirable to have a time window 
in which only requests from this program are served, while 
requests from other programs, if any, wait for the comple­
tion of the window. This is because concurrently serving 
requests from different programs usually results in frequent 
costly disk seeks between the data sets accessed by the dif­
ferent programs. However, there is a serious performance 
challenge in the use of dedicated time windows, namely t.he 
potential of long idle times between two consecutive requests 
from the same program to a data server. If the disk chooses 
to wait for the next request, as the anticipatory scheduler 
may do [15), it can be kept idle for too long and make the 
wait more expensive than seeking to other programs' data. 
Unfortunately, it is common to have such long idle times 
in a multi-server system. Because file data is striped, when 
one server completes serving a request from a program, the 
next several requests may be for data stored in other servers 
that may be servicing requests from other programs. This 
issue of long idle time may be ameliorated to some extent 
when different processes of the program issue concurrent re­
quests. However, the issue remains as a barrier for efficiently 
implementing QoS requirements. 

To address this issue U-Shape opportunistically coordi­
nates I/ O scheduling at different data servers, in the unit of 
the time window, using a scheme derived from the scheduling 
mechanism in [Orchestrator [34J, a strategy for minimizing 
inter-program I/ O access interference in parallel file systems. 
U-Shape attempts to synchronize th.e scheduling of requests 
at different data servers so that during one time window 

only requests from the same program are served in an ef­
fort to improve locality for the served requests. However, 
this synchronization may increase the idle time between two 
successive requests from the same program if the request ar­
rival rate for the program is not sufficiently high. To take 
this into account, U-Shape continuously evaluates the bene­
fit of avoiding frequently disk head seeks against the loss of 
allowing disk idle to wait for next request. 'When the bene­
fit is predicted to be greater than the loss, U-Shape uses a 
dedicated time window to serve requests issued by a single 
program. 

For programs with weak request locality a dedicated schedul­
ing window may never be warranted. All programs that are 
not selected for dedicated disk service are grouped together 
to share a common time window. 'With a group of programs 
sharing a window, the increased request arrival rate, with 
consequently more requests enqueued for scheduling, helps 
disk schedulers work more effectively. 

In this way, request scheduling at different servers is syn­
chronized to serve requests in windows of the same program 
or the same group of programs, one at a time. Because 
the IOrchestrator scheme does not consider QoS require­
ments, it determines the sizes of the windows based solely 
on their achieved throughput to maximize the entire sys­
tem's throughput. In addition to provisioning of effective 
resource allocation among concurrently running programs 
for high system efficiency, U-Shape additionally needs to ef­
ficiently implement its QoS-aware throughput bounds on the 
time-window-based scheduling mechanism. 

3.2.2 Determination of Scheduling Window Sizes 
As previously mentioned, there is a daemon at each data 

server. Any program with a QoS requirement is registered 
with the daemon. The daemon monitors the access local­
ity of each registered program and runs a trained CART 
model for each program to derive throughput bounds. In the 
PVFS2 parallel file system, where U-Shape is prototyped, 
the daemons send their calculated bounds to a daemon at 
the file system 's metadata server that combines them to ob­
tain the program's net throughput bound. This throughput 
bound is used by U-Shape to determine the window size. 

U-Shape divides wall-clock time into a series of schedul­
ing periods of fixed size Tperiod, and each period consists of a 
number of scheduling windows. U-Shape provides dedicated 
service in each window of a scheduling period in a round 
robin fashion. The initial window size T iniLwindow is inversely 
proportional to the throughput measured for each window's 
dedicated service, similar to the method used in IOrches­
trator for the highest overall system efficiency. The window 
sizes T"sl",,," are then adjusted as follows. For each window 
that is dedicated to one program, we measure th.e amount of 
accessed data D""hape in the window. If the through.put of 
the program in a scheduling period D""hape/Tp eriod is smaller 
than its derived throughput bound Brcql>i"ed, we extend the 
window size by Tad)""" where 

to meet the required throughput. Otherwise, if the pro­
gram's actual throughput is larger than the derived through­
put bound, we reduce the window size by ITad)"",I. 

If the program shares a time window with other programs, 
we also compare its actual throughput in the period with its 



derived throughput bound. If the former is larger, we leave 
it alone. If it is smaller, a ded icated window wi lJ be allocated 
to the program. The window size is then adjusted as before 
in the following scheduling period. 

If the aggregate window size after the adj ustments is larger 
than the scheduling period, we first reduce or remove win­
dows for best-effort programs, if any. If it is still larger by 
To ",:,.!"" ,,, the window size of any remaining program k is re­
duced by TwlJ. , a portion of T " "'_" load proportional to the 
time remaining until its specified execution deadline. This 
design takes into account the urgency of programs to meet 
their deadlines. Because of the reduction on its window size, 
the program lags behind its deadline by Tto .. , where 

This lost time for the program is recorded. In future schedul­
ing periods, if the aggregate window size after U-Shape 's ad­
justments is smaller than the scheduling period by T u nae rlo"d, 

T under/o, .. l is first used for making up the loss recorded for 
each program , if any, starting with the most urgent program. 
If there is still remaining Tundedoad , it is evenly distributed 
to extend the windows of the best-effort programs. 

The aforementioned procedure for adapting window size 
to meet QoS requirements is conducted at the end of every 
scheduling period so that up- to-date model-derived through­
put bounds can be quickly applied in the request scheduling, 
and the overall system efficiency, as it would be maintained 
by IOrchestrator, is minimally compromised. 

4. PERFORMANCE EVALUATION AND 
ANALYSIS 

The performance of U-Shape was evaluated on a system 
cons isting of nine data servers, one also configured as a meta­
data server for the PVFS2 parallel file system (version 2.8.2) , 
with four compute servers on the client side_ All nodes were 
of identical configuration, each with dual 1.6GHz Pentium 
processors, 1GB RAM , and aSATA disk (Seagate Barracuda 
7200.10, 150GB) with NCQ enabled. Each node ran Linux 
2.6.31.3 with CFQ (the default Linux disk scheduler). We 
used MPICH2-1.2.1 with ROM[O to generate executables 
of MPI programs. All nodes were interconnected with a 
switched Gigabit Ethernet network. File data was striped 
over the data servers using PVFS2's default striping unit of 
64KB. To ensure that all data were accessed from disk the 
system buffer caches of the compute nodes and data servers 
were Rushed prior to each test run. 

As mentioned in Section 3, the IOrchestrator scheduling 
strategy was adapted and augmented to support window­
based request scheduling in U-Shape. As in IOrchestrator, 
there is a daemon at the metaserver to track which files were 
opened by a program and pass the information it to daemons 
at data servers so that the data servers can know from which 
program requests are issued_ The daemon in the metadata 
server computes the current window sizes and informs the 
daemons at the data servers of the updated sizes for imple­
menting the scheduling. [n this work, we set the size of the 
scheduling period (corresponding to IOrchestrator's schedul­
ing window) to 1000ms and the size of the epoch for evalu­
ating access locality and deriving instantaneous throughput 
bounds to lOOms. As specification of I/O QoS requirement 
in terms of constant throughput is the most common in cur­
rent practice and contemporary research literature [18, 9, 

10], in the evaluation we compare U-Shape with the scheme 
attempting to maintain constant throughputs_ 

4.1 Workloads 
In the evaluation of U-Shape we use various workloads , 

including the synthetic workload used to characterize the 
storage system and train CART models, two micro bench­
marks with distinct and simple access patterns, and two 
macro benchmarks adapted from real applications with more 
complex access behaviors. 

4.1.1 Synthetic Workloads 
We designed a synthetic workload generator to cover a 

large spectrum of spatial locality. This MPI-[O program 
reads/writes a file with varying access patterns. Request 
sizes range from 4KB to 128KB, the distance between two 
consecutive requests varies from OGB and 10GB. Because 
performance is more sens itive to changes in distance when 
the distance is small, the distance increments are smaller for 
smaller distances. The requests were cooperatively sent by 
eight processes of the program using collective I/ O. 

4.1.2 Microbenchmarks 
The two microbenchmarks are mpi-io-test and ior-mpi­

io. i\lJpi-io-test is an MPI-IO benchmark from the PVFS2 
distribution [21]- In our experiments we ran the benchmark 
with eight MPI processes to read or write one 10GB file. 
Each process Pi accesses the (i + 8j)th 64 KB segment at call 
j, for 0 ~ i < 8, yielding a fully sequential access pattern. 

lor-mpi-io is a program in the ASC Purple Benchmark 
Suite developed at Lawrence Livermore National Labora­
tory [131. [n this benchmark each of the eight MPI pro­
cesses is responsible for reading its own 1/8 of a 2GB file. 
Each process continuously issues sequential requests, each 
for a 32KB segment. The processes ' requests for the data 
are at the same relative offset in each process's access scope 
of 256MB. The program's access pattern as presented to the 
s torage system is effectively random. 

4.1.3 Macrobenchmarks 
The two macrobenchmarks are BTIO from the NAS par­

allel benchmark suite [201 and S3aSim from Nortbwestern 
University [261. 

BTIO is a Fortran MP[ program designed to solve the 
3D compressible Navier-Stokes equations using the MP[-[O 
library for its on-disk data access. We ran the program 
using four processes with an input size coded as A in the 
benchmark, which generates a data set of about 419MB, 
using non-collective I/O operations. 

S3aSim is a program widely used in comput.ational bi­
ology for sequence similarity search. Eight processes were 
spawned to run the program, which accesses 5521\18 data 
during executions. 

4.2 Accuracy of the CART Model 
We evaluate the accuracy of a trained CART model for 

benchmark S3aSim. We first ran the benchmark to col­
lect feature vectors for each epoch and their corresponding 
throughputs. These statistics were used to train a CART 
model. This model was then used for estimating the through­
puts of epochs of a real run. Different runs of the program 
may have different access patterns because of different in­
puts or a different file layout on disk. In S3aSim request 



sizes vary. In general it is insufficient to rely solely on the 
benchmark itself for training; the synthetic workload gener­
ator is used to collect statistics to train the model with a 
more comprehensive coverage of access patterns. 

vVe then performed a real run of S3aSim on the storage 
system with 50% of its service time allocated to the program. 
The trained CART model ran on the data servers monitoring 
the program's access pattern and throughput Bm.odet for each 
epoch. Independently, we measured the actual throughput 
Bacl.",,' in each epoch of the run. The relative error, used 
to quantify the prediction accuracy, is defined as (Bnw</d -

Bactuatl/ B aotual. Figure 3(a) shows the relative error of the 
model predict ions for the first 30s execution with 20ms epoch 
size, and Figure 3(b) with 40ms epoch size. The results show 
that the errors are roughly equally distributed around zero, 
and that the errors are reduced when we increase the window 
size from 20ms to 40ms. When the epoch is 40ms, 80% of 
relative errors are less than 29%. Increasing the epoch size 
to lOOms, the default value for U-Shape, 90% of relative 
errors are less than 14%, which is quite acceptable for our 
purposes. 
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Figure 3: Relative errors of predicted epoch 
throughputs with different epoch sizes: (a) Epoch 
size 20msj (b) Epoch size 40ms. 

4.3 Performance Isolation 
An important feature of U-Shape is that it maintains a 

predetermined resource bound, instead of a fixed through-

put bound, in its implementation of QoS requirements. In 
this way the resource allocated to one program can be well 
controlled to (1) maintain possibly varying instantaneous 
throughput bounds derived for meeting the program's QoS 
goal; and, (2) implement performance isolation among pro­
grams by keeping any program from acquiring more resource 
than planned. To demonstrate the achievement of these ob­
jectives, we run ior-mpi-io and mpi-io-test concurrently. As 
checkpointing is commonly used to protect a parallel ap­
plication from failures [3], we use the ill-behaved ior-mpi­
io to model an interval of execution between two consec­
utive checkpoints in a long-running application, interposed 
between two checkpointing operations. For checkpointing 
we replicate the benchmark's 2GB data files on a dedicated 
disk partition, for which accesses are fully sequential. 

Figure 4(a) shows throughput for each epoch of the bench­
marks when each runs with exclusive use the storage system. 
The execution times for these dedicated runs are 53.5s and 
50.5s for ior-mpi-io and mpi-io-test, respectively. The fig­
ure shows two spikes for ior-mpi-io corresponding to the 
sequential access of checkpointing (21OMB/s), and a much 
lower throughput in between due to its random data access 
(61MB/s), while mpi-io-test maintains a high throughput of 
approximately 211MB/s. 

Suppose users recognize that it would take a longer to 
run their programs on shared storage and accordingly al­
low the execution times to be doubled. Specifically, the 
QoS goals for ior-mpi-io and mpi-io-test are set to 110s and 
100s, respectively. To meet these goals the required average 
throughputs for ior-mpi-io and mpi-io-test are 56MB/s and 
95MB/s, respectively, for a system using average through­
put for meeting QoS goals. Figure 4(b) shows the through­
put variations when the two programs run concurrently on 
the system attempting to maintain a fixed average through­
put. When ior-mpi-io accesses randomly from 37s to 92s 
but demands a resource allocation for a throughout bound 
calculated partly with sequential access speed, it acquires 
disproportionate storage resource and makes mpi-io-test's 
throughout drop significantly. Consequently neither main­
tains its respective average throughput and so violate the 
QoS requirements by 13% and 40%, respectively. 

Figure 4(c) shows the derived and actual throughputs in 
each epoch in the programs' concurrent run on the system 
managed by U-Shape. By maintaing the derived through­
puts, U-Shape enables the two programs to attain their re­
spective resource allocations. When ior-mpi-io issues ran­
dom requests , the CART model detects the pattern and au­
tomatically derives a lower bound (reduced from 102MB/s to 
less than 40MB/s) for the system to maintain, and the sys­
tem can comfortably meet its new bound without starving 
mpi-io-test. The result is that mp'i-io-test is little affected by 
access pattern changes in ior-mpi-io. As Figure 4(c) shows, 
measured throughputs oscillate around the derived ones, 
sometimes by a large margin such as for mpi-io-test. This 
is because U-Shape uses window-based scheduling. When 
a window for a program is scheduled, the program receives 
a throughput higher than required. In the other times, its 
throughput becomes much lower. As the window size is cal­
culated by U-Shape according to the derived throughout, 
the program's average throughput in a larger time period is 
almost the same as the derived one, as shown in the figure . 
Both programs can proceed at a speed constantly adapting 
to the current access pattern towards their respective spec-
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Figure 4: Throughputs during the execution of benchmarks mpi-io-test and ior-mpi-io: (a) Measured through­
puts when each of the programs runs exclusively on the storage system; (b) Measured throughputs and 
required average throughputs when the two programs run concurrently on the shared storage system attempt­
ing to meet average throughput bounds; (c) Measured throughputs and derived instantaneous throughputs 
when the two programs run concurrently on the shared storage system using V-Shape. 

ified deadlines. Our measurements show that the execution 
times of iO'r-mpi-io and mpi-io-test are 110s and lOSs, re­
spectively, essentially meeting the users' QoS goals. 

In the above experiment, with the required QoS goals , or 
2X execution times, we show that U-Shape can adhere to 
the resource allocation planned for the QoS goals. As the 
required execution times were chosen within an interval in 
which V-Shape makes a difference in meeting QoS goals, we 
also experimented with requirements on the execution times 
outside that interval. When the required times are 1.5X the 
respect ive programs' dedicated execution times, as shown in 
Table 1, both the system using the average throughput and 
U-Shape are unable to meet the deadlines because of the 
limited capacity of the storage system. Even so, the exe­
cution times of ior-mpi-io and mpi-io-test with U-Shape are 
7% and 31 % less than that using average throughput bounds 
because of bounded resource allocation. When the required 
times are 3.0X the respective programs' dedicated execution 
times, both systems can meet the QoS goals. In this exper­
iment also we ran a background program performing data 
backup to opportunistically absorb surplus I/O capacity. 

QoS Times Times Meet? Times Meet? 
(Required) (Average) (U-Shape) 

1.5X S:JS/ S05 1215/1505 No 112s/101s No 
2.0X IlOs/ 100s 124s/ 147s No 110s/105s Yes 
3.0X 160s/150s 164s/ 154s Yes 162s/156s Yes 

Table 1: A comparison of actual execution times of 
benchmarks ior-mpi-io and mpi -io- test (shown in each 
cell in that order) under the scheduling scheme us­
ing average throughput and V-Shape with different 
required execution times. A QoS goal is considered 
to be met when the execution time is less than 5% 
larger than the corresponding required time. 

4.4 Storage System Efficiency 
Another design goal of U-Shape that is as important as 

QoS assurance is the storage system's efficiency. To eval­
uate the impact of adaptation of resource partitioning by 

U-Shape on the efficiency of the storage system, we run mul­
tiple instances of BTIO. For BTIO, I/O times and compute 
times are interleaved during most of program's execution 
and the I/O access pattern is random. With dedicated I/O, 
compute time accounts for approximately 67% of its exe­
cution time of 223s. We assume that each BTIO instance 
allows 4.5X execution slowdown, that is, the end-users' re­
quired execution time is 1004s. Because the efficiency of data 
access is largely determined by seek distances, we vary the 
on-disk distance between each two contiguous files accessed 
by the different instances. We use distances of OGB, 10GB, 
20GB, and 30GB. To obtain insight into how V-Shape's 
scheduling policy responds to accesses of differing locality, 
we keep mpi-io-test, which issues sequential requests and de­
mands a constant 80MB/s throughput, running in the back­
ground. Table 2 show the numbers of BTIO instances the 
storage system can accommodate without violating the QoS 
goals, as a function of file distance, using average throughput 
and U-Shape to specify QoS goals. 

File Distances OGB 10GB 20GB 30GB 
Average 2 1 1 1 
U-Shape 4 3 2 2 

Table 2: A cOlllparison of the largest number of 
BTIO instances the storage system can accommo­
date without QoS violation. 

V-Shape can service more instances of BTIO than the sys­
tem with average throughput bounds, a direct consequence 
of U-Shape's maintaining windows' efficiency. When file dis­
tance is OGB, most of the seek times for disk heads to serve 
requests from different instances are smaller than the wait 
times for the arrival of next request from the same instance. 
The wait time of an instance is determined by its reuse dis­
tance, the time gap between two successive requests from 
the instance to the storage. Since BTIO's requests are in­
terleaved with many small compute times, its reuse distances 
are large compared with the average seek times, as shown in 
Figure .5. Accordingly U-Shape groups the BTIO instances 
in one scheduling window and serves them together to allow 



the disks to remain busy. However , mpi-io-test, which con­
stantly issues sequential requests, warrants a dedicated win­
dow, which U-Shape provides. Thus the system resources 
can be efficiently used , improving the entire storage sys­
tem's throughput and allowing more ins tances to achieve 
their QoS goals. Figure 6 shows the aggregate throughput of 
four concurrently running BTIO instances. The throughput 
achieved by U-Shape is much higher-by 3-7 times-than 
that using average throughput bounds. The throughput of 
mpi-io-f;est is maintained at 80MB/ s in both systems since 
both provide dedicated service windows to it. 

2.5 

Disl·OGB 
Disl-30G8 
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Figure 5: The ratios of average seek time and reuse 
distance for each epoch with file distances of OGB 
and 30GB for the first 1000 epochs. 
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Figure 6: Aggregate throughput of BTIO instances 
in the system using U-Shape and using average 
throughput bounds, for the first 250 seconds. 

When we increase the file distance from OGB to 30GB, the 
ratios of seek time and reuse distance become much larger 
because the seek times between files accessed by different 
BTIO instances increase significantly (Figure 5). The over­
head of disk seek times outweighs the cost of disk waiting. 
After evaluating the locality change, U-Shape serves the re­
quests from different instances in different dedicated win­
dows for greater I/O efficiency. 

4.5 Performance of an Overloaded System 
To show how U-Shape can flexibly allocate resources in 

an overloaded system to meet QoS goals, we run S3aSim 
together with mpi-io-test. The execution time of S3aSim is 
19.8s when it runs exclusively on the storage system. The 
QoS goal is 79.25, a 4X slowdown. The QoS goal for mpi­
io-lest is 141s, or an average throughput of 78MB/s. To 
maintain the 78MB/ s throughput for mpi-io-tesl, about 50% 
of the I/O capacity must be allocated. Running it together 
with S3aSim overloads the system. When the resource short­
age is evenly shared by the two programs, the execution time 
of the S3aSim program is 151s, almost double the required 
QoS goal, and mpi-io-lesl's execution time is 145s, barely 
meeting its deadline, as shown in Figure 7(a) . Figure 7(b) 
shows the I/O throughput of the two programs when U­
shape is applied. When U-Shape detects the shortage, it 
forces mpi-io-lest to have a more greatly reduced service win­
dow than S3aSim because mpi-io-lesl has a deadline much 
later than S3aSim. Specifically, the ratio of service window 
times between S3aSim and mpi -io-lesl is 3.5 from 0.6s to 
86.0s in the execution. The significant reduct ion of mpi-io­
lesl's throughput makes it possible for S3aSim to meet its 
deadline. The performance losses are recorded for both pro­
grams. As soon as S3aSim is completed, U-shape allocates 
all I/O capacity to mpi-io-lest. By scheduling in this way, 
mpi-io-lest misses its dead line by only 9%, S3aSim misses 
its deadline by only 3%, on the overloaded system. 

4.6 Overhead Analysis 
While U-Shape demonstrates clear advantages in various 

settings, it incurs both offline and online overheads. Specif­
ically, the offline overhead includes the time for profiling 
runs of programs and for model training. Though the of­
fline overhead may not be visible to end users it is desirable 
that it be of nominal magnitude. The online overhead in­
cludes two major components: 1) the time for deriving in­
stantaneous throughput; and, 2) the time for determining 
scheduling window size. We evaluate both of these. 

4.6.1 Offline Overhead 
For each benchmark we train a CART model using both 

a synthetic trace of 20,000 I/O requests, and a randomly 
selected segment of 10,000 I/O requests from the trace ob­
tained from the profiling run of the benchmark, thus cus­
tomizing the model to the benchmark while retaining the 
generality informed by the synthetic trace. Table 3 shows 
that the training time for each of the four benchmarks is 
small. 

Table 3: Model training times for the benchmarks. 

4.6.2 Online Overhead 
[n the investigation of the impact of online overhead we do 

not directly measure the overhead times because they can be 
overlapped with real I/O service times or programs' compute 
times. Instead we measure the increase in the programs' exe­
cution times due to U-Shape's overhead. To accomplish this 
we need to nullify U-Shape's other effects on exec ution time. 
We choose mpi-io-lest as representative, with and without 
using U-Shape. We set its required execution time equal to 
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Figure 7: Throughput of concurrently running mpi­
io-test and S3aSim: (a) Throughput when resource 
shortage is evenly shared by the two programs; (b) 
Throughput when V-Shape is used. 

the time of its dedicated run. Since epoch size determines 
the overhead with the CART model for deriving throughput 
bounds, we measure the execution time of the program with 
epoch sizes of 50ms, lOOms, and 150ms. As shown in Fig­
ure 8, the online overhead of V-Shape accounts for less than 
5% of the program execution time with a 50ms epoch. With 
larger epoch sizes, the overhead becomes smaller. To make 
a tradeoff between the overhead and responsiveness in the 
derivation of throughput bound, we use a lOOms epoch in 
practice. Note that these measured overheads are exposed 
in the dedicated runs of the programs with U-Shape. In 
practice V-Shape could be turned off in this scenario. 

5. RELATED WORK 
Sharing of a cluster of data servers in a high-performance 

computing installation is common practice, and storage is 
also increasingly consolidated in other high-end and high­
capacity computing environments for economies of scale in 
system, maintenance, and energy costs. While shared stor­
age service provides significant benefits, QoS assurance for 
its users is one of the more critical issues to be addressed 
and much research work has been focusing on it , including 
QoS specification, characterization of storage system perfor­
mance, and QoS-aware resource partitioning and scheduling. 
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Figure 8: Execution times of mpi-io-test with and 
without V-Shape overhead for different epoch sizes. 

5.1 Performance Interfaces 
The commonly used metrics for users to present their 

QoS requirements to storage services are throughput and 
response time of data access [11, 8J. A serious problem 
with the use of these simplistic parameters is that service 
quality can be significantly affected by the characteristics 
of I/O workloads. To address this, researchers have devel­
oped I/O workload models to derive performance bounds [6. 
27, 29, 30). Because a workload's characteristics can vary 
~;dely, constraints have been introduced to guarantee QoS 
only when the constraints are met. For example, in pC lock 
scheduling the response time of a request is bounded only 
if the request burstiness (the number of pending requests) 
and request arrival rate are less than pre-set thresholds 1[8). 
However the relationship between the imposed constraints 
and the ~uaranteed performance may not reflect the perfor­
mance expectation from users. To provide flexibility, Fa­
cade, a high-end storage system prototype, allolVs increased 
response times when I/O request arrival rate increases [18J. 
However, it is a challenge for users to determine a series of 
performance bounds, each associated with one I/O rate. 

Spatial locality is a unique property of the storage sys­
tem and even harder than I/O rate to encode in a perfor­
mance interface. As such, performance bounds are speci­
fied without regard to sequential and random access in most 
systems [2, 5, 8, 9, 10, 11, 16, 18, 35[ . In addition, applica­
tions may be required to explicitly indicate their I/O access 
pattern [24J. An exception is the Argon storage server in 
which a client requests a fixed fraction of a server's capac­
ity, which is equivalent to setting performance bounds that 
are aware of spatial locality [32J. This, however, requires 
users to know the server's total capacity and its relation to 
application performance. In contrast, V-Shape frees users 
from the burden of specifying their QoS requirements with 
specific I/O behaviors and I/O performance goals, or having 
specific knowledge of server capacity: the machine learning 
technique automatically derives I/O performance goals. 

5.2 Characterization of Storage System 
Performance 

For estimating the required throughput for various access 
patterns, storage systems' performance behaviors must be 



well characterized. For this purpose there are three can­
didate methods, namely, analytic system modeling, simula­
tion , and black-box modeling. Because of their nonlinear, 
state-dependent behavior, building accurate analytic mod­
els for disk drives is a non-trivial task [25, 33]. For a storage 
system consisting of multiple data servers, each with one or 
more disks, this modeling method seems infeasible. 

Construction of a disk simulator modeling performance­
relevant components of a disk, such as device drivers, buses, 
controllers, and adapters, is another method for performance 
estimation [7]. However, it requires human expertise on the 
targeted device or system, which may include proprietary 
configurations and use of algorithms and optimizations that 
are not disclosed. 

In contrast, the so-called black box method can serve as 
a more general-purpose approach. It treats the system as 
a black box without assuming the knowledge of its internal 
components or algorithms. In this approach the training 
data set, containing the quantified description of character­
istics of input requests and their corresponding responses 
from the system, is recorded [1, 22]. and fed into a statistical 
model [17] or a machine learning model [31, 19]. To predict a 
response to an input , some form of interpolation is required. 
It is recognized that the accuracy of the method relies on the 
appropriate selection of training set data and the design of 
feature vectors (the set of input characteristics) [17,31]. In 
V-Shape we use the machine-learning method to model the 
shared storage system by selecting relevant training data. 
In addition, the effectiveness of the model in V-Shape relies 
only on an aggregate performance metric, or the throughput 
in a time epoch, rather than latencies of individual requests. 
This makes the method especially useful in our work. 

5.3 QoS-Aware Resource Partitioning 
Many QoS-aware resource partitioning policies enforce disk 

bandwidth isolation and guarantee I/O service quality by 
tagging requests from different request streams with dead­
lines (or finish times) calculated from users-specified perfor­
mance bounds and estimated service times [11, 23]. While 
service time is heavily dependent on spatial locality in disk­
based storage systems, the locality is usually not included in 
the performance interface and random access is usually as­
sumed. However , this can cause resource over-provisioning. 
To fix this problem, Stonehenge allows additional streams 
to keep joining the system until the system is found to 
be overloaded [11]. They are forced to use this trial-and­
error method because the performance interface does not 
contain information on spatial locality and planning of re­
source provisioning is difficult. In contrast, applications' 
resource consumption is implicitly contained in the model­
derived I/O performance interface in the V-Shape scheme 
to enable well-planned scheduling. The resource consump­
tion is also contained in Argon by setting explicit quota of 
disk service time for each stream [32]. However, in a shared 
environment it is a challenge to know to which stream a ser­
vice time should be attributed [23]. In the implementation 
of derived throughputs, V-Shape leverages the mechanism 
proposed by IOrchestrator [34]. which enables efficient I/O 
resource allocation in a storage system consisting of multiple 
data servers. 

6. CONCLUSIONS 
We have proposed a scheme, V-Shape, to support end-

user-specified QoS requirements in the form of execution 
times for programs using shared storage systems. By not 
requiring QoS requirements in the form of throughput and 
latency bounds , V-Shape provides a highly convenient per­
formance interface and automatically derives corresponding 
I/ O requirements. By using a machine learning technique, 
V-Shape can ensure that a program receives sufficient ser­
vice to meet its QoS requirements with bounded resource de­
mands. As such V-Shape does not need to explicitly consider 
the dynamics of the service of I/ O requests, such as spa­
tial locality and arrival rate, that are difficult to accurately 
quantify. Our experimental evaluation using representative 
benchmarks and scenarios shows that V-Shape can faithfully 
and efficiently meet realistic QoS requirements specified by 
end users, and provides strong performance isolation. V­
Shape maintains high overall system efficiency even when 
the system is overloaded, and imposes minimal run-time 
overhead. 
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