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CHAPTER 1. Introduction

Superconductivity has been one of the most studied fields in condensed matter physics since
its discovery more than a century ago by Onnes (1911). Immense experimental and theoretical
attention has been focused on it. In addition to pure elements and alloys, many families of
intermetallic compounds and oxides have been discovered to superconduct and it has become
clear that the phenomenon is not as rare as initially thought.

In addition to the nearly half of the elements that are superconducting in their pure form,
thousands of superconducting compounds have been found. The highest superconducting tran-
sition temperature (7¢) found in an elemental superconductor is 9.5 K in niobium (Chou et al.
(1958)). The first compound which exceeded this was NbN, with T, ~ 16 K. Over the first 65
years of the study of superconductors, T, gradually increased to about 25 K in NbgGe. The
holy grail of this period was a compound that would superconduct at room temperature, or
at least in liquid nitrogen, which is considerably cheaper and easier to obtain than the cryo-
gens used for lower temperatures (such as liquid helium). (La;_,;Ba;)CuQOy, the first high-T,
superconductor, was discovered in 1986 with a seemingly modest T, of 30 K (Bednorz and
Miiller (1986)) . What wasn’t clear at that time, from T, alone, was that this was the first of
a new class of superconductors. It took only nine months for 7. to make a dramatic increase
to 93 K in YBapCusO7_s (Wu et al. (1987)), above the boiling point of liquid nitrogen (77 K).
This new family of superconductors, the high-T, cuprates, proved to be huge and showed great
promise for increasing T, further. By 1993, T, was as high as 138 K at ambient pressure (Chu
et al. (1993)), and even higher under applied pressure. While this is still well below room
temperature, it is high enough that it is easily obtainable with good closed-cycle refrigeration.

For more than 20 years, the cuprates were the only known "high-T,.” compounds. This

changed in 2008, when Kamihara et al. (2008) found superconductivity at 26 K in La(O1_,F,)FeAs



(0.05 < = < 0.12). Once again, the relatively modest 7. hid just how big a deal this new family
was. Within a month, 7, had risen to 55 K at ambient pressure in NdFeAsO;_,F, (Zhi-An
et al. (2008)). While still below the boiling point of liquid nitrogen, this is still well above
the base temperature ~20 K) of simple closed-cycle refrigerators. Unfortunately, large single
crystals of these RFeAsO (1111) compounds remain elusive, limiting the ability to do research
on this system.

Later that year, a related compound was discovered by Rotter et al. (2008a). This com-
pound, (Ba;_,K,)FesAss, had a max T, of ~38 K. Whereas this is considerably lower than
the maximum in the 1111 series, this new 122 series proved to be much more willing to form
large single crystals (Ni et al. (2008a)). Unfortunately, these K substituted samples were found
to be inhomogeneous when grown with a Sn flux, even from layer to layer within one piece
(Ni et al. (2008a)). Fortunately, a related substitution series was discovered shortly thereafter.
Transition metal substitution on the Fe site was found to induce superconductivity up to 24 K
(Sefat et al. (2009a); Ni et al. (2008b)). While this is considerably lower than the 38 K found
in K-substitution, transition metals (TM) were found to easily substitute much more uniformly
within the single crystals. The change from K, which is both volatile and highly reactive, to the
much more stable transition metals also meant that a self flux could be used (see Chapter 3),
allowing much larger crystals to be synthesized.! The homogeneity in this series (for TM=Co,
Ni, Rh and Pd) is quite excellent as well: typical 20 spread of zwpg is <0.003 across the
sample surface. The large volumes and excellent homogeneity made these samples excellent
candidates for detailed study using advanced methods.

Luo et al. (2008) showed that K substitution could be achieved through this same self-flux
method, avoiding the volatility of K by pre-reacting it with Ba. Homogeneity as determined
by superconducting transition width is excellent and 7, remains high, ~36 K, but the crystals
formed this way are only ~1 mm?, which is smaller than both TM substituted samples and Sn
grown K substituted ones (which can be as large as several mm on a side).

BaFepAsy crystallizes in the ThCraSis structure — more formally the 14/mmm space group.

To my knowledge, the largest crystal formed this way was a single ~700 mg sample of Co-substituted
BaFesAs, that had a volume of more than 0.2 cm?.



The Ba atoms are interleaved between FeAs planes. BaFesAsy was also found to have an
transition characteristic of a spin-density wave transition at ~140 K (Rotter et al. (2008b)).
Above this temperature, BaFesAsy is a poor metal with little temperature dependence in its
resistivity. Below, the resistivity drops rapidly as the material enters an antiferromagnetic
state and spin disorder scattering is reduced. A drop in the magnetic susceptibility is also
observed at this temperature. Rotter et al. (2008b) showed that this change is associated
with a structural phase transition. Below 140 K, several of the peaks seen in powder x-ray
diffraction (XRD) are seen to first broaden then split as the temperature is decreased. This
low temperature phase belongs to the a different category: the orthorhombic Fmmm space
group. A neutron scattering study of the magnetic structure found that the structural and
magnetic phase transitions occur at (nearly) the same temperature (Huang et al. (2008); Pratt

et al. (2011)).

Figure 1.1: Crystallographic structure of BaFesAss. Blue are Ba, red are Fe, maroon are As.



A systematic study of the substitution dependence of this family of compounds seemed the
logical next step. Turning various chemical tuning dials and noting the changes in structural,
magnetic and transport properties — including the emergence of superconductivity — can provide
valuable insight into what the origin of these properties may be. Whereas K on the Ba site and
P on the As site both proved to induce superconductivity, other substitutions on these sites
were largely fruitless. On the other hand, a large number of 3d, 4d and 5d transition metals
have been found to successfully substitute for Fe, and many of these have been found to induce
superconductivity. The superstar of the TM substitution family is Ba(Fe;_,Co,)2As2, which
has shown excellent behavior in terms of transition temperature, homogeneity, reproducability
and crystal size. Ni, Rh, and Pd have shown similar behavior. Meanwhile, Cu was shown to
barely induce superconductivity (Ni et al. (2010)) and Cr has been shown not to induce it at
all (Sefat et al. (2009b); Bud’ko et al. (2009)). I will discuss two other TM substitutions in this
thesis: Chapter 5 will discuss Ru substitution which induces superconductivity and Chapter 6
will cover Mn substitution which does not (see also Rullier-Albenque et al. (2010) or Thaler
et al. (2010) for Ru and Thaler et al. (2011) for Mn).

During my thesis work, I have expanded the TM substitutions to Ru and Mn (which will
be discussed in Chapters 5 and 6) and collaborated extensively with other research groups on
studies of many TM substitutions of BaFesAss, much of which I will outline in Chapter 9. For
perspective, Chapter 2 gives some background into superconductivity from both phenomeno-
logical and theoretical points of view. Chapter 3 will outline the growth and characterization
methods I employed. Chapter 7 will show some results of my investigation of the somewhat more
complex double-substitution systems Ba(Fe;_;_,Co,Cry)2Ass and Ba(Fej_;_,Co,Mn,)sAss.
Chapter 8 will briefly present some work on heat treated samples of Ba(Fe;_,Co;)2Ase and

Ba(Fei_y—yCo,;Cry)oAss.



CHAPTER 2. Overview of superconductivity

Superconductivity differs from perfect conductivity in that a superconductor displays nearly
perfect diamagnetism in addition to zero resistance. This is known as the Meissner effect, and
the first phenomenological theory of superconductivity which took it into account was described
by London and London (1935). Unfortunately, while the Londons’ theory is qualitative, it is
also an outgrowth of classical electrodynamics, and superconductivity is fundamentally a quan-
tum phenomenon, so while it is a correct description of the macroscopic behavior of supercon-
ductors in an applied magnetic field, it cannot describe the underlying microscopic behavior.
Ginzburg-Landau theory also does not describe the microscopic behavior, but it tries to describe
the phenomenology of the superconducting phase transition by taking quantum mechanics into
account, and introduces the electrons’ wavefunction, 1 (r), as the order parameter (Ginzburg
and Laundau (1950)). Because of the accurate description of the behavior of the phase tran-
sition even under applied field, one of the its largest successes was the prediction of type-11
superconductivity (Abrikosov (1957)).

It was not until 1957 that a successful microscopic theory of superconductivity was intro-
duced. Bardeen, Cooper and Schrieffer (BCS) published three papers (Cooper (1956); Bardeen
et al. (1957a,b)) that led to a microscopic understanding of what a superconductor is, rather
than simply a description of how one behaves. The first observation of the BCS theory is that
any pair of electrons that experience an arbitrarily small net attractive interaction will form
a bound state with % and ? and spins 1 and |. Assuming that the interaction is phonon
mediated and describing the electron-phonon interaction as a constant, an energy gap between
the ground state and first excited state can be found. This is fortunate, as a previous micro-
scopic theory had proposed that such a gap might be responsible for superconductivity Bardeen

(1955)). Finally, BCS theory made detailed — and reasonably good — quantitative predictions



of the thermodynamic properties of elemental superconductors. BCS theory was an excellent
start upon which further, more realistic descriptions of the interaction were constructed (Eliash-
berg (1960)). Magnetism and superconductivity have an interesting relationship. Nonmagnetic
and magnetic impurities require special, and separate, descriptions. These were first provided
by Abrikosov and Gor’kov (1958), Anderson (1959) and Abrikosov and Gor’kov (1961). Fur-
thermore, the upper critical field of type-II superconductors was systematically studied by
Werthamer et. al. (Helfand and Werthamer (1964, 1966); Werthamer et al. (1966); Hohenberg
and Werthamer (1967); Werthamer and McMillan (1967)).

Although BCS theory and its derivatives work extremely well for conventional supercon-
ductors, they fails to completely describe other families of superconductors, such as the high-T,
cuprates and heavy fermion materials. Quick fixes to BCS theory such as altering the pairing
mechanism from being mediated by phonons to spin fluctuations, polarons or magnons have
failed to adequately explain all features of these other families. Nevertheless, the fundamental
idea of BCS theory that electrons form pairs through some kind of quasiparticle interaction
which allows them to fall into the same state with an energy gap required for excitations above
this appears to hold even in these non-conventional superconducting materials.

As a basic understanding of the phenomenology and mechanism of superconductivity is
essential for following more complex work, I will give a brief introduction to both in this
chapter. I will then outline how phase diagrams for basic superconductors and high-T,, heavy

fermion and FeAs compounds provide insight and context for the systems studied in this thesis.

2.1 Phenomenology and Macroscopic Theory

As the name implies, one of the primary properties of superconductors is zero resistance.
It was this property which was first discovered by Onnes (1911) in mercury. Above the crit-
ical temperature T, (4.15 K in mercury), the material behaves as a normal metal with finite
resistance. Below T, the resistance rapidly drops to zero. This transition can be shown to be
second order.

The second primary property of superconductors, and the one distinguishing them from

what would be expected for a classical perfect conductor, is perfect diamagnetism, as observed



by Meissner and Ochsenfeld (1933). Mere perfect conductivity would not predict this behavior.
Let us assume a perfect metal whose behavior is described by the classical Maxwell’s equations
and explore what happens. One of the basic measurements we perform on superconducting
materials is low field M/H (T). This may be performed in one of two ways: either we cool under
zero field to below T, apply field and then warm back up measuring the magnetic response, or
we apply field above T, and then cool down into the superconducting state. In practice, these
sequences are used for different purposes. The first is called zero field cooled (ZFC), the second

field cooled (FC). Under ZFC conditions and considering Maxwell’s equation

in= —1%? (2.1)
zero resistance below T, leads to B = const. Since B = 0 before switching on, it must remain
zero after the field is applied. Now consider the FC situation: B # 0 above T, so Eq. 2.1
says that it must remain nonzero below T, (see Fig. 2.1(a)). This is not what Meissner and
Ochsenfeld observed. Instead, they found that B is always zero, for both ZFC and FC sequences
(see Fig. 2.1(b)). That this cannot be explained by perfect conductivity means that it must
be a separate, intrinsic property of the superconducting state. During the superconducting
transition, the flux is expelled by the induction of large currents in the surface region. This is
commonly known as the Meissner effect.

Using the Meissner effect (B = 47M + Hy = 0) allows us to determine that the work done

by an external field is

Ho HdH, H?
W=-[ MdH= 0= (2.2)
0 a7 8T
giving a Helmholtz free energy
H2
Fs(H)=Fs(H=0)+ —. (2.3)
8T
So when
H2
Fy(H.) = F, :FS(H:O)+8—; (2.4)

the superconducting state is destroyed. We call H, the thermodynamic critical field.



a) Perfect conductor

k) Superconductor
Figure 2.1: B from an applied H in a perfect conductor (a) and a superconductor (b).

2.1.1 Ginzburg-Landau Theory

Ginzburg-Landau theory macroscopically describes the behavior of superconductors, includ-
ing quantum effects. It assumes a second order phase transition, which is correct for ZFC. It
also assumes that the conduction electrons in a superconductor behave in a coherent manner,
allowing them to be described by a single wave function — with a possible phase difference —
P(r) = [1h(r)| €. Finally, it assumes that 1) can be used as the order parameter. We write the

Gibbs free energy as

G o [

For T' ~ T,, we say that

B> B-H
8 A7

2
e* b
Vi) — i Ay +alp?+ = |yt +
c 2

) v (2.5)



Minimizing G4 with respect to ¢ and A, we get two coupled equations:

G = f(,ff* [iz*;ﬂlwl}+2a|¢y+2by¢\3)dv -0
6*2

K = [ (B frmA ) v = 0

We must now define two characteristic lengths for a superconductor. The first is the coher-

ence length
B2
2m*|a|

€=

(2.9)

over which 1 displays significant variation. The other is the penetration depth

m*c2b
A=y ——— 2.10
\/ dme*2|a|’ (2.10)

which is the depth to which an applied magnetic field penetrates (Tinkham (2004)).
One victory of Ginzburg-Landau theory is the prediction of type-II superconductivity.

Defining x = %, we can make a statement about the sign of the interface energy ;.

K< — = 0ops>0 (2.11)

= 0ps <0, (2.12)

In the first case, the formation of an interface between normal and superconducting states is
not energetically favorable. We call such materials type-I superconductors. In these materials,
superconductivity is destroyed for H > H.. Most, but not all, elemental superconductors are
type-1.

In the second case, the interface formation is energetically favorable. When A > &, B
penetrates much further into the sample than the variation range of the order parameter,
which means that a mixture of superconducting and normal states can exist. These are called
type-II superconductors. In such materials, there are two critical fields, H.;y and H.. When
H < H., the average B inside the sample is zero and it shows full Meissner expulsion as
described above. When H.; < H < H., the magnetic field penetrates into the sample and
it is divided into normal and superconducting domains parallel to H,;. The normal domains

are vortices of radius ~ &, and the density of these vortices increases up to H = Hgo, at
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which point the sample becomes completely normal. Several elemental superconductors —
niobium, vanadium and technetium — as well as all non-elemental superconductors are type-II,
including conventional superconductors composed of multiple elements, the high-T,. cuprates,
heavy fermion materials, and the iron arsenides.

For a tetragonal type-II superconductor (the family to which the I4/mmm BaFegAsy com-

pounds belong),

o2} P
HfJ_c — 1 “ HJ-C - 2.1
cl 47r>\ab)\c( n(H b + C) c2 27[‘6@[)5@ ( 3)
le _ P04 lle - _®o 2.14
cl 477)\217( H(K/C + C) c2 27.(_5317 ( . )

where the elementary flux quantum ®; = 2.07 x 10~7 Oe cm?. For a single-gap material,

¢ = 0.08. The anisotropic H.o parameter is defined as H, CJQC/H l|2c = &ap/&. The lower critical
field H.; is often a small field, on the order of a few tens of Oe. The upper critical field H.o
can be as high as several 100’s of kQe.

One problem with applying Ginzburg-Landau theory to the iron arsenides is that they are
two-band materials. A discussion of two gap materials is beyond the scope of this work, but

can be found in Kogan and Schmalian (2011).

2.2 Microscopic Theory

2.2.1 BCS Theory

A key clue to a microscopic explanation of superconductors came from what is called the
isotope effect. Maxwell (1950) (using '®®*Hg) and Reynolds et al. (1950) (using samples with
average A=199.7, 202.0 and 203.4) found that different isotopes of mercury have different T..
Maxwell (1950) observed an increase of about 0.021 K and Reynolds et al. (1950) found shifts
between +0.011 K (A=199.7) and -0.024 K (A=203.4). This suggested phonon mediation as the
mechanism by which the electrons were coupled. Quantitatively, the isotope effect states that
T.M®* = const., with M the mass of the isotope. BCS theory simplifies the math quite a bit
by assuming, for example, constant electron-phonon interaction and a spherical Fermi surface.

Later theories, such as that of Eliashberg, considered a more realistic situation involving w
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dependent electron-phonon interaction and band structure.

Frohlich (1952) showed that electrons can indirectly interact with each other in a crystal
by emitting and absorbing phonons. e; with k; emits a phonon and goes to k7. es with ko
then absorbs this phonon and goes to k4. This interaction means that electrons within hwp of
the Fermi surface are attractive to each other. Cooper (1956) considered two electrons in an
attractive potential and found that the binding energy is always negative no matter how small
the attraction is.

BCS theory combines these two: assuming that the attractive potential is mediated by the
phonon scattering, Bardeen, Cooper and Schrieffer found that electron pairs within Awp of the
Fermi surface are formed and scattered from inside rr to outside of it, lowering the potential
energy while increasing the kinetic energy. If the potential energy is decreased by more than the
kinetic energy is increased, then the ground state is no longer the state in which all electrons
are in states within the Fermi surface, but instead one in which some states above Ep are
occupied and some below Ep are empty. To maximize the number of these pairs that may
be formed, the electrons in each pair must have momentum of equal magnitude but opposite
direction, as well as antiparallel spin. If the spins for a singlet state (S = 0), then the spatial
wave function must have even parity (L = 0,2,4,---). If the spins form a triplet state (S = 1),
then the spatial wave function must have odd parity (L = 1,3,5,--)

BCS theory makes several assumptions to simplify calculation. First, the Fermi surface is
assumed to be spherical. Second, the pair is assumed to have L = 0 and S = 0. Third, the

electron-phonon interaction Vi is assumed to be a constant:

—V € <h,(x.} &6/ <h,(,u
Viw = ekl < hwp & few| < fwp (2.15)

0 ’6k| >hWD&’€k" > hwp

with
W2k> kY
— R 2.16
k 2m 2m ( )

We can express the excitation energy as

Ep =/ + A2, (2.17)
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where A is referred to as the ”"energy gap”. To break one Cooper pair, an energy of at least

2A is needed. This gap is temperature dependent, and shrinks to zero as T' — T.

2.2.1.1 Isotope Effect as a Probe of the Pairing Mechanism

Since the energy gap A is proportional to we, A should vary as M™%, with o = 1/2 for
phonon mediated compounds. Since T, and H,. are linearly dependent on A, they should scale
as M~ as well. By varying M via a change in the isotope of otherwise identical materials, we
can measure «. If o ~ 1/2, then that is strong evidence that the superconductor being studied
is phonon mediated. The drastic deviation from prediction in the cuprate superconductors
suggested very strongly that they were not phonon mediated (Batlogg et al. (1987); Franck
et al. (1991); Zech et al. (1994); Zhao et al. (2001); Khasanov et al. (2004, 2008); Tallon et al.
(2005); Chen et al. (2007)). The isotope effect showed its importance more recently by helping
to demonstrate that MgBs must be phonon-mediated, as there is a ~1.0 K shift between
samples prepared with °B and those prepared with !B (Bud’ko et al. (2001)).

If the isotope effect in the iron arsenides could be shown to have o ~ 1/2; then it would
be strong evidence that these compounds are phonon mediated. By the same token, o = 1/2
would suggest that these compounds are not primarily phonon mediated. Early results were
very mixed, with some giving predictions roughly in line with phonon mediation and others
giving radically different ones: « varied from ~ 0.8 down to ~ —0.5 (Liu et al. (2009); Shirage
et al. (2009, 2010); Khasanov et al. (2010b)). Fortunately, there is a solution: Khasanov
et al. (2010a) noted that changing the Fe isotope changed the c lattice parameter in FeSe;_,
(Ac/co > 0), Bag Ko.aFeaAsy (Ac/cy < 0) and SmFeAsO;_, (Ac/co 2 0). As anyone familiar
with a stringed instrument will know, the natural frequency of an oscillator is affected by both
the mass of the oscillator and its length (fsiring #, where A is the linear mass density),
so a change in the separation between the oscillating elements can also change w,., which will
change T,.. By rewriting o = asgruct + apr and accounting for aggruer through lattice parameter
data, they were able to show that ap; ~ 0.35 — 0.4 for all three compounds. While this is a
large effect and has a not too far from apponon = 1/2, Wu and Phillips (2011) showed that

it can still be consistent with a non-phononic mechanism for superconductivity in multi band
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superconductivity.

2.2.1.2 Energy Gap as a Probe of the Pairing Mechanism

The gap is a very important quantity because it is closely related to the order parameter.
The Ginzburg-Landau order parameter can be shown to be the pair wavefunction in the micro-
scopic theory. This means that if we measure the magnitude and shape (including anisotropy)
of the superconducting gap, we can glean information about the pairing symmetry, which is
critical in determining the pairing mechanism. Phonon coupling, as in BCS theory, predicts
an isotropic s-wave gap. High-T, cuprates have been shown to be d-wave. Since phonon cou-
pling gives a nodeless energy gap, this result eliminates phonon coupling as a possible pairing
mechanism in this system, a result consistent with the isotope effect.

The gap symmetry of the FeAs family of superconductors was not immediately clear.
Nodeless gaps were directly observed in Ba;_,K;FesAso, Ba(Fei_;Coy)2As2, K Fea_ySes and
FeTe;_,Se; (Ding et al. (2008); Terashima et al. (2009); Zhang et al. (2011); Miao et al.
(2012)). At the same time, signatures of noded gaps were seen in LaOFeP, LiFeP, KFeyAs,,
BaFey(As_,P,), Ba(Fe;_,Ruy)2Assand FeSe (Fletcher et al. (2008); Hashimoto et al. (2010,
2012); Nakai et al. (2010); Dong et al. (2010); Yamashita et al. (2011); Song et al. (2011); Qiu
et al. (2012)). Until recently, no direct measurement of the gap structure was reported, nor
was the location of the nodes known. Zhang et al. (2012) used Angle Resolved Photoemission
Spectroscopy (ARPES) to make detailed measurements of the gap around the ¢ and 7 electron
surfaces as well as the «, 8 and v hole surfaces. They found strong evidence for a circular
line node on the largest hole surface. This eliminates d-wave pairing as a possible origin of the
nodes seen in the gap, and suggests that a symmetry called s* is the most likely candidate. s*
is fully gapped with no nodes, but it displays four-fold symmetry instead of the fully circular
symmetry seen with single band s-wave. While this does not rule out phonon mediated super-
conductivity as d-wave symmetry would, but since simple, one-band phonon mediation predicts

s-wave symmetry, it also means that something more complex is likely to be happening here.
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2.2.2 Impurity Effects

The Hamiltonian of the interaction between the impurities and conduction electrons can be

written as (Abrikosov and Gor’kov (1961); Maple et al. (2008); Gor’kov (2008))
Hipt = Z / (Uo(r — 1a) + Uso(r — 1) + Uew(r — 14) ¥ (r)9(r)dPr. (2.18)

Here, r, is the position of impurity atom a and the summation runs over all the impurities.
Uy is the interaction energy of an electron and impurity without considering the effects of the
impurity. Uy, is the spin-orbit interaction energy between the vector potential associated with
the spin of the impurities and the momentum of the conduction electrons. Uy, does not change
the equations determining T, and A, so it does not affect the thermodynamic properties; it
only affects the magnetic properties. U, is the exchange energy between J, and S.. This
term breaks the time-reversal invariance, which gives non-trivial contributions to 7. and the
thermodynamic properties in alloys. For transition metal impurities, L is quenched, so the

exchange interaction can be written as
Uy =—-2IS -0 (2.19)

where I is the coupling between S, and S, S is the spin of the impurity atoms and o is the

spin of the conduction electrons. For rare earth impurities, J = L + S, so
Uer = —21(g5 — 1)J - 0. (2.20)

Uso and U,, are related to the contributions from the impurity spin and will be present in the
magnetic case.

For nonmagnetic, isoelectronic impurities,

o[ oo (30) )

where ¢(z) is the digamma function, u = h/2wkpT, 7 and Q is the gap anisotropy. Since Q =0
for s-wave superconductors, nonmagnetic, isoelectronic impurities cannot change the gap size,
which means they cannot alter the transition temperature. Since BCS theory also says that
T, is related to the Debye frequency and density of states, the change of density of states from

non-isoelectronic impurities can lead to changes in T, in an isotropic s-wave superconductor.
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The presence of magnetic impurities suppresses 7, even in isotropic s-wave superconductors:

In [Zﬁf] =9 <; + “;) —¢ <;> . (2.22)

To] (1 aTio 1

where « is the pair-breaking parameter % For rare earth impurities,

or

=—=— 1 —1DJ(J+1). 2.24
a= 1 =252 P - 0w+ ) (2:24)
This means that
T 0 1 n;T, 0 1
n|—=|=¢(=+014—5)-¢(= 2.25
H[Tc] ¢<2+ . ) 2\ 2 (2.25)
where n;. is the critical impurity concentration when T, is completely suppressed. For low n;,
:,71;% is suppressed linearly with ;"
T. 7h n;
—=1- =1-0.691— 2.26
Teo dkpT Nic ( )

The rate of suppression of T,(n;) is (Maple et al. (2008))

dT, m2D(Ef)] -, )
= | 2, -1 1 2.2
el = e, (2.27)
so in the dilute limit,
T. ’D(E
Loy [mPED 20 1y2505 +1). (2.28)
Teo 2kp

Figure 2.2 shows T, and Ty with respect to the de Gennes factor, (g —1)2J(J +1) for pure
RNiyB2C compounds (Bud’ko and Canfield (2006); Canfield et al. (1997)). This data shows
that it is possible for the de Gennes factor to work as a scaling parameter for both 7. and Tl .

Figures 2.3(a) and (b) demonstrate the power of predictive theory: Abrikosov-Gorkov (AG)
predictions of T, suppression are shown and compared with experimental data for La;_,R;Aly
and Lag g9Ro.01. The agreement with AG in La;_,Gd,Als is striking. Fig. 2.3(c) shows a major
victory of AG theory over BCS: AG theory predicts a universal specific heat jump with respect
to T, /T (Skalski et al. (1964)). The experimental data bears this out, with considerably better

agreement with AG theory than with BCS.
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2.2.2.1 Impurity Effects in Iron Arsenides

Because the FeAs superconductors are multiband systems with nontrivial, ST symmetry,
Q) is nonzero. This means that nonmagnetic, isoelectronic impurities can, in fact, affect the
transition temperature, since interband scattering is harmful to S* gapped superconductivity
(see Eq. 2.21). However, the situation is still more complex here. The superconducting and
SDW states are in competition, so consideration of the suppression of the SDW state is im-
portant as well. Since interband and intraband scattering both weaken the SDW state, T, can
be increased by disorder induced intraband scattering. When both interband and intraband
scattering are present, the exact effect is not immediately obvious: if the combination of in-
terband and intraband scattering is strong enough to suppress the SDW state more rapidly
than the interband scattering suppresses the superconducting state on its own, then T, will
increase. However, if the interband scattering is too strong, then both the SDW and supercon-
ducting states will be suppressed. Since nonmagnetic impurities promote interband scattering,
this is the relevant case here. As an aside, the observation that the superconducting state can
be suppressed by the same impurities that suppress the SDW state corroborates the ARPES
evidence for S* symmetry, as opposed to S*, which is also allowed in fully gapped, multiband
superconductors. (Senga and Kontani (2008); Kogan (2009); Vavilov and Chubukov (2011);

Fernandes et al. (2012))

2.3 Maps for Superconductivity: Phase Diagrams

Many families of materials which display superconductivity require that some parameter be
properly tuned to induce the state. Even in families where the parent compound is supercon-
ducting, there are often relatives which are not. Exploring the phase space diagrams produced
by measuring the results of this tuning can give useful insight into what may be happening
in these systems. This is essentially the basic motivation for all of the work discussed in this
thesis. Here, I will discuss the general features of the generic phase diagrams of several classes

of superconductors.
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2.3.1 Heavy Fermion Materials

Heavy fermion systems are those where the low-temperature specific heat is much larger
than the free electron model predicts — up to 1000 times as high (Coleman (2007)). This can

be modeled by substituting a much heavier charge carrier mass for that of the electrons:

2k
Cpe = %ink‘BT (2.29)
w2 kg
2Me

= 7 nT (2.31)

me = m* = Cppy nT. (2.32)
F

Heavy fermion systems consist of f and conduction electrons, and their physics is dominated
by two phenomena: the Kondo effect and the RKKY exchange. The Kondo effect hybridizes
the f orbitals and the conduction bands, leading to the formation of a strongly renormalized
Fermi liquid. The RKKY exchange governs the interaction between two f electrons via the
conduction electrons, which leads to local magnetic order of the f electrons. Competition
between these two effects results in a rich phase space for these systems which can be tuned
by a number of parameters, including the application of mechanical pressure and chemical
substitution (Doniach (1977)).

Figure 2.4 shows a generic phase diagram for heavy-fermion systems.! A detailed explo-
ration of these systems and their behavior is beyond the scope of this work, but there are
several features of note. For & ~ 0, the system goes through an antiferromagnetic (AFM)
ordering as the temperature is dropped. For large §, the system displays Fermi liquid behav-
ior. In the intermediate region, the high temperature behavior is that of a non-Fermi liquid
(Stewart (2001)). The interface between the AFM ordered and fermi liquid regimes is a 7' = 0
quantum phase transition. Some systems can be coaxed into a superconducting state, which

forms around this phase transition (Flouquet et al. (2006)).

http://www.toulouse.lncmi.cnrs.fr/spip.php?article134&lang=fr


http://www.toulouse.lncmi.cnrs.fr/spip.php?article134&lang=fr
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Figure 2.4: A generic phase diagram for heavy fermion systems. ¢ may be any of several tuning
parameters.

2.3.2 Copper Oxides

The copper oxides are perhaps the best known family of nonconventional superconductors.
The only materials known to superconduct above the liquification temperature of nitrogen —
a cheap, readily available cryogen — are members of this family. This family has a rich phase
diagram, displaying many phases as electron and hole substitutions are made (Fig. 2.5). As with
heavy fermion materials, a detailed exploration of the behavior of these systems is beyond the
scope of this thesis, but there are a few features to point out. The parent materials are insulators
at high temperature and go into an AFM state as the temperature is dropped. As electrons
are added or subtracted through chemical changes (either substitutions or deficiencies), several
other phases can be reached. Superconductivity is observed as one of these phases on both the
hole and electron doped sides of the phase space, around the T' = 0 quantum phase transitions

associated with the suppression of the AFM state.
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Figure 2.5: Generic electronic phase diagram for layered copper oxide materials (Basov and
Chubukov (2011)).

2.3.3 Pnictides

The newest family of nonconventional superconductors are the pnictides, of which BaFes Ass is
a member. The original subfamily was the RFeAsO (1111) group. Although the parent com-
pounds do not exhibit superconductivity at ambient pressure, they do display low temperature
AFM ordering. They also can be induced to superconduct under pressure. Kamihara et al.
(2008) showed that superconductivity could be induced through chemical substitution as well.

Figure 2.6 shows two possible generic phase diagrams for the 1111 system. With R=Ce, F
substitution gives a smooth, second order phase transition from the AFM parent phase to the
superconducting one. With R=La, the same substitution gives an abrupt, first order transition
from spin density wave to superconductivity with the same substitution. Nevertheless, both
cases show emergence of superconductivity from a magnetically ordered state with chemical
substitution.

Figure 2.7 shows the basic phase diagram for Ba(Fe;_,Co;)2Ase. Here, we see a feature
familiar from the discussion of cuprates: emergence of superconductivity around the T = 0
point where the AFM state is completely suppressed. Nandi et al. (2010) and Kreyssig et al.
(2010) found evidence that there is a so called ’back bend’ in the structural and AFM transitions

below the superconducting dome. This provides further evidence for the supposition that the
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superconducting dome is formed around a 1" = 0 phase transition.

Figure 2.8 shows a generic electronic phase diagram for the pnictide materials. The parallel
with the cuprate materials is even more evident here: we see suppression of the spin density
wave AFM order and emergence of superconductivity on both the electron and hole doped sides
of the phase space, and both of these superconducting domes appear partially underneath the
AFM regions. In the case illustrated in Fig. 2.8, the holes were introduced by K substitution
for Ba; unfortunately, as will be discussed in Chapters 6 and 7, similar hole doping does not

occur for substitution of Mn or Cr for Fe.
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CHAPTER 3. Experimental methods

3.1 Crystal growth

Single crystals are essential for many scientific measurements. Single crystals, by definition,
have no grain boundaries, so secondary impurity phases are usually less common. They are
also often under less strain than their polycrystalline equivalents. In addition, certain high
precision measurements are impossible without single crystal samples. One example is Angle
Resolved Photoemission Spectroscopy (ARPES), which can directly measure the Fermi surface
and superconducting gap size and symmetry, but which requires a cleaved single crystal surface.
Single crystals also have a well-defined orientation, which is important for both x-ray and
neutron diffraction measurements. Direct measurement of anisotropic properties also requires
single crystalline samples.

Several classes of techniques are used to grow single crystalline samples: melt growth,
vapor growth and solution growth. Melt growth and vapor growth both have limitations
which make them less suitable for use in synthesizing members of BaTMaAse (TM=Fe and
surrounding transition metals). Melt growth techniques require congruent or near-congruent
melting temperatures of the components, whereas vapor transport methods require that the
components be put in a volatile state and may require a transport agent (if self transport is

not possible).

3.1.1 High temperature solution growth

A subset of the third category, high temperature solution growth, is a widely used and
recognized technique for discovering and growing single crystals of complex materials. (Fisk

and Remeika (1989); Canfield and Fisk (1992); Canfield and Fisher (2001)) It is viable for
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both congruently and incongruently melting materials and may be used to control high vapor
pressures of constituent components. All samples presented in this thesis were grown using a
high temperature solution growth method.

High temperature solution growth requires that several factors be considered: solvent, initial
concentrations of components, maximum achievable temperature, cooling rate and decanting
temperature. The solvent must allow adequate solubility of the other components below the
maximum achievable temperature, which necessitates a melting temperature well below the
maximum achievable by the experimental setup. This solvent is sometimes called a ”flux”.
There are two possible flux classifications: self flux and non-self lux. When using a self flux,
an excess of one or more component of the crystal to be grown is used as the solvent. In a
non-self flux growth, an extra element or compound is added to act as the solvent for the crystal
constituents.

A self flux method is often preferable, as it does not introduce additional elements into
the melt and therefore cannot introduce other elements into the crystal and is less likely to
introduce phases other than the desired one. However, it is not always possible or practical to
use a self flux method. In many cases, there is no constituent or combination of constituents
of the desired material that has a low enough melting temperature to be practical as a flux,
either because of limitations of the furnace or the ampoules. In other cases, the vapor pressure
may be too high, which may lead to a loss of stoichiometry or even explosion. In these cases,
an extra element or compound with a lower melting temperature and high solubility of the
crystal constituents may often be used. This flux should also have a low vapor pressure and
compatibility with the crucibles. Al, Ga, In, Sn, Sb, Bi and Pb are frequent choices.

In either case, the constituent elements are dissolved in the flux at high temperature and
form a uniform solution. As the temperature is decreased, the solubility of the target compound
decreases and at some intermediate temperature it starts to precipitate out of the solution,
ideally in single crystal form. The crystal size depends on the number of nucleation sites,
which itself often depends on the cooling rate. In principle, slower cooling should result in larger
crystals. Slow cooling can also reduce the internal strain in the crystals. Once the crystals

have been grown, the remaining liquid can be decanted using a centrifuge. The decanting
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temperature must be chosen carefully: it must be high enough that no impurity phases can
exist and the flux is still liquid, but low enough that the crystal has as large a temperature
window as possible to grow in. Any remaining flux left on the surface can be removed by an

appropriate chemical or mechanical polishing process.

3.1.2 Growth of single crystals of BaFesAsy and Ba(Fe;_,TM;)2As,
(TM=Cr, Mn, Co, Cr/Co, Mn/Co, Ni, Cu, Ru, Rh, Pd, Ir)

3.1.2.1 BaFejAsy

Single crystals of the parent compound, BaFeaAsy, may be grown using either a self flux
method or a by using Sn as the flux. However, for BaFesAso, Sn enters the structure. (Ni et al.
(2008Db))

The self flux used in this case is FeAs (see Fig. 3.1). FeAs is produced by a solid state
reaction method. Commercially produced Fe powder (Sigma-Aldrich or Alfa-Aesar, 99.9%
metals basis) was mixed with finely ground As (Alfa-Aesar, 99.9999% metals basis) in a ratio
of 1.05:1. The purpose of the excess Fe in this mixture was to ensure that all the As would
be reacted as it is both toxic and volatile. Two methods were used to ensure homogeneous
mixture and reaction. The first was to mix the two powders in an agate mortar and pestle,
then press the mixture into pellets of approximately 5 g each. Typically, between 20 and 100 g
was made at one time. These pellets were then placed in a SiOs ampoule, evacuated to at
least 30 mTorr and backfilled with 1/6 partial atmosphere of Ar. The ampoule was heated to
react the two powders. In the second method, the two powders were sealed in a SiO2 ampoule
with a small cylinder of SiO9 attached along the length of the inner surface. The ampoule was
placed in a rotating furnace and heated. The rotation of the ampoule and motion of the SiO4
cylinder within mixed the powder as it was being reacted, removing the requirement that it
be premixed or pressed into a pellet. Both methods produce high quality binary precursors;
choosing one over the other was simply a matter of preference and convenience. In both cases,
the ampoule was heated to 580°C and held for 15 hours, then heated to 900°C and held for an

additional 15 hours. In both cases, the mixture was prepared under a dry nitrogen atmosphere
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Figure 3.1: Phase diagram of the Fe-As binary system. (Copyright (©)1996 ASM International
[ASM (1996)])

in a glove box because of the toxicity of As.

BaFeaAsy crystals grown from self flux were synthesized by combining Ba chunks (Sigma-
Aldrich, > 99% metals basis) with FeAs powder in a molar ratio of one to four (BaFesAsy; see
Fig. 3.3). Because of the extreme air sensitivity of Ba and the toxicity of As, this was done
in the same dry nitrogen glove box as for the binary preparation. This mixture was layered
within an AlsO3 ”growth” crucible that was paired with an identical ”catch” crucible filled with
quartz wool. Both were then sealed in a SiO2 ampoule under 1/6 partial atmosphere of Ar.
The extreme air sensitivity of Ba meant that the tubes had to be sealed without exposing the
contents to the outside. A detachable valve assembly was placed into the glove box so that the
tube could be attached to the valve inside the inert atmosphere. A second, smaller tube was
placed inside the main one in order to facilitate sealing the tube while under soft vacuum. These
ampoules were placed in a ”"box” furnace at 300°C and heated to a temperature of 1180°C over
a period of 18 hours, with a one hour rest at 600°C to ensure that any possible remaining As is
reacted before going to even higher temperatures. The mixture was then held at 1180° for 8-12

hours to ensure that the melt had a chance to homogenize, then it was cooled over a period of
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Figure 3.2: Left: hydraulic press used for making TMAs powder pellets. Right: horizontal
furnaces used for solid state synthesis of TMAs. The foreground furnace has the rotating
sample attachment inserted.

several days to 1000° and decanted by spinning in a centrifuge. The quartz wool in the ”catch”
crucible strains the solid crystals from the excess liquid, making them easier to extract. This

apparatus, including a doubly-sealed tube and valve assembly, can be seen in Fig. 3.4.

3.1.2.2 TM substitution

When substituting other transition metals (TM) onto the Fe site in BaFesAsa, some of the
FeAs is replaced by other TMAs binaries. These binaries are produced using a similar solid
state reaction as is used for FeAs: TM and As powders are combined through either the pellet
or rotating furnace method described above. Most of these binaries are well behaved and fully
react without issue, but several caused problems, requiring changes in the temperature profile
used for the solid state reaction, either the maximum temperature or the length of time held at
that temperature. CrAs was particularly problematic: when we first attempted to synthesize
it, the growth tube exploded. Successful synthesis required that the mixture be reground and
reacted several times at low temperature before all of the powder was fully reacted. Phase
diagrams of these TMAs binary systems can be seen in Figs. 3.5-3.7. It should be noted that
in some cases we were not making a 1:1 TMAs binary, but instead a combination of several
TM_,Aso_, binaries.

Once TMAs binaries were created, growth of TM substituted crystals proceeded in a manner
similar to the parent compound: Ba chunks and TMAs powders were combined in an AlyO3

crucible. In order to encourage homogeneous substitution, the TMAs powders were mixed
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Figure 3.3: Schematic ternary phase diagram of the Ba-Fe-As system, showing starting and
final compositions when synthesizing BaFeaAsy. (Copyright ©1996 ASM International [ASM
(1996)])
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Figure 3.4: Top left: dry nitrogen glove box used for air work with air sensitive elements. Top
right: detachable valve unit for the glass bench which can be taken into the dry glove box.
Middle left: doubly-sealed SiO9 ampoule representative of those used for synthesis of crystals
containing highly volatile, toxic or air sensitive constituents. Middle Right: double-tube and
valve assembly together. Bottom left: ”box” furnaces used for high temperature sample syn-
thesis. The furnaces are inside a vented metal enclosure to guard against the possibility of
explosive accidents. Bottom right: centrifuge used for decanting excess liquid from the growth.
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together in an agate mortar and pestle, once again in a dry nitrogen glove box. The crucible
was then sealed in a SiO2 ampoule along with a corresponding ’catch’ crucible. Depending on
the particular substitution and substitution level, the decanting temperature sometimes had to
be raised, but the basic temperature profile remained unchanged.

The nominal TM substitution fraction was not the same as the actual fraction obtained in
the crystals. The ratio of nominal to real substitution fraction varied depending on both the
substitution being made and the substitution fraction. (Ni et al. (2008b, 2009, 2010)) Details

of the technique used for quantifying the level are given below.

3.2 Characterization methods

3.2.1 Powder x-ray diffraction

Powder x-ray diffraction (XRD) measurements were performed on ground samples of the
crystals at room temperature. This was done using a Rigaku Miniflex diffractometer with Cu
K, radiation. We performed this measurement for two reasons. The first was to attempt to
detect any impurity phases or inhomogeneity that might have been present in the crystals.
As a general rule, the phase purity and homogeneity of these samples was very good, with
sharp peaks indicating little spread in the crystallographic lattice parameters and no significant
secondary phase detectable. The exception was in Mn substitution, which will be discussed
later.

The second reason for performing powder XRD was to measure the variation of the lattice
parameters with substitution level. In order to make quantitative statements about the lattice
parameters, the ground crystals were combined with Si powder, with lattice parameter a =
5.4301 A. The Si acted as an internal standard reference. Rietica® software was used to fit the
lattice parameters. First, the pattern was fitted to the Si standard peaks in order to adjust
for any zero offset in our apparatus. The lattice parameters of the growth could then be fitted
by measuring the shifts in the peaks from those of the parent compound. An example xray

pattern along with the fit can be seen in Fig. 3.8. Samples prepared in this manner do not

"Mttp://www.rietica.org/
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Figure 3.8: Clean powder x-ray pattern from Ba(Fego7Rug 73)2As2. Also shown are the Si
peaks used as a standard for correction and the fit found by Rietica.

show significantly different lattice parameters from those measured with single crystal x-ray
diffraction (Rullier-Albenque et al. (2010)), suggesting that grinding them into powder does

not significantly distort the structure.

3.2.2 Wavelength dispersive spectroscopy

As mentioned previously, the nominal and real TM substitution fractions were not gener-
ally the same. In addition, although real TM substitution levels were generally reproducible
given the same nominal level, there was some variation between nominally identical batches. In
order to determine the actual concentration of TM in the crystals, we used wavelength disper-
sive spectroscopy (WDS). This was performed in the electron probe microanalyzer of a JEOL
JXA-8200 SuperProbe electron microprobe?. For quantitative measurement of chemical com-
position, WDS is superior to the more common energy dispersive spectroscopy (EDS) method
of spectrographic analysis. This is because while EDS attempts to collect xrays produced from
all elements at the same time through the same detector using a wide-band detector, WDS
selects a narrow energy band and measures the locations of the individual peaks expected from

the element(s) the diffractometer has been tuned to. Under ideal circumstances, a WDS mi-

*http://wuw. jeolusa.com/PRODUCTS/ElectronOptics/SurfaceAnalysisSA/JXA8230/tabid/223/Default.
aspx
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croprobe will have multiple diffractometers, each set to only look for peaks from a particular
element (ours has five). This allows the operator to eliminate nearby peak overlap as a source
of error in the measurement. The resolution in WDS spectroscopy is between 2 and 15 eV, as
compared to a typical EDS resolution of 70 to 180 eV. (Goldstein et al. (2003)) The primary
disadvantages of WDS over EDS are that the sample must be able to withstand higher electron
beam energy, the cost of the apparatus and operator, the relative complexity of making quali-
tative measurements (eg. ”What elements are in this mineral deposit?” or ”Did this sample get
contaminated by oxygen?”), and the time required for each measurement. Since intermetallic
samples are generally robust, the equipment is already in place here (negating most of the cost
problem), and we normally know what elements went into our samples, only the time required
is a concern. Because knowing the composition of our samples to as great a degree of accuracy
as possible is paramount and we are usually not in a hurry, the tradeoff between time and
accuracy is easy to justify.

In WDS, an electron beam with sufficient energy is incident on a flat sample surface. These
electrons interact with the atoms in the sample near the surface. These atoms are excited
and emit x-rays. The x-ray wavelengths produced are unique to each element. By measuring
the wavelength and relative intensity of these x-rays, we were able to determine the relative
concentrations of elements within the samples.

Because WDS requires flat surfaces normal to the electron beam, it is essential to make
sure that the samples are properly prepared. Fortunately, this family of compounds make such
preparation relatively simple: these crystals may be split and exfoliated by inserting a razor
blade between layers of the crystal. By doing this, we were able to produce flat samples with
two parallel surfaces which were not previously exposed to atmosphere (helping to prevent the
presence of surface impurities). By attaching one of these surfaces to a piece of conductive
Cu tape attached to a metal microprobe mounting post, the sample was made to have a
flat surface normal to the electron beam. By splitting several layers of the sample out and
measuring surfaces from each, we were able to determine that the stoichiometry was (nearly)

uniform across the depth of the samples.
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3.2.3 Resistance

Temperature dependent resistance measurements were performed in either a Quantum De-
sign (QD) Magnetic Properties Measurement System?® (MPMS) using a Linear Research /LakeShore
LR-700 AC resistance bridge* (f = 16Hz, I = 1mA) or in a QD Physical Properties Measure-
ment System® (PPMS) using either the AC transport option (f = 16Hz, I = 1mA) or the DC
resistivity option (I = 1mA). In general, the temperature range used was 2 K to 300 K, but
some measurements were made up to 375 K.

As with WDS, the macroscopic layered structure of the samples made preparing resistance
samples relatively simple. After cutting a piece of the crystal of appropriate length and width,
a razgor blade was used to split two adjacent layers and expose the flat surface between them.
Because this is an internal surface, it is clean and flat and generally has no flux on it.

With the surface thus exposed, Pt wires were attached to the bar using Epotex H20E silver
epoxy in a standard four-probe configuration with the current flow in the ab plane (perpendic-
ular to the ¢ axis). These were cured at either 120°C for 30 minutes or 175°C for 10 minutes. I
observed no difference between samples prepared using the two temperatures. Typical contact
resistance was between 1 2 and 3 €.

Unfortunately, the same layered structure that allows for easy preparation of the surface
for contact attachment also makes it difficult to get resistivity rather than simply resistance.
When a thin sample is further cut, it has a tendency to further exfoliate or crack, leading to
non-trivial current paths and poorly defined effective lengths and cross sectional areas (Ni et al.

(2008Db)). Therefore, normalized resistance, R(T")/Rsoox, is generally used in this thesis.

3.2.4 Magnetization

Magnetization measurements were made using either a 5.5 T or 7 T QD-MPMS. When
measuring magnetic properties in the superconducting state, a demagnetization sequence was
used before any low field measurement. This sequence was run at a temperature well above

the superconducting transition temperature. The field was ramped up to maximum, then to

3http://www.qdusa.com/products/mpms . html
‘http://www.lakeshore.com/ObsoleteAndResearchDocs/LR700_V1_3_%20Manual . pdf
Shttp://www.qdusa.com/products/ppms.html


http://www.qdusa.com/products/mpms.html
http://www.lakeshore.com/ObsoleteAndResearchDocs/LR700_V1_3_%20Manual.pdf
http://www.qdusa.com/products/ppms.html
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the maximum in the opposite direction. The field was roughly halved at each subsequent step
and the positive and negative direction was repeated. 10-12 of these steps were made from
the maximum H of the machine being used (either 55 kOe or 70 kOe) down to ~ 50 Oe, then
finally to zero. Zero field cooled (ZFC) and field cooled (FC) magnetization data were then
taken at 50 Oe from below the supeconducting transition temperature (T.) to several Kelvins
above so that an estimate of the superconducting volume fraction could be made. The fraction
of the sample which is superconducting is determined by comparing the magnetic signal from
the sample being measured to that of an ideal, fully superconducting sample displaying perfect
diamagnetism (ignoring the geometric demagnetization factor). To get the fraction of the
sample which is superconducting, we need to know three things: the volume of the sample, the
applied field and the measured moment. Since it is somewhat difficult to measure the volume
of an irregularly shaped sample with any accuracy, we instead measure its mass and calculate
its density from the molar masses of its constituent elements and its unit cell parameters. The
susceptibility (M/H) of a perfect spherical diamagnet is —1/47, so we multiply by 47 in order
to get -1.0 as 100% superconducting (-1 instead of +1 by convention). Thus, the final formula

used for calculating superconducting fraction (in CGS-Gaussian units) is

M
SV = 47r‘|H|| : % (3.1)

Since low field magnetization measures the bulk properties of a sample, we generally expect
to see Teonset @s determined by M(T) at approximately the same temperature as T ofger as
determined by resistance. The relative insensitivity of low field magnetization to filamentary
superconductivity means that it is, is in some ways, a better measure of bulk 7, than resistance.
This is especially important in the AFeaAsy (A=Ca, Sr, Ba) system, as there are indications
that it is quite sensitive to strain under certain conditions (Saha et al. (2009)). On the other
hand, this same insensitivity means that it is more difficult to use the superconducting transi-
tion to determine whether a sample is homogeneous through magnetization than it is through
resistance: a sample which has regions of differing substitution fraction will show a ”step”
in the superconducting transition as measured by resistance, but magnetization will normally

not see the superconducting state until it is fully manifested. The difference in sensitivity of
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the magnetic measurement to bulk vs filamentary superconductivity is important for the work
discussed in Chapter 8.

Samples were mounted either with H||c or with H L ¢. In the case of H L ¢, the samples
were mounted between two plastic straws. The inner straw is split down one side to allow it to
fit within the outer straw. Small holes were punctured through both straws around the sample
to make it less likely that it would move, and the end was sealed with teflon tape as an added
security against sample loss. In the case of H||c, a similar techique was used. In this case, the
inner straw was cut in half and both halves were folded in on themselves to give added surface
area for contact with the sample. The sample was stabilized between the two half straws and

the end was once again sealed with teflon tape.

3.2.5 Signatures of structural, antiferromagnetic and superconducting phase tran-

sitions in transport and magnetic measurements

Structural, antiferromagnetic and superconducting phase transitions manifest with charac-
teristic signatures in both resistance and magnetization measurements. Although the situation
in this system is somewhat more complex, these typical signatures are shown in Fig. 3.9 for
metallic systems. A loss of spin disorder scattering manifests as a decrease in resistance, and
the long range ordering of the antiferromagnetic state shows as a drop in the temperature de-
pendent susceptibility. The antiferromagnetic transition temperature can be determined either
from dp/dT or from dx/dT: Ty is at the maximum in dy/dT and dp/dT. (Chu et al. (2009);
Lester et al. (2009))

A structural phase transition — such as a charge density wave (CDW) transition — can lead
to a decrease in the density of states at the Fermi level, D(Er). In the case of a charge density
wave, this may partially gap the Fermi surface, which will manifest as an abrupt upturn in
resistivity because of the decrease in conduction electrons and a decrease in the susceptibility
caused by the decrease in D(Er). Figure 3.9(b) shows the resistive and magnetic signatures
of the structural phase transition. The structural phase transition temperature, Tg, can be
inferred from the minimum in dp/dT and the maximum in dy/dT. (Ni et al. (2008b))

Because there are both structural and magnetic transitions, the situation is more complex
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Figure 3.9: Top: Characteristic signatures in resistivity and magnetization near the transi-
tion temperatures of metallic samples with (a) local moment antiferromagnetic, (b) structural
(CDW), and (c) superconducting phase transitions. Bottom: M/H signature of the structural
and magnetic transition in BaFeyAss. The anomaly in the derivative a few Kelvins above the
transition is an artifact of changing the temperature spacing when performing the measurement.
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in this system. For the parent compound without any dopant, the M/H transition signature
appears as in Fig. 3.9(d).

A compound which undergoes a superconducting phase transition will display zero electrical
resistance and large (ideally perfect) diamagnetism. Figure 3.9(c) shows these features and

demonstrates the criteria used to determine T¢. onset and T, offer in this thesis.
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CHAPTER 4. Motivation and Previous Work

Fe based superconductivity was first discovered in LaFePO (Kamihara et al. (2006)) with
T. ~ 5 K. The discovery, two years later, of superconductivity in LaFeAs(O;_,F,) (Kamihara
et al. (2008)) with T, =~ 26 K led to extensive interest in this family of FeAs based compounds.
An applied pressure of 12 GPa induced superconductivity in LaFeAsO at 21 K (Okada et al.
(2008)) and as high as 43 K in LaFeAs(Og.g9oF.11) under a pressure of 4 GPa (Takahashi et al.
(2008)). Other rare earth metals have produced even more striking results: 7, has risen as
high as 56 K for F-substituted RFeAsO (R=Ce-Gd, Zhi-An et al. (2008)). Superconductivity
was also observed in Co substituted RFeAsO (Sefat et al. (2008a)).

A few months later, Rotter et al. (2008a) discovered that (Baj_,K,)FeaAse has T, as high
as 37 K. Over the past several years, a large amount of work has been done on members of
this system and its relatives. In this Chapter, I will review some of the salient background that

motivated my thesis work.

4.1 BaFe,As,

The parent compound of this family is interesting on its own. At room temperature, it is
a poor metal (p3por =~ 107482 - em) with no ordered moment (paramagnetic) (Colombier et al.
(2009); Kim et al. (2011c)), and is in the ThCraSis-type tetragonal I4/mmm crystal structure
(Pfisterer and Nagorsen (1980)). At 134 K, it undergoes a magnetic phase transition into
an antiferromagnetic state, as well as a (nearly) simultaneous (Kim et al. (2011a)) structural
transition into the orthorhombic Fmmm crystal structure (Rotter et al. (2008b)). However,
it does not show any sign of superconductivity down to the lowest achievable temperatures

(Rotter et al. (2008b); Ni et al. (2008b)). Figure 4.1 shows typical temperature dependent
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normalized resistance (R(T")/Rso0 k) and magnetization (M/H) data. Both data sets clearly

show signatures of the coupled, nearly simultaneous phase transitions.
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Figure 4.1: M/H (T) (left) and R(T)/Rs00 (right) for BaFeaAsy. The feature seen just above
the transition in the derivative of M/H is an artifact of a change in temperature step size AT
In both plots, the red line is the measured data and the blue line is the derivative. This data
was taken in our lab on crystals grown in-house.

4.1.1 BaFeyAsy; Under Pressure

Based on the behavior of LaFeAsO under pressure as reported by Okada et al. (2008),
pressure was applied to BaFeaAsy. Its behavior changed dramatically: with increasing pressure,
the structural and magnetic transition temperatures are suppressed from their ambient pressure
values until they finally vanish at a pressure of approximately 40 kBar (a value that varies with
the degree of non-hydrostaticity of the apparatus or medium being used). There is also a clear
low temperature superconducting state, which begins to manifest at an applied pressure of
about 15 kBar and is fully formed (zero resistance) by 40 kBar. Sadly, although the maximum
T. achievable through the application of pressure is rather high (~33 K at ~50 kBar), the
transition into this state is not very clean: the transition width is very wide. Just above
the minimum pressure required for full onset of supercondtivity, Tt onset — Tt offset = 19 K. The
transiiton width is narrow only very near the optimal applied pressure (Colombier et al. (2009)).

This large transition width is thought to be associated with non-hydrostatic conditions inherent
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to these high pressures, coupled to the FeAs based materials’ strain sensitivity. Exceptionally
extreme examples of this can be found in the CaFeyAsy materials (Yu et al. (2009); Torikachvili

et al. (2009); Canfield and Bud’ko (2010)).
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Figure 4.2: Pressure dependent phase diagram for BaFesAss (Colombier et al. (2009)).

4.2 (Balfoﬁ)FegASQ

The first chemical changes in BaFeyAsy which produced superconductivity were alkali metal
substitutions on the Ba site, with K the primary successful example. Rotter et al. (2008a)
synthesized polycrystalline samples of (Baj_,K,;)FeaAsy with x=0.3 and 0.4, and found that
a nominal substitution of x=0.4 suppressed the structural and magnetic transitions to 0 K
and induced superconductivity with 7T, ~ 37 K. This high 7. means that it may be useful for
industrial applications. Ni et al. (2008a) describe synthesis of single crystalline, K-substituted
BaFeyAsy. Here, Sn was used as a solvent rather than FeAs (see Chapter 3) because K boils
at 1033 K, which is below the melting temperature of FeAs. Unfortunately, the K substitution
was found to be nonuniform when a Sn flux is used, which makes the transition quite wide.
Luo et al. (2008) were able to synthesize single crystals of (Ba;_,K,)FeaAsy using a self flux by
prereacting the Ba and K to circumvent the volatility of the K. These samples are homogeneous
— as determined by the narrow resistive superconducting transition — with 7, ~ 36 K. The

crystal quality is excellent, and detailed photoemission studies have been done (Neupane et al.
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(2011); Xu et al. (2011)). Unfortunately, the crystals are also small (<1 mm?), which limits

their usefulness for many measurements, such as xray and neutron diffraction.

4.3 Ba(Fe;_,TM,),As; (TM=Co, Ni, Cu, Rh, Pd, Cr)

Superconductivity was first reported in TM substituted BaFesAsy, and RFeCoAsO by by
Sefat et al. (Sefat et al. (2008a,b)). In contrast with K substitution on the Ba site, substituting
other transition metals onto the Fe site is generally well behaved and uniform (with some

exceptions as will be discussed in Chapters 5 and 6).

4.3.1 Ba(FelfxCOm)QASQ

Co is Fe’s nearest electron-contributing neighbor, and was therefore a logical first choice for
TM substitution. Increasing Co substitution suppresses T ,, up to  ~ 0.06, above which the
transition is fully suppressed. Superconductivity begins at &~ 0.03 and reaches a maximum 7
of ~ 25 K at © ~ 0.074. Further Co substitution decreases T, until it finally vanishes again at
x ~ 0.16 (see Fig. 4.3). Additionally, because Co is not volatile until much higher temperatures
than K, it is possible to use a self-flux method (FeAs as a solvent) to synthesize these crystals
(Sefat et al. (2008b); Ni et al. (2008b)). This allows Co to go into the lattice more uniformly
than K (which requires a separate flux, such as Sn, or difficulty with volatility and reactivity
if FeAs is used), which gives much sharper, narrower transitions (Ni et al. (2008b)). It also
allows much larger crystals to be formed. The increased homogeneity and large crystals make
Co substitution more suitable for detailed, sensitive probes of superconductivity in this system.

One feature of note is the split of the structural and magnetic transitions into separately
observable features (Ni et al. (2008b); Pratt et al. (2011); Kim et al. (2011a)). This is differ-
ent from K substitution and application of pressure, where the transition appears to remain
simultaneous as the tuning variable is changed.

Because of the suitability of this system for detailed study, much work has been done on it.

Many examples are described in Chapter 9.
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4.3.2 Ba(Fel_mNix)gASQ

The next nearest neighbor after Co is Ni, providing two extra electrons per Ni instead of one
per Co. As with Co, Ni substitution induces superconductivity when substituted into the lattice
on the Fe site. As shown in Fig. 4.3, suppression of the structural and magnetic transitions as
well as maximum 7, are similar to the behavior in Co substitution (Li et al. (2009); Ni et al.
(2009)). In fact, they are nearly identical, with one key difference: Ni substitution appears to
induce the changes twice as rapidly as Co substitution. Suppression of Ty ,, shows this scaling
fairly well, but the features of the superconducting dome are even more clearly scaled (Ni et al.

(2009)). The split in the high temperature transition is seen here, as well.

4.3.3 Ba(Fel,xCum)gASQ

After Ni, the next neighbor to Fe is Cu. Cu substitution was investigated to see if it would
cause similar behavior as Co and Ni, essentially to answer the question, ”What happens if we
keep going?” As shown in Fig. 4.3, suppression of the structural and magnetic phase transitions
does appear to further scale with electron count in Cu as it does in Co and Ni. There is also
a splitting in the transition similar to the other transition metals. However, our group has
only ever found one superconducting sample of Cu-substituted BaFesAso, and T, was quite low
in this solitary case. The conclusion drawn from this has been that Ty ,, must be suppressed
sufficiently to induce superconductivity, but that this happens too slowly in Cu compared with
the increase in electron count so that by the time 75, is sufficiently suppressed, this latter is
too high for superconductivity to emerge. See Figs. 4.3 and 4.4. (Ni (2009); Ni et al. (2010))

One issue with Cu substitution is that there is no known convenient binary compound of
Cu and As (see Fig. 3.7(b)), so it is impossible to prepare CuAs as a precursor for substituting
Cu into the lattice as is done with other TM substitutions (as described by Ni et al. (2008b),
for example). Instead Cu shot is added to the powder so that the stoichiometry going into the
growth is Ba(FeAs)4Cu, (Ni (2009); Ni et al. (2010)). Unfortunately, the elemental Cu does
not appear to mix uniformly or predictably into the melt, so the Cu concentration varies widely

from batch to batch. This makes it extremely difficult to predict what final stoichiometry will
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result from a given input, which is especially problematic when preparing samples for neutron

scattering experiments, which require large sample volumes.
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Figure 4.3: T-x phase diagrams for various TM substitutions of BaFeaAsy (Ni et al. (2008b);
Sefat et al. (2009b); Ni (2009); Ni et al. (2010)).

4.3.4 Ba(Fe;_;Rh;)2As; and Ba(Fe;_,Pd,)2As:

As shown in Fig. 4.3, Rh and Pd substitution scale almost identically to Co and Ni, both
in their suppression of T,, and scaling of the superconducting dome (Ni et al. (2009)). In
fact, Rh and Pd substitution behave so similarly to Co and Ni (Kreyssig et al. (2010); Kim
et al. (2011a)) that comparatively little work has been done on them. This is particularly
interesting considering that the lattice parameters change in different ways in the 3d vs 4d TM
substitutions. With Co and Ni, both a and c¢ shrink with increasing z, resulting in an overall

decrease in unit cell volume V' (Ni et al. (2008b)). By contrast, both Rh and Pd substitution
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Figure 4.4: x dependence of T} ,,, in Ba(Fe;_;TM;)2Ase(TM=Co, Ni, Rh, Pd, Cu). Here, the
scaling of Ty ,, with electron count can be seen to be weaker than what is seen in the features
of the superconducting dome. These points are all determined from resistance data alone (Ni
et al. (2008b); Ni (2009); Ni et al. (2010)).

decrease ¢ while increasing a, giving an overall increase in V' (Ni et al. (2009)). That the phase
diagrams remain so similar suggests that either the crystallographic lattice parameters are not
particularly important for the behavior of this system or the ¢ parameter alone is much more
important than either a or V.

The scaling of the superconducting dome with electron count is extremely good across both
3d and 4d transition metal substitutions. This can be seen quite clearly in Fig. 4.5 (Ni et al.

(2009); Ni (2009)).

4.3.5 Ba(Fel_:CCI‘x)QASQ

A limited amount of work has been put into studying the hole carrying TM substitutions
of BaFeyAsy. Of primary note are studies by Sefat et al. (2009b) and Bud’ko et al. (2009)
which studied Cr substitution on the Fe site. These studies find that whereas Cr substitution
suppresses T ,,, (Fig. 4.3), there is no noticable splitting of the transition nor superconductivity
down to base temperature. The lack of superconductivity is somewhat surprising given that
K substitution on the Ba site (another hole carrying substitution) produces robust supercon-

ductivity. A few explanations have been proposed. Structural changes may account for part of
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Figure 4.5: T-e phase diagram of Ba(Fe;_,TM,)2Aso(TM=Co, Ni, Rh, Pd) showing only the
superconducting state as determined from resistive measurements.

the difference, as Cr increases both a and ¢ with increasing x. Another possibility is that the
magnetic properties of Cr may be coming into play, destroying any nascent superconductivity.
Suppression of T ,, is also rather slow with Cr substitution, so it may be that it is not sup-
pressed sufficiently in the region where superconductivity would otherwise occur. It may also
be that simple band filling is not an adequate explanation for superconductivity in this system,
and hole contributions on the Ba site are simply different from those on the Fe site in some

way.

4.4 BaFey(As; ,P.)

The only successful substitution onto the As site in BaFesAsy is P. Jiang et al. (2009)
demonstrated that P may be substituted onto the As site of BaFesAss in sufficient quantity
to induce superconductivity, and Kasahara et al. (2010) showed that single crystals could
be synthesized. A large fraction of the As must be substituted with P in order to induce
superconductivity, with the optimal substitution for maximum 7, occuring at x ~ 0.3. P is
also a somewhat unexpected superconductivity-inducing substitution, since it is isovalent with
As and therefore should provide neither holes nor electrons. On the other hand, both a and

c lattice parameters shrink and 7 ,, is suppressed with increasing x. The use of isovalent
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substitution to induce superconductivity will be explored in more depth in Chapter 5.

4.5 AEFe;As;, (AE=Ca, Sr)

Ca or Sr may be fully substituted for Ba in BaFesAss to produce other parent compounds
for related materials. Although neither of these compounds superconducts on its own under
ambient conditions, both can be induced to superconductivity relatively easily (via pressure
and/or chemical substitution). SrFesAsy will superconduct under applied pressure (Alireza
et al. (2009); Colombier et al. (2009)) or with some applied strain (the strain of growth is often
enough). Meanwhile, CaFeyAsy behaves oddly when grown from a FeAs self flux: instead of
the structural and magnetic transitions seen in BaFesAss, SrFesAsy and Sn grown CaFeyAso,
there is, instead, a transition to a nonmagnetic, collapsed tetragonal phase below 100 K. (Ran
et al. (2011)). The original behavior may be restored via annealing.

For both AE=Sr and Ca, superconductivity may be induced through chemical substitution.
Unfortunately, use of Sn flux tends to dehomogenize the substitution across the sample, and
the odd behavior of CaFeaAss grown out of FeAs flux made us, as well as other groups, hesitant
to explore chemical substitution in detail. However, Schnelle et al. (2009) and Qi et al. (2009)
both showed that superconductivity may be induced in SrFesAss by substitution of Ru onto
the Fe site. As described above and in Chapter 5, this is somewhat surprising given the
general assumption that electron or hole contributions are important for the emergence of
superconductivity in this system.

Hu et al. (2011) demonstrated that Co substitution onto the Fe site of SrFesAsy will induce
superconductivity in a similar manner as it does in BaFesAsy, though with a somewhat lower
maximum 7, (~ 13 K) and higher z required for this maximum. They also show that Eu

substitution onto optimally Co substituted SrFesAso can increase T, further, to ~17 K.

4.6 Motivation for Further Study

With these studies in mind, two transition metal substitutions that clearly needed to be

examined were Ru and Mn. Ru is nominally isovalent with Fe, and Mn is the closest 3d
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transition metal on the left (electron-poor) side of Fe (see Fig. 4.6). In the next two chapters,
I will review Ru and Mn substitution and discuss what conclusions may be derived from this

work and where they fit into the existing knowledge base.
8 9 10 11

6 7

Figure 4.6: 3d and 4d transition metal neighbors of Fe.
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CHAPTER 5. Physical and magnetic properties of Ba(Fe;_,Ru,);As,

single crystals

In contrast with its 4d neighbors Rh and Pd, Ru substitution formally provides no extra
electrons to the bands. However, recent polycrystalline studies in both the SrFeyAsy (Schnelle
et al. (2009); Qi et al. (2009)) and BaFeaAsy (Sharma et al. (2010)) systems show that Ru
substitition on the Fe site suppresses the structural/magnetic phase transition and leads to
superconductivity, indicating that this system may allow a direct comparison of nominally iso-
valent substititon to electron doping TM substitution and pressure studies. Isovalent substition
induced superconductivity, as pressure before it, indicates that whereas = and e are important
parameters for tuning the phase transitions in these systems, anisotropic changes in the unit
cell parameters or changes in the Stoner enhancement of the transition metal site are important
as well.

Based on this, we have studied Ru substituted BaFe, Asy single crystals in order to compare
the effects of isoelectronic substitution to 3d and 4d transition metal, electron substituted
compounds. As we wrote this work up, similar, complimentary, studies were posted (Rullier-

Albenque et al. (2010); Brouet et al. (2010)). Comparison to these data will be made as well.

5.1 Specifics of Crystal Growth

RuAs is slightly more difficult to produce than FeAs. In order to get full reaction of the Ru
and As powders, longer reaction times and/or multiple reactions are required. Otherwise, the
procedure is identical: Ru and As powders were combined and mixed then pressed into pellets.
These pellets were sealed in SiO2 tubes and heated as described in Chapter 3.

Crystal growth was also more troublesome than with the parent compound or with Co or
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Ni substituted growths. RuAs has a higher melting temperature than FeAs, so higher concen-
trations of Ru require a higher spin temperature. This also causes problems with the quality
of crystals produced at higher concentrations, both in terms of size and homogeneity. As Ru
content increases, so does the spin temperature, decreasing AT between the max temperature
achieved during synthesis (which can be no more than 1200°C) and the spin temperature. Be-
cause of this, we were extremely reluctant to increase the spin temperature above 1100°C, so
above about z = 0.35, the crystals are too small to be usable except in basic bulk measurements

and powder crystallography. Details of the inhomogeneity can be seen below.

5.2 Results

A summary of the WDS measurement data is presented in Table 5.1. For each batch, be-
tween 1 and 5 crystal surfaces were measured. The table shows the number of points measured,
the nominal x value inferred from melt stoichiometry, the average x value, and two times the
standard deviation of the x values measured. All x values given in this chapter are the average
xwps values determined by wavelength dispersive x-ray spectroscopy (WDS). Figure 5.1 shows
the measured vs nominal Ru concentration, as well as the error bars (£20) on the measured
values. For zypg < 0.21 the variation in Ru content within a batch is small, in the range of
1—5% of the x value. Such variation is similar to what is found for other 3d and 4d substitution
series (Ni et al. (2008b, 2009); Canfield et al. (2009); Canfield and Bud’ko (2010)). For z > 0.24
there is a sudden and rather dramatic increase in the variation of the Ru concentration within
a single batch (and even a single sample). It is not clear what the origin of the change in
homogeneity is, but it is also noted, albeit in a qualitative manner, in Rullier-Albenque et al.

(2010) as well.

Powder x-ray diffraction measurements confirm that Ba(Fe;_,Ruy)2Ase forms in the I4/mmm,
ThCrsSis structure and that impurities are minimal (Fig. 5.2). Rietveld refinement of the XRD
data gives the a and c lattice parameters, which are plotted, along with the unit cell volume,

as a function of xw pg in Fig. 5.3.



53

Ba(Fe;_,Ruy)2Ase
Batch # | KQ383 | KQ384 | KQ918 | KQI19 | KQ920 | KQ355 | KQ577 | KQ368 | KQ565 | KQ482 | KQ385
N 14 16 12 12 11 19 30 13 14 15 25
Tnominal 0.05 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.265 0.27 0.3
TWDS 0.021 0.048 0.073 0.092 0.126 0.161 0.210 0.24 0.29 0.29 0.36
20 0.001 0.001 0.001 0.003 0.003 0.005 0.013 0.05 0.05 0.05 0.05

Table 5.1: WDS data for Ba(Fe;_,Ru;)2Ase. N is the number of points measured in each
batch, zwpg is the average x value for that batch, and 20 is twice the standard deviation of
the N values measured.
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Figure 5.1: Experimentally determined Ru concentration, xw ps, vs nominal Ru concentration.
Error bars are £20 (values from Table 5.1).

Figure 5.4 shows the normalized electrical resistance data of the Ba(Fe;_,Ru,)2Asy series
from 5 K to 300 K. Normalized resistance is plotted instead of resistivity because of the tendency
of these samples to exfoliate or crack (Ni et al. (2008b); Tanatar et al. (2009a,b)). The anomaly
in normalized resistance at 134 K for pure BaFe;Ass is associated with the near simultaneous
transition to the low temperature orthorhombic antiferromagnetic state (Rotter et al. (2008b)).
As in the case of Co, Ni, Cu, Rh and Pd substitution (Ni et al. (2008b); Canfield et al. (2009);
Ni et al. (2009); Canfield and Bud’ko (2010)), the temperature of the resistive anomaly is
suppressed monotonically and the shape is changed from the sharp loss of resistance on cooling
through T ,, seen in pure BaFesAsy to a broader increase in resistance on cooling through T ,,
for intermediate x values. For x > 0.29, anomalies associated with T ,,, are no longer detectable.

Superconductivity begins to appear above x = 0.161, but at this substitution fraction, we only
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Figure 5.2: Powder x-ray pattern for Ba(Fe;_,Ru,)2Ass, = 0.073, with Si standard. Open
symbols are measured data, closed ones are fit, the line shows the difference. x, | and +
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detect resistive onset — a rapid downturn in electrical resistance characteristic of the upper
temperature region of the superconducting transition. However, the superconducting state is
fully manifested (R = 0) by = 0.210. A maximum 7¢ of 16.5 K is achieved at  ~ 0.29. T,
is suppressed for higher values of x. The superconducting transition is quite broad compared
to other TM substitutions: more than 7 K wide for zypgs = 0.210 compared with a 3 K width
for a Co substitution level of z = 0.038 (Ni et al. (2008b)). Such a wide transition is more
typical of pressure induced superconductivity rather than chemical substitution (Colombier
et al. (2009)), but in this case may be associated with the Ru inhomogeneity.

Figure 5.5(a) shows high field (H=70 kOe) M/H data for representative members of the
Ba(Fe;_zRug)2Ass series. At high temperatures the M (7T')/H ratio is roughly linear and de-
creases with decreasing temperature, with a slope that decreases with increasing Ru substi-
tion. As with normalized resistance, the magnetization of the parent compound manifests a
clear change at 134 K, correlated with the structural/magnetic phase transition (Rotter et al.
(2008b)). As z is increased up to x = 0.126, this transition is suppressed and broadened
without qualitative change. Starting with x = 0.161 the transition becomes much flatter and

broader, and by x = 0.24 it is barely visible. At x = 0.29 it has completely vanished.
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Figure 5.3: Lattice parameters for Ba(Fe;_;Ru;)2Ass, compared to BaFeaAssy, for which ag =
3.96 A, co = 13.0 A, and Vj = 204 A3. The slopes are a/ag : (3.7 4+ 0.1) x 10~*/Ru atom,
c/co: (—4.9+£0.1) x 107*/Ru atom, V/Vp : (2.4 4+ 0.2) x 10~*/Ru atom. The trend lines are
determined by a least squares fit. The error in the slope is the standard error from this fit.

Figure 5.5(b) shows the low field (50 Oe) M/H data for the superconducting members of
the Ba(Fe;_,Ru,)2Ass series. These samples show a clear diamagnetic signal in the zero field
cooled (ZFC) data, as well as some Meissner expulsion. It is worth noting that whereas the
ZFC diamagnetic signal for Co, Ni, Rh, Pd and Cu/Co substititons are all similar and close to
—1/47 (Ni et al. (2008b, 2009); Canfield et al. (2009); Canfield and Bud’ko (2010); Ni (2009)),
the low temperature values for Ru substitution (Fig. 5.5(b)) are smaller in amplitude and vary

more.

5.3 Discussion

Figures 5.6 and 5.7 show normalized resistance and magnetization data, along with their
derivatives, for x = 0.073 and = = 0.16 samples respectively. These figures show the criteria
used for determining the structural /magnetic phase transition temperatures for these materials.

Figures 5.6(c) and 5.7(c) show comparisons of normalized resistance derivatives for Ru,
Co and Rh substitutions in BaFeyAsy with similar Ty ,, values. In the Co and Rh series, a
clear splitting of the two transitions is visible. (At the same temperatures, the derivatives of

magnetization and heat capacity show split features as well (Ni et al. (2008b, 2009); Canfield
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Figure 5.4: Temperature dependent resistance, normalized to the room temperature value, for
select Ba(Fej_;Ruy)2Ase substitution levels. Inset shows low temperature behavior.

et al. (2009); Canfield and Bud’ko (2010)).) By contrast, we do not see these separated features
in the derivatives of the normalized resistance from the Ru system. These features have been
shown to correspond to a splitting of the near simultaneous antiferromagnetic and structural
phase transition into two separate transitions. (Ni et al. (2009); Canfield et al. (2009); Pratt
et al. (2009); Canfield and Bud’ko (2010); Kreyssig et al. (2010)). Although Rullier-Albenque
et al. (2010) claim to see a split transition, it appears to be a subtle feature compared to Co
or Rh data. The single feature in the Ru substituted series dR/dT data suggests that either
the splitting is much smaller, or absent, in this system or that the resistive feature associated
with T is much weaker in this system. It is possible that the splitting is caused by the extra
electrons provided by other TM substitutions (eg. Co, Ni, Cu, Rh, Pd).

Onset and offset criteria were used to determine T, from the resistance data. T, was de-
termined from the magnetization data by extrapolating the maximum slope of the ZFC data
back to the normal state. There is fair agreement between T2 determined from normalized
resistance and T, determined from magnetization. It should be noted, though, that (i) super-
conductivity primarily occurs in the region where the spread in zwpg is large, and (ii) the
superconducting transition is broad in R(7) and both ZFC and field cooled Meissner data are

somewhat lower than for other TM substituted series.
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Figure 5.5: (a) Temperature dependent magnetization, scaled by applied field H=70 kOe,
for Ba(Fej_;Ruy;)2Ass. (b) Low temperature, low field, zero field cooled and field cooled
magnetization for several superconducting members of the Ba(Fe;_;Ruy)2Asy family. H L ¢
for all data sets. The relatively large, low temperature, diamagnetic shielding in the zero field
cooled measurements approaches that found for Co, Ni, Rh and Pd substitution (Ni et al.
(2009, 2008b); Canfield et al. (2009); Canfield and Bud’ko (2010)).

Using these criteria, the data presented in Figs. 5.4 and 5.5 are summarized in a T — z
phase diagram shown in Fig. 5.8. Overall, the phase diagram for the Ba(Fe;_,Ru,)2Ass series
is qualitatively quite similar to that of the Co, Ni, Rh and Pd diagrams: increasing x sup-
presses the structural/magnetic phase transition temperature (7% ,,), a superconducting dome
appears above some critical x value, and this dome has a maximum near the point where T ,,
extrapolates to zero. However, there is a key difference: suppression of Ty, is much slower
than for other TM substitutions (Co, Ni, Cu, Rh, Pd) (Ni et al. (2008b, 2009); Canfield et al.
(2009); Canfield and Bud’ko (2010); Ni (2009)). In previous comparisons of 3d and 4d TM
substitutions (Ni et al. (2009); Canfield et al. (2009); Canfield and Bud’ko (2010)), we showed

that suppression of Ty ,, occurs at roughly the same rate regardless of differences in size and
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(x=0.024) and Rh substitution (x=0.012) with similar transition temperatures.

electron count between substitutions; the suppression of T, in Ba(Fe;_,Ru;)2Ass is about
three times slower.

Figure 5.11 shows the same lattice parameters as Fig. 5.3, but now compared with those for
Rh substitution as well. The two neighboring 4d substitutions change the lattice parameters
in similar ways, even though Rh substitution causes the changes faster than Ru substitution.
Adding an electron is evidently much more significant to the phase diagram than steric or
Stoner changes.

As in the case of Rh and Pd substituted BaFeyAsy (Ni et al. (2009)), with Ru substitution
the c-lattice parameter shrinks compared to the parent BaFes Ass, while the a-lattice parameter
and the unit cell volume, V, grow. (This is in contrast to the 3d TM substitutions, where all

three shrink with increasing x.) As shown in Fig. 5.11, the lattice parameters of Rh and Ru
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Figure 5.7: Magnetization (a) and normalized resistance (b), along with derivatives, for
Ba(Fe;_,Ru;)2Ase (x = 0.16). Vertical arrows show the criteria for determination of the
transition temperature. (c) shows normalized resistance derivative data for Co substitution
(x=0.038) and Rh substitution (x=0.039) with similar transition temperatures.

substituted samples are nearly identical for the same substitution level. However, as seen in
Fig. 5.10, the phase diagrams are quite different: Rh substitution scales much faster than Ru
substitution. Because the crystallographic trends of all three 4d TM substitution series (Ru,
Rh and Pd) are so similar, the major differences in their 7" — x phase diagrams suggest that
steric effects alone are not enough to explain the differences in behavior of this system with
substitution (ie. the extra electrons in Rh and Pd are responsible for the much more rapid
effects of TM substitution).

Although the maximum superconducting critical temperature, 7.%*, is significantly lower in
the Ru substituted system, there is at least a superficial similarity between the Ru substituted
T — x phase diagram and the pressure dependent, T'— p, phase diagram of the parent BaFesAso

compound (Colombier et al. (2009)), as can be seen in Fig. 5.9. The similarity of the phase
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Figure 5.8: x dependent phase diagram, showing T for salient features in Ba(Fe;_;Ru,)2Ass.

diagrams suggests that changes in the unit cell dimensions may be playing a large role in
determining the superconducting behavior, with the effects of Ru substituion in this system
being similar to physical pressure in the parent BaFesAsy system. The difference in 77" is
most likely caused by the Ru substitution disordering the Fe-plane, whereas pressure induces
no such disorder.

Whereas the agreement between the T'— x and T' — p phase diagrams in Fig. 5.9 is good,
the scaling between x and p was arbitrarily choosen to optimize the overlap of the two data
sets. Using our data on the z-dependence of the unit cell parameters (Fig. 5.3) in combination
with the data from Kimber et al. (2009) on the pressure dependence of the unit cell parame-
ters of BaFesAse, we can make this comparison more quantitative. Of the four combinations
of the unit cell parameters: a, ¢, V and ¢/a, only ¢ and ¢/a show similar responses to pres-
sure and substitution; a and V both increase with substitution whereas they decrease with p.
Figures 5.12(a) and (b) present our Ru-substitution data as well as the pressure data from
Colombier et al. (2009) plotted as functions of the changes in ¢ and ¢/a. A comparison of
these two figures clearly indicates that c¢/a rather than c¢ better parameterizes the effects of
substitution and pressure. Although the agreement between the Ru substitution and pressure
data is still semi-qualitative at best, this result means that, based on these two isoelectronic

perturbations (pressure and Ru substitution), if a structural change has to be responsible for
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compound under applied pressure. (Colombier et al. (2009))

the phase diagram, then changes in the ¢/a ratio appear to be more important than changes in ¢
alone. This being said, as will be discussed below, it is likely that pressure and Ru substitution
affect the system differently.

The other isoelectronic substitution which produces superconductivity in BaFesAss is P
substitution on the As site (Jiang et al. (2009); Kasahara et al. (2010)). Although the maximum
T. in the BaFeg(As;_,P;)2 system is quite a bit higher than in the Ba(Fe;_,Ru,)2Ass system
(~ 30K), several key properties are similar. Ty ,,, is suppressed in a relatively gradual manner
and the maximum 7, value occurs at a comparably high substitution level (xg, = 0.29, xp =
0.32) and extends over a much wider range than in any of the electron doped TM series (Jiang
et al. (2009); Kasahara et al. (2010)). On the other hand, taking changes in ¢ and a with P
substitution into account, T%,, and T; for P-substituted and Ru-substituted BaFesAsy scale
better with changes in ¢ than with changes in ¢/a (Kasahara et al. (2010)) as shown in Fig. 5.14.
This means that, if we include P-substitution as a third isoelectronic perturbation, then neither

changes in ¢ nor ¢/a universally describe the T'— x and T' — p phase diagrams.
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5.4 Recent ARPES Results

Dhaka et al. have done ARPES measurements on several Ru substituted samples. (Dhaka
et al. (2011)) They find that the chemical potential and Fermi surface shape of Ba(Fe;_;Ru,)2As2
does not change significantly in a wide range of Ru concentrations (0 < x < 0.55). This makes
Ru unique, as it does not change the low energy electronic excitation spectrum but still results
in a phase diagram similar to other TM substitutions, as seen above.

The low energy band dispersion and Fermi surface are found to be very similar to the
parent compound for Ru concentrations with z < 0.55. They also find that the band structure
is highly dependent on temperature, with large changes seen between 160 K and 50 K. It is
especially curious that the Fermi surface does not seem to change significantly from the low
substitution levels where no superconductivity is observed to the higher ones where it is seen.
These are in contrast with Co substitution, where the Fermi surface is highly dependent on
the concentration, and where a Lifshitz transition is clearly observed when the concentration

increases enough to produce superconductivity.
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Figure 5.11: Lattice parameters for Ru and Rh substititution.

5.5 Summary

Single crystals of Ba(Fe;_,Ru;)2Ase can be grown for z < 0.37, although Ru homogene-
ity becomes less well controlled for z > 0.21. The structural and magnetic phase transition
temperature, T ,,, is suppressed as x increases but does not clearly split, as it does for TM
= Co, Ni, Cu, Rh, and Pd substitution. As T ,, is suppressed superconductivity appears,
reaching a maximum 7. value of 16.5 K for z = 0.29, near the point that Ty ,, extrapolates
to T" = 0 K. Whereas the suppression of Ty ,, and the stabilization of T, occur at a much
slower rate for Ru substitution than they do for substitution with TM = Co, Ni, Cu, Rh, or
Pd, indicating that the additional electrons brought by these substitutions play a significant
role in tuning of this system, there is a remarkable agreement between two isoelectronic phase
diagrams (Ru-substitution and pressure) of BaFesAss when plotted as a function of ¢/a, but
not when plotted as merely a function of ¢. However, the correlation is weak and no clear
structural change seems likely to be the source of the similarity. Instead, a Stoner dilution

effect seems much more plausible.
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CHAPTER 6. Physical and magnetic properties of Ba(Fe;_,Mn,),As

single crystals

6.1 Introduction

In BaFesAso, in contrast both with electron substitution on the Fe site and hole doping on
the AE site, attempts to hole dope on the Fe site do not induce superconductivity (Sefat et al.
(2009b); Bud’ko et al. (2009); Kim et al. (2010b); Marty et al. (2011)), so by comparing the
properties of hole and electron doped compounds it may be possible to make inferences about
the requirements for (and possibly even the mechanism of) superconductivity. Motivated by
the similarity of the Co and Ni substituted phase diagrams (Ni et al. (2009); Canfield et al.
(2009); Canfield and Bud’ko (2010)) and the quite different behavior of BaFesAsy upon Cr
substitution (Sefat et al. (2009b); Bud’ko et al. (2009); Marty et al. (2011)), we studied the

effect of Mn substitution on the Fe site.

6.2 Specifics of Crystal Growth

MnAs is synthesized in a manner identical to FeAs, which is described in Chapter 3. Like-
wise, crystal growth is identical to other TM substitutions: some FeAs is replaced with MnAs
and combined with Ba in a ratio of Ba : TM : As =1 :4 : 4. One issue that presents in Mn
substitution is that it has a preference for phase separation, preferring to form a high Mn phase
and a low Mn phase rather than a single intermediate phase above zypg =~ 0.15. Details are

given below.
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6.3 Results

WDS was performed in order to determive actual rather than nominal substitution con-
centration. Each WDS measurement provides composition information about sample volumes
of ~ 1 pym diameter. WDS measurement data are summarized in Table 6.1 and Fig. 6.1. For
each batch, up to 5 crystalline surfaces were examined. The Table shows the number of points
measured, the average x value, and two times the standard deviation of the x values measured.
Unless otherwise noted, all x values given here are the average xy ps values determined by
WDS, not the nominal x substitution. As shown, there is a clear tendency for = > Z,ominai-
For z < 0.09 the slope of the z(Z,omina;) line is % ~ 1.3. For z > 0.15, this trend be-

comes dramatically stronger: x shoots upward (in comparison to Z,omina;) and hints at possible

phase stability or phase separation problems (see inset to Fig. 6.1).

Ba(Fej_;Mn, )2 Asg
Batch # | KQ902 | KQ971 | KQ999 | SA008 | KQ904 | KQ905 | SA022 | KQ923 | SA113-1 | SA114 | KQ924
N 15 12 12 12 13 9 12 13 12 12 14
Trominat | 001 | 0.02 | 0.02 | 0027 | 0.04 | 006 | 0.07 | 008 009 | 0.09 | 01
TWDS 0.014 0.017 0.026 0.033 0.052 0.074 0.092 0.102 0.118 0.129 0.148
20 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.005 0.004 0.006 0.005

Table 6.1: WDS data for Ba(Fe;_,Mn,)2Asy, © < 0.15. N is the number of points measured in
each batch, xypg is the average x value for that batch, and 20 is twice the standard deviation
of the N values measured.

Powder x-ray diffraction data are consistent with Ba(Fe;_,Mn, )2 As, forming in the 14/mmm,
ThCrsSig structure. Rietvelt refinement of powder x-ray patterns using Si as a standard allows
lattice parameters to be determined, from which unit cell volumes can be calculated. Normal-
ized lattice parameters and unit cell volumes are displayed in Fig. 6.2. There is a monotonic
increase in the a and c lattice parameters and unit cell volume as x increases from zero up
through = ~ 0.1. This is consistent with the partial substitution of Fe with Cr (Ni et al.
(2009); Sefat et al. (2009b)). The saturation of a and ¢ for x larger than 0.15 is a departure

from Vegard’s rule, and it suggests a limit of phase stability.
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Figure 6.1: Experimentally determined Mn concentration, xy pg, vs nominal Mn concentration.
Error bars are £20 (values from Table 6.1). Inset shows full substitution range.

As shown in the inset of Fig. 6.2, there is a large jump in the size of a- and c-lattice
parameters near x = (0.5, inferred from the fits of the diffractograms. Between x = 0.336 and
x = 0.6, two phases can be detected. Below x = 0.5, the majority phase has lattice parameters
closer to the x = 0 values and the minority phase lattice parameters are closer to the x = 1
values. Above z ~ 0.5, the majority is near x = 1 and the minority is near x = 0. The presence
of these two, closely related phases can be seen for a representative diffractogram in Fig. 6.3:
neither phase can fit all of the peaks alone, but together they adequately describe all of the
major features seen. The ratio of the two 200 peaks is close to unity for  ~ 0.55. On either
side of = ~ 0.55, the scattering power of the minority phases decreases rapidly.

These results are consistent with a clear phase separation, as described in detail by Pandey
et al. (2011). The lattice parameters of BaMnyAsy are a = 4.1686 A and ¢ = 13.473 A.
This is a much larger deviation from BaFesAsy (a = 3.9653 A and ¢ = 13.036 A (Ni et al.
(2008b))) than either BaCosAsy (a = 3.9537 A and ¢ = 12.6524 A (Sefat et al. (2009a))) or
BaCraAsy (a = 3.9678 A and ¢ = 13.632 A (Sefat et al. (2009b))). This is the likely source
of the immiscibility at high = in Mn substitution. The source of this large change in lattice

parameters is not fully clear: the free atomic radii of Cr, Mn, Fe and Co are all very close
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Figure 6.2: Unit cell parameters, ¢ and ¢, as well as volume, V', normalized to those of the
parent compound BaFesAssy, for which ag = 3.96 A, co=13.0 A and Vj = 204 A3. The open
symbols at x = 0 are previously published data for the parent compound. Dashed lines are
guides to the eye. Inset: full range 0 < x < 1. Open symbols are minority phase lattice
parameters.

(Ni et al. (2009); Sefat et al. (2009b)), with Co deviating the most from Fe. The ionic radii of
the four transition metals are also similar (depending on the charge and spin state), with Cr
deviating the most from Fe (Burns (1993)). Thus, steric effects alone are not enough to account
for the large shift in lattice parameters when comparing BaMnsAss with its transition metal
neighbors. It is likely that the strong magnetism of the Mn atoms is at least partly responsible
for the difference, most probably via high spin/low spin effects (Pandey et al. (2011)).

For these reasons, we limit our investigation of thermodynamic and transport properties of
this series to x < 0.15, where the parameters shown in Fig. 6.2 still roughly follow Vegard’s
law. It is important to note, though, that we did not see any such immiscibility manifesting
as a dramatic increase in the standard deviation of x (see Table. 6.1). This implies that the
spot volume probed by the electron beam of the WDS microprobe (~ 1um?) is larger than the
characteristic length scale of the phase separated regions.

Fig. 6.4 shows the normalized electrical resistivity data of the Ba(Fe;_,Mn,)2Asy series

from 2 K to 300 K. Normalized resistivity is plotted instead of resistivity because of the ten-
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Figure 6.3: Powder x-ray pattern for x = 0.569, showing both high and low concentration fits.
The strong peaks near 47° and 56° are from the Si standard. The 56° peak is near to the
hkl=213 peak expected from the lower concentration fit.

dency of these samples to exfoliate or crack (Ni et al. (2008b); Tanatar et al. (2009a,b)). The
anomaly in resistivity at 134 K for pure BaFepAss is associated with the structural/magnetic
phase transitions (Rotter et al. (2008b)), and can clearly be seen in the derivative of the resis-
tivity (Ni et al. (2008b)), which is shown in Fig. 6.5. As in the case of other TM substitutions
(Ni et al. (2008b); Canfield et al. (2009); Ni et al. (2009); Canfield and Bud’ko (2010)), with Mn
substitition the temperature of the resistive anomaly is suppressed and the shape is changed
from a sharp decrease to a broadened increase as x increases. The anomaly becomes extremely
broad around z = 0.1, and is no longer detectable by x = 0.147. For T" > 2 K, no super-
conductivity (not even hints of filamentary superconductivity) is observed for any measured
substitution level.

Although this low x anomaly in resistivity disappears slightly above = ~ 0.1 (Figs. 6.4(a)
and 6.5(a)), there is still a feature of note at higher substitution levels (Figs. 6.4(b) and 6.5(b)).
For z > 0.1, a broad minimum in the derivative of the resistance, associated with a maximal,
negative dR/dT value, is evident. The temperature of this minimum gradually increases with

substitution level and, as will be discussed below, follows the temperature above which neutron
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scattering no longer observes magnetic scattering characteristic of long range order (Kim et al.

(2010D)).
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Figure 6.4: Temperature dependent resistivity, normalized to the room temperature value, for
Ba(Fe;_,Mn,)2Asy. The x = 0.074 data are shown in both panels for the sake of comparison.
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Figure 6.5: First derivative of normalized resistivity for Ba(Fe;_,Mn,)2Ase. The z = 0.074
data are shown in both panels for the sake of comparison.

Signatures of the structural/magnetic phase transition in the lower substitution region are
also seen in magnetization data: Figures 6.6 and 6.7 show temperature dependent magneti-
zation data of the Ba(Fe;_;Mn;)2Ase series from 2 K to 300 K for both directions of the
applied field and Figs. 6.8 and 6.9 show the derivatives of the temperature dependent mag-
netization data. For both directions of the applied field, a sharp feature can be seen at the
structural /magnetic transition temperature for < 0.092. For x = 0.102 the feature has broad-

ened and become harder to resolve, and for x > 0.102 no feature that can be easily associated
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with a transition can be found in the M (T") or dM (T')/dT data. It is also at this concentration

that the general trend of M (7T') increasing with increasing x ends.
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Figure 6.6: Temperature dependent magnetization for Ba(Fe;_,Mn,)oAse with H||ab. In all
cases, H = 55 kOe. The z = 0.092 data are shown in both panels for the sake of comparison.
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Figure 6.7: Temperature dependent magnetization for Ba(Fe;_,Mn,)2Asy with H||c. In all
cases, H = 55 kOe. The = = 0.092 data are shown in both panels for the sake of comparison.

Fig. 6.10 shows the field dependent magnetization (with H||ab) of the Ba(Fe;_;Mn,)2As,
series at 2 K. In the substitution range we have explored, there is no evidence of a ferromagnetic
component to the magnetization, and only slight non-linearity that could be associated with
Brillouin saturation of paramagnetic local moments. This suggests that if there is a little
residual flux present in these samples, it does not contain MnAs since MnAs is a ferromagnet
with T &~ 318 K (Singh et al. (2009)). Although it is tempting to try to associate the low

temperature upturn in magnetization, seen most clearly for intermediate x values, with a Curie
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Figure 6.8: Derivatives of the temperature dependent magnetization for Ba(Fe;_,Mn,)2Aso
with H||ab. In all cases, H = 55 kOe. The z = 0.092 data are shown in both panels for the
sake of comparison.
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of comparison.

tail coming from paramagnetic impurities, this is difficult. Since the size of this upturn-like
feature diminishes as x increases for higher substitution levels, it is hard to simply associate

with increased Mn levels.

6.4 Discussion

Figures 6.11(a) and (b) show magnetization data with its derivative and normalized resis-
tance with its derivative, respectively, for one substitution level (z = 0.074). The maximum

(minimum) of a Gaussian fit of the feature in the derivative, shown with an arrow, gives the
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Figure 6.10: Field dependent magnetization for Ba(Fe;_,Mn,)2Asy, H||ab. In all cases, T' =
2K.

value of the transition temperature used throughout this work. The uncertainty is taken as the
full-width, half-max of this Gaussian fit.

As seen in Fig. 6.12, a T-x phase diagram for the Ba(Fe;_,Mn,)2Asy system can be con-
structed by applying these criteria to the data from each member of the substituted series.
Note that whereas a resistive feature is seen for all x < 0.15, the magnetic transition signature
is absent for z > 0.1. Substitution of Mn for Fe suppresses the high temperature tetragonal to
orthorhombic and antiferromagnetic phase transition, bringing it to a clear minimal value of
~ 65 K for x ~ 0.1, at the approximate rate of 7 K/%Mn. Of primary interest are the absence
of superconductivity and the lack of splitting between the structural and magnetic phase tran-
sition temperatures. This latter point is most clearly illustrated in Fig. 6.11(c), where we show
resistive derivatives of both Mn and Co substituted samples with similar transition tempera-
tures. The data from the Co substituted sample show two distinct features: a sharp minimum
which has been associated with the magnetic transition and a somewhat higher temperature
”shoulder” associated with the structural transition. By contrast, the data from the Mn sub-
stituted sample shows only the sharp minimum. This is similar to the parent compound, where

the transitions are seen at essentially the same temperature (134 K). This clear lack of splitting
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Ba(Fe;_;Mn,)2Ase (z = 0.074). Vertical arrows show criterion for transition temperature.
(c) shows resistivity derivative data for Co substitution (x=0.03) with a similar transition
temperature, with the vertical arrows indicating the higher temperature structural and lower
temperature magnetic transitions.

for x < 0.1 is conclusively demonstrated by neutron and x-ray scattering measurements (Kim
et al. (2010b)).

Figure 6.12 shows that there is excellent agreement between transition temperature values
inferred from different measurement techniques for z < 0.1: T/, as measured by resistance,
magnetization, thermopower and scattering techniques (Kim et al. (2010b); Thaler et al. (2011))
are very close (less than 1 K difference). For z > 0.1, the features are broadened. The
temperature associated with the broad minimum in the temperature dependent derivative of
the resistance agrees well with the temperature associated with the onset of long range magnetic
order (7™ in Fig. 6.12) and for several series members with 0.10 < = < 0.15 a small shoulder-
like feature can be detected near the temperature that magnetic scattering is first detected
(Fig. 6.12, with scattering data from Kim et al. (2010b)).

Kim et al. have done xray and neutron scattering on this substitution. (Kim et al. (2010b))
They find that while the magnetic Bragg peaks are consistent with the stripelike antiferromag-

netic structure found in other iron arsenide compounds, the splitting of the (1 1 10) charge peak
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Figure 6.12: T-x phase diagram for Ba(Fe;_,Mn;)2As, single crystals for 0 < 2 < 0.15.

associated with the orthorhombic distortion seen with other substitutions does not appear to
happen here. For z < 0.074, they see antiferromagnetic and structural transitions coincident
in temperature. For z = 0.102, a weak ”tail” of magnetic scattering extends to temperatures
above the structural transition. For x > 0.118, the structural transition is absent entirely and
the temperature evolution of the antiferromagnetic order is very different from what is seen at
lower Mn concentrations. The data on these low substitution levels shows that the structural
and magnetic transitions are tightly locked, consistent with what we have seen in resistance
and magnetization.

At these higher concentrations, there is a broadening of the magnetic peak above a temper-
ature 7™ which is itself above the magnetic transition temperature. For z < 0.074, the phase
line between the paramagnetic tetragonal and antiferromagnetic orthorhombic phases is easily
determined. However, for = > 0.102, the onset of long range order is more difficult to detect.
Thus the clarification of T™, which is the temperature below which the width of the magnetic
peak is limited by the instrumental resolution. 7™ follows the same trend seen for the maxima
of % seen in Fig. 6.5(b).

The effects of Mn substitution can be compared with those of Cr substitution. Both sub-

stitutions increase both the a and ¢ lattice parameters with x (Sefat et al. (2009b)), but at
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Figure 6.13: T-x phase diagram for Ba(Fe;_;Mn,)oAss single crystals for 0 < x < 0.2, now
compared with results from neutron scattering and from thermopower measurements for com-
parison.Thaler et al. (2011); Kim et al. (2010b) For = 2 0.1 the transition temperature inferred
from the broad resistive feature roughly agrees with the temperature (7*) below which neutron
scattering detects long range magnetic order (Kim et al. (2010b)).

different rates. At x ~ 0.1, the change in unit cell volume for both Mn and Cr substitutions is
about 0.8%, even though the change in a is about 0.05% in Cr and 0.3% in Mn and the change
in ¢is 0.7% in Cr and 0.2% in Mn. Figure 6.14 shows a comparison of the T-x phase diagrams
of the two compounds. Below z ~ 0.1, they are quite similar: both display suppression of
T /m to similar degrees, and neither shows any evidence of superconductivity. Above x ~ 0.1
however, they begin to differ: in contrast to the full suppression of the structural transition in
Ba(Fe;_;Mng)2Ase above  ~ 0.1 (Kim et al. (2010b)), the structural transition is observed in
Ba(Fe;_,Cr;)2Ase up to at least x ~ 0.18.(Marty et al. (2011)) In addition, the magnetic tran-
sition temperature monotonically decreases over the entire range in the Cr substituted series
(Sefat et al. (2009b); Marty et al. (2011)), in contrast with the upturn seen in Mn substitution.

Fig. 6.15 highlights some of the key differences between Mn and Co substitution for x < 0.15.
Of primary interest is the difference in the slope of the suppression of T /,,. When comparing
Co, Ni and Cu substitution, the suppression is seen to be dependent on atomic substitution

concentration regardless of which substitution is used, and is thus not seen to be dependent
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Figure 6.14: Comparison of the T-x phase diagrams of Ba(Fej_;Mn;)2Ass and
Ba(Fe;_,Cr;)2Ase (Sefat et al. (2009b)) for 0 < x < 0.15. The dashed line connects to the
next higher substitution concentration in the Cr series (z = 0.18), but we do not present that

part of our data here because we are unsure of the possible effect of phase separation above
x ~ 0.15.

on the number of extra carriers (Canfield et al. (2009)). By contrast, the slope with Mn (or
Cr) substitution is about half as steep. It is unclear if this is due to the difference between
electron and hole substitution or other differences such as structural changes. In addition, for
Co, Ni, Rh, Pd and Cu, substitution appears to split the structural and magnetic transition
temperatures (Canfield and Bud’ko (2010)), 75 and 75, with a maximum split of 16 K at
5.8% Co, 19 K at 3.2% Ni and 15 K at 3.5% Cu.(Ni et al. (2010)) For Mn substititution
though, there is no resoluble splitting in the transport, thermodynamic or microscopic (Kim
et al. (2010b)) data for 2 < 0.1.

Taking the minimum value for 7§/, ~ 65 K at x ~ 0.1 in the Ba(Fe;_,Mn;)2Asy system
and comparing it to the Ba(Fe;_,Co,)2Ass series, we get that the equivalent Co substitution
concentration for the same magnetic transition temperature is  ~ 0.04. This is on the low
substituted side of the superconducting dome, but with a well defined T, ~ 11 K (Ni et al.
(2008b)). We clearly do not see any sign of such superconductivity at this Mn composition.

This indicates that the well defined scaling of T, with suppression of T or T, that is seen for
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Figure 6.15: (a) Ba(Fe;_,;Mn,)2Ase T'—x phase diagram. (b) Ba(Fe;_,Co,)2Ass phase diagram
(Ni et al. (2008b)).

TM = Co, Ni, Rh, and Pd substitution (Canfield et al. (2009); Ni et al. (2009); Canfield and
Bud’ko (2010)) does not hold for TM = Mn. It is possible that the lack of superconductivity is
caused by Mn not suppressing the antifferomagnetic phase to a low enough temperature in the
right way: the superconducting transition may be cut off by the minimum in the temperature of
the phase transition and the change in the nature of the ordering above that minimum. This is
also the substitution level at which T's vanishes, whereas in superconducting TM substitutions,

the tetragonal to orthorhombic phase transition is still quite apparent.

6.5 Summary

Single crystals of Ba(Fej_,;Mn,)2Ase can be flux grown for a continuous range of substi-
tution concentrations from 0 < x < 0.15. Samples with homogeneous, single phase concentra-
tions above this can not easily be grown, as the crystals phase separate into Mn- and Fe-rich
mesoscopic regions at intermediate substitutions. As x increases from zero up to x =~ 0.1,
the structural and magnetic phase transition temperature, Ts/T,,, is suppressed but does not
clearly split as it does for TM = Co, Ni, Cu, Rh, and Pd substitution. For x > 0.1, a resistive

feature associated with magnetic ordering is observed with a transition temperature that in-
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creases with z. Superconductivity is not observed for any value of x. The suppression of Ts/T,,
occurs at a slower rate for Mn substitution than for substitution with TM = Co, and slightly

more quickly than for TM = Cr.

6.6 Further Work

Thermoelectric power and resistance under pressure measurements were performed on these
samples. The details of the data and experimental methods are discussed in a publication
from our group (Thaler et al. (2011)), but since they were primarily taken and analyzed by
Halyna Hodovanets (TEP) and Milton Torikachvili (pressure), rather than myself, they are not
presented in detail here. However, Fig. 6.13 shows that there is good agreement between the

resistance and magnetization measurements presented here and the thermopower data.
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CHAPTER 7. Double-substitution: properties of Ba(Fe;_,_,Co,TM,);As;
(TM=Cr, Mn) single crystals

7.1 Introduction

For ”electron rich” transition metal substitution on the Fe site of BaFesAsy, we have ob-
served that many properties of the phase space scale very closely with electron count, with both
3d and 4d transition metal substitutions following this trend (Ni et al. (2009)). As discussed
in Chapter 6 (as well as by Sefat et al. (2009b) and Bud’ko et al. (2009)), substitution of Mn
or Cr for Fe in BaFeyAss suppresses the structural and magnetic phase transitions but does
not induce superconductivity at any substitution level. To test whether Mn and Cr introduce
hole-like carriers in the same way that Co or Ni introduce electron-like carriers, we wanted to
investigate the effects of simultaneous substitution of either Mn or Cr along with Co and see if
this would allow us to tune the system by 'walking’ back and forth along the superconducting

dome (Fig. 4.5).

7.2 Specifics of Crystal Growth

CrAs is synthesized in a manner very similar to that used for FeAs, which is described
in Chapter 3. One problem was that Cr powder was difficult to obtain, so small pieces of
elemental Cr were smashed in a small, table-top anvil and then ground with an agate mortar
and pestle. Another issue is that Cr does not react with As as easily as the other transition
metals we commonly use as substitutions (Mn, Fe, Co, Ni, Ru, Rh and Pd), so synthesis
required multiple reactions. Our CrAs was synthesized before we had access to the rotating
tube furnace attachment described in Chapter 3, so all of our CrAs was prepared by creating

CrAs pellets out of Cr and As powders. These pellets were heated as described in Chapter 3,
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but then they had to be reground and pressed into new pellets and heated again. This process
was repeated until no free As is observed in the reaction tube, which sometimes required several
iterations. Fortunately because As sublimates at ~ 513°C, any free As became vapor which
deposited itself on the inside walls of the tube, making it is fairly easy to detect the presence
of free As. The crystal growth process was identical to single transition metal substitutions:
some FeAs was replaced with CoAs and either MnAs or CrAs and combined with Ba in a
ratio of Ba:TM:As=1:4:4. Because of the presence of Cr, slightly higher spin temperatures of
1025 — 1050°C had to be used. The problem with phase separation seen in Mn substitution

described in Chapter 6 was hopefully avoided by use of low substitution levels.

7.3 Results

WDS was performed in order to determine actual rather than nominal substitution con-
centration. Each WDS measurement provides composition information about sample volumes
of ~ 1 ym diameter. WDS measurement data are summarized in Tables 7.1 and 7.2 For each
batch, up to 5 crystalline surfaces were examined. The table shows the number of points
measured, the average x and y values, and two times the standard deviation of the z and y
values measured. Unless otherwise noted, all z and y values given here are the average zwpgs
or ywps values determined by WDS, not the nominal x or y substitution. Comparing the
ratio of WDS to nominal substitution concentrations in these double substitututed growths
with those in the single substitutions of Co or Mn (see Chapters 4 and 6), we see that Co, Cr
and Mn preferentially substitute themselves for Fe rather than competing with each other (see
Fig. 7.1). This means that when aiming for a particular WDS substitution of Co and Cr or
Mn, our experience from the single substitutions could be used to determine the appropriate

nominal substitution level.
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Ba(Fe;_;—,Co,Cry)2Asy

Batch # | KQ715 | KQ714 | MC137-1 | SA639 | MC137-2 | KQ716 | MC154 | SA640 | KQ989 | MC161 | MC157 | MC156 | MC155
N 24 26 12 12 12 32 12 12 13 12 12 12 12
Tnominal | 0.063 0.063 0.058 0.063 0.058 0.063 0.070 0.063 0.063 0.075 0.078 0.075 0.073
TWDS 0.036 0.048 0.047 0.048 0.046 0.048 0.050 0.050 0.049 0.054 0.057 0.055 0.053
20, 0.003 0.002 0.005 0.002 0.004 0.002 0.002 0.004 0.001 0.005 0.001 0.003 0.003
Ynominal | 0.020 0.010 0.020 0.020 0.020 0.030 0.030 0.045 0.072 0.018 0.030 0.030 0.030
YWwDS 0.013 0.002 0.011 0.011 0.013 0.020 0.021 0.032 0.069 0.012 0.021 0.021 0.022
20y 0.002 0.001 0.002 0.003 0.003 0.002 0.002 0.002 0.003 0.002 0.001 0.003 0.002
Batch # | MC160 | MC239 | MC240 | MC243 | MC242 | KQ717 | KQ718 | KQ719 | SA641 | SA556 | SA557 | SA558 | SA559
N 12 12 12 12 12 27 28 26 12 24 12 12 12
Tnominal | 0.075 0.079 0.080 0.087 0.085 0.100 0.100 0.100 0.100 0.150 0.150 0.150 0.150
TWDS 0.055 0.058 0.058 0.066 0.063 0.078 0.076 0.077 0.077 0.122 0.120 0.119 0.121
20, 0.003 0.002 0.002 0.002 0.003 0.003 0.003 0.002 0.004 0.002 0.003 0.002 0.003
Ynominal | 0.045 0.030 0.030 0.030 0.030 0.010 0.020 0.030 0.045 0.010 0.020 0.030 0.040
YywDbDs 0.032 0.018 0.019 0.020 0.022 0.003 0.011 0.020 0.031 0.007 0.013 0.020 0.025
20y 0.001 0.001 0.001 0.001 0.003 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002

Table 7.1: WDS data for Ba(Fej_;—;Co,;Cry)2Ass. N is the number of points measured in each
batch, xwps and ywps are the average values for that batch, and 20 is twice the standard
deviation of the N values measured.

Ba(Fe;_y—yCo,Mny)2Asy

Batch # | KQ911 | KQ958 | KQ959 | KQ910 | SA596 | KQ961 | KQ962 | SA597
N 16 12 14 15 12 9 13 12
Tnominal | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.100 | 0.100 | 0.100
Twps | 0.047 | 0.047 | 0.046 | 0.049 | 0.050 | 0.072 | 0.071 | 0.076
204 0.00L | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.002 | 0.002
Ynominal | 0.020 | 0.040 | 0.060 | 0.010 | 0.030 | 0.040 | 0.060 | 0.010
ywps | 0.023 | 0.048 | 0.069 | 0.012 | 0.035 | 0.046 | 0.075 | 0.012
20, 0.001 | 0.003 | 0.003 | 0.001 | 0.001 | 0.002 | 0.003 | 0.002
Batch # | KQ960 | SA598 | SA223 | MC303 | MC304 | SA224 | SA225
N 10 12 12 12 12 12 |12
Tnominat | 0.100 | 0.100 | 0.150 | 0.150 | 0.150 | 0.150 | 0.150
Twps | 0.077 | 0074 | 0.123 | 0.124 | 0.114 | 0.120 | 0.116
205 0.002 | 0.002 | 0.002 | 0.003 | 0.004 | 0.003 | 0.004
Ynominal | 0.020 | 0.030 | 0.010 | 0.008 | 0.002 | 0.020 | 0.040
ywps | 0.023 | 0.034 | 0.006 | 0.010 | 0.019 | 0.022 | 0.047
20, 0.001 | 0.002 | 0.002 | 0.001 | 0.001 | 0.002 | 0.002

Table 7.2: WDS data for Ba(Fe;_;—,Co;Mn,)2Ase. N is the number of points measured in
each batch, xypg and ywpg are the average values for that batch, and 20 is twice the standard
deviation of the N values measured.
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Figure 7.2: Unit cell parameters, a and ¢ for Mn and Co alone (left) and Mn+Co (right),
normalized to those of the parent compound BaFesAsy, for which ag = 3.96 A and ¢o = 13.0 A.
The lines on the left are linear fits, used to calculate the open points on the right, and the black
line on the right is the same as the one on the left.
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Figure 7.3: Unit cell parameters, a and ¢ for Cr and Co alone (left) and Cr+Co (right),
normalized to those of the parent compound BaFegAss, for which ag = 3.96 A and ¢y = 13.0 A.
The lines on the left are linear fits, used to calculate the open points on the right, and the black
line on the right is the same as the one on the left.

Rietvelt refinement of powder x-ray patterns using Si as a standard allows lattice param-
eters to be determined, from which unit cell volumes can be calculated. Normalized lattice
parameters and unit cell volumes are displayed in Fig. 7.2 and Fig. 7.3. While the combined
effect of Mn and Co on the lattice parameters is consistent with what is predicted from the
single Mn and Co substitutions at least in terms of the slope, the combination of Cr and Co is
less so. However, the measured values in the combined Cr and Co system follow a much more
predictable trend than what is predicted from the Cr substitution alone (especially in the a
parameter, Sefat et al. (2009b)), so this is likely the source of the error. Additionally, the slope
of the a parameter is very small in the region of interest (as seen by the black line in Fig. 7.3),
which is borne out by the x = 0.048 and x = 0.078 data. The z = 0.12 data does not follow the

trend as well, but it is also much less consistent in general, so this is not totally unexpected.
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Figure 7.9: Temperature dependent resistivity, normalized to the room temperature value, for
Ba(Fei_;—yCo,Cry)oAss.

Figures 7.4 and 7.5 show the normalized electrical resistivity data of the
Ba(Fei_y—yCo, TM,)2Asy series from 2 K to 300 K. Normalized resistivity is plotted instead
of resistivity because of the tendency of these samples to exfoliate or crack. (Ni et al. (2008b);
Tanatar et al. (2009a,b)) The anomaly in resistivity at 134 K for pure BaFeyAs; is associated
with the structural/magnetic phase transitions (Rotter et al. (2008b)), and can clearly be seen
in the derivative of the resistivity (Ni et al. (2008b)), which is shown in Figs. 7.6 and 7.7. As in
the case of single TM substitutions (Ni et al. (2008b); Canfield et al. (2009); Ni et al. (2009);
Canfield and Bud’ko (2010)), double substitition suppresses the temperature of the resistive
anomaly and changes the shape from a sharp decrease to a broadened increase as x+y increases.

One feature of note in the resistance series is a general trend towards a steeper slope
(A(R/Rs300)/AT) for higher Co z for a given Mn or Cr y. This is the opposite of the trend seen
the other way around: for a given x, higher y gives a more shallow slope, as seen in Figs. 7.8
and 7.9. This is consistent with the trends seen in Co and Mn single substitutions: higher Co
concentration tends to give a steeper slope (Ni et al. (2008b)), whereas higher Mn concentration
tends to give shallower slope (Thaler et al. (2011)). However, it is contrary to the results seen
when Cr is substituted by itself, where higher Cr concentration tends to give a steeper slope

(Sefat et al. (2009Db)).
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Figure 7.10: Temperature dependent magnetization for Ba(Fe;_,—,Co2Cry)2Asy with H||ab.
In all cases, H = 55 kQe.
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Figure 7.11: Temperature dependent magnetization for Ba(Fe;_;_,CoaMn,)2Asy with H||ab.
In all cases, H = 55 kOe.



10

90

T 1 T T

A 2
w»

.v{ x=0.046 y=.013 |
v

x=0.032 y=.013 4
x=0.036 y=.013

$oepen v < -
g W R 1 g i E x=0.12 y=.013
E . K g = x=0.047 y=.011 300
L 2h v . R Y 1.9 »  x=0.048 y=.011 15
=) " VT Tamstanfathsl T o sz o = = 3
S 'Wyv.' B Ty 3 * x=0.076y=011 S R 1
(= Jav i A.‘...A!’f-'vv'.' v . = 4=
CHY T T M S z >
T 2y, o . ’ T S 10F » 4
% A s Ba(FeLX_yCOXCry)ZAs2 ] % al I
. X,y WDS as g
s . . s . . . .
0 50 100 150 0 50 100 150 0 50 100 150
() () T
1 T T - 2 T T =
< < L.
o [=] . . -
£ £ - PR T ", x -
S S of" £ ol . . R g
@8 . @8 I vn’j“'ﬁ' VT
g = F- ,J‘,,‘"' x=0y=0.031
2 | > x=0y=0.0175 x=0.085y=.021] 2 |- x=0.05 y=.032
T2 1 Z X=0.055 y=.032
s .+ x=0.048y=.02 - x=0.057y=.021| S 2| US55 y=.
T |'* - x=005y=.0207 - x=0.077y=02{ T | v+ x=0.077y=.031
, - x=0.053y=.022 - x=0.119y=.02 ‘ ‘
~o o © 100 150 ) 0 gy 150
Figure 7.12: Derivatives of the temperature dependent magnetization for

Ba(Fei_;—yCo,Cry)oAsy with H||ab. In all cases, H = 55 kQOe.



91

§ —o—x=0y=0.012 1a0 0
— = —x=0.049 y=0.012 = <
x=0.114 y=0.011 120 ¥ 5
o o
i | 108 20 E
L I8l 3 g
] A S, N - b —o—x=0y=0.026 g
AR ] AR e o Lg —o0—x=0.047 y=0.023 400
| Wa [ X=0.1136 x=0.019 i
5 15 —o—x=0.1195 y=0.023 3
g 20T 1§ g
el g
Ba(Fe 1wCoany)zAsz = @.’ T
[ -80
‘ ‘ ‘ ‘ ‘ a0 : :
0 50 100 150 200 250 300 0 50 100 150

TK) TK)

— 5 — x=0 y=0.052 1w 9

i ~ o X=0.047y=0048 o S
Lo X=0.072y=0.046  J.0% [ o —x=0 y=0.074 ]
LA —o—x=0.116y=0.047  ].g S [1 — o —x=0.046 y=0.069 {sZ
e . x=0.071 y=0.075 =
a2 . . -100 , ) 70
0 50 T (K) 100 150 0 50 T (K) 100 150
Figure 7.13: Derivatives of the temperature dependent magnetization for

Ba(Fei_y—yCozMny )2Asy with H||ab. In all cases, H = 55 kOe.

Signatures of the structural/magnetic phase transition in the lower substitution region are
also seen in magnetization data: Figs. 7.10 and 7.11 show temperature dependent magnetization
data of the Ba(Fe;_;_,Co, TM,)2Asy series from 2 K to 300 K and Figs. 7.12 and 7.13 show
the derivatives of the temperature dependent magnetization data.

Figures 7.14 and 7.15 show the field dependent magnetization (H||ab) of the
Ba(Fei_y—yCo, TM,)2Asy series at 2 K. These data show that as Co levels are increased for
a given Cr or Mn concentration, the M/H (susceptibility) increases, as seen in M (T')/H data
presented in Figs. 7.10 and 7.11. This is consistent with the increasing Curie-Weiss like tail

that appears for larger = + y values once T ,, is fully suppressed.

7.4 Discussion

As shown in Fig. 7.16, T-x phase diagrams for the Ba(Fe;_,—,Co;TM,)2Ass (TM=Cr, Mn)
systems have been constructed by applying the same criteria as in our single substitution work

(see Chapters 5 and 6) to the data from each member of the substituted series. Substitution
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Figure 7.14: Field dependent magnetization for Ba(Fe;_,_,Co,Cry)2Ase, H||ab. In all cases,
T =2K.
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Figure 7.16: Substitution level

(TM=Cr, Mn).

dependent phase diagrams for Ba(Fel_m_yCOxTMy)QASQ

of any of the three transition metals for Fe suppresses the high temperature tetragonal to
orthorhombic and antiferromagnetic phase transition (Ni et al. (2008b); Sefat et al. (2009b);
Thaler et al. (2011)). Adding Cr or Mn to a Co substituted sample further suppresses these
transitions.

As discussed above, part of the motivation for this study was to see if Cr and Mn can be
treated as some form of hole-donor for the purposes of substitution. If so, it should be possible
to 'walk’ back and forth along the superconducting dome by first substituting Co then adding
either Cr or Mn. If the Cr or Mn contribute hole-like carriers, then substitution of Mn should
act the same as removing the same amount of Co as added Mn and substitution of Cr should
act the same as removing twice as much Co as added Cr. This is not what is observed, as
shown in Figs. 7.15 and 7.17.

Instead of behaving as if it were removing electrons from the system, the addition of Cr or
Mn suppresses both the high temperature structural phase transition and the superconducting
transition for all Co concentrations. If Cr or Mn were acting as hole donors, then we would

expect that the structural transition temperature (7s) would increase rather than decrease,
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and we might also expect to see reemergence of the structural transition in samples with more
Co than optimal, where the transition has been suppressed completely. While we would expect
to see suppression of T, when adding Cr or Mn to Co concentrations below optimal — moving
lower on the electron count phase diagram — our observation is that T, is suppressed even in
samples where the Co concentration is well above optimal, where we should see an increase in
T, in the case of simple band filling. Furthermore, we see that the rate of suppression of T, is

very nearly the same independent of the Co concentration.

7.5 Summary

Single crystals of Ba(Fei_;—yCo;TMy)2Asy (TM=Cr,Mn) have been grown out of a TMAs
flux for various z and y values up to x ~ 0.12 and y ~ 0.04. Samples are homogeneous and
single phase and are size limited by the growth crucible. Cr and Mn appear to preferentially
substitute for Fe, rather than competing with the Co, allowing relatively easy prediction of
zwps and ywps from Tpomina and Ynomina Using the single substitution values measured and
tabulated previously. For all x values, increasing y suppresses T, as well as T, for = values
which superconduct when prepared with y = 0. These results are inconsistent with either Cr

or Mn acting as simple hole donors.
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CHAPTER 8. Effects of annealing on Ba(Fe(ss_,Cog12Cry)2As,
(y=0, 0.013)

8.1 Motivation

When discussing multiple TM substitutions onto the Fe site of BaFeaAsy, I noted that
superconductivity is rapidly suppressed by the addition of even a small amount of Cr to a sample
with a Co substitution which would, by itself, induce superconductivity, and that that this is still
the case even in samples with optimal or over substituted Co, where superconductivity is quite
robust (see Chapter 7). However, when measuring heavily over-substituted Co with additional
Cr, one sample (Ba(Feg g7Cro.013C00.12)2As2) showed a trace of partial superconductivity in
resistive measurements (see Fig. 8.1).

Strain can radically alter the properties of some members of this system and its relatives,
and post-growth annealing has been shown to be effective in removing some of the effects of
this strain, restoring the properties of the unstressed parent compound (Saha et al. (2009); Ran
et al. (2011). With that in mind, it seemed likely that the partial superconductivity seen in
this sample was a result of strain of some kind — either in growth, extraction from the melt or
attaching the resistance wires — so we decided to attempt to remove the effect through annealing.
We sealed the resistance sample as prepared — with wires still attached — in a SiOy tube and
annealed for ~120 hours at 600° C, then remeasured it. Instead of the expected restoration
of normal metallic behavior, the sample displayed full, zero-resistance superconductivity with
T onset increased from ~13 K to ~26 K. In order to better understand this phenomenon, we
began a systematic study of the effects of annealing on TM substituted BaFesAss, both with
Co alone and with Cr added.
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Figure 8.1: Left: normalized resistance of as-grown Ba(Fep67Cro.013C00.12)2As2 showing a
drop in resistance characteristic of partial filamentary superconductivity at approximately 13 K.
Right: normalized resistance of the same resistance bar, annealed for ~120 hours at 600°C,
showing zero resistance starting at at approximately 23 K.

8.2 Sample Preparation

Samples were prepared in a manner identical to that described in Chapters 3, 4, and 7.
Annealing was performed in two slightly different ways. Initially, samples were grown, measured
then resealed in SiO2 tubes and annealed. This allowed us to measure the properties of a
particular batch or sample both before and after annealing. Because we did not want to attach
wires to the sample — since the Ag epoxy might react with the sample during annealing — we did
not, in general, measure the particular crystals being considered prior to annealing but limited
ourselves to representatives from the same batch. Because we had concerns about exposure
to oxygen, later batches were synthesized as usual, but then annealed in their growth tubes
prior to opening. This provided us with samples which were not exposed to atmosphere prior
to annealing. Although this latter method should have provided better controlled samples, it

had some complexities associated with it that will be discussed below.

8.3 Results

Before diving into a discussion of the data presented in this chapter, I want to comment
that this data is somewhat preliminary. It was only discovered late in the progress of the

work discussed in Chapter 7. It provided many challenges and surprises, and I did not have
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time to fully explore what was happening or correct initial measurements which may have had
problems in the data collection. Please take the results presented here with a grain of salt and
refer to any subsequent work on the subject for clarification.

Figures 8.2(a) and (c) show normalized, low-temperature resistance for annealed samples of
Ba(Fei_y—yCo,Cry)2Asy annealed at 600°C. These were all from one batch, with the crystals
individually annealed after opening. The Co concentration is well above what it should be for
optimal T,. As discussed in Chapter 7, the ~ 1.3% Cr added in the doubly-substituted com-
pound should destroy the superconductivity normally seen at this Co concentration. Instead, as
discussed above, T, monotonically increases up to six days of annealing, though it is essentially
at its maximum value after four days, with max T, roughly 26 K. Further annealing does not
appear to significantly increase T, but neither does it decrease it. Fig. 8.2(c) shows the first
of the questionable data presented here: the four-day annealed sample shows a sharp decrease
in resistance at approximately the temperature we expect for the superconducting transition
(based upon the other anneals), but does not reach zero resistance. This is most likely not a
real effect, and probably results from bad electrical contacts.

Figures 8.2(b) and (d) show temperature dependent superconducting fraction data for
Ba(Fei_y—yCo,Cry)2Asy annealed at 600°C. Only field cooled data is shown, but T is still
easily detectable. In fact, it is higher in the doubly-substituted sample post-annealing than
it is in the equivalent Co-only sample (see below). However, it is several Kelvins lower than
what is seen in resistance. The transition width is also quite wide: approximately 8 K even
in the best case. In Fig. 8.2(b), the data shows multiple problems. The five day anneal has a
positive uptick in superconducting fraction, then a sharp transition to a well-behaved decrease,
indicating increasing superconducting fraction below this sharp feature. Because the positive
signal is essentially the opposite of what we expect (—1x the expected signal), this is probably
a result of loss of centering by the MPMS. The one day and 6.5 day anneals show a different
problem: much larger superconducting fraction than is possible. Because these measurements
were made with H||ab, we do not expect geometric demagnetization factor to be a major
contributor to discrepancies in the superconducting fraction measurement. The data for these

two sets was taken in the same MPMS system as the other three annealing times and the other
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Figure 8.2: Temperature dependent normalized resistance R(T)/Rsook (a,c) and supercon-
ducting fraction (b,d) for Ba(Fe;_,_,Co,Cry)2Asy, annealed for varying lengths of time. In
these figures, the samples were annealed after opening the growth tube, and were annealed at
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samples (such as what is shown in Fig. 8.2(d)) using an identical measurement sequence, which
included a demagnetization sequence at the beginning (as described in Section 3.2.4), so it is
not clear what the source of this error is. One possibility is that there was a problem with the
SQUID calibration which only manifested in these two data sets, but we have not looked for
evidence of this.

Figure 8.3(a) shows normalized, low-temperature resistance for annealed samples of
Ba(Fe;_,Co;)2Ase annealed at 600°C. These samples were separate parallel batches annealed
prior to opening. Co concentration is well above what it should be for optimal T,.. Here, T, is
increased from ~10 K in the as-grown sample to ~26 K in the four-day anneal. The transition
is also significantly sharpened. In the six-day anneal, the transition splits into one at ~26 K
and another at ~15 K, though it is not clear whether this is an effect of the heat treatment or
a problem with this sample batch.

Figure 8.3(b) shows temperature dependent superconducting fraction data for
Ba(Fe;_,Co;)2Ase annealed at 600°C. Only field cooled data is shown here. Unfortunately,
T, is significantly lower as measured by magnetization than by resistance. In fact, it is nearly
unchanged from the as-grown result. This result suggests that the extreme increase in T, seen
in resistance is merely a surface or filamentary effect. As with the data shown in Fig. 8.2(b), the
superconducting fraction data shown here has a problem with being somewhat over-exuberant.
The usual explanations, geometric demag. factor and remnant field, can be discounted here for
the same reasons as described for the double-substituted sample.

Figure 8.4 shows temperature dependent superconducting fraction data for Ba(Fe;_,Co, )2 Ass.
These samples were annealed prior to opening the growth tube, and additions to the temper-
ature profile were made: one at 800°C and 1000°C, both after 8 days of annealing at 600°C.
In the 800°C case, superconductivity is dramatically suppressed, down to only 20% supercon-
ducting fraction and a T, of only ~ 8 K. The 1000°C annealed sample has superconductivity
suppressed down to zero. These data imply that if there are any improvements to be gained
by annealing, these temperatures and times were too high or long to realize them. One thing
to note is that this data does not have the problem with unphysical superconducting fractions

that the post-opening anneal samples shown in Fig. 8.3 display. It is not clear why that is.
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Figure 8.4: Temperature dependent superconducting fraction for Ba(Fe;_,Co,)2As2, annealed
for varying lengths of time and at varying temperatures. These samples were annealed prior to
opening the growth tube.

8.4 Discussion and Future Work

Although annealing the growths prior to opening their amorphous silica tubes allowed us to
eliminate exposure to air as a possible culprit in the odd behavior of this system, it did present
some issues. First and foremost, batch to batch variation in x could not be eliminated, which
makes comparing the same substitution level annealed for differing lengths of time difficult
at best. This variation between batches is unfortunately large enough in some cases to make
the predicted T, significantly different, even without considering the effect of annealing: for
x = 0.106 (the value for the batch which was not annealed), T, ~ 14.7 K — higher than what is
seen here— while for z = 0.115 (the eight day anneal), T, ~ 10.8 K.

The other, related problem with annealing the samples prior to opening is that they could
not be measured prior to annealing. Resistive and magnetic measurements as well as elemental
analysis would useful information about the state of the samples before and after annealing.
The two batches annealed at higher temperatures both show variation in z. This variation may
be coincidence, but it is also possible that the annealing is altering the substitution level. If this
is the case in the singly Co-substituted samples, it is possible that is is also what is happening in

the doubly-substituted, Ba(Fe;_;—,Co,Cry)2Asy ones. If that is what is happening, then it may
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Ba(Fei_y—yCo;Mn, )2Asy annealed for 5 days at 600°C. These samples were annealed after
opening the growth tube.

not be an annealing issue at all, but simply that heat treatment removes Cr from the lattice.
In that case, the reduced Cr concentration might be enough to restore superconductivity.
Any future work should begin with elemental analysis performed both before and after
annealing. That would give a clearer idea of whether heat treatment changes the stoichiom-
etry of the samples (at least on the surface) or introduces impurities from the atmosphere,
such as oxygen. Another thing to explore is a more detailed study of different Co concen-
trations. So far, I have only looked at ~7% Co and ~12% Co, and only the latter in de-
tail. Annealing studies on under-substituted samples should be considered as well to see how
heat treatment affects Ty ,,. Other temperature profiles — lower temperature for example —
should be explored as well. Finally, other TM substitutions should be measured. Prelimi-
nary data on Ba(Fe;_;_,Co,Mn,)sAsy show that it behaves similarly, but not identically, to
Ba(Fe;_;—;Co,;Cry)2Asy when annealed. As shown in Figure 8.5, annealing restores supercon-
ductivity to this system as well, but 7T, is considerably lower for comparable substitution level

and annealing time.
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8.5 Summary

Samples of Ba(Fe;_,Co,)2Asy and Ba(Fe;_;_,Co,Cry)2Asy have been prepared and heat
treated. We find that heat treatment alters the superconducting properties of both series and
that T, ;4. is nearly identical in both cases. Unfortunately, the effect appears to be filamentary
or surface only in the case of Ba(Fe;_,Co,)2As9, and appear to be significantly different in the
bulk than on the surface in Ba(Fe;_;_,Co,Cry)2Ass, as demonstrated by the difference between

resistive and magnetization measurements.
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CHAPTER 9. Collaborations Based on the Use of
Ba(Fe;_,TM,),As, Single Crystals

Much of my time during my graduate work was spent preparing samples requested by
others for more detailed or specialized measurements than I could perform myself. These
growth requests were normally motivated by work done within our group, so I usually had
some experience with the system of interest. This allowed me to assess what would be needed
and to provide samples with the requested specifications (eg. sample size or substitution level).

An example of this is shown in Fig. 9.1.

0.4 . . . . . .
Ba(Fe, Ru ).,As,
031 fit line ]
= previous data &L
) 4
e predicted o
02 4 WDS result N 8

XWDS

'0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

X .
nominal

Figure 9.1: Example of how previously grown samples were used to provide samples with
requested z values. Black squares are the data before the new growths were made, the black
line is a fit to these data and the red circles are the prediction of what three nominal values
would give for real xr,. The blue triangles are the WDS values of these three growths, showing
excellent agreement between the prediction and the result.

Some scattering measurements required sample masses far in excess of what could be pro-
vided by any one single crystal. For these measurements, a large number of samples with as

close to identical composition as possible needed to be synthesized and co-aligned. Two minor
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modifications were made to the growth techniques in order to help facilitate meeting this re-
quirement. First, 5 ml alumina growth crucibles were used instead of the standard 2 ml ones.
These provide more than twice the volume for crystal growth, which allows much larger single
crystals to form during synthesis. Second, multiple identical batches were prepared and grown
at the same time under identical conditions. In order to minimize the possibility of batch to
batch variation, the TMAs and FeAs powders for all of these batches were mixed together
at once to attempt to ensure that each batch had the same proportion of TM:Fe. This large
amount of mixed powder was then separated into parts suitable for each batch and combined
with Ba in the manner described in Chapter 3.

Presented below are summaries of some of the data taken on samples I prepared for collab-

orative efforts with other groups.

9.1 X-Ray Scattering

Nandi et al. (2010) described high resolution x-ray diffraction measurements, which revealed
an unusually strong response of the lattice to superconductivity in Ba(Fe;_,Co,)2Ass. The
orthohrombic distortion of the lattice is suppressed below T, and, for Co substitution levels near
x = 0.063, the orthorhombic structure evolves smoothly back to a tetragonal structure. The
authors proposed that the coupling between orthorhombicity and superconductivity is indirect
and arises due to the magnetoelastic coupling, in the form of emergent nematic order, and the
strong competition between magnetism and superconductivity.

Kim et al. (2010a) gave the results of resonant x-ray diffraction measurements at the Fe K
edge of both the parent BaFesAsy and superconducting x = 0.047 compounds. The authors
concluded, from these high-resolution measurements, that the magnetic structure is commensu-
rate for both compositions. The energy spectrum of the resonant scattering was in reasonable
agreement with theoretical calculations using the full-potential linear augmented plane-wave
method with a local density functional.

Neutron and x-ray diffraction studies of Ba(Fe;_,Mn,)2Ass for z < 0.176 were performed in
2010 and are described in Kim et al. (2010b). These revealed that at a critical concentration,

0.102 < = < 0.118, the tetragonal-to-orthorhombic transition abruptly disappears whereas
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magnetic ordering with a propagation vector of (1/2 1/2 1) persists. Among all of the iron
arsenides this observation is unique to Mn substitution, and unexpected because all models
for ”stripe-like” antiferromagnetic order anticipate an attendant orthorhombic distortion due
to magnetoelastic effects. They discussed these observations and their consequences in terms
of previous studies of Ba(Fe;_;TM,)2Ase compounds (TM=transitionmetal), and models for
magnetic ordering in the iron arsenide compounds.

Kim et al. (2011a) presented a combined high-resolution x-ray diffraction and x-ray resonant
magnetic scattering study of as-grown BaFe2As2. The structural and magnetic transitions must
be described as a two-step process. At T = 134.5 K, they observed the onset of a second-
order structural transition from the high-temperature paramagnetic tetragonal structure to a
paramagnetic orthorhombic phase, followed by a discontinuous step in the structural order
parameter that is coincident with a first-order antiferromagnetic (AFM) transition at T =
133.75 K. These data, together with detailed, high-resolution x-ray studies of the structural
transition in lightly substituted Ba(Fe;_;Co,)2Asy and Ba(Fe;_;Rh,)2Asy compounds, showed
that the structural and AFM transitions do, in fact, occur at slightly different temperatures
in the parent BaFesAs, compound, and evolve toward split second-order transitions as the
substitution level is increased. They estimated the composition for the tricritical point for
Co substitution and employ a mean-field approach to show that these measurements can be
explained by the inclusion of an anharmonic term in the elastic free energy and magnetoelastic
coupling in the form of an emergent Ising-nematic degree of freedom.

Dean et al. (2012) investigated the magnetic polarization of the Ir 5d substitutant states
in superconducting Ba(Fe;_,Ir;)2Asy (with z = 0.027(2)) using Ir L3 edge x-ray resonant
magnetic scattering (XRMS). Despite the fact that substitution partially suppresses the anti-
ferromagnetic transition, they found that magnetic order survives around the Ir substitutant
sites. The Ir states are magnetically polarized with commensurate stripe-like antiferromagnetic
order and long correlations lengths, &,y > 2800 and > 850A, in the ab plane and along the
¢ axis, respectively, driven by their interaction with the Fe spins. This Ir magnetic order per-
sists up to the Néel transition of the majority Fe spins at Ty = 74(2) K. At 5 K, the authors

find that magnetic order coexists microscopically with superconductivity in Ba(Fe;_,Ir;)2Ass.
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The energy dependence of the XRMS through the Ir L3 edge showed a non-Lorentzian line
shape, which were explained in terms of interference between Ir resonant scattering and Fe

nonresonant magnetic scattering.

9.2 Neutron Scattering

Neutron-diffraction and high-resolution x-ray diffraction studies found that, similar to the
closely related under-substituted Ba(Fe;_,Co,)2Ass superconducting compounds,
Ba(Fe;_,Rh;)2As (z = 0.039) showed strong evidence of competition and coexistence between
superconductivity and antiferromagnetic order below the superconducting transition, T, =
14 K. The transition temperatures for both the magnetic order and orthorhombic distortion
were in excellent agreement with those inferred from resistivity measurements, and both order
parameters manifest a distinct decrease in magnitude below T,.. These data suggest that the
strong interaction between magnetism and superconductivity is a general feature of electron-
carrier substituted Ba(Fe;_,TM,)2Ase superconductors (TM=transition metal). (Kreyssig
et al. (2010))

Fernandes et al. (2010) showed the results, both theoretical and experimental, of using mag-
netic long-range order as a tool to probe the Cooper-pair wave function in the iron arsenide
superconductors. They demonstrated that the theory shows that antiferromagnetism and su-
perconductivity can coexist in these materials only if Cooper pairs form an unconventional, sign-
changing state. This means that the observation of coexistence in Ba(Fe;_,Co,)2Asy demon-
strates unconventional pairing in this material. The detailed agreement between theory and
neutron-diffraction experiments, in particular, for the unusual behavior of the magnetic or-
der below T., demonstrates the robustness of these conclusions, and strongly suggests that
superconductivity is unconventional in all members of the iron arsenide family.

Pratt et al. (2010) showed results from inelastic neutron-scattering measurements performed
on Ba(Fe;_,Co;)2Ase with = 0.047, which is in the substitution range where superconduc-
tivity and long-range antiferromagnetic (AFM) order coexist. Here, the magnetic excitation
spectrum found in the normal state is strongly damped and develops into a magnetic resonance

feature below T, that has appreciable dispersion along ¢ axis with a bandwidth of 34 meV. This
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is in contrast to the optimally substituted composition which has no long-range AFM order,
and where the resonance exhibits a much weaker dispersion (Lumsden et al. (2009)). The re-
sults suggested that the resonance dispersion arises from interlayer spin correlations present in
the AFM ordered state.

Kim et al. (2011b) presented a systematic investigation of the antiferromagnetic ordering
and structural distortion for the series of Ba(Fe;_,Ru,)2Ase compounds (0 < z < 0.246).
Neutron and x-ray diffraction measurements demonstrated that, in contrast with compounds
containing TM substitutions which provide extra electrons (i.e. TM=Co, Ni, Cu, Rh, Pd, or Ir),
the structural and magnetic transitions remained coincident in temperature. Both the magnetic
and structural transitions are gradually suppressed with increased Ru concentration and coex-
ist with superconductivity. For samples that are superconducting, the data suggested strong
competition between superconductivity, the antiferromagnetic ordering, and the structural dis-
tortion.

Pratt et al. (2011) presented the results of neutron diffraction studies of Ba(Fe;_,Co,)2Ase
which revealed that commensurate antiferromagnetic order gives way to incommensurate mag-
netic order for Co compositions between 0.056 < z < 0.06. The incommensurability has the
form of a small transverse splitting (0, ¢, 0) from the commensurate antiferromagnetic prop-
agation vector Qary = (1,0,1) (in orthorhombic notation) where € ~ 0.02 — 0.03 and is
composition dependent. These results were consistent with the formation of a spin-density
wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant

nature of magnetism in the iron arsenide superconductors.

9.3 Thermodynamic and Transport Measurements

Bud’ko et al. (2009) presented thermodynamic, structural, and transport measurements on
Ba(Fe;_;Cry;)2Asy (x = 0.027) single crystals. All measurements revealed sharp anomalies
at ~ 112 K. Single crystal x-ray diffraction identified the structural transition as first order,
from the high-temperature tetragonal I4/mmm to the low-temperature orthorhombic Frmmm

structure, in contrast to an earlier report (Sefat et al. (2009b)).
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Mun et al. (2009) measured temperature-dependent thermoelectric power (TEP) data on
Ba(Fe;_,TM;)2Asy (TM=Co and Cu) as well as Hall coefficient data on samples from the same
batches. For Co substitution there is a clear change in the temperature-dependent TEP and
Hall coefficient data when e (the number of extra electrons associated with the TM substitution)
is increased sufficiently to stabilize low-temperature superconductivity. Remarkably, a similar
change is found in Cu-substituted samples at comparable e value, even though these compounds
do not superconduct. These changes may point to a significant modification of the Fermi
surface/band structure of Ba(Fe;_,TM,)2Ass at low substitution levels. In the case of Co
substitution, this is just before, and may allow for, the onset of superconductivity. These
data further suggest that suppression of the structural/magnetic phase transition and the
establishment of a proper e value are each necessary but not individually sufficient conditions
for superconductivity.

The parent compounds of iron-arsenide superconductors, AFeyAsy (A=Ca, Sr, Ba), un-
dergo a tetragonal to orthorhombic structural transition at a temperature 1o in the range
135-205 K depending on the alkaline-earth element. Below T7o the free standing crystals
twin, splitting into equally populated structural domains, which masks the intrinsic, in-plane,
anisotropic properties of the materials. Tanatar et al. (2010a) demonstrated a way of me-
chanically detwinning CaFesAss and BaFesAss. By making one crystallographic orientation
more energetically favorable, the material remains single-crystalline below the structural tran-
sition temperature, eliminating the domain splitting normally seen. The detwinning was nearly
complete, as demonstrated by polarized light imaging and synchrotron x-ray measurements,
and reversible, with twin pattern restored after strain release. Electrical resistivity measure-
ments made in the twinned and detwinned states showed that resistivity, p, decreased along
the orthorhombic a, axis but increases along the orthorhombic b, axis in both compounds.
Immediately below Tro the ratio ppo/pao = 1.2 for Ca compounds and 1.5 for Ba compounds.
Contrary to CaFeyAso, BaFeyAsy revealed an anisotropy in the nominally tetragonal phase,
suggesting that either fluctuations play a larger role above Tro in BaFegAss than in CaFeaAsy
or that there is a higher temperature crossover or phase transition.

Colombier et al. (2010) investigated the in-plane resistivity of single crystalline samples of
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Ba(Fe;_;Coy)2Asy (x=0.038, 0.047, 0.074, 0.1 and 0.114), Ba(Feg 973Crp.027)2As2 and slightly
tin-substituted BaFesAsy under various pressures up to 7.5 GPa, in order to establish temper-
aturepressure, T'(P), phase diagrams and to compare the inuence of pressure and substitution
on superconductivity. At ambient pressure, cobalt substitution is known to lead to a decrease
in the combined magnetic and structural transition temperature Ty. Likewise, an increase of
pressure tends to have the same effect for Ba(Fe;_,Co,)2Asy for the various values of x. As
was seen in the T'(P) phase diagram of BaFesAsy (Colombier et al. (2009)), a superconducting
dome was observed for Ba(Fej_,Co,)2Ass samples with the dome shifted to lower temperatures
and pressures with increased cobalt substitution levels. A very different behavior was noticed
for Ba(Feg.973Cro.027)2As2 and the slightly tin-substituted BaFeyAsy with the decrease of Ty
being close to linear down to 2 K, and no obvious sign of superconductivity in the pressure
range investigated.

Tanatar et al. (2010b) used temperature-dependent interplane resistivity, p.(T), to char-
acterize the normal state of the iron-arsenide superconductor Ba(Fe;_,Co,)2Ase over a broad
substitution range 0 < z < 0.50. The data were compared with in-plane resistivity, pq(7),
and magnetic susceptibility, x(T'), taken in H L ¢, as well as Co NMR Knight shift, 59K, and
spin-relaxation rate, 1/777. The interplane resistivity data showed a clear correlation with the
NMR Knight shift, assigned to the formation of the pseudogap. Evolution of p.(T") with sub-
stitution level revealed two characteristic energy scales. The temperature of the crossover from
nonmetallic, increasing on cooling, behavior of p.(7") at high temperatures to metallic behavior
at low temperatures, T, correlated well with an anomaly in all three magnetic measurements.
This characteristic temperature, equal to approximately 200 K in the parent compound, x = 0,
decreased with substitution and vanishes near x =~ 0.25. For substitution levels x > 0.166,
an additional feature appeared above T with metallic behavior of p.(T') found above the low-
temperature resistivity increase. The characteristic temperature of this charge-gap formation,
Teg, vanished at zog ~ 0.30, paving the way to metallic, T linear, p.(T) close to xcg and
superlinear T dependence for x > zog. None of these features were evident in the in-plane
resistivity po(T"). For substitution levels x < z¢q, x(7') showed a known, anomalous, T-linear

dependence, which disappeared for > x¢cq. These features were consistent with the existence
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of a charge gap, accompanying formation of the magnetic pseudogap, and its critical suppres-
sion with substitution. The inferred c-axis charge gap reflects the three-dimensional character
of the electronic structure and of the magnetism in the iron arsenides.

Hodovanets et al. (2011) presented temperature-dependent, in-plane, thermoelectric power
(TEP) data for Ba(Fe;_,Ru,)2Asy (0 < 2 < 0.36) single crystals. These data confirm the
previously outlined  — T' phase diagram for this system (Thaler et al. (2010), 5). The analysis
of TEP evolution with Ru substitution suggests significant changes in the electronic structure,
correlations, and/or scattering occurring near x g, ~ 0.07, 0.30, and possibly 0.20. These results
are compared with an extended set of TEP data for the Ba(Fe;_,Co,)2Ass series for which
initial angle-resolved photoemission spectroscopy (Liu et al. (2010)) and transport studies (Mun
et al. (2009)) have identified z ~ 0.02 as the concentration at which the Lifshitz transition takes
place. In addition to x ~ 0.02 the Co levels of x =~ 0.11 and 0.22 are identified as concentrations
at which similar changes occur.

Blomberg et al. (2011) studied intrinsic, in-plane anisotropy of electrical resistivity on me-
chanically detwinned single crystals of SrFeaAsy above and below the temperature of the cou-
pled structural/magnetic transition, Tro. Resistivity is smaller for electrical current flow along
the orthorhombic a, direction (direction of antiferromagnetically alternating magnetic mo-
ments) and is larger for transport along the b, direction (direction of ferromagnetic chains),
which is similar to CaFeyAs, and BaFesAss compounds. A strongly first-order structural
transition in SrFegAss was confirmed by high-energy x-ray measurements, with the transition
temperature and character unaffected by moderate strain. For small strain levels, which are
just sufficient to detwin the sample, they found a negligible effect on the resistivity above Tr¢.
With the increase of strain, the resistivity anisotropy starts to develop above Tro, clearly
showing the relation of anisotropy to an anomalously strong response to strain. This study
suggests that electronic nematicity cannot be observed in the FeAs-based compounds in which
the structural transition is strongly first order.

Tanatar et al. (2011) made systematic measurements of temperature-dependent interplane
resistivity p.(T') as a function of transition-metal substitution in the iron-arsenide supercon-

ductors Ba(Fe;_,TM;)2Asy (TM=Ni, Pd, Rh). The data were compared with the behavior
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found in Ba(Fe;_,;Co;)2Ass, revealing resistive signatures of pseudogap. In all compounds the
authors find resistivity crossover at a characteristic pseudogap temperature 7™ from nonmetal-
lic to metallic temperature dependence on cooling. Suppression of T™* proceeds very similarly in
cases of Ni and Pd substitution and much faster than in similar cases of Co and Rh substitution.
In cases of Co and Rh substitution an additional minimum in the temperature-dependent p,
emerges for high substitution levels, when superconductivity is completely suppressed. These
features are consistent with the existence of a charge gap covering part of the Fermi surface.
The part of the Fermi surface affected by this gap is notably larger for Ni- and Pd-substituted
compositions than in Co- and Rh-substituted compounds.

Kim et al. (2011c) studied the ab plane resistivity of Ba(Fe;_,Ru,)2Asy (x=0.00, 0.09,
0.16, 0.21, and 0.28) under nearly hydrostatic pressures up to 7.4 GPa in order to explore
the T-P phase diagram and to compare the combined effects of isoelectronic Ru substitution
and pressure. The parent compound BaFeyAssexhibits a structural/magnetic phase transi-
tion near 134 K. At ambient pressure, progressively increasing Ru concentration suppresses
this phase transition to lower temperatures at an approximate rate of ~5 K/% Ru corre-
lated with the emergence of superconductivity. By applying pressure to this system, a similar
behavior is seen for each concentration: the structural/magnetic phase transition is further
suppressed and superconductivity induced and ultimately, for larger x gu and P, suppressed. A
detailed comparison of the TP phase diagrams for all Ru concentrations shows that a pressure
of 3 GPa is roughly equivalent to 10% Ru substitution. Furthermore, due to the sensitivity of
Ba(Fe;_,Ru;)2Ass to pressure conditions, the melting of the liquid media, 4:6 light mineral
oil : n-pentane and 1:1 isopentane : n-pentane, used in this study could be readily seen in
the resistivity measurements. This feature was used to determine the freezing curves for these
media and to infer their room temperature, hydrostatic limits: 3.5 and 6.5 GPa, respectively.

Blomberg et al. (2012) characterized the effect of uniaxial tensile stress and the resultant
strain on the structural/magnetic transition in the parent compound of the iron arsenide su-
perconductor BaFesAss by temperature-dependent electrical resistivity, x-ray diffraction, and
quantitative polarized light imaging. They show that strain induces a measurable uniaxial

structural distortion above the first-order magnetic transition and significantly smears the struc-
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tural transition. This response is different from that found in a related compound, SrFesAso,
where the coupled structural and magnetic transitions are strongly first order (Blomberg et al.
(2011). This difference in the structural responses explains the in-plane resistivity anisotropy
above the transition in BaFegAse. This conclusion is supported by the Ginzburg-Landau-type

phenomenological model for the effect of the uniaxial strain on the resistivity anisotropy.

9.4 ARPES

Liu et al. (2010) reported evidence from angle-resolved photoemission spectroscopy that
marked changes in the Fermi surface coincide with the onset of superconductivity in
Ba(Fe;_,Coy)2As9.The presence of the AFM order leads to a reconstruction of the electronic
structure, most significantly the appearance of the petal-like hole pockets at the Fermi level.
These hole pockets vanish-that is, undergo a Lifshitz transition (Lifshitz (1960))-as the Co
concentration is increased sufficiently to support superconductivity. Superconductivity and
magnetism are competing states in this system: when petal-like hole pockets are present,
superconductivity is fully suppressed, whereas in their absence the two states can coexist.

Liu et al. (2011) used angle-resolved photoemission spectroscopy and thermoelectric power
to study the poorly explored, highly oversubstituted side of the phase diagram of
Ba(Fe;_;Coy)2Ass. Their data demonstrate that several Lifshitz transitions—topological changes
of the Fermi surface—occur for large x. The central hole barrel changes to ellipsoids that are cen-
tered at Z at x ~ 0.11 and subsequently disappear around x ~ 0.2; changes in thermoelectric
power occur at similar = values (Mun et al. (2009); Hodovanets et al. (2011)). Tt decreases and
goes to zero around x ~ 0.15-between the two Lifshitz transitions. Beyond x = 0.2 the central
pocket becomes electron-like and superconductivity does not exist. These observations reveal
the importance of the underlying Fermiology in electron-carrier substituted iron arsenides. The
authors speculate that a likely necessary condition for superconductivity in these materials is
the presence of the central hole pockets rather than nesting between central and corner pockets.

Dhaka et al. (2011) used high resolution angle-resolved photoemission to study the electronic
structure of the iron based high-temperature superconductors Ba(Fe;_,Ru;)2Ass as a function

of Ru concentration. They find that substitution of Ru for Fe is isoelectronic, i.e. it does
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not change the value of the chemical potential. More interestingly, there are no measured,
significant changes in the shape of the Fermi surface or in the Fermi velocity over a wide range
of substitution levels (0 < x < 0.55). Given that the suppression of the antiferromagnetic and
structural phase is associated with the emergence of the superconducting state, Ru substitution
must achieve this via a mechanism that does not involve changes of the Fermi surface. The
authors speculate that this mechanism relies on magnetic dilution which leads to the reduction

of the effective Stoner enhancement.

9.5 Other Measurements

Martin et al. (2010) compared the temperature dependences of the in-plane London pen-
etration depth (AX;(T)) for several Ba(Fe;,;TM,)2Ase (TM = Co, Ni, Pd, Co + Cu) su-
perconductors at high concentration of electrons, ne, added per Fe site. They showed that
regardless of the transition metal TM, for n, > 0.12, the penetration depth has a power-law
temperature dependence AAf(T) o T}, but with the exponent n &~ 1.65, thus signicantly lower
than the value n > 2 previously reported for lower electron concentrations. On substituting Fe
with electron-carrying transition 3d metals, the magnitude of the variation with temperature
of AML(T) is larger for Ni substitution than for Co substitution, and larger for Co + Cu double
substitution than for Ni alone. However, comparing the effect of 3d and 4d electrons, for the
isovalent elements Ni and Pd respectively, they found that the rates of change in penetration
depth with temperature are nearly identical for the two compounds.

Wang et al. (2011) reported the results of a 5"Fe Mossbauer spectroscopy study of su-
perconducting Ba(Fe;_;Rh;)2Asy (x = 0.039) between 2 and 294 K. The main component
of the electric field gradient tensor at 294 K was shown to be positive and its increase with
decreasing temperature is well described by a T3/2 power-law relation. The shape of the
Méssbauer spectra below the Néel temperature T = 55.5(1) K was shown to result from
the presence of substitution-induced disorder rather than of incommensurate spin-density-wave
order. The measured hyperfine magnetic field reached its maximum value at the critical tem-
perature 7. = 14 K and then decreased by 4.2% upon further cooling to 2 K. This constituted

direct evidence of the coexistence of and competition between superconductivity and magnetic
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order. The extrapolated value of the Fe magnetic moment at 0 K is determined to be 0.35(1) up.
The Debye temperature of Ba(Fe;_zRh;)2Asy (z = 0.039) was found to be 357(3) K.

Ofer et al. (2012) measured the absolute value and temperature dependence of the in-plane
magnetic penetration depth A on a single crystal of Ba(Fe;_;Coz)2Asy (x = 0.074) using low-
energy muon-spin rotation and microwave cavity perturbation. The magnetic field profiles in
the Meissner state were consistent with a local London model beyond a depth of 15 nm. The
authors determined the gap symmetry through measurements of the temperature dependence
of the superfluid density which follows a two-gap s-wave model over the entire temperature
range below T.. While the intermediate to high temperature data was well fit by an energy
gap model in the BCS-like (weak-coupling) limit, a second smaller gap becomes apparent at
low temperatures.

Bossoni et al. (2012) performed "®As NMR spin-lattice relaxation (1/7}) and spin-echo
decay (1/T5) rate measurements in a single crystal of superconducting Ba(Fe;_,Rh,)2Ase (z =
0.07). Below the superconducting transition temperature 7., when the magnetic field H is
applied along the c axis, a peak in both relaxation rates was observed. Remarkably, that
peak was suppressed for H 1 ¢. Those maxima in 1/77 and 1/7T5 were ascribed to the flux
lines lattice motions and the corresponding correlation times and pinning energy barriers were
derived on the basis of a heuristic model. Further information on the flux lines motion was
derived from the narrowing of ?As NMR linewidth below 7, and found to be consistent with
that obtained from 1/75 measurements. All the experimental results are described in the

framework of thermally activated vortices motions.
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CHAPTER 10. Summary and Conclusions

As discussed in Section 2.3, many superconducting materials belong to families of com-
pounds that can be tuned into or out of superconductivity by one or more tuning parameters.
The superconducting state often does not appear in the parent compound under ambient con-
ditions, even at extremely low temperature. Single crystalline BaFesAss undergoes strongly
coupled tetragonal to orthorhombic and paramagnetic to antiferromagnetic phase transitions
at 134 K (Pfisterer and Nagorsen (1980); Rotter et al. (2008b); Ni et al. (2008b); Colombier
et al. (2009); Kim et al. (2011a,c)), but it does not superconduct under ambient conditions all
the way down to 2 K. These coupled structural and magnetic transitions can be suppressed by
application of mechanical pressure (Torikachvili et al. (2008); Canfield and Bud’ko (2010)) or
by various chemical substitutions onto the Ba, Fe or As sites (Ni et al. (2008a,b, 2009, 2010);
Luo et al. (2008); Sefat et al. (2008b, 2009b); Li et al. (2009); Ni (2009); Bud’ko et al. (2009);
Jiang et al. (2009); Kasahara et al. (2010); Thaler et al. (2010, 2011). Mechanical pressure as
well as a subset of these chemical substitutions can also induce superconductivity (Torikachvili
et al. (2008); Canfield and Bud’ko (2010); Ni et al. (2008a,b, 2009, 2010); Luo et al. (2008);
Sefat et al. (2008b); Li et al. (2009); Ni (2009); Jiang et al. (2009); Kasahara et al. (2010).
Motivated by the questions raised in Chapters 1 and 2, we studied the effects on structural
and magnetic phase transitions and the emergence of superconductivity in transition metal
substituted BaFeyAsy. We grew four series of Ba(Fe;_,TM,)2Asy (TM=Ru, Mn, Co+Cr and
Co+Mn) and characterized them by crystallographic, magnetic and transport measurements.
We also subjected Ba(Fe;_,Cr;)2Ase and Ba(Fe;_,Co,)2Ase to heat treatment to explore what
changes might be induced.

As shown in Fig. 10.1, the phase space of the ferropnictide and cuprate families show similar

parallels when we consider the electron and hole-doping induced phase changes. However, the
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Figure 10.1: Generic electronic phase diagram for layered copper oxide materials (a) and ferro-
pnictides (b) (Basov and Chubukov (2011)).
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drastic qualitative difference between the left sides of Figs. 10.1 and 6.15 (p. 79) shows that this
is not universal. Mn’s position on the periodic table suggests that it should contribute one less
electron than Fe just as K contributes one less than Ba and Co contributes one more than Fe,
but while K substitution on the Ba site and Co substitution on the Fe site of BaFegAss both
induce superconductivity, our results — the red dots in Fig. 6.15 — demonstrate that Mn sub-
stitution on the Fe site does not. It is not clear whether this is a result of Mn not acting as
a hole donor in the same way as K, or if it is a result of some more complex issue, possibly
stemming from lattice distortion by the Mn or a magnetic effect of the inclusion of Mn. This
point is driven home even more completely when we compare Ba(Fe;_;_,Co,Cry)2Asy and
Ba(Fei_y—yCozMny)2Asy with Ba(Fe;_;Coz)2As2: simple hole band filling and hole contri-
butions from the Cr or Mn would scale the phase diagram back down when looking at a
particular Co substitution. Instead, we observed that the extra inclusion further suppresses
Ts mm and rapidly suppresses T¢.

Meanwhile, there is another break in the parallel with the cuprates: Ru substitution on
the Fe site. Since Ru is isoelectronic with Fe, it provides neither electrons nor holes to the
system. Nevertheless, the phase diagram is eerily similar to that seen for K, Co, Ni, Rh and Pd
substitutions. As shown in Fig. 5.8, Ru substitution suppresses the structural and magnetic
transitions and, with sufficiently large substitution fraction, induces superconductivity. This
means that just electron count is not sufficient to account for superconductivity in this system.
The parallel between Ru substitution and pressure — suppression of the structural and magnetic
transitions and emergence of superconductivity without the contribution of additional electrons
as well as wide superconducting transitions — suggests that lattice distortion may be important

for the emergence of superconductivity in this system, at least when no extra electrons are

c/co

added. The evidence for this is particularly strong when we consider that scaling with A~ Jag

lines up the structural and magnetic transition suppression very closely for both application of
pressure and Ru substitution while also causing the superconducting domes to partially overlap
(Fig. 5.12). On the other hand, comparison with another isoelectronic substitution, P on the

As site, gives no trend with A% but does with Ac/co (Fig. 5.14). It is unclear what the

a/ag

source of this discrepancy is.
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Based on the strain sensitivity of some of BaFesAssy’s relatives, we would expect that anneal-
ing, if it were to have any effect at all, would be deleterious for superconductivity in this system.
Instead, we have found that at least in some cases, heat treatment of Ba(Fej_,Co,)2Asy sam-
ples can increase T, dramatically. As seen in Fig. 8.3(a), resistive measurement of heat treated
Ba(Fe;_,Co;)2Ase samples with z & 0.12 sees an increase in T, from ~12 K to ~25 K. However,
magnetic measurement of the superconducting state does not see this large increase in T,. Since
magnetic measurement of the superconducting state is not nearly as sensitive to surface effects
as resistive measurement, this suggests that the increase in 7, may only be a surface effect. In
addition, Fig. 8.2 shows that heat treatment of Ba(Fe;_,_,Co,Cr,)2Asy samples can induce
them to superconduct, even though adding Cr to a Co substitution which would superconduct
by itself rapidly suppresses the superconducting state. In this case, magnetic measurements
confirm the existence of the superconducting state, though not at quite the same T, as seen by
resistance. Problems with controlling differences between the samples make it difficult to draw

conclusions from this data, and further investigation may be warranted.
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APPENDIX A. List of Substitutions

Listed here are the samples prepared in the BaFesAss family, with various dopants and
substitution levels. Each table gives our internal batch growth code and the substitution level
xwps as well as yyw pg for doubly-substituted growths. Some growths have x,0m; and ypnom, the
nominal substitution fraction. As discussed in Chapter 9, the correlation between nominal and
WDS values can be used to predict what nominal substitution level is needed to get a desired
WDS value. Where available, 20 and the number of points, IV, used to calculate xwpg and 20
is given. Unfortunately, some entries are incomplete because the data was unavailable.

Table A.1: BaFeyAss

Batch Comment

PM657 Sn
PM658 Sn
PM612 Sn
PM682 Sn
PM619 Sn
PM684 Sn
PM888

SA171-1
KQ809
KQ801

SA171-2

Table A.2: Batches with 'Sn’ in the comment column were grown with Sn flux instead of FeAs
flux.
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Table A.3: Ba(Fe;_,Co,)2As:

Batch Tnom TWDS 20 N
SA899 0.35 0.3244 0.13003 12
SA900 0.675 0.4400 0.164606 12
SA901  1.025 0.7335 0.090389 12
KQ363 0.9352 0.084183 22
SA902 1.35 0.9510 0.163978 12
SA903 17 1.0670 0.149265 12
PM991 1.2846  0.10659 8
SA855 2.1325  1.51159 0.156392 12
KQS808 1.523916 0.155834 13
SA854 2 1.53223 0.127559 12
SA456-1 1.5487 0.17
SA456-3 1.5523 0.08

SA856 2.27  1.57983 0.172719 12
SA456-2 1.5959 0.16
SA456-5 1.6171 0.11
SA456-4 1.6232 0.14

KQ364 1.6314 0.071855 14
SA342-5 1.6471 0.089005 12
SA342-4 1.6500 0.195691 12
SA342-2 1.6542 0.112941 12
SA342-1 1.6543 0.119555 12
SA342-3 1.7049 0.119629 12

SA857 2.4 1.84521 0.132432 12
SA858 2.5325  1.87305 0.173722 12
SA859 2.6675  1.87438 0.175343 12
SAT780 2.53 1.9442 0.199275 12
PM922 1.9601 0.094032 4
SA781 2.66 2.1064 0.075704 12
SA784 3.06 2.1983 0.111133 12
SAT82 2.79 2.2245 0.151375 12
SAT85 3.19 2.2688 0.15178 12
SA832 3.27  2.35306 0.158274 12
SA831 3.23  2.39142 0.243609 12
MC292 2.4238 0.172023
KQ177 2.4500 0.129851 28
MC094 3.7 2.4807 0.307786
SA833 3.5 2.48222 0.193146 12
SAT786 3.32 2.5415 0.25312 12
SA834 3.6 2.54954 0.187849 12
SAT787 3.45 2.5577 0.148374 12
MC293 2.6665 0.232993
KQ365 2.8313 0.08895 19
MCO098  4.825 3.0353 0.431516
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Ba(Fe;_,Coy)2Ass

Batch  z,0om TWDS 20 N
MC096 4.275 3.0825 0.298385
MC095 3.975 3.1808 0.268151
MC097 4.8 3.3973 0.332156
MC306 3.4329 0.187466

SA460-1 3.4589 0.136458 12
SA460-3 3.4890 0.138605 12
SA460-2 3.4978 0.108086 12
SA460-4 3.5113 0.127453 12
SA460-5 3.6062 0.173125 12
SA7T83  2.93 3.6125 0.144746 12
SA345-1 3.6367 0.119274 12
SA345-2 3.6665 0.182288 12
SA345-5 3.6673 0.191988 12
SA345-4 3.7090 0.218981 12
SA345-3 3.7232 0.181738 12
PM891 3.7765 0.208921 7

SA172 3.9008 0.248567 12

KQ270 4.2000 0.152784 12
SA308-3 4.2100 0.14067 12
SA308-2 4.2300 0.085255 12
SA308-1 4.3100 0.169589 12

KQ366 4.3332 0.174023 12

SA255 4.3400 0.177459 12

KQ271 4.3402 0.079361 6

MC295 4.5181 0.184263

SA835 6.5 4.61063 0.259714 12

PM924 47019 0.084734 4
SA095-2 5.357623  0.3756 12
SA095-3 5.376673 0.17633 12

KQ311 5.3852 0.115668 19
SA095-1 5.426341
SA095-5 5.566811 0.336915 12
SA678-4 5.6400 0.023047 12
SA095-4 5.672503 0.362455 12

KQ533 5.757 0.297305 27

KQ595 5.894473 0.267858 12

KQ534 5.898 0.147933 12

PM902 5.9580 0.907149 5

KQ325 6.0944 0.085371 20

KQ535 6.163 0.174176 12

KQ610 6.208225 0.226217 17

KQ596 6.220908 0.142208 12
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Ba(Fe;_,Coy)2Ass

Batch  z,0om TWDS 20 N
KQ609 6.295903 0.104299 26
KQ312 6.2986 0.095836 8
KQ594 6.585 0.654843 12
KQ313 6.7416 0.140205 20
KQO051 7.0118 0.132639 6
PMS71 7.2051 0.328741 3

SA152-1 7.4030 0.184384 12
PM892 7.6085 0.103331 3
SA257 7.6400 0.141003 12
KQ257 7.6448 0.109475 14
SA152-2 7.7156 0.208311 12
SA362 8.3100 0.123432 12
KQ326 8.5548 0.186622 20
KQ314 9.0668 0.173638 15
PM904 9.9629 0.752801 6
SAT89 10.0638 0.192007 12
KQ327 10.7071 0.160155 20
KQO050 10.7406 0.140472 6
PM893 11.3607 0.363062 3
SA256 12.4500 0.535344 12
KQ201 12.7439 0.247933 16
KQ909 13.16775 0.174156 9
KQ175 13.4000 0.22985 5
PM979 14.0254  0.15827
KQ258 16.6335  0.24958 9
KQ908 16.81435  0.38117 9
KQ858 23.8000 0.46423 12
KQ956 24.79  0.12756

SA309 25.0800 0.15639 12

SA310 31.0200 0.17272 12
KQ459 31.3000 0.86194 12
KQ202 45.9000 0.388 8
KQ129 66.5000 0.49098 25
MC452  6.75 5.8276 0.267217
MC453 7.425 5.8636 0.285817
MC398 15 11.3218 0.323147
MC449 4.725 3.4464 0.220889
MC450 5.4 3.8049 0.225403
MC451 6.075 4.9820 0.25703
MC399 15 11.5287 0.408643
MC400 15 11.2329 0.44664
MC401 15  11.8258 0.712787
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Ba(Fe;_,Coy)2Ass

Batch  z,om TWDS 20 N
MC350 15 10.6468 0.371479
MC351 15 9.5951 0.551931
MC352 15 8.4627 0.379697
MC353 15 15.6942 0.683631
MC354 15 14.8638 0.788926

SA508-1 4.6066  0.3596
SA508-2 4.6507 0.242195
SA509-1 7.6420 0.341546
SA509-2 7.5284 0.266275
SA510-1 9.6570 0.230299
SA510-2 9.3518 0.333127
Table A.4: Ba(Fe;_;Ni;)2Asy

Batch zp0m TWDS 20 N
KQO077 0.67 0.140728 18
KQO078 1.6 0.643945 10

SA284-2 1.997336 0.092827 12

SA284-1 2.108255 0.084142 12
SAR14 2.366492 0.16896 12
KQO080 2.64 0.376979 5
SAS816 2.942169 0.156244 12
SA815 3.121417 0.150126 12
SA254 3.157112 0.102066 12
KQO081 3.35 0.276956 18
SA817 3.484952 0.170042 12
KQ392 3.618329 0.152599 27
SA952 3.6535 0.229348 12
PM946 4.604626 0.160861 11
PM950 4.613946
PM949 4.660471
KQ393 4.734342 0.191273 14
PM948 4.83121
PM947 4.8469  0.16896
KQ111 5.4 0.232684 12
KQ370 6.361988 0.170042 14
KQ114 7.13 0.294677 6



124

Table A.5: Ba(Fe;_,Cuy)2Asy

Batch  x,0m TWDS 20 N
PM973 0.710212 0.13314 5)
KQ449 0.932759 0.156247 43
PM974 1.967893 0.203249 5

KQ309-1 2.323871
PM987 2.56769 0.197329 8
KQ308-1 2.760031 0.379361 37
KQ308-2 2.764398
KQO034 3.345921 0.467395 17
KQ360 3.923409 0.438751 26
KQ300 3.942971 0.151052 33
KQ309-2 4.106631
KQ359 4.46239 0.260658 29
KQ275 4.725669 0.359543 13
PM997 4.970077 0.120559 10
KQO043 5.219787 0.469983 40
PM943 6.186095 0.216105 5
KQo044 6.421538 0.169203 7
KQO045 6.822791 0.103178 6
KQ124 9.25 0.846103 10
KQ126 16.49 1.621405 8
KQ131 22.5 0.355646 6
KQ132 25.8 0.556061 6
KQ127 29.23 2.630869 60
KQ133 36.5 0.420645 7
Table A.6: Ba(Fe;_,Cr;)2Asy
Batch Tnom, TWDS 20 N
KQ301 2.5 2.755797
SA093 15.3075 11.95 0.46 12
SA092 11.11 8.139737 0.233731 24
SA090 4.566294 1.887468 27
KQT763 0.500 0.441 0.095 11
KQ764 2.000 1.754 0.127 13
KQ765 4.000 3.070 0.217 10
KQ766 6.000 4.382 0.249 12
SAR38 2.667263 0.217523 12
SA839 2.744932 0.180591 12
SA840 3.654402 0.249561 12
SA841 4.506665 0.252859 12
SAR42 5.625459 0.219195 12
SAR43 6.599613 0.393473 12
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Table A.7: Ba(Fej_,Mn,)oAse

Batch  x,0m TWDS
KQ902 1.3710
KQ971 1.73
KQ204 2.2504
KQ999 2.57
SA008 3.27
KQ203 4.4140
SA766-5 4.6122
SA766-3 4.9727
KQ904 5.1581
SAT66-4 5.5662
SAT66-2 5.7936
KQ430 5.798318
SA201-4 7.0650
SA201-3 7.0932
SA201-5 7.1678
SA201-1 7.2570
SA201-2 7.2939
KQ905 7.3910
SA151-2 7.6143
SA151-1 7.6570
SA022 9.2359
KQ431 9.93036
KQ972 10.74
SA253-5 11.1732
SA253-4 11.2223
SA253-2 11.2904

SA009 11.33
SA253-3 11.4981
SA377-2 11.5987
SA528-4 11.9536
SA488-1 11.9753
SA377-4 11.9848
SA488-2 11.9917
SA377-3 12.0131
SA377-4 12.0291
SA377-1 12.2807
SA203-5 12.2815
SA377-5 12.4528
SA377-1 12.4626
SA528-2 12.4958

SA528-5 12.5933
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Ba(Fej_;Mng)2Ass

Batch  z,0m TWDS

SA203-3 12.6934
SA203-2 12.7412
SA203-1 12.8259
SA114 12.9000
SA488-4 12.9437
SA203-4 13.1769
SA488-5 13.2258
SA010 14.5030
KQ924 14.7460
KQ925 17.5810
KQ973 33.64
SA186 54.2210
SA622 56.8800
SA187 63.6296
SA623 72.8600
SA188 83.2348
SA190 87.7406
SA189 89.9916
SAO011 92.65
SA012 97.10
SA013 99.82
SA113-1 11.7891
SA113-2 12.2199

Because of Ba(Fe;_,Mn, )2As, phase separation problems, I do not show 20 here. See Chapter 6
for details.
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Table A.8: Ba(Fe;_;Ru,)2As:

Batch  xnom TWDS 20 N
KQ383 2.06957 0.102465 14
KQ384 4.819523 0.122912 16
KQ346 4.844686 0.212074 15

SA222 6.3
KQ918 7.278804 0.074801 12
KQ919 9.192597 0.328756 12
KQ920 12.6238 0.348059 11
KQ355 16.12094 0.544128 19
KQ564 20.81822 5.474156 23
KQ577 20.97094 0.574887 7
KQ368 23.83658 4.673683 13
SA420-2 25.29  0.50463 12
SA420-1 26.22 1.529378 12
KQ482 28.5299 7.393174 7
KQ565 28.69255 4.686532 14

SA326 30
KQ578 32.88365 13.50905 15
KQ385 35.88547 4.934513 25
KQ399 55.33971 9.014896 12
MC504 9.32 0.44 12
MC505 7.47 0.24 12

Table A.9: Ba(Fe;_,Rh;)2As
Batch  x,om TWDS 20 N

KQ231 1.2088 0.1649 10

KQ232 2.5549 0.1598 10

KQ298 3.8100 0.1351 12

KQ302 3.9473 0.1901 22

KQ233 5.6989 0.2544 9

KQ236 7.5555 0.3988 15

SA363 7.8100 0.0497 12

KQ234 15 9.3869 0.7545 32

KQ292 18 13.0035 0.2548 8

KQ286 22 17.1252 0.2363 21

SA626 30 29.9500 0.4426 12
SA627 35 35.8800 1.3254 12
SA698 18.6718 0.2887 12
SA699 22.4360 0.6879 12
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Table A.10: Ba(Fe;_,Pd;)2Ass

Batch  z,0m TWDS 20 N
KQ238 1.2 0.105196 10
KQ245 4.3 0.063515 6

KQ247-1 6.330985 0.259226 10
KQ247-2 6.773021 0.130076 10
KQ244 2.001596 0.182443 6
KQ246 5.281463 0.171716 12
KQ287 2.145614 0.147474 9
KQ288 3.033036 0.151182 6
KQ290 6.579693 0.248692 14
KQ289 4.124268 0.270994 10
KQ244 2.478779 0.352784 3
KQ293 7.567101 0.539771 52
KQ247 6.492106 0.867118 10
KQ299 2.632176 0.297783 52
KQ238 1.311755 0.142294 23
Table A.11: Ba(Feq_,Ir;)oAse
Batch  z,0m TWDS 20 N
MC341 5 4.090036 1.131586 12
MC342 10 2.748549 0.198958 12
MC363 2.5 1.329464  0.0767 12
MC364 7.5 2585004 0.173181 12
MC365 12.5 1.897922 0.101547 12
MC444 5 5.801358 2.034468 12
MC445 10 5.730167 1.524754 12

Table A.12: (Baj_,K;)FeaAsy/Sn

Batch

ITWDS

PM654
PM621
PM626

KQ-208-1

KQ-208-2

12.96437
18.92257
44.75629
50.531
45.181
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Table A.13: Ba(Fe;_;_,Co;Mny)2Asy

Batch Co Zpom Mn Ynom Co xwps Co 20 Mn ywps Mn20 N
SA223 15.00 1.00 12.26 0.2171 0.633623 0.148052 12
KQ910 6.25 1.00 4.90 0.174 1.2 0.105 16
SA597 10.00 1.00 7.64 0.22 1.232786 0.174545 12
SA224 15.00 2.00 11.95  0.3359 2.247136  0.153681 12
KQ911 6.25 2.00 4.70 0.148 2.3 0.125 16
KQ960 10.00 2.00 7.65 16.66 2.322587 6.777227 10
SA598 10.00 3.00 7.45 0.17 3.435406 0.184405 12
SA596 6.25 3.00 5.02 0.14 3.526294 0.142933 12
KQ961 10.00 4.00 7.17 0.21 4.56937 0.148464 9
SA225 15.00 4.00 11.64  0.3863 4.718644 0.17912 12
KQ958 6.25 4.00 4.72  0.211123 4.76393 0.262759 12
KQ959 6.25 6.00 4.62 0.136585  6.904887 0.251671 14
KQ962 10.00 6.00 7.08 0.228309  7.529952 0.263185 13
MC303 12.43 0.311563  1.046801 0.087352 12
MC304 11.36  0.359396  1.917361 0.110726 12
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Table A.14: Ba(Fe;_;_yCo,Cry)2Asy

Batch Co Znpom  Cr ¥mom Co xwps Co 20 Cr ywps Cr 20 N
KQ401 3.234587 0.149866 1.336114 0.077016 10
KQ715 6.25 2 3.55 0.255105 1.32 0.156549 27

MC137-2 1.45 0.5 4.57 0.430125 1.29 0.329623 12
MC137-1 1.45 0.5 4.66 0.47467 1.09 0.190394 12

SA639 6.25 2 4770458 0.205303 1.091619 0.31213 12
KQ714 6.25 1 4.8 0.153294 0.2 0.105778 26
KQT716 6.25 3 4.8 0.213511 2 0.14509 32
KQ989 6.25 7.2 4.91087 0.095539 6.913708 0.282635 13
SA640 6.25 4.5 5.038912 0.355336  3.234241 0.218156 12
MC154 1.75 0.75 5.048243 0.223911 2.066783 0.113008 12
MC155 1.8125 0.75 5.305682 0.295252 2.221001 0.131693 12
MC161 1.875 0.4375  5.440349 0.484572 1.208647 0.108373 12
MC156 1.875 0.75 5.452486 0.252415 2.134773 0.174145 12
MC160 1.875 1.125 5.487988 0.307618 3.210709 0.256761 12
MC157 1.9375 0.75 5.681074 0.136119 2.077096 0.177009 12
MC240 5.773634 0.243478 1.882743 0.156939 12
MC239 5.843602 0.23453  1.829899 0.120714 12
MC242 6.328046 0.278528  2.211901 0.09838 12
MC243 6.559481 0.180477 1.950267 0.11351 12
KQ718 10 2 7.6 0.248151 1.1 0.177504 28
KQ719 10 3 7.7 0.241433 2 0.202484 26
SA641 10 4.5 7.726711 0.373353 3.076067 0.278874 12
KQ717 10 1 7.8 0.254382 0.3 0.14861 27
SA558 15 3 11.9115 0.240864 1.960119 0.202497 12
SA557 15 2 12.00778  0.28601 1.33571 0.241265 12
SA559 15 4 12.13679 0.254738 2.540596 0.18305 12
SA556 15 1 12.23212 0.179143 0.732363 0.171604 12
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Table A.15: Ba(Fe;_;_,Co,Cuy)2Asy

Batch Co Znom Cu zpom Co zwps Co 20 Cureal Cu20 N
KQ148 2.13 0.256409 2.23 0.229939 9
KQ160 2.2 0.220133 2.8 0.15301 12
KQ158 2.9 0.79762 1.96 0.167746 10
KQ161 2.6 0.314278 2.7 0.170771 9
KQ162 1.1 0.272638 2.2 0.173053 12
KQ159 3.3 0.219964 2 0.480595 33
KQ174 2.2 0.104129 4 0.728722 50
KQ162 2.2 0.078696 0.95 0.219345 20
KQ183 2.4 0.109813 0.54 0.188348 12
KQ260 1.529207 0.530071 3.611495 1.256212 39
KQ380 4.671077 0.170851 3.384362 0.375126 31
KQ379 5.230806 0.155398 0.445354 0.116707 18
KQ378 4.680743  0.19993 1.90277 0.223141 37
KQ382 5.073104 0.288155 0.448125 0.131788 8
KQ377 4.540154  0.20165 5.811051 0.587815 19
KQ381 4.503764 0.380486 4.662429 2.208552 24
KQ362 2.230901 0.132421 3.129192 0.30875 31
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