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ABSTRACT

[/O-intensive applications are becoming increasingly com-
mon on today’s high-performance computing systems. While
performance of compute-bound applications can be effec-
tively guaranteed with techniques such as space sharing or
QoS-aware process scheduling, it remains a challenge to meet
QoS requirements for end users of I/O-intensive applications
using shared storage systems because it is difficult to differ-
entiate I/O services for different applications with individ-
ual quality requirements. Furthermore, it is difficult for end
users to accurately specify performance goals to the storage
system using I/O-related metrics such as request latency or
throughput. As access patterns, request rates, and the sys-
tem workload change in time, a fixed I/O performance goal,
such as bounds on throughput or latency, can be expensive
to achieve and may not lead to a meaningful performance
guarantees such as bounded program execution time.

We propose a scheme supporting end-users’ QoS goals,
specified in terms of program execution time, in shared stor-
age environments. We automatically translate the users’
performance goals into instantaneous I/O throughput bounds
using a machine learning technique, and use dynamically de-
termined service time windows to efficiently meet the through-
put bounds. We have implemented this scheme in the PVFS2
parallel file system and have conducted an extensive evalua-
tion. Our results show that this scheme can satisfy realistic
end-user QoS requirements by making highly efficient use of
the I/O resources. The scheme seeks to balance programs’
attainment of QoS requirements, and saves as much of the
remaining I/O capacity as possible for best-effort programs.

Keywords
Shared Storage System, QoS, PVFS2

1. INTRODUCTION

Provision of QoS guarantees to high-performance appli-
cations, such as climate and weather forecasting [12], mod-
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eling financial data [4], combustion simulation [36], human
genome analysis [28], and even chess-playing [14], can be
critical to the success of the services provided to their users.
For example, for an application predicting the timing for a
hurricane reaching land, users usually have firm deadlines
for receiving the prediction results because of the potential
for life and property losses if the deadline is passed. When it
is not feasible to dedicate a powerful parallel computing sys-
tem and I/O subsystem to a single application, a mechanism
for ensuring service quality in terms of execution deadlines
in a shared execution environment should be provided by a
production parallel computing installation.

It is relatively easy to satisfy the QoS requirement for a
compute-bound application by allocating a dedicated par-
tition of compute nodes (space sharing), or by ensuring a
sufficient fraction of CPU time allocation (time sharing).
However, if the application is I/O-intensive, or I/O services
constitute a substantial portion of its total execution time,
it is much more difficult to satisfy the application’s QoS re-
quirements on a parallel computing system using a shared
storage system. There are several challenges.

First, for end users, execution time or response time of
an application is usually the fitst choice for QoS specifica-
tion. For compute-bound applications the time can gener-
ally be translated to a number of compute nodes or CPU
time slices in a relatively straightforward manner. For I/O-
intensive applications, users currently must determine the
I/O service quality commensurate with the required exe-
cution time, assuming the computational resource is fully
supplied, and then reserve resources in the storage system
according to the derived I/O service requirement. However,
users may not have the expertise or knowledge to derive the
service requirements. For example, users may not know the
actual amount of data requested or the service time spent
on data access in a program'’s run.

Second, currently QoS assurance, or resource reservation,
is provided by maintaining an upper bound on request la-
tency, or a lower bound on throughput, specified for each ap-
plication. Maintaining a single latency bound or a through-
put bound cannot guarantee user-observed performance and
may not allow the shared storage system to be used effi-
ciently for the following reasons. (1) Request size can be
highly variable. Requests of different sizes may need differ-
ent latency bounds to reflect applications’ true demands on
storage resources imposed by their QoS requirements. (2)
I/O requests can be very bursty. A bound on latency, ot re-
quest response time, that includes request waiting time, may



have to vary accordingly. If the bound is specified in terms
of throughput, a single bound would not serve the end-user’s
performance goal. If the average throughput is taken as the
bound, the application’s demand may not be well served
when the request arrival rate is high because the bound is
effectively under-estimated, and an application’s reserved re-
source may be under-utilized when the arrival rate is low.
Though taking the highest possible throughput as a bound
can safely meet an application’s QoS requirement, the stor-
age resource could be excessively over-provisioned and the
global efficiency of the storage system significantly compro-
mised. (3) The spatial locality of requests can vary. Spatial
locality describes the sequentiality of requested data on the
storage device. Hard-disk-based storage is highly sensitive
to this workload characteristic because significant seek time
is usually required when accessing non-sequential data. Spa-
tial locality is a highly elusive property that is difficult for
users to characterize. If an average latency or throughput
bound is used regardless of spatial locality, the application
may be over-provisioned for its sequential accesses, and the
1/Osystem could be overly stressed for its random accesses.
All of these dynamics exhibited in a program’s run show
that using a single /O performance bound for QoS guar-
antee is less than ideal. On the other hand, in general it is
too difficult to manually derive bounds associated with the
aforementioned factors.

Third, a shared storage system usually consists of multi-
ple disks, or multiple data servers, where files are striped.
While each data server or even each disk has its own [/O
scheduling, the [/O performance experienced by an individ-
ual program is the aggregate effect of scheduling its requests
at different data servers. To maintain a throughput bound
for a program, common wisdom to improve disk efficiency is
to dedicate a time window for exclusively serving requests
from the same program to minimize the interference from re-
quests issued by other concurrently running programs. How-
ever, implementing service windows for a program indepen-
dently at each data server will usually lead to unacceptably
low disk efficiency. When file data are striped over multi-
ple data servers, contiguous requests from a program may
be spread over multiple servers. Therefore, if the requests
are synchronous, a data server may have a relatively long
wait between completing the program’s current request and
receiving its next request, as intervening requests are ser-
viced by other servers that may be busy serving other pro-
grams’ requests. Because of the long wait the disk head
must move to serve requests from other programs instead of
idly waiting for the program’s next request. Thus the disks
cannot be dedicated to serving one program at a time when
using non-work-conserving I/O schedulers such as anticipa-
tory [15], leaving the disk heads to constantly seek between
disk regions accessed by different programs. This makes re-
source allocation according to QoS requirements yet more
difficult, and causes undue interference among programs.

We propose a scheme supporting end-user-specified QoS
goals in terms of program execution time. To derive in-
stantaneous [/O performance goals from the specified execu-
tion time for a program, we first capture the storage perfor-
mance characteristics—the relationship between access pat-
terns and instantaneous throughout-—both by running the
program of interest, and with a probing program, in a stor-
age environment where either the entire storage system, or a
fixed fraction of it, is dedicated for use in the profiling. The

measured characteristics are then used to train machine-
learning models so that, in an actual run of the program on
a shared storage environment, the model can estimate the
instantaneous [/O throughput required to meet the speci-
fied deadline according to the observed access pattern. The
1/O resource is then dynamically allocated to the program
according to estimated instantaneous throughputs. To effec-
tively allocate the resource, we coordinate the I/O schedul-
ing at different data servers for dedicated service to one or
multiple programs to implement QoS goals presented to the
storage system by the trained machine learning models.
[n summary, we make the following contributions.

e We propose a QoS performance interface for end users
to conveniently specify their QoS requirements in terms
of program execution times. We use a machine learn-
ing technique to automatically characterize the stor-
age system and convert the end-user QoS requirements
into instantaneous [/O performance goals at run time.

e We coordinate the 1/O scheduling at different data
servers to facilitate effective QoS-aware resource allo-
cation. We take both I/O QoS requirements and over-
all storage system efficiency into account by oppor-
tunistically dedicating disk services to requests from
one or multiple programs. While the ultimate goal is to
meet user-defined deadlines, we allow reduced resource
commitment to a program when the storage system is
overloaded and seek to make up corresponding perfor-
mance loss when the system has unused capacity.

e We have implemented the design in the PVFS2 paral-
lel system as a prototype, named U-Shape, that allows
Users to Shape the [/O scheduling implicitly to meet
their QoS goals specified with execution times. Our
extensive evaluation of U-Shape shows that it can effi-
ciently implement end-user-specified performance goals
and provide strong isolation among programs sharing
a common storage system.

The rest of this paper is organized as follows. Section 2
uses a motivating example to demonstrate the efficacy of
automatic derivation of I/O performance goals. Section 3
gives a detailed description of the design of U-Shape. Sec-
tion 4 presents and analyzes experiment results. Section 5
describes related work and Section 6 concludes.

2. A MOTIVATING EXAMPLE

Here we demonstrate how conventional I/O performance
requirements, such as average [/O throughput, can mislead
the scheduling policy of a storage system and violate end-
users’ QoS goals, and give an initial indication of U-Shape’s
potential benefits.

Our experimental cluster consists of 13 nodes, four config-
ured as compute nodes and the other nine as data servers,
managed by a PVEFS2 parallel file system, using PVFS2’s de-
fault striping size of 64KB. One of data servers also serves
as the metadata server for the file system. More details of
the platform are given in Section 4.

Two MPI programs used as microbenchmarks in the ex-
periments. The first, full-seq, sequentially reads a 10GB file
using collective [/O, wherein each MPI process reads 64KB
per request. The second, seg-rand, is designed to simulate
I/O access patterns alternating between sequential access
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Figure 1: Throughput of programs full-seq and seq-rand in different environments:
(b) Both programs run together, both using average throughput as

exclusively on the storage system.

(a) Each program runs

performance goals. The averages for each are marked “average”. (c) Both programs run together using U-
Shape dynamically-derived throughput as performance goals. The derived throughputs are marked “derived”.

(such as reading a large data file) and random access (such
as searching index files). Specifically, the program uses col-
lective I/O to sequentially read 500MB from the fle, and
then randomly reads another 500M B from the same file. The
size of requests from each process is 64KB. This access pat-
tern repeats until the entire 10GB file has been read. Each
program runs as eight processes, two per compute node.

Figure 1(a) shows the instantaneous throughput within
each one-second time window for each of the programs when
it has dedicated use of the data servers. For full-seq the
system delivers an average throughput of 242MB/s, close
to the peak throughput of the system (270MB/s), and its
execution time is 42.3s. The execution time of seq-rand is
much greater (320s) and the average throughput is 32MB/s.

Assuining users of the programs expect reduced resource
committed to each of their programs when both run concur-
rently on a shared storage system, such that they can tol-
erate up to 2.5-times slowdown, they set their performance
goals as execution times of 106s and 800s for programs full-
seq and seg-rand, respectively. If average throughput is used
as the QoS requirement on the storage system, the sys-
tem must consistently maintain 96.6MB/s and 12.8MB/s
throughputs for full-seq and seq-rand, respectively. In the
experiment we also run a best-effort program in the back-
ground, whose requests are served only when the system
has excess capacity. Run concurrently, the execution times
for full-seq and seq-rand are 126s and 1009s, exceeding their
user-required times by 19% and 26%, respectively.

When we use the instantaneous throughputs derived by
the machine learning model in the U-Shape scheme as the
[/O performance goals, the execution times are 104s and
804s, which are very close to the QoS requirements of 106s
and 800s, respectively.

To investigate the disparity between the two performance
interfaces, we plot instantaneous throughputs of the two con-
currently running programs using constant average through-
put (Figure 1(b)), and using throughput derived by the
trained machine learning models to prescribe QoS require-
ments (Figure 1(c)). As Figure 1(b) shows, the through-
put of full-seq exhibits periodicity resonating with changes
in seq-rand’s access pattern. When seg-rand issues sequen-
tial requests (from Os to 38s and from 100s to 124s), full-

seq mostly receives throughput near its required 96.6MB/s,
and seg-rand can mostly meet its requirement. However,
when seq-rand is issuing random requests (from 38s to 100s),
full-seq’s throughput plummets and seq-rand also receives
lower throughput. This is because maintaining the required
12.8MB/s throughput—the average of both sequential and
random throughputs—when the access pattern is fully ran-
dom, demands disproportionate resources and causes the

system to be over-committed. Consequently, full-seq's through-

put is severely degraded. When seq-rand issues sequential re-
quests the required throughput, which is in part determined
by considering random access, appears to be too conserva-
tive in demanding system resources to meet its deadline.
The result is that both programs miss their deadlines.

In the U-Shape scheme, the derived throughput of a pro-
gram is always proportional to that for its dedicated run. In-
stead of maintaining a fixed throughput, U-Shape attempts
to maintain a fixed resourcé allocation calculated from the
end-users’ QoS requirement. Accordingly, when access is
sequential a higher throughput goal is used, and a lower
throughput goal is used when access is random. This allows
the system to be able to consistently meet varying through-
put requirements as shown in Figure 1(c).

3. THE DESIGN OF U-SHAPE

Next we describe the design of the U-Shape scheme, whose
objective is to meet QoS goals specified by end users in terms
of program execution time through efficiently implementing
automatically derived I/O performance requirements in a
shared storage system. To this end, U-Shape first takes as
inputs the end-users’ QoS goals and I/O behaviors collected
in profiling runs of their programs to train a machine learn-
ing model. It then uses the models on-line to derive I/O
throughput bounds for each time interval (epoch) and seeks
to achieve the bounds through effective resource allocation.

3.1 Derivation of Instantaneous Throughput
Bounds
In this work we assume that a user has reserved a cer-
tain dedicated computing resource for running his/her pro-
gram in the hope of achieving bounded execution time. For



a program with substantial I/O activity the objective can
be achieved only when the program’s 1/O service time is
also bounded. From the perspective of the storage system,
the share of resource committed to the program should be
bounded as there may be other programs concurrently run-
ning with their own demands on I/O service quality. As
shown in the motivating example, the resource demand can
differ by an order of magnitude between sequential and ran-
dom access to deliver the same throughput. Therefore, we
need to determine throughput bounds at different times dur-
ing a program’s execution such that (1) the resource demand
for achieving the throughput is bounded; and, (2) the pro-
gram’s total I/O time is bounded. For this purpose we take
a profiling run of the program with a fixed share (which
may be 100%) of the storage system service time dedicated
to serving its requests. The results of the profiling run give
the fraction of execution time that is I/O time for a given
share of storage service.

We also collect spatial locality information in each epoch
and its corresponding throughput during a profiling run.
Specifically, we collect on-disk data locations, for every re-
quest R; from the program, in terms of logical block number
LBN; and size S;, as well as its service time ServTime; at
each data server. Because we evenly partition the program
execution period into a series of time epochs, its requests
are grouped by epoch. We quantify spatial locality of the
requests in each epoch with two metrics: average distance
AvgDist between two consecutive requests and average re-
quest size AvgSize, assuming there are n requests in the
epoch [R1, Rz, ..., Rn], as

Z:‘:,_,[LBM- — (LBN;—1 + Si-1)]
n—1

AvgDist
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In addition, the throughput Byrofie in an epoch in the pro-
filing run is calculated as

i S
Bpraﬁle = n—MT—‘

i ServTime;
Note that in the calculation of the throughput we do not
count compute times between consecutive requests, so the
metric is not affected by request arrival rate. This is the
throughput that contributes to the program’s execution time
Tyrofite in the profiling run, which is the sum of compute time
Teomp and I/O time Throfiteio- Assume that the end-user-
required program execution time for a real run is Treqr, which
is the sum of compute time Tcomp and I/O time Trew o in the
run. We assume that the program has its dedicated compute
resource, so the compute time does not change across runs.
We also assume that requests are synchronous. Therefore,
the ratio « between the two I/O times is

Treal_io Treat — Teo mp

Tpl‘aﬁle_io Tproﬁle A= Tcnmp

To ensure that the storage resource requested by the pro-
gram is bounded, we consistently apply the ratio to the
throughput of each epoch to obtain the required through-
put bound Bj.q for a real run, ie.,

Bproﬁle
Breat = ——.
(a3

We use statistics on the locality and the derived through-
put bound for real runs to train the widely used machine
learning model CART (classification and regression tree) [31].
In the training session we treat (AwgDist,AvgSize) of an
epoch as the epoch’s feature vector. We feed the feature
vector and corresponding throughput bound Breq of each
epoch to the model so that it can ‘learn’ the association
between spatial locality and throughput. The training al-
gorithm recursively constructs a decision tree, starting with
the root node, and grows the tree by adding child nodes to
a leaf node at each step until its mis-prediction error rate
measured in the cross-validation step is smaller than a pre-
defined error threshold. For a given feature vector, a well-
trained model is expected to provide a relatively accurate
estimate of throughput that is suitable as a bound in real
runs. A trained model is deployed in the storage system
to predict instantaneous throughput. Figure 2 illustrates
the major steps in training the model and using it to derive
throughput bounds.

Train a CART model

Training

Workioads /£

| | Epoch Feature Vector (FV) |
v

FVi | Bt
FVa | B2 ®l

The CART
Storage Model

b
—i

FVm | Bm

| Epoch Throughput (B) |
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‘ﬁ T S O e

Use trained CART model for throughput prediction g,

@ Generale feature vector (FV,) for epoch E, @ Generate leature vector (FV, fot £
@ Measure throughput (8,) for epoch £,

@ The CART made! predicts throughput (8, ) for £,
@ Feed pairs ( FV, B;) mto the cx=7 model

Figure 2: The major steps involved in training a CART
model with a feature vector for requests in each time
epoch, and the steps for deriving throughput bounds for
epochs of known request locality.

With the use of profiling runs we make the assumption
that I/0 intensity and access locality are usually consistent
across different runs of a program. The assumption is often
valid, especially when the bulk of the input remains con-
stant. This is common, for example, in the usage of many
scientific applications wherein ensembles are run and only
initial conditions are varied.

For the trained model to make accurate predictions the
training data must provide sufficient coverage of potential
workload characteristics. To this end we use a synthetic
I/O workload in addition to real workloads in the profiling
runs to generate the training data. We developed a syn-
thetic I/O request generator to create a workload covering a
spectrum of request sizes, spatial localities, and read/write
ratios. In the workload, request size is uniformly distributed
between one block (4KB) and a threshold size (128KB). Re-
quests exceeding the threshold are split into a series of se-



quential requests of 128KB or smaller before feeding them
into the model. Spatial locality is considered to be the prob-
ability that two successively served requests are contiguous
on disk. In the generation of synthetic I/O workloads, we
use a predefined probability to dictate whether two succes-
sive requests are sequential. The ratio of read and write
requests is uniformly distributed between 100% reads and
100% writes. In a real run, we run a daemon at each data
server to track the spatial locality of requests to the server
and regenerate the feature vector periodically. The daemon
then runs the model with an epoch’s locality to derive the
required throughput bound Bieai. On the assumption that
locality does not frequently make abrupt changes, we apply
the bound on the serving of requests in the following epoch.

3.2 Implemention of Derived Instantaneous
Throughput Bounds

The CART model calculates a program’s throughput bounds
individually for each data server. However, in a shared stor-
age system consisting of multiple servers over which files
are striped, the resource needed for maintaining a mini-
mal throughput bound at a server not only depends on the
bound, and the spatial locality of requests to the server, but
also is affected by the program’s requests on other servers
and requests of other programs sharing the servers. There-
fore, request scheduling for the storage system is concerned
not only with implementing throughput bounds for individ-
ual programs, but also with the efficiency of the implementa-
tion to jointly accommodate muitiple concurrent programs
with QoS goals.

3.2.1 Coordination of Request Scheduling across
Data Servers

In the implementation of a throughput bound for a pro-
gram on one server, it is desirable to have a time window
in which only requests from this program are served, while
requests from other programs, if any, wait for the comple-
tion of the window. This is because concurrently serving
requests from different programs usually results in frequent
costly disk seeks between the data sets accessed by the dif-
ferent programs. However, there is a serious performance
challenge in the use of dedicated time windows, namely the
potential of long idle times between two consecutive requests
from the same program to a data server. If the disk chooses
to wait for the next request, as the anticipatory scheduler
may do [15], it can be kept idle for too long and make the
wait more expensive than seeking to other programs’ data.
Unfortunately, it is common to have such long idle times
in a multi-server system. Because file data is striped, when
one server completes serving a request from a program, the
next several requests may be for data stored in other servers
that may be servicing requests from other programs. This
issue of long idle time may be ameliorated to some extent
when different processes of the program issue concurrent re-
quests. However, the issue remains as a barrier for efficiently
implementing QoS requirements.

To address this issue U-Shape opportunistically coordi-
nates [/O scheduling at different data servers, in the unit of
the time window, using a scheme derived from the scheduling
mechanism in [Orchestrator [34], a strategy for minimizing
inter-program I/O access interference in parallel file systems.
U-Shape attempts to synchronize the scheduling of requests
at different data servers so that during one time window

only requests from the same program are served in an ef-
fort to improve locality for the served requests. However,
this synchronization may increase the idle time between two
successive requests from the same program if the request ar-
rival rate for the program is not sufficiently high. To take
this into account, U-Shape continuously evaluates the bene-
fit of avoiding frequently disk head seeks against the loss of
allowing disk idle to wait for next request. When the bene-
fit is predicted to be greater than the loss, U-Shape uses a
dedicated time window to serve requests issued by a single
program.

For programs with weak request locality a dedicated schedul-
ing window may never be warranted. All programs that are
not selected for dedicated disk service are grouped together
to share a common time window. With a group of programs
sharing a window, the increased request arrival rate, with
consequently more requests enqueued for scheduling, helps
disk schedulers work more effectively.

In this way, request scheduling at different servers is syn-
chronized to serve requests in windows of the same program
or the same group of programs, one at a time. Because
the IOrchestrator scheme does not consider QoS require-
ments, it determines the sizes of the windows based solely
on their achieved throughput to maximize the entire sys-
tem’s throughput. In addition to provisioning of effective
resource allocation among concurrently running programs
for high system efficiency, U-Shape additionally needs to ef-
ficiently implement its QoS-aware throughput bounds on the
time-window-based scheduling mechanism.

3.2.2 Determination of Scheduling Window Sizes

As previously mentioned, there is a daemon at each data
server. Any program with a QoS requirement is registered
with the daemon. The daemon monitors the access local-
ity of each registered program and runs a trained CART
model for each program to derive throughput bounds. In the
PVFES2 parallel file system, where U-Shape is prototyped,
the daemons send their calculated bounds to a daemon at
the file system’s metadata server that combines them to ob-
tain the program’s net throughput bound. This throughput
bound is used by U-Shape to determine the window size.

U-Shape divides wall-clock time into a series of schedul-
ing periods of fixed size Tperiod, and each period consists of a
number of scheduling windows. U-Shape provides dedicated
service in each window of a scheduling period in a round
robin fashion. The initial window size Tinit_window is inversely
proportional to the throughput measured for each window’s
dedicated service, similar to the method used in IOrches-
trator for the highest overall system efficiency. The window
sizes Tushape are then adjusted as follows. For each window
that is dedicated to one program, we measure the amount of
accessed data Dysgpe in the window. If the throughput of
the program in a scheduling period Dushape /Tperiod is smaller
than its derived throughput bound Brequired, we extend the
window size by Thyjuse, where

Bre.qm.red * Tpcﬂnd — Dusham:

r

Tud]u.st - Dushapc /Tmif_wmduw
to meet the required throughput. Otherwise, if the pro-
gram’s actual throughput is larger than the derived through-
put bound, we reduce the window size by |[Todjust|-

If the program shares a time window with other programs,
we also compare its actual throughput in the period with its



derived throughput bound. If the former is larger, we leave
it alone. Ifit is smaller, a dedicated window will be allocated
to the program. The window size is then adjusted as before
in the following scheduling period.

If the aggregate window size after the adjustments is larger
than the scheduling period, we first reduce or remove win-
dows for best-effort programs, if any. If it is still larger by
Tovertoad, the window size of any remaining program k is re-
duced by T.ue i, & portion of Tovertond proportional to the
time remaining until its specified execution deadline. This
design takes into account the urgency of programs to meet
their deadlines. Because of the reduction on its window size,
the program lags behind its deadline by T}y, where

Tioss = Duslul[)(‘ * (Tcut_k/Twhape)/Bw‘equircd-

This lost time for the program is recorded. In future schedul-
ing periods, if the aggregate window size after U-Shape’s ad-
justments is smaller than the scheduling period by Tyndertoad,
Tundertoad 18 first used for making up the loss recorded for
each program, if any, starting with the most urgent program.
If there is still remaining Tynderioad, it i evenly distributed
to extend the windows of the best-effort programs.

The aforementioned procedure for adapting window size
to meet QoS requirements is conducted at the end of every
scheduling period so that up-to-date model-derived through-
put bounds can be quickly applied in the request scheduling,
and the overall system efficiency, as it would be maintained
by IOrchestrator, is minimally compromised.

4. PERFORMANCE EVALUATION AND
ANALYSIS

The performance of U-Shape was evaluated on a system
consisting of nine data servers, one also configured as a meta-
data server for the PVFS2 parallel file system ( version 2.8.2),
with four compute servers on the client side. All nodes were
of identical configuration, each with dual 1.6GHz Pentium
processors, LGB RAM, and a SATA disk (Seagate Barracuda
7200.10, 150GB) with NCQ enabled. Each node ran Linux
2.6.31.3 with CFQ (the default Linux disk scheduler). We
used MPICH2-1.2.1 with ROMIO to generate executables
of MPI programs. All nodes were interconnected with a
switched Gigabit Ethernet network. File data was striped
over the data servers using PVFS2’s default striping unit of
64KB. To ensure that all data were accessed from disk the
system buffer caches of the compute nodes and data servers
were flushed prior to each test run.

As mentioned in Section 3, the IOrchestrator scheduling
strategy was adapted and augmented to support window-
based request scheduling in U-Shape. As in [Orchestrator,
there is a daemon at the metaserver to track which files were
opened by a program and pass the information it to daemons
at data servers so that the data servers can know from which
program requests are issued. The daemon in the metadata
server computes the current window sizes and informs the
daemons at the data servers of the updated sizes for imple-
menting the scheduling. In this work, we set the size of the
scheduling period (corresponding to IQrchestrator’s schedul-
ing window) to 1000ms and the size of the epoch for evalu-
ating access locality and deriving instantaneous throughput
bounds to 100ms. As specification of I/O QoS requirement
in terms of constant throughput is the most common in cur-
rent practice and contemporary research literature [18, 9,

10}, in the evaluation we compare U-Shape with the scheme
attempting to maintain constant throughputs.

4.1 Workloads

In the evaluation of U-Shape we use various workloads,
including the synthetic workload used to characterize the
storage system and train CART models, two microbench-
marks with distinct and simple access patterns, and two
macrobenchmarks adapted from real applications with more
complex access behaviors.

4.1.1 Synthetic Workloads

We designed a synthetic workload generator to cover a
large spectrum of spatial locality. This MPI-IO program
reads/writes a file with varying access patterns. Request
sizes range from 4KB to 128KB, the distance between two
consecutive requests varies from 0GB and 10GB. Because
performance is more sensitive to changes in distance when
the distance is small, the distance increments are smaller for
smaller distances. The requests were cooperatively sent by
eight processes of the program using collective 1/O.

4.1.2 Microbenchmarks

The two microbenchmarks are mpi-io-test and ior-mpi-
i0. Mpi-io-test is an MPI-IO benchmark from the PVFS2
distribution [21]. In our experiments we ran the benchmark
with eight MPI processes to read or write one 10GB file.
Each process p; accesses the (i +85)"" 64(B segment at call
j, for 0 <7 < 8, yielding a fully sequential access pattern.

lor-mpi-io is a program in the ASC Purple Benchmark
Suite developed at Lawrence Livermore National Labora-
tory [13]. In this benchmark each of the eight MPI pro-
cesses is responsible for reading its own 1/8 of a 2GB file.
Each process continuously issues sequential requests, each
for a 32KB segment. The processes’ requests for the data
are at the same relative offset in each process’s access scope
of 256MB. The program’s access pattern as presented to the
storage system is effectively random.

4.1.3 Macrobenchmarks

The two macrobenchmarks are BT/O from the NAS par-
allel benchmark suite [20] and S3aSim from Northwestern
University [26].

BTIO is a Fortran MPI program designed to solve the
3D compressible Navier-Stokes equations using the MPI-IO
library for its on-disk data access. We ran the program
using four processes with an input size coded as A in the
benchmark, which generates a data set of about 419MB,
using non-collective I/O operations.

S53aSim is a program widely used in computational bi-
ology for sequence similarity search. Eight processes were
spawned to run the program, which accesses 552MB data
during executions.

4.2 Accuracy of the CART Model

We evaluate the accuracy of a trained CART model for
benchmark S3aSim. We first ran the benchmark to col-
lect feature vectors for each epoch and their corresponding
throughputs. These statistics were used to train a CART
model. This model was then used for estimating the through-
puts of epochs of a real run. Different runs of the program
may have different access patterns because of different in-
puts or a different file layout on disk. In S3aSim request



sizes vary. In general it is insufficient to rely solely on the
benchmark itself for training; the synthetic workload gener-
ator is used to collect statistics to train the model with a
more comprehensive coverage of access patterns.

We then performed a real run of S?aSim on the storage
system with 50% of its service time allocated to the program.
The trained CART model ran on the data servers monitoring
the program’s access pattern and throughput Bu,ge for each
epoch. Independently, we measured the actual throughput
Buacruwat in each epoch of the run. The relative error, used
to quantify the prediction accuracy, is defined as ( Bniouct —
Buactuat)/ Bactuai- Figure 3(a) shows the relative error of the
model predictions for the first 30s execution with 20ms epoch
size, and Figure 3(b) with 40ms epoch size. The results show
that the errors are roughly equally distributed around zero,
and that the errors are reduced when we increase the window
size from 20ms to 40ms. When the epoch is 40ms, 80% of
relative errors are less than 29%. Increasing the epoch size
to 100ms, the default value for U-Shape, 90% of relative
errors are less than 14%, which is quite acceptable for our
purposes.
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Figure 3: Relative errors of predicted epoch

throughputs with different epoch sizes: (a) Epoch
size 20ms; (b) Epoch size 40ms.

4.3 Performance Isolation

An important feature of U-Shape is that it maintains a
predetermined resource bound, instead of a fixed through-

put bound, in its implementation of QoS requirements. In
this way the resource allocated to one program can be well
controlled to (1) maintain possibly varying instantaneous
throughput bounds derived for meeting the program’s QoS
goal; and, (2) implement performance isolation among pro-
grams by keeping any program from acquiring more resource
than planned. To demonstrate the achievement of these ob-
jectives, we run ior-mpi-io and mpi-io-test concurrently. As
checkpointing is commonly used to protect a parallel ap-
plication from failures [3], we use the ill-behaved ior-mpi-
0 to model an interval of execution between two consec-
utive checkpoints in a long-running application, interposed
between two checkpointing operations. For checkpointing
we replicate the benchmark’s 2GB data files on a dedicated
disk partition, for which accesses are fully sequential.

Figure 4(a) shows throughput for each epoch of the bench-
marks when each runs with exclusive use the storage system.
The execution times for these dedicated runs are 53.5s and
50.5s for ior-mpi-io and mpi-io-test, respectively. The fig-
ure shows two spikes for ior-mpi-io corresponding to the
sequential access of checkpointing (210MB/s), and a much
lower throughput in between due to its random data access
(61MB/s), while mpi-io-test maintains a high throughput of
approximately 211MB/s.

Suppose users recognize that it would take a longer to
run their programs on shared storage and accordingly al-
low the execution times to be doubled. Specifically, the
QoS goals for ior-mpi-io and mpi-io-test are set to 110s and
100s, respectively. To meet these goals the required average
throughputs for ior-mpi-io and mpi-io-test are 56MB/s and
95MB/s, respectively, for a system using average through-
put for meeting QoS goals. Figure 4(b) shows the through-
put variations when the two programs run concurrently on
the system attempting to maintain a fixed average through-
put. When ior-mpi-io accesses randomly from 37s to 92s
but demands a resource allocation for a throughout bound
calculated partly with sequential access speed, it acquires
disproportionate storage resource and makes mpi-io-test's
throughout drop significantly. Consequently neither main-
tains its respective average throughput and so violate the
QoS requirements by 13% and 40%, respectively.

Figure 4(c) shows the derived and actual throughputs in
each epoch in the programs’ concurrent run on the system
managed by U-Shape. By maintaing the derived through-
puts, U-Shape enables the two programs to attain their re-
spective resource allocations. When ior-mpi-io issues ran-
dom requests, the CART model detects the pattern and au-
tomatically derives a lower bound (reduced from 102MB/s to
less than 40MB/s) for the system to maintain, and the sys-
tem can comfortably meet its new bound without starving
mpi-io-test. The result is that mpi-io-test is little affected by
access pattern changes in ior-mpi-io. As Figure 4(c) shows,
measured throughputs oscillate around the derived ones,
sometimes by a large margin such as for mpi-io-test. This
is because U-Shape uses window-based scheduling. When
a window for a program is scheduled, the program receives
a throughput higher than required. In the other times, its
throughput becomes much lower. As the window size is cal-
culated by U-Shape according to the derived throughout,
the program’s average throughput in a larger time period is
almost the same as the derived one, as shown in the figure.
Both programs can proceed at a speed constantly adapting
to the current access pattern towards their respective spec-
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Figure 4: Throughputs during the execution of benchmarks mpi-io-test and ior-mpi-io: (a) Measured through-
puts when each of the programs runs exclusively on the storage system; (b) Measured throughputs and
required average throughputs when the two programs run concurrently on the shared storage system attempt-
ing to meet average throughput bounds; (¢) Measured throughputs and derived instantaneous throughputs
when the two programs run concurrently on the shared storage system using U-Shape.

ified deadlines. Our measurements show that the execution
times of ior-mpi-io and mpi-io-test are 110s and 105s, re-
spectively, essentially meeting the users’ QoS goals.

In the above experiment, with the required QoS goals, or
2X execution times, we show that U-Shape can adhere to
the resource allocation planned for the QoS goals. As the
required execution times were chosen within an interval in
which U-Shape makes a difference in meeting QoS goals, we
also experimented with requirements on the execution times
outside that interval. When the required times are 1.5X the
respective programs’ dedicated execution times, as shown in
Table 1, both the system using the average throughput and
U-Shape are unable to meet the deadlines because of the
limited capacity of the storage system. Even so, the exe-
cution times of ior-mpi-io and mpi-io-test with U-Shape are
7% and 31% less than that using average throughput bounds
because of bounded resource allocation. When the required
times are 3.0X the respective programs’ dedicated execution
times, both systems can meet the QoS goals. In this exper-
iment also we ran a background program performing data
backup to opportunistically absorb surplus [/O capacity.

Meet? Times Meet?

(U-Shape)

Times
(Average)

QoS Times
(Required)

1.5X | 83s/80s | 121s/150s | No | 112s/104s | No

2.0X | 110s/100s | 124s/147s | No | 110s/105s | Yes

3.0X | 160s/150s | 164s/154s | Yes | 162s/156s | Yes

Table 1: A comparison of actual execution times of
benchmarks ior-mpi-io and mpi-io-test (shown in each
cell in that order) under the scheduling scheme us-
ing average throughput and U-Shape with different
required execution times. A QoS goal is considered
to be met when the execution time is less than 5%
larger than the corresponding required time.

4.4 Storage System Efficiency

Another design goal of U-Shape that is as important as
QoS assurance is the storage system’s efficiency. To eval-
uate the impact of adaptation of resource partitioning by

U-Shape on the efficiency of the storage system, we run mul-
tiple instances of BTIO. For BTIO, I/O times and compute
times are interleaved during most of program’s execution
and the I/O access pattern is random. With dedicated 1/0,
compute time accounts for approximately 67% of its exe-
cution time of 223s. We assume that each BT/O instance
allows 4.5X execution slowdown, that is, the end-users’ re-
quired execution time is 1004s. Because the efficiency of data
access is largely determined by seek distances, we vary the
on-disk distance between each two contiguous files accessed
by the different instances. We use distances of 0GB, 10GB,
20GB, and 30GB. To obtain insight into how U-Shape’s
scheduling policy responds to accesses of differing locality,
we keep mpi-io-test, which issues sequential requests and de-
mands a constant 80MB/s throughput, running in the back-
ground. Table 2 show the numbers of BTIO instances the
storage system can accommodate without violating the QoS
goals, as a function of file distance, using average throughput
and U-Shape to specify QoS goals.

File Distances | 0GB | 10GB | 20GB | 30GB
Average 2 1 1 1
U-Shape 4 3 2 2

Table 2: A comparison of the largest number of
BTIO instances the storage system can accommo-
date without QoS violation.

U-Shape can service more instances of BT/O than the sys-
tem with average throughput bounds, a direct consequence
of U-Shape’s maintaining windows’ efficiency. When file dis-
tance is 0GB, most of the seek times for disk heads to serve
requests from different instances are smaller than the wait
times for the arrival of next request from the same instance.
The wait time of an instance is determined by its reuse dis-
tance, the time gap between two successive requests from
the instance to the storage. Since BTIO’s requests are in-
terleaved with many small compute times, its reuse distances
are large compared with the average seek times, as shown in
Figure 5. Accordingly U-Shape groups the BTIO instances
in one scheduling window and serves them together to allow



the disks to remain busy. However, mpi-io-test, which con-
stantly issues sequential requests, warrants a dedicated win-
dow, which U-Shape provides. Thus the system resources
can be efficiently used, improving the entire storage sys-
tem’s throughput and allowing more instances to achieve
their QoS goals. Figure 6 shows the aggregate throughput of
four concurrently running BTIO instances. The throughput
achieved by U-Shape is much higher-—by 3-7 times—than
that using average throughput bounds. The throughput of
mpi-io-lest is maintained at 80MB/s in both systems since
both provide dedicated service windows to it.
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Figure 5: The ratios of average seek time and reuse
distance for each epoch with file distances of 0GB
and 30GB for the first 1000 epochs.
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Figure 6: Aggregate throughput of BTI/O instances
in the system using U-Shape and using average
throughput bounds, for the first 250 seconds.

When we increase the file distance from 0GB to 30GB, the
ratios of seek time and reuse distance become much larger
because the seek times between files accessed by different
BTIO instances increase significantly (Figure 5). The over-
head of disk seek times outweighs the cost of disk waiting.
After evaluating the locality change, U-Shape serves the re-
quests from different instances in different dedicated win-
dows for greater I/O efficiency.

4.5 Performance of an Overloaded System

To show how U-Shape can flexibly allocate resources in
an overloaded system to meet QoS goals, we run S3aSim
together with mpi-io-test. The execution time of S3aSim is
19.8s when it runs exclusively on the storage system. The
QoS goal is 79.2s, a 4X slowdown. The QoS goal for mpi-
io-test is 141s, or an average throughput of 78MB/s. To
maintain the 78MB/s throughput for mpi-io-test, about 50%
of the I/O capacity must be allocated. Running it together
with S3aSim overloads the system. When the resource short-
age is evenly shared by the two programs, the execution time
of the S3aSim program is 151s, almost double the required
QoS goal, and mpi-io-test’s execution time is 143s, barely
meeting its deadline, as shown in Figure 7(a). Figure 7(b)
shows the I/O throughput of the two programs when U-
shape is applied. When U-Shape detects the shortage, it
forces mpi-io-test to have a more greatly reduced service win-
dow than S3aSim because mpi-io-test has a deadline much
later than S3aSim. Specifically, the ratio of service window
times between S3aSim and mpi-io-test is 3.5 from 0.6s to
86.0s in the execution. The significant reduction of mpi-io-
test’s throughput makes it possible for S3aSim to meet its
deadline. The performance losses are recorded for both pro-
grams. As soon as S3aSim is completed, U-shape allocates
all I/O capacity to mpi-io-test. By scheduling in this way,
mpi-io-test misses its deadline by only 9%, S8aSim misses
its deadline by only 3%, on the overloaded system.

4.6 Overhead Analysis

While U-Shape demonstrates clear advantages in various
settings, it incurs both offline and online overheads. Specif-
ically, the offline overhead includes the time for profiling
runs of programs and for model training. Though the of-
fline overhead may not be visible to end users it is desirable
that it be of nominal magnitude. The online overhead in-
cludes two major components: 1) the time for deriving in-
stantaneous throughput; and, 2) the time for determining
scheduling window size. We evaluate both of these.

4.6.1 Offline Overhead

For each benchmark we train a CART model using both
a synthetic trace of 20,000 I/O requests, and a randomly
selected segment of 10,000 I/O requests from the trace ob-
tained from the profiling run of the benchmark, thus cus-
tomizing the model to the benchmark while retaining the
generality informed by the synthetic trace. Table 3 shows
that the training time for each of the four benchmarks is
small.

mpi-io-test | tor-mpi-io | btio | S3aSim
6.6s 8.0s 8.4s 7.6s

Table 3: Model training times for the benchmarks.

4.6.2 Online Overhead

[n the investigation of the impact of online overhead we do
not directly measure the overhead times because they can be
overlapped with real I/O service times or programs’ compute
times. [nstead we measure the increase in the programs’ exe-
cution times due to U-Shape’s overhead. To accomplish this
we need to nullify U-Shape’s other effects on execution time.
We choose mpi-io-test as representative, with and without
using U-Shape. We set its required execution time equal to
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io-test and S3%aSim: (a) Throughput when resource
shortage is evenly shared by the two programs; (b)
Throughput when U-Shape is used.

the time of its dedicated run. Since epoch size determines
the overhead with the CART model for deriving throughput
bounds, we measure the execution time of the program with
epoch sizes of 50ms, 100ms, and 150ms. As shown in Fig-
ure 8, the online overhead of U-Shape accounts for less than
5% of the program execution time with a 50ms epoch. With
larger epoch sizes, the overhead becomes smaller. To make
a tradeoff between the overhead and responsiveness in the
derivation of throughput bound, we use a 100ms epoch in
practice. Note that these measured overheads are exposed
in the dedicated runs of the programs with U-Shape. In
practice U-Shape could be turned off in this scenario.

5. RELATED WORK

Sharing of a cluster of data servers in a high-performance
computing installation is common practice, and storage is
also increasingly consolidated in other high-end and high-
capacity computing environments for economies of scale in
system, maintenance, and energy costs. While shared stor-
age service provides significant benefits, QoS assurance for
its users is one of the more critical issues to be addressed
and much research work has been focusing on it, including
QoS specification, characterization of storage system perfor-
mance, and QoS-aware resource partitioning and scheduling.
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Figure 8: Execution times of mpi-io-lest with and
without U-Shape overhead for different epoch sizes.

5.1 Performance Interfaces

The commonly used metrics for users to present their
QoS requirements to storage services are throughput and
response time of data access [11, 8]. A serious problem
with the use of these simplistic parameters is that service
quality can be significantly affected by the characteristics
of I/O workloads. To address this, researchers have devel-
oped I/0 workload models to derive performance bounds [6,
27, 29, 30]. Because a workload’s characteristics can vary
widely, constraints have been introduced to guarantee QoS
only when the constraints are met. For example, in pClock
scheduling the response time of a request is bounded omly
if the request burstiness (the number of pending requests)
and request arrival rate are less than pre-set thresholds [8].
However, the relationship between the imposed constraints
and the guaranteed performance may not reflect the perfor-
mance expectation from users. To provide flexibility, Fa-
cade, a high-end storage system prototype, allows increased
response times when I/O request arrival rate increases [18].
However, it is a challenge for users to determine a series of
performance bounds, each associated with one I/O rate.

Spatial locality is a unique property of the storage sys-
tem and even harder than I/O rate to encode in a perfor-
mance interface. As such, performance bounds are speci-
fied without regard to sequential and random access in most
systems [2, 5, 8, 9, 10, 11, 16, 18, 35|. In addition, applica-
tions may be required to explicitly indicate their [/O access
pattern [24]. An exception is the Argon storage server in
which a client requests a fixed fraction of a server’s capac-
ity, which is equivalent to setting performance bounds that
are aware of spatial locality [32|. This, however, requires
users to know the server’s total capacity and its relation to
application performance. In contrast, U-Shape frees users
from the burden of specifying their QoS requirements with
specific I/O behaviors and I/O performance goals, or having
specific knowledge of server capacity: the machine learning
technique automatically derives I/O performance goals.

5.2 Characterization of Storage System
Performance

For estimating the required throughput for various access
patterns, storage systems’ performance behaviors must be



well characterized. For this purpose there are three can-
didate methods, namely, analytic system modeling, simula-
tion, and black-box modeling. Because of their nonlinear,
state-dependent behavior, building accurate analytic mod-
els for disk drives is a non-trivial task [25, 33]. For a storage
system consisting of multiple data servers, each with one or
more disks, this modeling method seems infeasible.

Construction of a disk simulator modeling performance-
relevant components of a disk, such as device drivers, buses,
controllers, and adapters, is another method for performance
estimation [7]. However, it requires human expertise on the
targeted device or system, which may include proprietary
configurations and use of algorithms and optimizations that
are not disclosed.

In contrast, the so-called black box method can serve as
a more general-purpose approach. It treats the system as
a black box without assuming the knowledge of its internal
components or algorithms. In this approach the training
data set, containing the quantified description of character-
istics of input requests and their corresponding responses
from the system, is recorded [1, 22|, and fed into a statistical
model [17} or a machine learning model [31, 19]. To predict a
response to an input, some form of interpolation is required.
It is recognized that the accuracy of the method relies on the
appropriate selection of training set data and the design of
feature vectors (the set of input characteristics) [17, 31]. In
U-Shape we use the machine-learning method to model the
shared storage system by selecting relevant training data.
In addition, the effectiveness of the model in U-Shape relies
only on an aggregate performance metric, or the throughput
in a time epoch, rather than latencies of individual requests.
This makes the method especially useful in our work.

5.3 QoS-Aware Resource Partitioning

Many QoS-aware resource partitioning policies enforce disk
bandwidth isolation and guarantee 1/O service quality by
tagging requests from different request streams with dead-
lines (or finish times) calculated from users-specified perfor-
mance bounds and estimated service times [11, 23]. While
service time is heavily dependent on spatial locality in disk-
based storage systems, the locality is usually not included in
the performance interface and random access is usually as-
sumed. However, this can cause resource over-provisioning.
To fix this problem, Stonehenge allows additional streams
to keep joining the system until the system is found to
be overloaded [11]. They are forced to use this trial-and-
error method because the performance interface does not
contain information on spatial locality and planning of re-
source provisioning is difficult. In contrast, applications’
resource consumption is implicitly contained in the model-
derived I/O performance interface in the U-Shape scheme
to enable well-planned scheduling. The resource consump-
tion is also contained in Argon by setting explicit quota of
disk service time for each stream [32]. However, in a shared
environment it is a challenge to know to which stream a ser-
vice time should be attributed [23]. In the implementation
of derived throughputs, U-Shape leverages the mechanism
proposed by IOrchestrator [34], which enables efficient /O
resource allocation in a storage system consisting of multiple
data servers.

6. CONCLUSIONS

We have proposed a scheme, U-Shape, to support end-

user-specified QoS requirements in the form of execution
times for programs using shared storage systems. By not
requiring QoS requirements in the form of throughput and
latency bounds, U-Shape provides a highly convenient per-
formance interface and automatically derives corresponding
1/0O requirements. By using a machine learning technique,
U-Shape can ensure that a program receives sufficient ser-
vice to meet its QoS requirements with bounded resource de-
mands. As such U-Shape does not need to explicitly consider
the dynamics of the service of I/O requests, such as spa-
tial locality and arrival rate, that are difficult to accurately
quantify. Our experimental evaluation using representative
benchmarks and scenarios shows that U-Shape can faithfully
and efficiently meet realistic QoS requirements specified by
end users, and provides strong performance isolation. U-
Shape maintains high overall system efficiency even when
the system is overloaded, and imposes minimal run-time
overhead.
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