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1 Project Overview

The purpose of this grant was to develop the theory and practice of high-performance databases for massive streamed
datasets. Over the last three years, we have developed fast indexing technology, that is, technology for rapidly ingesting
data and storing that data so that it can be efficiently queried and analyzed.

Streamed datasets include:

Simulation querying: Many high-end simulations produce vast quantities of data, and that data needs to be stored
and queried.

Astronomical imaging: The entire sky may be imaged on a regular basis and later the images from a particular region
in the picture are compared, for example, to monitor supernovae.

Reconnaissance monitoring: A set of regions may be imaged daily, and later some regions are compared over time,
for example, to monitor enemy movement.

Network monitoring: A communications network is instrumented, with each router providing information about
network flows and traffic, and then information about traffic from a particular source is examined.

For data-analysis applications involving high-bandwidth data streams, HPC practitioners typically must make a
difficult choice between employing a database or a file system for storing their persistent data. Databases often perform
operations slowly, partially because of the extra weight from the SLQ from end and from the transactional support,
leading programmers to choose file systems instead. On the other hand, file systems provide poor data-consistency
guarantees, which are increasingly important for large data sets.

However, both file systems and databases typically provide poor performance when they are indexing microdata.
Microdata means small objects, much smaller than the natural block size of storage devices. Indexing means ingesting
objects and ordering them on disk so that they can be queried efficiently. For example, one can ingest mouse-click data
roughly in temporal order, but then index the clicks first ordered by user and website location and by then time; then a
query to find all mouse clicks on a particularly website from users, say, in Long Island is efficient. As another example,
one can ingest astronomical data in rough temporal order but index the data to optimize queries about differences in
particular starts or regions of sky over time.

During this project we developed the technology so that high-bandwidth data streams can be indexed and queried
efficiently. Our technology has been proven to work data sets composed of tens of billions of rows when the data
streams arrives at over 40,000 rows per second. We achieved these numbers even on a single disk driven by two cores.
Our work comprised (1) new write-optimized data structures with better asymptotic complexity than traditional struc-
tures, (2) implementation, and (3) benchmarking. We furthermore developed a prototype of TokuFS, a middleware
layer that can handle microdata I/O packaged up in an MPI-IO abstraction.

Massively Parallel Streaming B-trees

During this grant we built a parallel and concurrent streaming B-tree or Fractal Tree. We developed the technology
to transform the streaming B-tree into a highly parallel, concurrent, scalable structure of interest to users of high-
end clusters. We showed how such a data structure can be used to build a high-performance database capable of



supporting data sets containing tens or hundreds of billions of pieces of microdata in which, at each node of a cluster,
tens or hundreds of thousands of new pieces of data arrive per second.

The streaming B-tree is a write-optimized alternative to the B-tree that was developed by the PIs Bender, Farach-
Colton, and Kuszmaul in prior work [4]. The asymptotics of the streaming B-tree outstrip those of the B-tree: a
streaming B-tree incurs O((logN)/B'~#) or even O((logN)/B) disk 1/Os per insert, whereas a B-tree incurs O(logg N)
disk I/Os in the worst-case. These asymptotics translate to two order-of-magnitude improvements in insertion perfor-
mance in a streaming B-tree compared to a traditional B-tree, with no asymptotic loss in point-query performance.
The streaming B-tree as several nice additional features, for example, it is “cache-oblivious.” For details about what
this means, see [2,4, 8].

Before this project began, the streaming B-tree was fundamentally a serial data structures, not yet ready to be used
for HPC applications. It did not scale with the number of cores, clients, or disks. It did not support recovery from
failures, and did not have safety properties that one should expect for secure storage of important data.

TokuDB

Many of the innovations from this project have been incorporated into TokuDB [16], the transaction-safe streaming
B-tree being developed and commercialized at Tokutek. TokuDB can perform over 40,000-100,000 high-entropy
insertions/deletions per second on a single disk.

In contrast Oracle Berkeley DB [9] or InnoDB [14] are transaction-safe B-trees, which can perform only several
hundred insertions/deletions per second on a single disk when data is random and data sets are much larger than main
memory.

Currently TokuDB can scale to hundreds of clients, up to 50 cores, and up to 30 disks. (Our most scalable version is
not yet GA.) TokuDB can ingest data sets comprising tens to hundreds of billions of rows without hitting performance
cliffs. TokuDB has additional features that we have been able to develop thanks to the parallel and concurrency
exposed as part of this project, notably:

e ACID semantics

Multi-threaded bulk loader

Online schema changes (hot-column addition, hot indexing)

Scalable lock management

Support for hundreds of clients

e Concurrent, multithreaded updates.

TokuDB has a Berkeley DB API, enabling it to be used as a Berkeley DB-style key-value store, although with faster
performance. TokuDB also has a “handlerton” layer enabling it to work as a storage engine for MySQL. TokuDB
is currently being used in production for such applications as metadata maintenance in a cloud file system, log file
analysis, index-rich OLTP, and OLAP.

One should think about TokuDB as a data structure that ingests almost as quickly as if the data were simply logged,
but supports range query and point-query performance as efficiently as if the data were stored in a B-tree.

We also developed TokuFS, a middleware layer that uses TokuDB’s parallel streaming B-tree technology to provide
an MPI-IO layer.

Overview

In the rest of this report, we describe some of the outcomes from this project. In Section 2 we give a simple serial
streaming B-tree. It has impressive asymptotics but significant limitations, including serial bottlenecks, jittery perfor-
mance, no ACID guarantees, etc. However, as we established, this data structure can be transformed into something of
use to HEC applications. In Section 3 we highlight some outcomes from our project. Section 3.1 describes the iiBench
Benchmark. Section 3.2 shows how the streaming B-tree performs on this benchmark, both for rotational disks and



SSDs. Section 3.3 describes the search-insert asymmetry inherent in write-optimized structures such as streaming
B-trees. This search-insert asymmetry has huge advantages: fast insertions are a currency enabling fast queries. It also
includes disadvantages: many insertion operations in traditional B-tree-based storage systems have “hidden” searches
(cryptosearches) coupled with insertions, and these cryptosearches may throttle insertion performance. Section 3.4
describes a messaging mechanism we devised (“upsert” mechanism) to eradicate many common cryptosearches. Sec-
tion 3.5 gives new data structures we developed for answering approximate membership queries. The most well known
previous structure is the Bloom filter, which does not perform well when the data structure is stored on an SSD rather
than in RAM. Section 3.6 describes how we use the upsert message mechanism from Section 3.4 to develop a fast
algorithm for hot column addition. Section 3.7 describes our bulk loader for loading stored data sets very rapidly.
Sections 3.8 and 3.9 describe some of the locking and concurrency control strategies we have developed for increasing
the parallelism in our streaming B-tree. Section 3.10 highlights one such concurrency control mechanism that we
implemented, multi-version concurrency control. Section 3.11 describes some of the I/O optimizations we have done
for improving multiclient performance. Section 3.12 describes TokuFS.

2 Serial Streaming B-tree

In this section we present a serial streaming B-tree. We explain some of the limitations of the basic structure, which
we addressed in the course of our project.

Basic Streaming B-tree
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Figure 1: A simplified streaming B-tree.

Figures 1 and 2 show a streaming B-tree comprising arrays of exponentially increasing size embedded in a large
array. Within each array, elements are sorted, but there is no set relationship between elements in two separate arrays.
Each array is either completely full or completely empty. Whether the array is full or empty depends on the bit
representation of N. Thus, in Figure 1 there are ten elements. The bit representation of ten is 1010, meaning that
exactly the fourth and second arrays are full. A newly inserted value is added into the smallest array in the data
structure. If we try to add elements to an array that is already full, we flush the elements in that array into the next
larger array. Thus, in the second and third line in Figure 2, element 12 is being inserted, but element 17 is already in
position. So 12 and 17 are merged into the second array. In the penultimate line, element 26 is being inserted, but the
first three arrays are already full, so all elements are merged into the fourth array.

This data structure can be analyzed as follows. The cost to flush an array of size X is O(X/B) disk transfers,
leading to an amortized cost of O(1/B) per element. The maximum number of times that an element can be flushed is
O(logN) leading to a total amortized insert cost of O((logN)/B). Searching requires a binary search at each level for
a total cost of O(log(N/B) +10g(N/B) — 1 +1og(N/B) —2+...+2+1) = O(log?(N/B)). This cost is far better than
a table scan, but it is not as good as a B-tree or a real streaming B-tree index.

Figure 3 shows how to achieve a search cost of O((logN)/B). Each array also includes some elements from the
next larger array, and maintains vertical pointers between these elements. The pointers reduce the search cost per level
to O(1) for a total search cost of O(logN). To reduce the search cost to O(logg N), use arrays that are exponentially
increasing by an Q(1) factor, reducing the insertion cost slightly to O((logN)/B'~¢), for & < 1, which is still close to
disk bandwidth.

This streaming B-tree is cache-oblivious [8]. By cache-oblivious, we mean that the data structure is platform-
independent or memory-hierarchy universal. Remarkably, the streaming B-tree simultaneously achieves approxi-
mately optimal I/O performance for all memory sizes and block sizes even though the data structure is not parameter-
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Figure 2: A sequence of states showing how a streaming B-tree structure evolves when there are insertions.
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Figure 3: A simplified streaming B-tree yielding a better search performance via redundant storage of elements and
pointers between levels.

ized by the value of B. The theory of cache-obliviousness was proposed by principal investigator Leiserson [8] and
the first cache-oblivious data structures were proposed by principal investigators Bender and Farach-Colton [1].

Issues With Serial Streaming B-tree

This simplified data structure has limitations (e.g., significant jitter on insertions, same-size key-value pairs, no com-
pression, no ACID, etc).

However, the main issue, addressed in this DOE project, is that the data structure is fundamentally serial, and our
work was to build a highly parallel and scalable streaming B-tree.

3 Outcomes

In section summarize some of the work that was supported as part of this grant.

3.1 Indexed Insertion Benchmark (iiBench)

In addition to the well-recognized TPC benchmarks [7], several benchmarks such as the Star Schema Benchmark [13],
sysbench [10], and the DBT series [17], have been proposed and implemented to measure database performance. These
benchmarks simulate and measure performance for workloads and data characteristics similar to those measured by
the TPC benchmarks.



We developed the iiBench benchmark [11] to measure performance for a use case that occurs commonly in pro-
duction applications requiring fast indexing of high-bandwidth data. iiBench measures the rate at which a database can
insert new rows while maintaining several secondary indexes, a pattern of usage required in always-on applications
that:

e require fast query performance and hence require indexes,
e have high data insert rates,

e cannot wait for offline batch processing and hence require the indexes be maintained as data comes in.

We developed iiBench as an open-source benchmark, allowing others to freely use it, extend it, and contribute their
changes back. We originally unveiled the benchmark in the context of a challenge issued at the OpenSQL camp. Since
then, iiBench has been downloaded and used many times.

Tokutek implemented the original iiBench in C++, and Callaghan ported it to a Python version, and extended it
with additional query benchmarking capabilities [11]. He contributed his enhanced version back to the community
via Launchpad. We have further enhanced the Python version of iiBench and have contributed our changes back to
Callaghan’s Launchpad project. Going forward, we will continue to contribute to Callaghan’s version, and we do not
expect to maintain the C++ version of iiBench.

We have used variations of this benchmark over the past couple of years to stress different aspects of a streaming
database: (1) We created a version that measures performance while at the same time adding indexes. This measures
the effectiveness of hot indexing. (2) We improved the performance of iiBench so that the test overhead was not
impacting measurement results. (3) We created a stripped down version to measure update performance. (4) We added
the ability to create Zipfian distributions of all of elements that were queried. This last did not yield substantially
different results than random queries. However, we believe that in the future, with improved caching strategies in
TokuDB, it might.

3.2 Streaming B-tree Performance

In this subsection we present some performance graphs for TokuDB. Figure 4 shows performance graphs for the
iiBench benchmark [11]. These measurements were made by Percona [15], a MySQL performance consulting firm
(and one of the foremost authorities on MySQL performance). We found that we could not get the same perfor-
mance out of the InnoDB B-tree that Percona could, and we wanted to measure InnoDB’s performance when properly
configured. TokuDB required no configuration.

The iiBench benchmark trickle-loads a billion rows while maintaining three high-entropy multicolumn secondary
indexes. Figure 4(a) shows insertions only. For the last million rows InnoDB inserts 876 rows/s, whereas TokuDB
inserts 16,507 rows/s (19x faster).

In the deletion benchmark, first the database is filled using only insertions. Once the database is has 250,000 rows
in it, then the benchmark alternates between insertions and deletions, acting as a FIFO. For InnoDB, the terminal
insertion rate is 204 rows/s, and for TokuDB it is 6,496 rows/s (32x faster).

For this study the system ran Linux CentOS 5.1 on a two Socket, Quad Core, Xeon 3.16 GHz X5460, 16GB Main
Memory, and a six-disk RAID 0 system comprising 146GB, 10,000 RPM SAS Drives.

TokuDB is “only” 19x and 32x faster because it is CPU bound on six disks (or even one disk). Thus, the insertion
speed on a single disk is nearly the same as that reported in the graph, and would increase with the number of disks
once there is better multithreading. We report these graphs on a RAID is because this is more indicative of the speedup
that a user would see on a typical setup.

But the promise with multithreading is over 100x. We have a proposed design that we believe will meet this
promise, but it has not yet been implemented.

Another reason why TokudB is “only” 19x and 32x faster is that InnoDB employs the in-memory insert buffer,
and therefore is already partially write-optimized. See Figure 6 for a comparison when there is no insert-buffer.

Figure 5 shows the performance of TokuDB as measured by Percona on SSDs. In this case, the it is an iiBench
insertion workload on a RAID10 (with magnetic disks), on an Intel 32GB X25-E SSD, and on a FusionlO 160GB
SSD. On the fastest SSD, InnoDB was inserting 2,287 rows/s, and TokuDB was inserting 17,382 rows/s (7.6x faster).
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Figure 4: The iiBench benchmark. (a) Insertion performance. (b) Deletion performance. In both graphs, the horizontal
axis is the cumulative number of insertions. The vertical axis is the rate of insertions for the most recent million
insertions. The blue line is a streaming B-tree, and the green line is an InnoDB B-tree. The discontinuity in (b) is
where insertions start, slowing down the insertion rate for TokuDB by about a factor of 2.5, and InnoDB by several
orders of magnitude.

Even though TokuDB is not explicitly optimized for SSDs, TokUDB is an order of magnitude faster on a single
disk than InnoDB is on a SSD. At least an additional order-of-magnitude improvement remains on the table because
TokuDB does not employ multithreading.

3.3 Cryptosearches

A streaming B-tree performs inserts/deletes orders of magnitude faster than it performs searches. We call this disparity
the search-insert asymmetry. Some of our work focused on how to take advantage of this asymmetry. Some of our
work focused on how to overcome the obstacles that this asymmetry introduces.

Search-insert asymmetry is an obstacle and an opportunity. Although the streaming B-tree is a drop-in replacement
for the B-tree, simply replacing a B-tree with a streaming B-tree in a database or file system may not translate to
performance improvements. In a typical storage system, there are many implicit, or hidden, searches (which we call
cryptosearches) associated with insertions or deletions. For example, a database may return an error when a row is
inserted with a duplicate key. In this case, to insert a row, the database must search to determine whether the key
previously exists. That search is not explicitly visible to the end user, who simply inserted data into the database.
Similarly, to create a new file in a file system, the file system first checks whether a file with that name/path already
exists, incurring an implicit search.

These searches are innocuous in a B-tree because searches are cheaper than insertions. They kill the performance
advantage in streaming B-trees, however, because searches are far more expensive than insertions. Thus, instead of



35000 a

30000

25000

TokuDB
FusionlO

W—’\,«‘W RAID10

20000

Insertion Rate

15000

T

10000

T

InnoDB
FusionlO

RAID10
0 I I s

0 5e+07 1e+08 1.5e+08
Cummulative Insertions

5000

T

Figure 5: SSD performance of TokuDB. The lower curves are InnoDB, from bottom to top, on a RAID10, on an Intel
X25-E SSD, and on a 160GB FusionlO SSD. The upper curves are TokuDB, also in the same order, from bottom to
top.

40,000 inserts per second per disk into the database or 40,000 file creates per second in the file system, there will be
only several hundred. Cryptosearches can slow the streaming B-tree down by two orders of magnitude, so that it is
only as fast as an ordinary B-tree.

Search-insert asymmetry can to solve OHPC problems, however. Since insertions run fast, rich indexes can be
maintained, making queries run faster. Insertions are a kind of currency that can be used to speed up queries.

3.4 Upsert Mechanism: How to Avoid Cryptosearches

There are many cases where, at first glance, a search (and therefore an expensive disk seek) is required to satisfy a
query. With our “upsert messaging algorithm,” many of these cases can be handled without a search. As a result,
TokuDB’s upsert algorithm enables a wide array of applications to run fast by avoiding searches, replacing them with
powerful upsert messages.

Here is an example. Consider performing an “insert on duplicate key update” on a table with a random key and a
value that is the sum of the values with the same insertion key. A B-tree based system would perform the following
steps:

(1) Search for the row with the key.

(2) If the row exists, set the new value to be the old value plus the new value.

(3) Otherwise, put a new row into the tree storing the new value.

Here is an overview of how upsert works and why the search in step (1) is avoided. The user defines a callback
function encoded in a message in the data structure. That is, rather than inserting elements into the data structure, we
insert messages with callaback functions. The message is inserted in the root, and the callback function is run once
the message makes its way to the leaves of the tree. By the time the message hits the leaves of the tree, the callback
function can determine whether the row containing the key exists (the new value is set the new value to be the old
value plus the new value) or not (the row stores the new value).

This upsert implementation has the same functionality with no required disk seeks per update. Thus, by sending
messages down the tree, many (although not all) cryptosearches can be avoided.

See Figure 6 for a comparison of TokuDB with its upsert mechanism and Berkeley DB with the standard searching
mechanism.

TokuDB currently uses the upsert algorithm for fast column addition/deletion by simply placing “broadcast” update
messages in the root of the tree; see Section 3.6. This upsert algorithm is also heavily used in our database scaleout
work; see Section 3.12.
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Figure 6: Performance on an upsert benchmark, comparing TokuDB to Berkeley DB. The benchmark is simulating
an insert on duplicate key update on a table with a random key and a value that is the sum of the values with the
same insertion key. The operation: Search for the row with a given key. if the row exists, set the new value to be the
old value plus the new value. Otherwise, just put a new row into the tree. While it looks like this algorithm requires
searches, in fact, it can be implemented via our upsert algorithm using only messages. The message algorithm is to
put an update message into the tree with the key and value. The update callback, when called, generates a new value
for the key equal to the old value and the update value. This message algorithm is useful for a write-optimized data
structure such as TokuDB, but does not help a traditional structure such as Berkeley DB. As expected, Berkeley DB
performs well while the data set fits in memory, and then the performance crashes. In contrast, TokuDB continues to
perform well.

3.5 Data Structures for Approximate Membership Queries (When Cryptosearches Cannot
be Avoided

Some cryptosearches cannot be avoided. For example, if uniqueness constraints have to be maintained, the upsert
mechanism that we developed does not help. We have published data structures to deal with this critical case [3], but
have not yet implemented something into TokuDB. We propose to do so in future work.

The trick is to use data structures that support approximate membership queries (AMQ). The classic example of
such a data structure is the Bloom filter [6]. An AMQ data structure supports the following dictionary operations on a
set of keys: insert, lookup, and optionally delete. For a key in the set, lookup returns “present.” For a key not in the
set, lookup returns “absent” with probability at least 1 — €, where € is a tunable false-positive rate. There is a tradeoff
between € and the space consumption.

We developed the Cascade Filter, which scales to SSDs, whereas the Bloom Filter exhibits poor insertion and query
performance once it is too big to fit in memory. The Cascade Filter supports over half a million insertions/deletions per
second and over 500 lookups per second on a commodity flash-based SSD. Bloom filter capabilities are important for
maintaining streamed datasets, e.g., for maintaining data sets with unique-key constraints. It is critical to scale AMQs
to larger-than-memory sizes because such a scaling dramatically extends the range of applications for which such data
structures can be used. AMQ allow relatively cheap CPU cycles to offset relatively expensive 10s and have been used



in many IO-intensive systems.

3.6 Hot Column Addition and Deletion

We showed how a streaming B-tree enables an efficient implementation hot column addition and deletion (HCAD).
The database columns are modified in parallel with subsequent insertions, deletions, and queries to the database.

Many practitioners have the experience of loading a bunch of data into a table and associated indexes, only to find
that adding some columns or removing them would be useful. The command

alter table X add column Y int default 0;

takes a long time, hours or more, during which time the table is write locked, meaning no insertions/deletions/updates
and no queries on the new column until the alter table is done.

Changing the row format in B-tree-based storage engines is a significant project, and is an obstacle in having
MySQL scale to large tables. Some commercial databases (e.g., Oracle) do optimize for fast schema changes. But,
as we explain, the problem is much cleaner with the messaging/upsert structure of a streaming B-tree (see also Sec-
tion 3.4).

Using a publicly available air-traffic data set (see, e.g., http://www.tokutek.com/air-traffic-data-hcad/)
we obtained the following results:

TokuDB:

mysgl> alter table ontime add column totalTime int default 0;
Query OK, 0 rows affected (3.33 sec)

InnoDB:

mysql> alter table ontime add column totalTime int default 0;
Query OK, 122225386 rows affected (17 hours 44 min 40.85 sec)

That is 19,000 times faster. The downtime of InnoDB is proportional to the size of the database, whereas the
downtime for TokuDB 5.0 depends on the time it takes for MySQL to close and reopen a table a time independent of
database size.

One of the important features of streaming B-trees/Fractal Trees is that they replace random I/O with sequential
I/0. The way this happens has an impact on how HCAD works.

We can think of all data in a streaming B-tree storage engine as a message. There can be messages to insert a row,
or update a row, or delete a row. Rather than delivering these messages immediately, the messages are bundled up by
common destination, and they progress towards the leaves of the streaming B-tree indexes when there are enough of
them to make the disk-head movement worthwhile. Naturally, they are applied in the right order to guarantee that the
semantics of storage engine commands are correct.

Even a query can be thought of as a message, except in the case of a query, it has to be delivered instantly, even if
that means moving the disk head. The query “sees” all the messages ahead of it, so it gets all the right answers, once
again, according to the storage engine/SQL semantics.

An HCAD command generates yet another type of message: it is a broadcast message that needs to be applied to
every row. Sticking the message into the streaming B-tree is fast.

The work of changing the rows does not happen when the HCAD message is injected. Rather, the broadcast
message makes its way down to the leaves as other messages push it along. In this process, when an HCAD message
reaches a row either because other messages push it along or because of a query, the row gets rewritten to include the
added column or exclude the delete column, as the case may be. Once the work is done to rewrite a row, the HCAD
work is done for that row. The user can choose to have this work done immediately, say by a query that touches all
rows, or lazily, as part of the normal operation of the database. Neither case involves downtime, and once the work is
done to rewrite a row, the HCAD work is done for that row.



3.7 Multithreaded Bulk Loader

We built a multithreaded bulk loader. The bulk loader is used to initialize TokuDB en masse with a pre-existing data
set, and also, importantly, to create new indexes when needed by an application.

This project accrued several advantages from the the bulk loader. First, the bulk loaded helped us to support hot
index creation, another hot schema change in the same spirit as hot column additiona. Second, bulk loading has been
a good test bed for preparing to multi-thread more complicated parts of the the system, as we describe in Section 3.8.

The bulk loader uses a parallel, multi-stage merge sort algorithm to populate a set of streaming B-trees from an
unsorted sequence of rows. the source rows can be a CSV file that contains the rows (in the case of the initial load of
a table), or another streaming B-tree (in the case of creating a new index on an existing table).

We have incorporated new parallelizing compiler technology, Cilk Arts, into TokuDB. Cilk Arts performs thread-
to-core scheduling in a provably optimal way. We expect the use of Cilk Arts to be critical as we improve the multi-
threading of the trickle loader and query engine.

We also developed some internal infrastructure to instrument the bulk loader. We found that we needed fine-grain
metrics on CPU performance in order to optimize the bulk loader. Further, it was essential to keep such metrics in
memory until runs were completed. This is a special challenge for databases, because experiments must run for a long
time in order to demonstrate the effects of out-of-memory computation.

Finally, we found that we must not only parallelize the computation, but we must pipeline the phases to keep the
cores fully loaded.

In one experiment we found a 2.1x speedup on a 2 core machine, and a 4.2x speedup on an 8 core machine. Our
old code was using approximately 2 cores, so this represents a linear speedup.

In another experiment on Amazon, we found a 8.2x speedup on Amazon Web Services cl.large node with 8 cores
while loading a table with 256 byte rows. We will be exploring performance on very high-core count machines going
forward.

3.8 Lock Management

There are two types of locking in a storage engine, such as TokuDB, concurrency control mechanisms, which control
how different clients and transactions can access shared data, and lock management, which control how the underlying
threads of the data structure access the shared data/nodes. Here we talk about our work in both these areas.

First we discuss lock management. When this project began, much of the complexity of the streaming B-tree
algorithms was protected by a global lock. Our path has been to introduce multithreading gradually by protecting
a decreasing fraction of the system with this lock. We first implemented multithreading for limited pieces, such as
compression/decompression/deserialization, and then for restricted components, such as the bulk loader. Next we
came up with a design for holding the global lock only for some operations, but not for slow operations such as I/O.
Currently we have an implementation that does fine grained locking for writes, but still holds a global lock at times for
reads. The next stage of the work (currently being designed) is to perform this fine-grained locking for reads. Even
with this global lock, we scale to many hundreds clients.

We emphasize that the serial streaming B-tree (see Section 2) has bottlenecks absent in the traditional B-tree. For
example, in this serial structure, writes modify the root of the structure. If there are many concurrent threads or clients
performing insertions/deletions, then there is contention to modify the root of the tree. In contrast, in a B-tree, most
writes do not modify the root so there is no significant contention.

3.9 Concurrency Control

Our development strategy for concurrency control has been to incrementally increase the complexity of our concur-
rency control mechanisms. We began by supporting pessimistic locking. Then we introduced mechanisms such as
read committed and read uncommitted. We introduced a deadlock detector for TokuDB. We also introduced full-on
Multiversion Concurrency Control.
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3.10 Multi-version Concurrency Control

Our rich messaging infrastructure allows us to implement transactions. Within our transactional system, we have
MVCC, which allows queries without holding any locks on rows read. Holding locks on read rows is problematic
because the locks are on ranges and not individual rows. So, if a query wants to find all the rows where the key is
between 0 and 100, no other thread may write a key to the database between 0 and 100 while the query runs. This
limits concurrency. The larger the ranges, the more impact on concurrency.

With MVCC, where each transaction sees its own “snapshot” of the dictionary, locking is not necessary. Values that
exist when a currently live transaction begins are ensured to stay available throughout the lifetime of the transaction.
As a result, any value read by a live transaction is guaranteed to be the value that existed when the transaction began.
As aresult, read transactions need not grab range locks to protect the integrity of the data they read, because the system
will know to keep a copy available throughout the lifetime of the read transaction. With the requirement to grab row
locks gone, the system becomes more concurrent because there are fewer actions to synchronize.

3.11 1I/O Optimizations

I/0O bottlenecks serialize computations. It is therefore critical that we reduce I/O as much as possible. We added
ACID transactions to TokuDB, and we therefore have increased the I/O load through logging of transactions. We have
invested considerable work in optimizing the logging to decrease the I/O load.

We have also worked on optimizations around commits on multiple clients. In theory, each commit requires an
fsync, and therefore a disk-head movement. When many clients are committing at the same time, it is possible to
bundle the commits and fsync them as a group. This is called a group commit, and we have found that it improves the
transactional rate in such cases by an order of magnitude.

Finally, we have found that in many cases, included when testing TPCC multi-client benchmarks, that performance
oscillates. On further examination, we found that the cause of the oscillations is that queries can sometimes request
pages that are being compressed and further processed for writing to disk. We have a design document for imple-
menting a block-cloning optimization which should substantially improve the performance of TokuDB on TPCC and
related benchmarks.

3.12 Scaleout: TokuFS

Since most HPC practitioners use file systems rather than databases for their persistent storage, we worked on demon-
strating streaming B-trees to implement what looks like a file system. Although we believe that databases can offer
enough performance to meet the needs of the HPC community, we realize that most MPI code is written with a file
system in mind. This section first describes TokuFS 0.5, a middleware layer we developed that provides MPI-1O ac-
cess to a streaming B-tree. Then this section shows that TokuFS can provide performance gains for some workloads
on which many other HPC file systems perform badly. N Although TokuFS 0.5 is not a full file system (its limitations
will be outlined below), but TokuFS 0.5 does illustrate the kinds of performance gains that can be achieved using a
file-system programming interface.

File systems have traditionally been implemented using a B-tree index (or its algorithmic equivalent), which per-
forms well for applications performing large aligned sequential I/O. A B-tree writes data into its final location imme-
diately when any kind of update or write occurs, which means writes with good locality require few disk I/Os. The
downside of B-trees appears in the opposite scenario, in which writes have poor locality and thus require many disk
I/Os. In this situation one will see slow writes, because B-trees perform badly on microdata, often combined with slow
reads, because B-trees are prone to fragmentation. Here we compare two approaches to improving the write perfor-
mance: PLFS [5], and TokuFS. We found that PLFS can write microdata at high speed but its read performance is slow
because of a kind of fragmentation, whereas TokuFS performs well on microdata reads and writes and is fragmentation
free.
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PLFS

PLFS [5] was developed to address the microdata write problem. PLFS is a write-optimized middleware layer that
sits on a native file system (we used XFS for our experiments). PLFS was designed to facilitate parallel writes to
shared files. When N processes write to a single logical file, PLFS actually writes the data to N different data files
(each process writes to its own file). PLFS maintains a log file for each process containing offset-timestamp pairs. All
writes to the log file are appended to the end of the file. To write a block using PLFS, a process appends the data to
the process’s data file, and appends the offset and timestamp to its log file. To read a file, the PLFS library aggregates
the N log files into a single global offset lookup table, which maps every logical offset to the file and offset where the
actual data is stored. Thus, PLFS can be thought of as using a non-clustered B-tree index over offset-data pairs.

Theoretically, non-clustered B-tree indexes have clear sweet spots (and are used for example in some databases,
such as MyISAM), but their performance outside of their sweet spots falls off sharply. For example, they perform
well when the read order matches the write order, but reading out of order will require random, rather than sequential,
access to the log file. And if the index does not fit in memory, then random writes will be induced during data ingestion.

We measured PLFS and found that those theoretical predictions based on data structures considerations match
the actual performance of PLFS. In one experiment a single process wrote 20GB of data using 575-byte records, on
a machine with 16GB and then read them back. For both sequential and random insertions PLFS inserted them at
48MB/s (the performance was the same since the index was in main memory). For reads, however, the non-clustered
nature of the indexes showed a big difference. PLFS required 90 seconds to reorganize the index before any data
could be accessed, and then for sequentially-written data, sequential reads achieved 27MB/s. Reads of randomly-
written data, however, performed only 0.07MB/s, corresponding to 122 blocks per second. PLFS makes random
writes reasonably fast, but subsequent sequential reads become very slow (which is also what happens for other log-
structured file systems).

By choosing an append-to-file structure for the data, which is to say a non-clustering B-tree index, the write speed
can be increased but at the expense of reads. If we had chosen smaller read/write block sizes, the read performance
would have dropped off linearly, since our experiments show that the disk access time is the bottleneck in our tests.

TokuFS

TokuFS is middleware that implements virtual, user-space file system. The TokuFS library functionality includes the
following operations:

e mount (local_path): attempt to mount tokufs at the given local path

e unmount () : unmount tokufs

e open (&toku_fd, tokufs_path): open a file in the TokuFS namespace
e close (toku_fd): close an open file

e read_at (toku_fd, buf, count, offset): read ata given offset

e write_at (toku-fd, buf, count, offset): write at a given offset

TokuFS requires an existing underlying file system for storage of its streaming B-tree data structures. The mount ()
and unmount () functions allow an application to specify where on the local file system TokuFS should keep its data.
In this way, TokuFS is a layered file system, where the top layer is a TokuFS namespace implemented with a streaming
B-tree, and the bottom layer is a local namespace implemented in a traditional file system.

TokuFS is built on top of TokuDB, an implementation of key value storage using streaming B-trees. TokuFS
views files as a collection of blocks, each numbered incrementally from 0. These block numbers are used as keys into
TokuDB, where the value is a block of bytes to hold the data. For simplicity, there exists a single table for each file.

The TokuFS middleware takes those operations, and combined with a variation of ADIO, offers an MPI-IO inter-
face.

We ran the same experiment against TokuFS that we ran against PLFS. Although TokuFS is CPU bound, it ingested
data written serially at 35MB/s and read the data at 32MB/s. Randomly written data data was written at 4.8MB/s, and
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was read at 20MB/s. Since disk utilization was around 50% during writes for TokuFS, we believe that further multicore

parallelization could double the rate of insertions.

Sequential Writes

Sequential Reads

Random Writes

Random Reads

PLFS

48MB/s

27MB/s

48MB/s

0.07MB/s

TokuFS

35MB/s

35MB/s

4.8MB/s

20 MB/s

In summary, under small random writes with a single reader and writer, TokuFS was 10x slower on writes than a
logging system (with a potential of become 5x slower after further optimization), whereas it was 286x faster on reads.

As expected, if we replace Fractal Trees with Berkeley DB [9], a clustered B-tree implementation, the random
write speed drops to well under 0.1MB/s, which is consistent with a random I/O per insertion.

N-to-1 Read/Writes.

A more typical scale-out situation is one in which N readers and writes are writing to a single logical file. Since it is
not uncommon in MPI applications for there to be more processors than storage nodes, we consider here experiments
involving a single disk and 8 read/write threads.

This workload was modeled on an N-to-1 parallel checkpoint in MPI-IO. This workload is problematic for parallel
file systems because small writes occurring in parallel on a shared file block are serialized due to file system locking
mechanisms. Typically, the locking granularity is at the block level, and if blocks are larger than the writes, the number
of writes that fit into a block cannot occur in parallel.

One solution is to transform N processes writing to one logical file into N processes writing to N physical files,
therefore removing all lock contention, since such workloads typically have no shared regions among writers. PLFS
is based on a such a no-sharing, no-locking, no-inadvertent serialization solution.

However, as noted above, even PLFS suffers for reads and writes of microdata. Thus, when PLFS is used on
microdata, it is often used in special cases where each process writes out monotonically increasing offsets and reads it
back in the same way.

We created an MPI-IO interface for TokuFS using ADIO [12]. The ADIO interface allows storage systems such
as TokuFsS to be used in MPI-IO applications transparently. All these applications need to do is refer to files with the
prefix tokufs:, and link then TokuFS library is used to read and write the file data.

MPI-IO is used to coordinate the IO among parallel processes for high performance. Since TokuDB environments
and dictionaries are only accessible to one process at a time, the ADIO implementation represents files as the union
of each process share in the underlying TokuFS file. The share of a certain pid P for file F is defined as all of the data
written to file F by processes previously opening the file as pid P. Multiple processes writing to the same logical region
of file F (and thus different shares) produces undefined behavior. When a process wants to open the share for pid P of
file F, the open call looks like:

open (&toku_fd, F, P);

Subsequent reads will produce data only if the region read was previously written to by some process that opened
file F as pid P. In the simplest case, the reading process is the same as the writing process. To help illustrate how files
are represented in the ADIO layer for TokuFS, consider 4 processes writing non overlapping 4 byte segments to form
a 16 byte file. The following pseudo code is run by each process in parallel:

// who are we in the world of mpi? get a unique process identifer,
// which is somewhere in the range of 0..N-1 for N processes

pid = get_mpi_io_pid();

// open out.file as that pid, then write 10 bytes of stuff.
tokufs_open(&fd, "myfile", pid);

// write out our pid to the file, which is simply 4 bytes.
tokufs_write_at (fd, &pid, 4, pid * 4)

tokufs_close (fd);
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TokuFS uses a container directory to house the TokuDB environment used by each process taking part in the write
of some file. At the top level, the TokuFS mount point looks like:

/mnt/tokufs
env.0 env.l env.2 env.3
data.tokudb data.tokudb data.tokudb data.tokudb

The contents of each data.tokudb form sparse files whose union yields the logical ADIO file. Graphically:

env.0/data.tokudb

["0", null, null, null]
env.l/data.tokudb

[null, ’1’, null null]
env.2/data.tokudb

[null, null, "2’, null]
env.3/data.tokudb

[null, null, null, ’3’]
= ADIO logical "/mnt/tokufs/myfile"

[IOI’ Il!’ 121’ 131]

We summarize the performance numbers in the following table:

Writes Reads
TokuFS | 63.5MB/s | 47.2MB/s
PLES | 66.3MB/s | 24.9MB/s
BDBFS | 15.6MB/s | 17.6MB/s
XFS | 72.1MB/s | 15.6MB/s

4 Products and Activities

Software

The TokuFS middleware software is available under an open-source license. TokuFS can be used either with Berke-
leyDB or TokUDB for its underlying database library. Contact martin@tokutek.com to obtain the software.
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Engineering.” Symposium on Experimental Algorithms (SEA). Dortmund, Germany, 2009.

. Michael A. Bender. “Keynote: Gaps in My Education: Mailboxes, Libraries, and How to Insert into an Array.”

Annual Case Lecture, St. Louis University, St. Louis, MO, 2009.

. Michael A. Bender. “Performance of Fractal-Tree Databases.” IBM Supercomputing Professional Interest Com-

munity, IBM TJ Watson, 2009.

. Michael A. Bender. “Performance of Fractal-Tree Databases.” Scalable Approaches to High Performance and

High Productivity Computing (ScalPerf) Bertinoro, Italy, 2009.

. Michael A. Bender. “Performance of Fractal-Tree Databases.” Brookhaven National Laboratory, 2009.

. Michael A. Bender and Martin Farach-Colton. “Fractal Tree Databases: Data Structures for Fun and Profit.”

Dagstuhl Seminar on Data Structures, Wadern, Germany, 2010.

. Michael A. Bender. “Fractal Tree Databases: Concurrency Challenges.” New Topics in Distributed Algorithms.

Ecole Polytechnique Federale de Lausanne, Switzerland, 2010.

. Michael A. Bender. “Performance of Fractal Tree Databases.” St. Louis University. St. Louis, MO, 2010.

. Michael A. Bender. “Performance Guarantees for B-trees with Different-Sized Atomic Keys.” Principles of

Database Systems (PODS), Indianapolis, IN, 2010.

Michael A. Bender. “Multidimensional and String Indexes for Streaming Data.” High End Computing File
Systems and I/O Workshop (HEC FSIO), Arlington, VA, 2010.

Michael A. Bender. “Scheduling DAGs on Asynchronous Processors.” CNRS Workshop on New Challenges in
Scheduling Theory, Fréjus, France, 2010.

Michael A. Bender. “How to Index Massive Data Sets Quickly.” Hofstra University, Hempstead, NY, 2010.

Michael A. Bender. “How to Index Massive Data Sets Quickly.” Morrelly Homeland Security Center, Bethpage,
NY, 2011.

Michael A. Bender. “How Fast Indexing Makes Databases Greener.” Sustainable Energy-Efficient Data Man-
agement (SEEDM), Arlington, VA, 2011.

Michael A. Bender. “Don’t Thrash: How to Cache Your Hash on Flash.” Bertinoro Workshop on Algorithms
and Data Structures (ADS), Bertinoro, Italy, June 2011. Workshop talk.

Michael A. Bender. “Better Metadata Management Through Data Structures.” High End Computing File Sys-
tems and I/O Workshop (HEC FSIO), Arlington, VA, 2011.

Bradley C. Kuszmaul. “Covering Indexes: Orders-of-Magnitude Improvements.” Percona Performance Con-
ference at the MySQL User Conference, Santa Clara, CA, April 22, 2009.

Bradley C. Kuszmaul. Brief announcement: TeraByte TokuSampleSort sorts 1TB in 197s. SPAA 2009, Calgary,
Alberta, Canada, August 8-12, 2010. p.127-129

Bradley C. Kuszmaul. Obliviousness for High Performance. ScalPerf '09, Bertinoro, Italy, September 20-25,
2010.

Bradley C. Kuszmaul. What is a Performance Model for SSDs?. High Perforamnce Transaction Systems
(HPTS), Asilomar, CA, October 25-28, 2009.
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23.
24.

Bradley C. Kuszmaul. An Open Storage Engine APIL. OpenSQL Camp 2009, Portland, OR, November 14-15,
20009.

Bradley C. Kuszmaul. How Fractal Trees Work. OpenSQL Camp 2009, Portland, OR, November 14-15, 2009.
Bradley C. Kuszmaul. How Fractal Trees Work. MySQL User Conference, Santa Clara, CA, April 2010.
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Computing Systems, 48(2): 269-296, 2011.

M. Farach-Colton, RJ. Fernandes and MA. Mosteiro. Bootstrapping a Hop-Optimal Network in the Weak
Sensor Model. ACM TRANSACTIONS ON ALGORITHMS, vol. 5, (2009).

Bradley C. Kuszmaul. Brief Announcement: TeraByte TokuSampleSort Sorts 1TB in 197s. The 21st ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2009), Calgary, Canada, August 2009.

A. Mitrofanova, M. Farach-Colton, and B. Mishra. Efficient and Robust Prediction Algorithms for Protein
Complexes using Gomory-Hu Tree. Pacific Symposium on Biocomputing (PSB 09).
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Service

l.

Martin Farach-Colton is serving on the program committee for LATIN 2012, and served on the committee for
the String Processing and Information Retrieval (SPIRE 10), the International Conference on Parallel Processing
(ICPP 2009) and the Symposium on Combinatorial Pattern Matching (CPM 2009).

Bradley C. Kuszmaul served as Vice Chair of the Architecture Track for the International Parallel & Distributed
Processing Symposium (IPDPS 2010) and local arrangements chair for the OpenSQL Camp 2010.

. Michael A. Bender served as the program committee chair for the Symposium on Parallelism in Algorithms

and Architectures (SPAA 2009), on the programming committee for the International Parallel & Distributed
Processing Symposium (IPDPS 2010) and Principles of Distributed Computing (PODC) 2010, as Vice-chair for
the Algorithms Track of International Conference on Distributed Computing Systems (ICDCS) 2011, on the
Engineering and Applications Track of the 19th Annual European Symposium on Algorithms (ESA) 2011, on
the program committee for LATIN 2011.

Honors

1. Bradley C. Kuszmaul won 4 of the 12 challenges in the Intel 2009 Threading Challenge (http://software.

intel.com/en-us/contests/Threading-Challenge-2009/codecontest.php). Kuszmaul’s winning codes
were for string matching and finding line segment intersections, both of which are examples of problems that
require rich indexes in databases. The string matching problem in databases corresponds to building a full-text
index, whereas the line-segment intersection problem corresponds to building a geometric index. Both entries
were written in Cilk++, which Tokutek is using to improve the multithreaded performance of our database. The
writeups can be found at

e http://bradley.csail.mit.edu/~bradley/stringmatch/kuszmaul-stringmatch.tar.qgz, and

® http://bradley.csail.mit.edu/~bradley/lineseg/kuszmaul-lineseg.tar.gz

He also advised Leif Walsh (SUNY SB undergrad) in his project “Duckduckbase: A Concurrent, Durable, In-
memory Database Using Solid State” (http://db.csail.mit.edu/sigmodllcontest/walsh.pdf), which won 3rd
prize in the SIGMOD 2011 Programming Contest.
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