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Introduction

Molecular magnetic materials have become a prominent part of the physics of magnetic materials

in recent years thanks to the synergy between chemists and physicists. Among the many types of

molecular magnetic materials a special role is played by the single-molecule magnets. These are systems

whereby the magnetic ions, usually 3d elements, are embedded in a cluster of organic material. The

magnetic ions do interact strongly within each molecule but the intermolecular magnetic interactions

are vanishingly small due to the shielding effect of the organic shell. Therefore single molecule magnets

are ideal systems to investigate magnetism at a nanoscale.

Nuclear Magnetic Resonance (NMR) is a spectroscopic technique particularly suitable to inves-

tigate local magnetic properties. The use of NMR to study molecular nanomagnets is extremely

appealing since one can investigate a macroscopic sample and yet obtain information about an in-

dividual magnetic molecule since an Avogadro’s number of nanomagnets is a replica of NA identical

non-interacting entities.

A particular subclass of molecular nanomagnets is constituted of highly symmetric rings of 3d ions

(e. g. Cr3+, Fe2+, V3+...) interacting among themselves via strong antiferromagnetic interactions.

The homometallic rings with an even number of magnetic ions have a total S = 0 singlet ground state

(e. g. Cr8, Fe6, Fe10...). By replacing one magnetic ion with a non-magnetic ion or a magnetic ion

of different species one obtains an heterometallic ring where the ground state and the local magnetic

moments are modified.

The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr8

AFM ring and the changes occurring by replacing one Cr3+ ion with diamagnetic Cd2+ (Cr7Cd)

and with Ni2+ (Cr7Ni). In the heterometallic ring a redistribution of the local magnetic moment is

expected in the low temperature ground state.

We have investigated those changes by both 53Cr-NMR and 19F-NMR. Most of the experiments

have been performed at Ames Laboratory (Iowa State University, Ames, IA) 1 by using advanced high

field and low temperature facilities. The samples were prepared by the School of Chemistry group

of the University of Manchester (UK) 2. We could establish the consistency of our results with the

calculated results regarding the redistribution of local moments in Cr7Ni by the Theoretical Matter

Physics group of the University of Parma (Italy) 3 and we have determined the order of magnitude

of the transferred hyperfine coupling constant 19F - Mn+ where Mn+ = Cr3+, Ni2+ in the different

rings. This latter result gives useful information about the overlapping of the electronic wavefunctions

involved in the coordinative bond.

1Department of Physics and Astronomy / Ames Laboratory, Iowa State University, 50011 Ames, Iowa (USA).
2The Lewis Magnetism Laboratory, The University of Manchester, M13 9PL Manchester, United Kingdom.
3Department of Physics, Università degli Studi di Parma, I-43124 Parma (Italy).
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Chapter 1

Molecular nanomagnets

The first section of the present chapter illustrates the general features of single molecule magnets:

the class of compounds to which the cyclic metal structures studied in the present thesis belong. The

second section describes the properties of antiferromagnetic molecular rings focusing on the compounds

studied in the present work: Cr8 homometallic ring and Cr7M heterometallic rings, where M = Cd,

Ni. The chemical structure and synthesis of these macrocycles are briefly described together with the

main experimental and theoretical determinations obtained in the past.

The present work experimental study on Cr8, Cr7Cd and Cr7Ni molecular nanomagnets is presented

in Chapter 3, Chapter 4 and Chapter 5 respectively.

1.1 Why single molecule magnets

The field of magnetism of molecular systems has rapidly developed at the end of the 20th century thanks

to the synergic work of chemists and physicists. Molecular magnetism is an interdisciplinary field where

the chemists design materials of increasing complexity and develop sophisticated strategies of synthesis

while the physicists devise ingenious experimental techniques and develop accurate theoretical models

for the study of the novel magnetic properties associated with the molecular materials.

Single molecule magnets are the practical realization of zero dimensional model magnetic systems.

These magnetic systems are formed by a cluster of transition metal ions bonded by means of superex-

change bridges and embedded in a large organic molecule. The steric effect of the organic shell results

in vanishingly small intermolecular, usually dipolar, magnetic interactions. The strong intramolecu-

lar exchange interaction among the magnetic metal ions is dominant over the the weak intercluster

coupling: each molecule can therefore be considered magnetically independent. The experimental

study of a macroscopic sample consisting of ∼ 1020 molecules provides information on the single non

interacting magnetic entity.

Most molecular nanomagnets can be classified as coordination complexes. In chemistry, a coor-

dination complex or metal complex essentially consists of a metallic cation sorrounded by N ligands

or complexing agents. Common values of N are 4, 6. The ligands can be anionic species e. g. the

fluoride anion F− or neutral molecules such as H2O and NH3 where the electronic lone pair provides

the electronic density required for the coordinative bond. The coordinative bond can be described as
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the interaction between a Lewis acid in this case the metal cation, and a Lewis base in this case the

ligand, where the IUPAC definition 1 of a Lewis acid (and base) is the following: ”a Lewis acid is a

molecular entity that is an electron-pair acceptor and therefore able to react with a Lewis base to form

a Lewis adduct, by sharing the electron pair furnished by the Lewis base”.

In order to study the properties of the coordination complexes different complementary approaches

have been adopted in the last century. The Crystal Field Theory (CFT) introduced by Hans Bethe in

1929, treats all metal-ligand interactions in a complex as ionic (i.e. purely electrostatic) and assumes

that the ligands can be approximated by negative point charges. More sophisticated models embrace

covalency, and this approach is described by Ligand Field Theory (LFT) and Molecular Orbital Theory

(MO). Ligand Field Theory, introduced in 1935 and built from Molecular Orbital Theory, can handle

a broader range of complexes and can explain complexes in which the interactions are covalent. Also,

group theory has been widely used in order to establish the bonding characteristics of the metal

complexes.

Many molecular nanomagnets are polymetallic complexes where the magnetic metal ions are con-

nected by means of bridging ligands. The overall molecule can organize in a cyclic structure therefore

forming a macrocycle, the class of compounds to which the molecules studied in the present work

belong. A brief description of the coordinative bond in the metal wheels studied in this thesis is given

in the first part of the next section.

1.2 Antiferromagnetic (AFM) rings

The present thesis work focuses on the study of antiferromagnetic molecular rings namely a class

a wheel-shaped coordination complexes where transition metal ions are organized in a macrocyclic

structure and connected by means of bridging ligands. The compounds studied in this work namely

Cr8, Cr7Cd and Cr7Ni are macrocyclic complexes essentially composed by eight almost coplanar tran-

sition metal cations connected by means of fluoride F− bridging ligands and pivalate (CH3)3CCOO−

bridging ligands.

Figure 1.1 shows the ring shaped structure of Cr8, Cr7Cd and Cr7Ni, where the heterometallic

center is not indicated in the figure since it occupies a random position. The bond between adjacent

Cr3+ ions mediated by a fluoride ion bridging ligand and by two pivalate bridging ligands has been

zoomed in and is shown in the insert. The pivalate is a bidentate ligand, namely it has two donor

atoms (oxygen atoms) due to the electronic charge delocalized on the carboxylate group -COO−. The

pivalate ligand can therefore coordinate to two metal ions, as shown in the insert.

1.2.1 Homometallic Cr8 AFM ring

Extensive studies have been performed in the last decade on Cr8 homometallic ring but still there

are some open questions in particular concerning the local spin density distribution in the ring at

temperatures and magnetic fields for which the excited states are populated. A brief description of

this compound and of its synthesis, together with the main results obtained in the past, is reported

1http://goldbook.iupac.org/L03508.html
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Figure 1.1: Cr3+ - F− and Cr3+ - (CH3)3CCOO− coordinative bonds. The pivalate (CH3)3CCOO− ligands

are bridging bidentate ligands in these molecules.The hydrogen atoms are not shown for simplicity.

in the present section while the NMR measurements performed in this thesis’ experimental work are

illustrated in Chapter 3.

Cr8F8Piv16 [Piv−= Pivalate, trimethylacetate: (CH3)3CCOO−], Cr8 in short, is a widely studied

homometallic antiferromagnetic molecular ring. The molecule is composed essentially by eight almost

coplanar Cr3+ magnetic ions whose electronic configuration is: [Cr3+] = [Ar]3d3, s = 3
2 . Adjacent

Cr3+ ions are connected by one F− bridging ion and two Pivalate bridging ligands. Figure 1.2 shows

the crystal’s unit cell: only the Cr3+ and F− atoms relevant to the present discussion are displayed.

The picture shows that in this compound the a-axis is directed approximatively perpendicular to the

molecular ring. Figure 1.3 represents a single molecular ring including the Pivalate ligands and two

Toluene molecules from the solvent of crystallization 2.

Cr8F8Piv16 crystals are synthesized by heating up to 413 K and stirring a mixture of hydrated

chromium(III) fluoride CrF3 ·4 H2O and an excess of Pivalic acid (CH3)3CCOOH in a suitable solvent.

Further details about the synthesis and purification procedure can be found in the article by J. Van

Slageren et al. [1].

As mentioned at the beginning of this paragraph, Cr8 is one of the best characterized antiferro-

magnetic molecular rings. The spin Hamiltonian describing the magnetic system is [3]:

H = J
∑
i

si · si+1 +
∑
i

si ·Di · si +
∑
i>j

si ·Dij · sj + µB

∑
i

giH · si. (1.1)

The first term of the Hamiltonian 1.1 describes the antiferromagnetic (J > 0) nearest-neighbors

isotropic exchange interaction. The second term accounts for the anisotropic local crystal field and

2The lattice parameters for Cr8F8Piv16 crystals are largely affected by the choice of the solvent.
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Figure 1.2: Cr8 unit cell: only Cr3+ and F− atoms are displayed. The axis perpendicular to the molecular

ring is labelled with a. It is observed that this labelling is unusual since the axis perpendicular to the ring is

usually indicated as c-axis.

Figure 1.3: Cr8 molecular ring displaying the 16 Pivalate bridging ligands and two Toluene molecules from

the solvent of crystallization. The molecule is wieved along the a crystallographic axis.

can be written as follows: ∑
i

si ·Di · si ∼ D
∑
i

[s2
z,i −

1

3
si(si + 1)].

where z is the axis perpendicular to the molecular ring. The third term on the right handside is the

dipole-dipole coupling between the electronic magnetic moments within the same molecule and can

be evaluated by means of the point-dipole approximation. The last term is the Zeeman Hamiltonian

describing the interaction between the applied field H and the electronic magnetic moments −giµBsi

where µB is the Bohr magneton and gi is the Landé factor of the ith spin.

The energy levels obtained by the spin Hamiltonian 1.1 with parameters determined by means

of Inelastic Neutron Scattering experiments [5] are shown in figure 1.4 as a function of the external

magnetic field. In zero applied field the ground state is |S,MS〉 = |0, 0〉. As an external field is applied

the ground state progressively switches from |0, 0〉 to |1,−1〉, |2,−2〉,... at corresponding critical field

4



Figure 1.4: Cr8 energy levels corresponding to the spin Hamiltonian 1.1 with parameters determined by

means of INS [5] as a function of an applied magnetic field. The external field’s direction is θ = 65 degrees,

where θ is the angle between the applied field and the a-axis perpendicular to the molecular ring.

values Hc1, Hc2, ...

Cr8 ground state |0, 0〉 is characterized by a molecular-type singlet magnetic configuration. This

means that each local spin value is 〈s〉j = 0 yielding a tolal spin S = 0. By contrast, Néel antifer-

romagnets are characterized by non-zero antiparallel local moments in the total S = 0 ground state.

Examples of this latter situation are the antiferromagnetic compounds KMnF3 [16] and MnF2 [18].

Direct evidence of the local spin configuration 〈s〉j = 0 in Cr8 ground state is given in section 3.1 by

means of 19F-NMR measurements 3.

Figure 1.4 shows that the energy separation between the ground state |0, 0〉 and the first excited

state |1,−1〉 decreases as the applied field approaches the first level crossing field Hc1. At finite

temperature the thermal population of the excited level therefore increases with increasing magnetic

field yielding non-zero local spin expectation values 〈s〉j even below the first critical field threshold

Hc1.

Figure 1.5 shows the calculated values of the thermal averages of the local spin moments 〈s〉j as

a function of the applied magnetic field at T = 1, 5 K 4. The expectation values 〈s〉j progressively 5

increase from zero at zero field and at low applied magnetic fields to 1/8 above the first level crossing

value Hc1 [6]. The calculation has been performed by assuming two different orientations of the

external field with respect to the molecular ring. The solid line in figure 1.5 represents the orientation

θ = 0 while the dashed line refers to θ = π/2, where θ is the angle between the applied magnetic field

and the a-axis perpendicular to the molecular ring. When the applied magnetic field orientation is

θ = 0 or θ = π/2 the electronic spin vectors are aligned along the field. Figure 1.5 therefore shows

3The present work’s 19F-NMR measurements of Cr8 ground state reproduce the results obtained by E. Micotti et

al. in 2006 [7].
4The values in figure 1.5 are consistent with a Zeeman Hamiltonian −µB

∑
i giH ·si instead of the term +µB

∑
i giH ·

si in equation 1.1. These values therefore represent the electronic magnetic moments expressed in units of gµB. This is

consistent with the analysis carried on in the experimental section in Chapter 3.
5This curve has a stepwise shape at very low temperatures (i. e. 0,5 K [6]) while figure 1.5 refers to T = 1, 5 K. As

the temperature increases the stepwise discontinuities are smoothed out.
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the expectation value of the spin component parallel to the magnetic field. It is worthwhile observing

that in this model the eight local electronic spins are parallel to each other and have the same value.

Figure 1.5: Expectation value of the component along the applied field of the jth local electronic magnetic

moment expressed in Bohr magnetons at T = 1, 5 K in Cr8. Solid line: θ = 0. Dashed line: θ = π/2. θ is the

angle between the applied magnetic field and the a-axis perpendicular to the molecular ring.

The values Hc1 = 6, 9 Tesla and Hc2 = 14, 0 Tesla have been determined by means of torque

magnetometry measurements [3]. Magnetization measurements have been performed on polycrys-

talline Cr8 by using a pulsed magnet and a dilution 3He - 4He cryostat at T = 0, 15 K at the ISSP of

the University of Tokyo [6]. The magnetization curve as a function of the external field H is shown

in figure 1.6. The value Hc1 = 7, 3 Tesla has been determined [6] by means of the first peak position

in dM
dH shown by the upper curve in figure 1.6.

Figure 1.6: Polycrystalline Cr8 magnetization curves as a function of the applied magnetic field H. The black

line shows the experimental results at T = 0, 15 K while the red line is the theoretical calculation at T = 0, 10

K. The upper orange line shows the derivative dM/dH.

Polycrystalline Cr8 magnetic susceptibility χ has been measured in the temperature range 1,8 -

300 K by means of a Superconducting QUantum Interference Device (SQUID) magnetometer. Figure

1.7 (left) shows the temperature dependence of Cr8 magnetic susceptibility characterized by a broad

maximum around 40 K due to the antiferromagnetic interaction between the Cr3+ spins [6]. It is
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worthwhile observing that χ approaches zero at low temperatures reflecting the singlet ground state.

Figure 1.7 (right) shows the χT behaviour in polycrystalline Cr8 as a function of the temperature

T at two external magnetic fields [26]. This plot essentially shows the temperature dependence of the

effective Curie constant C ∼ χT where:

C =
Ng2µ2

B[S(S + 1)]

3kB
. (1.2)

The lower dashed line corresponds to the low temperature limit, given by equation 1.2 with N = 1,

g = 2 and S = 0, namely the Curie constant for a single spin S = 0. This indicates that at low

temperature the eight spins system occupies a collective ground state characterized by the total spin

value S = 0. Viceversa, the upper dashed line represents the high temperature limit corresponding to

an effective Curie constant given by N = 8, g = 2 and S = 3/2. The high temperature spin dynamics

is determined by local spins of the magnetic ions fluctuating almost independently from each other.

Figure 1.7: Polycrystalline Cr8 magnetic susceptibility versus T measured in the temperature range 1,8 - 300

K by means of a SQUID magnetometer (left). χT behaviour as a function of T at two external magnetic fields

[26] (right).

Figure 1.8 represents the temperature dependence of the magnetic susceptibility χ at different

values of the applied magnetic field. It is worthwhile stressing that a field dependence of χ is observed

at low temperature. In particular, at low temperature χ increases with increasing magnetic field

together with the S = 1 state population. By contrast, at high temperature χ shows a field independent

paramagnetic behaviour.

1.2.2 Heterometallic Cr7Cd and Cr7Ni AFM rings

The present section illustrates the properties of the heterometallic rings studied in the experimental

part of this work namely Cr7Cd and Cr7Ni antiferromagnetic rings. The substitution of one Cr3+ ion

(s = 3/2) by a dication Cd2+ (s = 0) or Ni2+ (s = 1) results in a magnetic ground state with total

spin S = 3/2 and S = 1/2 in Cr7Cd and Cr7Ni respectively. While Cr8 ground state is characterized

by a molecular type singlet S = 0, with zero local spin expectation values; the heterometallic rings

are characterized by a redistribution of the magnetic moment in the ground state as described in the

7



Figure 1.8: Cr8 powders magnetic susceptibility versus T at different applied magnetic fields.

following. This section briefly illustrates the structure and synthesis of these compounds together with

the main results obtained in the past concerning their magnetic properties. This thesis’ experimental

study on Cr7Cd and Cr7Ni is illustrated in Chapter 4 and in Chapter 5 respectively.

Heterometallic analogues of the homometallic neutral wheel Cr8F8Piv16, in short Cr8 have been

prepared by replacing a single Cr3+ center by a dication M2+. The monoanionic heterometallic

species [Cr7MF8Piv16]− is therefore formed and in the presence of a suitable cation it is possible

to separate the heterometallic species from the homometallic compound based on the principle that

a cation-anion pair has different crystallization properties than a neutral species. The syntheses of

(CH3)2NH2[Cr7NiF8Piv16] in short Cr7Ni and (CH3)2NH2[Cr7CdF8Piv16] in short Cr7Cd are briefly

reported in the following. The interested reader can find more details in reference [2].

Cr7Ni heterometallic wheel can be synthesized by means of two strategies. The first route consists

in preparing a mixture of hydrated chromium(III) fluoride i. e. CrF3 · 4 H2O and Ni2Piv4HPiv4·H2O

in Pivalic acid HPiv = (CH3)3CCOOH and dimethylformamide DMF. The mixture is stirred and

heated up to 413 K. (CH3)2NH2[Cr7NiF8Piv16] in short Cr7Ni is produced together with a smaller

amount of Cr8F8Piv16, Cr8 in short. The amonium ion [(CH3)2NH2]+ formation is probably due to

the acid hydrolysis of DMF i. e. (CH3)2NCOH. The product is purified by column cromatography on

silica gel by using toluene as a eluent. First the less polar impurity Cr8 is eluted, then the product

Cr7Ni. The product is recrystallized from THF/CH3CN.

The second route involves the reaction of CrF3 · 4 H2O and Ni2Piv4HPiv4·H2O in a mixture of

secondary amine (CH3)2NH and pivalic acid (CH3)3CCOOH. The mixture is stirred and heated up

to 413 K. (CH3)2NH2[Cr7NiF8Piv16] in short Cr7Ni is obtained with no trace of Cr8F8Piv16, Cr8

in short. (CH3)2NH2[Cr7CdF8Piv16] in short Cr7Cd synthesis is performed by means of the same

procedure by using cadmium carbonate CdCO3 instead of Ni2Piv4HPiv4·H2O.

Figure 1.9 shows the Cr7M (M = Cd, Ni) heterometallic ring unit cell viewed along the c axis

perpendicular to the molecular ring. It is worthwhile observing that the axis perpendicular to the

molecular ring is labelled with a in Cr8 and with c in heterometallic Cr7Cd and Cr7Ni. The sample

has been crystallized from THF/MeCN 1:10. A secondary amonium cation is found in the cavity of

8



Figure 1.9: Cr7M (M = Cd, Ni) heterometallic ring unit cell viewed along the c axis perpendicular to the

molecular ring. The sample has been crystallized from THF/MeCN 1:10. Each molecular ring includes one

amonium ion at its center, not shown in this figure. The heterometallic site occupies a random position on

the ring and therefore has not been labelled.

the macrocycle forming three N - H · · · F bonds as shown in figure 1.10 6. The heterometallic site

occupies a random position on the ring and therefore has not been labelled.

As in the case of Cr8 the spin Hamiltonian describing the magnetic Cr7M ring is given by equation

1.1 here rewritten for convenience:

H = J
∑
i

si · si+1 +D
∑
i

[s2
z,i −

1

3
si(si + 1)] +

∑
i>j

si ·Dij · sj − µB

∑
i

giH · si. (1.3)

As stated above for the case of Cr8 (see section 1.2.1), the first term describes the dominant isotropic

nearest-neighbors Heisenberg exchange interaction. The coupling is antiferromagnetic (J > 0): in par-

ticular in Cr7Ni the nearest neighbours exchange constants are: JCr−Cr = 16, 9 K and JCr−Ni = 19, 6

K. The second term accounts for the uniaxial local crystal fields, where z is the axis perpendicular to

the molecular ring. The third term on the right handside of equation 1.3 is the dipolar anisotropic

intracluster spin-spin interaction where Dij can be evaluated by means of the point-dipole approxi-

mation. The last term is the Zeeman Hamiltonian describing the interaction between the applied field

H and the electronic magnetic moments giµBsi where µB is the Bohr magneton and gi is the Landé

factor of the ith spin 7.

The dimension of the spin Hilbert space is very large (49152 in the case of Cr7Ni) and the magnetic

Hamiltonian has been diagonalized by means of the two-steps procedure summarized in the following

[21], [4]. The Heisenberg interaction represents the dominant contribution to the spin Hamiltonian.

Its energy spectrum consists of a series of multiplets with an almost definite value of |S|. In the

6The secondary amonium ion [(CH3CH2)2NH2]+ is shown in figure 1.10 while in figure 1.9 the amonium ion is not

displayed. The compounds studied in the present work include a [(CH3)2NH2]+ ion.
7The Zeeman term in equation 1.3 is written in the assumption that the gisi values are the magnetic moments

expressed in Bohr magnetons differently from equation 1.1. This is consistent with figures 1.14, 1.15 and 1.16 and with

the analysis of the experimental results in Chaper 4 and in Chapter 5.
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Figure 1.10: Cr7M (M = Cd, Ni) heterometallic ring. A secondary amonium cation is found in the cavity of

the macrocycle forming three N - H · · · F bonds [2].

first step of the diagonalization procedure only the Heisenberg term is considered. By exploiting the

rotational invariance of the Heisenberg term the matrix has been block factorized according to the

total spin quantum number S and the eigenstates and eigenvalues have been calculated. However the

complete Hamiltonian does not commute with S2 and the different spin multiplets can mix. Since the

S-mixing is small a perturbative approach (see references [8] and [9]) could be employed in order to

include the S-mixing in the results.

Figure 1.12 displays a plot of the energy levels in Cr7Ni calculated by means of the Hamiltonian

1.3 in the case of the magnetic field being applied perpendicular to the molecular ring (left) and in

the case of the magnetic field being applied parallel to the molecular ring (right). It is worthwhile

observing that the lowest level (i. e. the state |1/2, 1/2〉 at low fields) has been arbitrarily represented

by an horizontal line.

The calculated eigenstates and eigenvalues of the spin Hamiltonian 1.3 have been used to evaluate

the magnetic field dependence of the thermal averages of the local spin operators 〈s〉α,i where α =

x, y, z both in Cr7Cd and in Cr7Ni according to [4]:

〈s〉α,i =
1

Z

∑
j

〈j|sα,i|j〉e−βEj(H) (1.4)

where Z is the partition function and β = 1
kBT

. The sum extends over the eigenstates |j〉 and the field

dependent eigenvalues Ej(H). It turns out that in the case of the magnetic field being applied along

the z axis perpendicular to the molecular ring i. e. θ = 0, 〈s〉z,i is the only non zero component of the

local spin vectors. Viceversa, when the magnetic field is parallel to the moecular ring i. e. θ = π/2

we get 〈s〉z,i = 0 and the local spin vectors are parallel to the applied field.

Figure 1.14 shows the local expectation values of the electronic spin moments in Cr7Cd calculated

at T = 1, 5 K in the case of the magnetic field being applied perpendicular to the molecular ring [21]

(left) and in the case of the magnetic field being applied parallel to the molecular ring (see the Cr3+

ions labelling in use for the heterometallic wheels in figure 1.13). The plot shows that the local spin

expectation values 〈s〉α,i have a staggered almost uniform distribution and the spin values turn out

to be significantly lower than the s = 3
2 value of the Cr3+ ion. The calculated values shown in figure
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Figure 1.11: Cr7M (M = Cd, Ni) heterometallic ring unit cell showing that the c axis is perpendicular to the

molecular ring. The sample has been crystallized from THF/MeCN 1:10. Only Cr3+, M2+ and F− atoms are

displayed. The heterometallic site occupies a random position on the ring and therefore has not been labelled.

1.14 are in very good agreement with the experimentally determined values [21] (see section 4.1).

Figure 1.15 and 1.16 show the theoretical Cr3+ and Ni2+ electronic magnetic moments local ex-

pectation values in Cr7Ni at T = 0 K and T = 1, 5 K respectively. These results are expressed in Bohr

magnetons. g is the electronic Landé factor whose value is 1,98 for the Cr3+ ions and 2,2 for the Ni2+

ion. The theoretical values have been calculated at both temperatures in the cases of the magnetic

field being applied both perpendicular to the molecular ring (see figure 1.15 left and 1.16 left) and

parallel to the molecular ring (see figure 1.15 right and 1.16 right).

The Hamiltonian describing Cr7Ni has an axial simmetry and the simmetry axis is perpendicular

to the molecular ring. Thus if the external magnetic field is applied along this simmetry axis or

perpendicular to this axis the local spin moments are parallel to the external field, as pointed out

above. Viceversa, if the magnetic field is randomly oriented, the local spin expectation values have

two non-zero components. Due to the cylindrical simmetry of the magnetic Hamiltonian, the spin

expectation values do not depend on the particular in-plane magnetic field direction when this is

applied parallel to the molecular ring.

It is worthwhile observing that the local spin moments moduli at T = 1, 5 K at low magnetic

fields are substantially smaller than the 0 K values. This is due to the non-zero excited levels thermal

population at T = 1, 5 K at low fields. As shown in figure 1.12 the energy separation between the

ground state and the first excited state increases with increasing magnetic field and is maximum

around 6 Tesla. Due to the Boltzmann factor the excited level population therefore decreases with

increasing field in the range 0 - 6 Tesla and the 1,5 K electronic spin moment local expectation values

approach the 0 K values.

Because of the simmetry properties of Cr7Ni magnetic system, Cr 1 and Cr 7 are expected to have

the same local spin expectation value, as well as the pairs Cr 2 - Cr 6 and Cr 3 - Cr 5 (see the labelling

introduced in figure 1.13). Cr 4 is expected to have a different spin value. It actually turns out that

11



Figure 1.12: Energy levels expressed in K as a function of the magnetic field in Cr7Ni. Left: θ = 0. Right:

θ = π/2. θ represents the angle betwen the applied magnetic field and the c-axis perpendicular to the molecular

ring. The lowest level has been arbitrarily represented by an horizontal line.

Figure 1.13: Cr3+ and F− ions labelling in use for the Cr7M heterometallic rings, M2+ = Cd2+, Ni2+.

Cr 4 local spin expectation value is very close to the one of the Cr 2 - Cr 6 pair.

As for the case of Cr8 in section 1.2.1 we give in the following a brief description of the macro-

scopic magnetization and suscebtibility measurements in the heterometallic rings. Cr7Ni magnetic

susceptibility χ has been measured in the temperature range 2 - 300 K by means of a Superconducting

QUantum Interference Device (SQUID) magnetometer. Figure 1.17 shows the temperature depen-

dence of Cr7Ni magnetic susceptibility measured by applying a 0,47 Tesla magnetic field. The curve

is characterized by a broad maximum around 40 K due to the antiferromagnetic interaction between

the Cr3+ spins [6].

Figure 1.18 shows the χT behaviour in Cr7Cd (left) and in Cr7Ni (right) single crystals as a

function of the temperature T at two external magnetic fields [26]. This plot essentially shows the

temperature dependence of the effective Curie constant C ∼ χT as observed in section 1.2.1 relating
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Figure 1.14: Local expectation values of the electronic spin moments in Cr7Cd calculated at T = 1, 5 K. Left:

θ = 0 i. e. the magnetic field is applied perpendicular to the molecular ring [21]. Right: θ = π/2 i. e. the

magnetic field is applied parallel to the molecular ring.

Figure 1.15: Local expectation values of the electronic spin moments in Cr7Ni calculated at T = 0 K. Left:

θ = 0 i. e. the magnetic field is applied perpendicular to the molecular ring. Right: θ = π/2 i. e. the magnetic

field is applied parallel to the molecular ring.

to Cr8. Equation 1.2 holds and is here rewritten for convence:

C =
Ng2µ2

B[S(S + 1)]

3kB
. (1.5)

In figure 1.18 the lower dashed line corresponds to the low temperature limit, given by equation 1.5
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Figure 1.16: Local expectation values of the electronic spin moments in Cr7Ni calculated at T = 1, 5 K. Left:

θ = 0 i. e. the magnetic field is applied perpendicular to the molecular ring. Right: θ = π/2 i. e. the magnetic

field is applied parallel to the molecular ring.

Figure 1.17: Cr7Ni magnetic susceptibility obtained by orienting the magnetic field parallel to the crystallo-

graphic c-axis i. e. θ = 0 (red points) and by orienting the magnetic field perpendicular to the crystallographic

c-axis i. e. θ = π/2 (black points) The applied magnetic field equals 0,47 Tesla.

with N = 1, g = 2, S = 3/2 in Cr7Cd and N = 1, g = 2, S = 1/2 in Cr7Ni, namely the Curie constant

for a single spin S. In the low temperature limit the magnetic ring is therefore characterized by a

collective grund state with total spin S. On the other hand, the upper dashed line represents the high

temperature limit corresponding to an effective Curie constant given by the sum of two contributions.

In the case of Cr7Cd the contribution given by equation 1.2 with N = 7, g = 2 and s = 3/2 adds

14



to the term obtained by means of equation 1.2 with N = 1, g = 2 and S = 0. Similarly, in the case

of Cr7Ni the contribution given by equation 1.2 with N = 7, g = 2 and S = 3/2 adds to the term

obtained by equation 1.2 with N = 1, g = 2 and S = 1. This result shows that the high temperature

spin dynamics is determined by almost independent local electronic spins.

Figure 1.18: Cr7Cd (left) and Cr7Ni (right) single crystals temperature dependence of the effective Curie

constant χT at two different values of the magnetic field. The measurements have been performed by means

of a SQUID magnetometer by orienting the applied field perperpendicular to the crystallographic c-axis.

Figure 1.19 shows the magnetization dependence on the magnetic field in Cr7Ni. Both the theo-

retical and the experimental curves are displayed. This plot shows a step-wise behaviour due to the

change of the system ground state as the magnetic field approaches the critical values corresponding

to the level crossing fields in figure 1.12. It is worthwhile observing that the stepwise discontinuities

are smoothed out as the temperature increases. Figure 1.20 shows the calculated magnetization de-

pendence on the magnetic field in Cr7Ni at different temperatures and at different orientations of the

applied field. It is worthwhile observing that the anisotropy shown by the total magnetization in figure

1.20 is significantly smaller than the anisotropy of the single magnetic moments in figure 1.16.
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Figure 1.19: Magnetization dependence on the applied magnetic field in Cr7Ni. The experimental curve at

T = 1, 3 K is shown together with the theoretical predictions at T = 0, 1 K and T = 1, 3 K.

Figure 1.20: Magnetization dependence on the applied magnetic field in Cr7Ni. The theoretical predictions

at different temperatures and orientations of the applied field.
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Chapter 2

Nuclear Magnetic Resonance,

hyperfine interactions and

experimental setup

The aim of this chapter is to recall the basic aspects of Nuclear Magnetic Resonance. The interested

reader can find an elementary description of NMR in the book by T. C. Farrar and E. D. Becker [10].

A complete formal derivation of the theory of NMR can be found in the book by C. P. Slichter [11] and

in the famous monograph by A. Abragam [12]. The experimental aspects of pulse NMR are described

in great details in the book by E. Fukushima and S. B. W. Roeder [13].

We present in this chapter a detailed treatment of the hyperfine interactions that are relevant to the

present work. We finally include a brief description of the experimental setup and of the experimental

methods utilized.

2.1 Simple quantum mechanical treatment

Let us consider a nuclear magnetic moment:

µ = γh̄I (2.1)

where γ is the gyromagnetic ratio and h̄I is the nuclear angular momentum. The Zeeman interaction

with a magnetic field H0 along the z axis is described by the Hamiltonian:

H = −γh̄I ·H0. (2.2)

The corresponding eigenvalues are:

E = −γh̄MIH0 MI = −I, ..., I − 1, I (2.3)

as shown in figure 2.1 in the case I = 3
2 .

A time dependent perturbation of the Zeeman Hamiltonian 2.2 can induce a transition between

those energy levels. A small alternating magnetic field applied perpendicular to the static field H0,
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Figure 2.1: Energy eigenvalues of the Zeeman Hamiltonian 2.2 assuming I = 3
2
.

let’s say along the x axis, gives rise to the perturbing term:

HPert = −γh̄IxH1 cos(ωt) (2.4)

where the time dependent field is:

H1 = H1 cos(ωt)x̂. (2.5)

The matrix elements 〈M ′I |Ix|MI〉 vanish unless M ′I = MI ± 1 [11]. Thus magnetic dipole transitions

[15] occur between adjacent levels. The conservation of energy requires:

h̄ω = γh̄H0. (2.6)

2.2 Classical description and Bloch equations

A simple quantum mechanical treatment of the resonance phenomenum has been introduced in section

2.1. In addition to this, an elementary classical description can be considered. The classical picture

turns out to be particularly helpful in discussing transient effects.

2.2.1 Precession of a magnetic moment in a magnetic field

The classical equation:

h̄İ = µ×H0 (2.7)

describes the motion of the magnetic moment µ in the static field H0. By using equation 2.1 we get:

İ = −γH0 × I. (2.8)

This equation describes the classical precession of µ about the field H0 at the Larmor frequency:

ω0 = γH0 (2.9)

as shown in figure 2.2. It is worthwhile stressing that the classical result 2.9 is identical to the quantum

mechanical one in equation 2.6.

Let us consider a frame of reference S′ that rotates about the z axis at an angular frequency ω. The

magnetic field is written H0ẑ in the laboratory frame of reference S and (H0 − ω
γ )ẑ′ in the rotating

frame S′ 1. We assume now that a magnetic field H1 = 2H1 cos(ωt)x̂ is applied along the x axis in

the laboratory frame. This field may be written as the sum of a clockwise and a counterclockwise

1Notice that ẑ = ẑ′.
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Figure 2.2: Precessional motion of a nuclear magnetic moment µ about the static magnetic field H0.

rotating components 2. One of those components therefore lies along the rotating frame x′ axis. It

can be shown that only this component affects the motion of µ 3. In the rotating frame the magnetic

moment µ experiences an effective magnetic field:

HEff = (H0 −
ω

γ
)ẑ′ +H1x̂

′. (2.10)

Resonance is achieved when:

ω = ω0. (2.11)

Equation 2.10 yields:

HEff = H1x̂
′. (2.12)

The discussion developed so far shows the following. Let us assume that the static field H0ẑ is

perturbed by the radiofrequency field H1x̂
′ lying along the x′ axis in the frame S′ rotating at ω. As

the resonance condition 2.11 is achieved equation 2.12 holds. The magnetic moment µ precesses about

the x′ axis in the rotating frame at a frequency ω1 = γH1.

2.2.2 Bloch equations and magnetic susceptibility

Within the classical approach, the time evolution of the nuclear magnetization M can be described

by the Bloch equations:
dMz

dt
= γ(M ×H)z +

M0 −Mz

T1
(2.13)

dMx,y

dt
= γ(M ×H)x,y −

Mx,y

T2
. (2.14)

The first term on the right handside of these equations describes how H0 and H1 affect the nuclear

magnetization evolution in time. The second terms on the right handside of equations 2.13 and 2.14

account for a longitudinal relaxation mechanism and a transverse relaxation mechanism respectively.

Both decays are assumed to be exponential in time. The time constant T1 characterizes the spin-lattice

longitudinal relaxation while the decay time T2 describes the spin-spin transverse relaxation process.

2The perturbing field is:

H1 = 2H1 cos(ωt)x̂

= [H1 cos(ωt)x̂+H1 sin(ωt)ŷ] + [H1 cos(ωt)x̂−H1 sin(ωt)ŷ].

.
3This holds when the rotating fame frequency ω is close to the resonance frequency ω0.
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The in-plane components of the nuclear magnetization oscillating in phase and out of phase by π
2

with the radiofrequency fieldH1 yield the real and the imaginary part of the nuclear spin susceptibility:

χ = χ′ − iχ′′. (2.15)

The dispersion curve χ′(ω) and the absorption curve χ′′(ω) are shown in figure 2.3, assuming H1 � H0.

Figure 2.3: Real (χ′(ω)) and imaginary (χ′′(ω)) part of the dynamical nuclear spin susceptibility [11] corre-

sponding to the dispersion and absorption curves respectively. These results are obtained assuming H1 � H0.

2.3 Relaxation mechanisms

A simple classical explanation of the mechanisms producing the relaxation processes described by the

time constants T1 and T2 in equations 2.13 and 2.14 can be derived as follows [10]. Let us assume

that the nuclear magnetization M has been perturbed to a position far from equilibrium. M is still

stationary in the rotating frame S′:

M = Mx′ x̂
′ +My′ ŷ

′ +Mz′ ẑ
′.

Let us consider the effect of a microscopic field h:

h = hx′ x̂
′ + hy′ ŷ

′ + hz′ ẑ
′. (2.16)

Equation 2.16 describes the Fourier component of the microscopic field that is static in the rotating

frame. The in-plane components of this field are therefore fluctuating at the resonance fequency in

the laboratory frame.

The motion of M in the rotating is thus given by:

(− 1

γ

dM

dt
)Rot = (h×M)Rot

= (hx′ x̂
′ + hy′ ŷ

′ + hz′ ẑ
′)× (Mx′ x̂

′ +My′ ŷ
′ +Mz′ ẑ

′)

= (hy′Mz′ − hz′My′)x̂
′ + (hz′Mx′ − hx′Mz′)ŷ

′ + (hx′My′ − hy′Mx′)ẑ
′.

(2.17)

Equation 2.17 shows that transverse relaxation is driven by hx′ , hy′ and hz′ . This means that T2

relaxation processes are due to the in-plane microscopic field components oscillating at the resonance

frequency in the laboratory frame and to a static microscopic field component along the z axis. On the

other hand only hx′ and hy′ affect the longitudinal relaxation. In other words T1 relaxation processes

are driven by the in-plane microscopic field components fluctuating at the resonance frequency in the

laboratory frame.
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From a quantum mechanical perspective, the recovery of the longitidinal magnetization to its

equilibrium value modifies the population factors of the Zeeman levels depicted in figure 2.1. Thus T1

relaxation processes involve an exchange of energy between the nuclear spin system and the lattice.

By contrast, T2 relaxation processes correspond to energy conserving mutual spin flips and do not

involve any spin-lattice energy exchange.

2.4 Continuous wave and pulse techniques

2.4.1 CW NMR

In the continuous wave experiment, the radiofrequency ω is swept through the resonance value ω0.

When the sample is placed in the transmitter coil, the inductance L0 changes to the new value [11],

[15]:

L0 → L0[1 + 4πχ(ω)]. (2.18)

Equation 2.15 and the well known expression of the coil impedance Z = −iωL yield:

∆R = 4πL0ωχ
′′

where ∆R is the change of the coil resistance. The corresponding power absorbed by the nuclei P (ω)

is thus proportional to χ′′(ω):

P (ω) ∝ χ′′(ω). (2.19)

It can be shown [15] that:

χ′′(ω) ∝ f(ω) (2.20)

where f(ω)dω is the fraction of nuclei with a resonance frequency between ω and ω + dω namely the

NMR spectrum.

2.4.2 Pulse NMR

As discussed in section 2.2.1, equation 2.12 holds when the static field H0ẑ is perturbed by a ra-

diofrequency field H1x̂
′ satisfying the resonance condition 2.11. The nuclear magnetization M thus

precesses about the x′ axis in the rotating frame at a frequency ω1 = γH1. It is therefore possible to

rotate the magnetization M about the x′ axis by an angle θ by applying a resonance frequency pulse

whose length τP is given by the following equation:

θ = γH1τP. (2.21)

If H1 and τP are chosen so that θ = π
2 , the pulse yields a nuclear magnetization lying in the xy plane.

As the radiofrequency pulse is turned off a free induction decay (FID) of the transverse compo-

nents of the magnetization is observed. According to the Bloch equation 2.14, exponential transverse

relaxation occurs with a decay time T2. Following the pulse the in-plane component of the nuclear

magnetization precesses about the z axis in the laboratory frame at the angular frequency γH0. This

precessional motion produces an alternating magnetic flux through the coil and the induced e.m.f. is

observed.
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The signal detected by the coil in the laboratory frame S can be transformed into the free induction

decay (FID) observed in the rotating frame S′ by mixing it with a reference signal oscillating at ω0
4.

By multiplying these two signals one obtains a high frequency signal that is not detected and a low

frequency signal representing the FID.

Hahn Echo

As stated earlier in this section, a π
2 -pulse is followed by the free induction decay of the transverse

components of the nuclear magnetization characterized by a time constant T2. Let us assume that

the static magnetic field H0 is affected by a spatial inhomogeneity ∆H. The in-plane components of

the magnetization in different regions of the sample therefore precess at different frequencies as they

experience slightly different magnetic fields. Thus the decay time of the transverse magnetization is

affected by the spread of the precession frequency as follows:

1

T ∗2
=

1

T2
+ γ∆H. (2.22)

The decay time of the FID signal is therefore T ∗2 .

It is possible to estimate the value of the time constant T2 by resorting to the spin-echo technique.

Figure 2.4 shows the sequence of pulses of a typical Hahn spin-echo experiment. The Hann sequence

Figure 2.4: Sequence of pulses involved in the Hahn spin-echo technique [14].

can be schematized as follows:
π

2
− τ − π − τ − ECHO.

This sequence is repeated changing the delay time τ . The echo amplitude decays with increasing τ

with a time constant T2
5.

2.4.3 Relationship between CW and pulse techniques

As discussed in section 2.4.1, the following proportionality relation holds:

CW experiment → P (ω) ∝ χ′′(ω) ∝ f(ω) → NMR spectrum. (2.23)

On the other hand, the fluctuation-dissipation theorem provides the following relationship [15]:

χ′′(ω) ∝
∫ ∞

0

eiωt〈Mx(t)Mx(0)〉 dt. (2.24)

4Mxy(t) cos(ωt)× cos(ω0t) ∝Mxy(0)e−t/T2{cos[(ω0 − ω)t)] + cos[(ω0 + ω)t)].

When perfect resonance is achieved the free precession frequency ω equals the reference frequency ω0.
5It is actually possible to get rid of the field inhomogeneity effect and determine the T2 value by using this simple

method only when the motions of the molecules in the sample can be desregarded.
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The NMR spectrum, directly proportional to the imaginary part of the susceptibility χ′′(ω), can

therefore be derived by Fourier transforming the correlation function of the transverse components of

the nuclear magnetization. This correlation function 〈Mx(t)Mx(0)〉 is proportional to the FID signal

measured in a pulse experiment.

2.5 Nuclear Hamiltonian and hyperfine interactions

The aim of this section is to provide a general expression of the Hamiltonian of a system of nuclear

magnetic moments considering both the action of an external magnetic field and the most important

sources of internal fields. Among these, we discuss in detail the hyperfine interaction term. In the

present work we are particularly concerned with the hyperfine field produced by the Cr3+ electronic

magnetic moment at the ion’s own nuclear site (direct interaction) and at the nearby 19F nuclear sites

(transferred interaction) in AFM rings.

2.5.1 General expression of the nuclear Hamiltonian

A rather general form of the nuclear Hamiltonian that accounts for all the interactions acting on the

nuclei is [15]:

H = HZ +Hn−n +Hn−e +HEFG. (2.25)

In this formula the first term is the Zeeman coupling between the nuclei and the applied magnetic

field H0.

The second term describes the classical nucleus-nucleus dipolar interaction. The formal expression

of the dipolar coupling between the nuclear magnetic moments is:

HD =
1

2

∑
j

∑
k

[µj · µk
r3
jk

−
3(µj · rjk)(µk · rjk)

r5
jk

]
(2.26)

where the nuclear moments are µj = γj h̄Ij .

It is possible to estimate the order of magnitude of the local field due to the nucleus-nucleus dipolar

interaction as follows [11]:

HLoc ∼
µ

r3
∼ 1÷ 10 Gauss

where r is the distance between nearest neighbors nuclei (we assume r ∼ 2÷ 1 Å) and µ is the nuclear

magneton i. e. µN = 0, 5 · 10−23 erg Gauss−1. This field may either add or be opposite to the applied

field H0. This results in a spread of the resonance condition over a range of ∼ 1 ÷ 10 Gauss. The

evaluation of the line shape and the line width in presence of nuclear dipolar interaction is based on

the theory of the second and higher moments developed mostly by Van Vleck [12]. We limit ourselves

to recall that the contribution to the second moment and consequently to the line width is different

for like moments and unlike moments. In fact in the case of unlike moments the nuclear dipolar

contribution is smaller since only the secular terms of the nuclear dipolar Hamiltonian do contribute.

The secular terms can be viewed as a local magnetic field generated at a given nuclear site by the

sorrounding nuclei [12]. Since the effect of this interaction is small and it affects only the width of the

NMR lines it will be desregarded in the following.
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The third term describes the hyperfine interaction, namely the coupling between the nuclear mag-

netic moment and the electronic magnetic moments. This term is the subject of sections 2.5.2 and

2.5.3.

The fourth term accounts for the interaction between the nuclear quadrupole moment (non-zero

if I > 1/2) and the electric field gradient due to a non spherical charge distribution sorrounding the

nucleus. In the present work this term will not be considered since we are dealing mostly with 19F

nucleus with spin I = 1/2 and in the 53Cr-NMR measurements (I = 3/2) the quadrupole interactions

are small compared to the magnetic ones.

2.5.2 Classical nucleus-electron dipolar interaction

The third term on the right handside of equation 2.25 accounts for the hyperfine interaction namely

the coupling between the nuclear magnetic moment µn = γnh̄I = gnµN and the electronic magnetic

moment µe = −γeh̄S = −gµBS. In these expressions gn is the nuclear Landé factor, µN is the nuclear

magneton, g is the electronic Landé factor and µB is the Bohr magneton.

The contribution to the hyperfine field at the nucleus due to the electrons belonging to far away

magnetic ions can be derived by means of the classical expression of the magnetic dipolar interaction

[11]. This coupling is evaluated within the point dipole approximation assuming that the electronic

moment is located at the nuclear position of the ion it belongs to:

µe · µn

r3
− 3(µe · r)(µn · r)

r5
(2.27)

where r is the distance between the moments. This equation is analogous to equation 2.26 describing

the classical dipolar interaction between the nuclei.

Since the two dipole moments are different, only the secular terms of the dipolar Hamiltonian

contribute, analogous to the case of unlike nuclear moments discussed in section 2.5.1. This interaction

can therefore be described as a local magnetic field generated at the nuclear site by the thermal average

of the electronic moment 〈µe〉 i. e.:

HLoc = 〈µe〉
1− 3 cos2 θ

r3
(2.28)

where θ is the angle between the vector r and the quantization axis along the external magnetic field
6.

2.5.3 Direct and transferred hyperfine interactions

If the nuclear and electronic magnetic moments are close to each other, namely they belong to the

same atom or to different atoms whose electronic wavefunctions have a non-zero overlap, the point

dipole approximation doesn’t hold. The hyperfine interaction term must therefore be averaged over

the electronic wavefunction. This hyperfine term is named direct hyperfine interaction in the case of

magnetic moments belonging to the same atom and transferred hyperfine interaction in the case of

magnetic moments belonging to different atoms.

6In the paramagnetic case the electronic magnetic moment µe is directed along the applied field. If the electronic

system is not paramagnetic, the angle between the vector r and µe must be considered according to equation 2.27.
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Let us consider the nuclear Hamiltonian 2.25 and let us assume that the nuclear dipolar term

2.26, the hyperfine dipolar coupling 2.27 and the quadrupole interaction term can be desregarded. We

obtain the following expression:

H = −γnh̄

x,y,z∑
i

IiHi +

x,y,z∑
i

N∑
j=1

Aji Ii〈Si〉
j . (2.29)

The first term on the right handside describes the Zeeman interaction between the nuclear magnetic

moment and the external field components (Hx, Hy, Hz) while the second term accounts for the hy-

perfine field due to the nearby electronic magnetic moments labeled by the index j = 1, ..., N . Aji

is the hyperfine constant describing the interaction between the nuclear spin and the jth electronic

moment along the i axis. 〈Si〉j is the thermal average in the ith direction of the jth electronic spin. A

few examples of common expressions for this expectation value of are given in the following.

If the electronic spin system is in the paramagnetic state the expectation value 〈Si〉 is 7:

〈Si〉 = − χHi

NgµB

where χ is the static and uniform magnetic electronic susceptibility. Viceversa in the antiferromagnetic

phase and zero applied field the following expression holds:

〈S(T )〉 ∝ S M(T )

M(0)

where S is the electronic spin value and M(T ) is the sublattice magnetization at the temperature T .

In the molecular field theory M(T )
M(0) is the normalized Brillouin function: its value is unity at T = 0 K

and approaches zero at the transition temperature TN.

We consider now the explicit expression assumed by the hyperfine constant A in equation 2.29 in

different cases. Examples of the hyperfine interactions are illustrated referring to the 53Cr and 19F

atoms since these are the nuclei studied in the experimental section of this work.

Let us examine first the hyperfine field produced at the nuclear site by the atom’s own electrons,

that is the direct hyperfine interaction. The coupling constant of an electron described by the atomic

wavefunction ψ is 8,9:

Aψ =
2

5
gµBγnh̄〈

1

r3
〉ψ (2.30)

where 〈 1
r3 〉ψ is the expectation value of the operator 1

r3 in the electronic state ψ.

It is worthwhile stressing that equation 2.30 doesn’t hold for s electronic wavefunctions. In fact

the non-zero probability of finding the electron at the nuclear position r = 0 gives rise to a diverging

expectation value 〈 1
r3 〉. This difficulty has been overcome by E. Fermi [25] by a renormalization

procedure leading to the following expression for the direct contact hyperfine constant:

As =
8

3
πgµBγnh̄|ψ(0)|2s (2.31)

where |ψ(0)|2s is the normalized probability of finding an s electron at the nucleus.

7The assumption of no magnetic anisotropy has been made.
8This coupling constant is expressed in erg in both equation 2.29 and 2.30.
9In equation 2.30 the factor 2/5 is characteristic of p-type wavefunctions. This equation doesn’t include any

anisotropic term due to the fact that an average over the wavefunctions px, py and pz has been performed.
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The expressions 2.30 and 2.31 can be utilized to calculate the direct hyperfine field at the nucleus

of a magnetic ion as is the case of the field at the 53Cr nuclear site in the Cr3+ ion whose electronic

configuration is: [Cr3+] = [Ar]3d3. Since in the Cr3+ ion the magnetic electrons are described by 3d

wavefunctions the term 1
r3 in equation 2.30 must be averaged over the 3d electronic functions yielding

a non zero value. On the other hand equation 2.31 yields zero for the 3d functions. However the 3d

magnetic electrons can polarize the 3s wavefunctions of the core electrons that would otherwise be

paired yielding a zero spin moment. This spin polarization effect results in a large hyperfine contact

field named ”core polarization” [19], [20]. This dominanant contribution adds to the smaller term

from equation 2.30.

The calculation of the core polarization hyperfine field has been done for most 3d ions but only

approximate solutions can be found [19], [20]. A qualitative explanation of this effect is the following.

The magnetic 3d electrons couple antiferromagnetically to the core 3s electrons. This results in a higher

probability for the 3s electrons to be antiparallel to the 3d electrons. Consequently, equation 2.31

yields a very large and negative contact term. For a single unpaired 3d electron the core polarization

hyperfine field has been theoretically estimated to be Acp = −12, 5 Tesla [20] (see Appendix A.1).

Cr3+ core polarization field has been determined experimentally by means of NMR measurements

in Cr7Cd [21]: the value Acp = −12, 38 ± 0, 23 Tesla/Bohr magneton has been obtained. The core

polarization field is opposite to the 3d electronic magnetic moment direction yielding a negative Acp

value. Further details about this experimental work [21] will be given in section 4.1.

We consider now the case of the hyperfine field at a nucleus that is not belonging to the magnetic

ion. If the total electronic spin S of the atom is zero, the direct hyperfine field vanishes (see equation

2.29). The local field at the nuclear site might therefore be determined by a dominant contribution

from the transferred hyperfine interaction. This coupling occurs when the atom to which the nuclear

species of interest belongs binds to a magnetic atom. The overlap between the electronic wavefunctions

involved in the bond partially polarizes the formerly S = 0 electronic shells yielding a non-zero hperfine

field at the nucleus.

For the sake of clarity, let us consider the fluoride anion F− whose electronic configuration is:

[F−] = [He]2s22p6.

The hyperfine fields H2p(F
−) and H2s(F

−) vanish due to the closed shells value S = 0. However, if the

F− ion binds to a magnetic ion Xz+, the fluoride electronic structure is polarized since the bonding

is not purely ionic. This produces a non-zero F− electronic spin expectation value giving rise to a

transferred hyperfine field at the 19F nuclear site.

It is possible to write the ith component of the transferred hyperfine constant in the general form

[24]:

Ai = At +Aσ(3 cos2 θi,σ − 1) +Aπ(3 cos2 θi,π − 1) (2.32)

where i = x, y, z. At accounts for the isotropic contribution due to the s-electron polarization. The

anisotropic terms Aσ(3 cos2 θi,σ − 1) and Aπ(3 cos2 θi,π − 1) describe the contribution due to pσ bonds

and pπ bonds. Aσ is the transferred hyperfine constant relating to the pσ bonds while θi,σ is the angle

between the directional pσ bonds and the i axis. Analogous definitions hold for Aπ and θi,π.

The isotropic hyperfine constant At in equation 2.32 is of the form of equation 2.31. However, since

the s character of the bonding F− - Xz+ wavefunction is small the transferred hyperfine constant At is
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only a fraction of the one in the free F− ion As given by equation 2.31 whose calculated value is given

by equation A.3 in Appendix A. Thus the experimental determination of the transferred hyperfine

constant At allows one to measure the fraction of s character of the bonding wavefunction. The same

argument holds for the anisotropic transferred hyperfine constants Aσ and Aπ which depend on the

fraction of p character in the bonding wavefunction.

The anisotropic contribution to the transferred hyperfine field is often much smaller than the

isotropic term as pointed out by R. G. Shulman and K. Knox in their NMR study of the transferred

hyperfine field at the 19F nuclear site in KMnF3 [16] and by R. G. Shulman and V. Jaccarino in their

work on MnF2 [17]. In these compounds the isotropic term turns out to be almost two orders of

magnitude larger than the anisotropic transferred hyperfine field at the 19F nucleus. For this reason

the present study focuses on the isotropic contribution to the transferred hyperfine constant.

The interested reader can find further information abut the direct and transferred hyperfine con-

stants in the 19F atom as well as a brief description of the studies of the antiferromagnetic compounds

KMnF3 and MnF2 carried on during the 1950’s and 1960’s by R. G. Shulman, V. Jaccarino, K. Knox

and P. Heller in appendix A. The values of the hyperfine coupling contants and of the percentage of

s covalent character in the 19F - Mn2+ bonding determined by those works can be compared to the

corresponding values relating to the 19F - Cr3+ bonding estimated in the present thesis.

2.6 Experimental details referring to our measurements

We give in this paragraph a brief description of the experimental set-up and of the experimental

methods utilized in the present study.

2.6.1 NMR spectrometer

Two experimental set-ups have been utilized in the present work 10. The main difference between the

two equipments is the temperature range of operation. One set-up (set-up 1) includes a Helium bath

cryostat and operates down to 1,5 K. The second apparatus (set-up 2) includes a 3He - 4He dilution

refrigerator and can achieve temperatures as low as 50 mK. The two low temperature set-ups are

shown in figure 2.6 (a) and 2.7 (b): the interested reader can find more information about the cooling

systems in section 2.6.3.

The static magnetic field is generated in both instruments by a 9 Tesla high resolution supercon-

ducting magnet (Oxford Instruments). The superconducting magnet essentially consists of a Cu/Nb-

Ti coil: Niobium-Titanium (Nb-Ti) is a superconducting alloy whose critical temperature is ∼ 9, 2 K

while the Copper matrix is required to provide stability and protection to the wire and to the coil. The

superconducting coil is thermally insulated by means of an outer chamber containig liquid Nitrogen

and an inner chamber containing liquid Helium. The intensity of the magnetic field generated by the

superconducting coil can be varied by changing the intensity of the electrical current circulating in

the coil. This is achieved by warming up a small section of the superconducting wire by means of

a heater. As the heated region is warmed up over the critical temperature a phase transition to the

10The experimental measurements that are part of the present work have been performed at Ames Laboratory,

Department of Physics and Astronomy, Iowa State University, Ames, IA.
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non-superconducting state occurs in the small heated region and electric contacts for current injection

are produced.

The NMR specrometers are essentially the same in the two experimental set-ups. The components

of the equipment forming the NMR spectrometers are shown in figure 2.5 and 2.7 (a). They include:

• AC power

• Frequency synthesizer: 10 - 500 MHz

• Pulse generator: produces radiofrequency pulses whose length is ∼ µs

• Pulse amplifier: 10 - 500 MHz, generally 400 Watt

• Phase inverter

• Receiver: 10 - 500 MHz (Thamway company) and receiver attenuator (up to 70 dB)

• Oscilloscope, whose function is to display the real and the imaginary part of the received signal.

Figure 2.5 also shows:

• Pumping system connected to the bath cryostat

• Superconducting magnet power supply (Oxford IPS)

• Helium depth indicator: measures the resistivity change of a superconducting rod dipped in the

Helium tank as the liquid Helium level varies

• Temperature controller: measures the sample space temperature by means of a Chromel-Au/Fe

thermocouple

• Multimeters: measure the magnetic field value and the Helium tank temperature.

Figure 2.6 (c) and 2.7 (c) show the NMR probe in set-up 1 and in set-up 2 respectively. The

NMR probe is essentially a RLC resonant circuit whose function is to irradiate the sample with the

required radiofrequency pulses and to collect the signal generated by the sample’s magnetization. R

is the overall resistance of the circuit, L is the inductance of the coil sorrounding the sample and C

is the capacitance of the circuit. This capacitance is due to the co-axial cable intrinsic capacitance

and to additional capacitors that can be added with the purpose of tuning the probe at the Larmor

frequency. The NMR probe main features are the following. The NMR probe resonance frequency is

1/
√
LC and must have the proper value for the NMR experiment. Impedance matching between the

output amplifier and the probe (50 Ω) is required in order to reduce the reflected wave amplitude. A

high Q-factor, where Q = R
√

C
L is required in order to maximize the power reaching the coil and the

signal to noise ratio [10]. However very high Q- factors can produce discharges and noise enhancement

related to mechanical vibrations (ringing). The NMR coil shape is usually adapted to the sample’s

shape: in fact the signal to noise ratio is proportional to the filling factor, namely the fraction of the

volume of the coil that is occupied by the sample [10].
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Figure 2.5: 9 Tesla superconducting magnet NMR station, part of set-up 1.

2.6.2 Experimental methods

From the discussion developed in section 2.4.3 it follows that NMR spectra can be collected by using

the FT method. The basic principles of this technique are briefly explained in the following. Both

the radiofrequency and the applied field are kept fixed. The FT of the second half of the time domain

echo signal that follows a π
2 − π sequence yields the NMR spectrum. This last statement is true if the

whole line can be irradiated by a single pulse 11.

In the experimental part of the present work only a few spectra have been collected by using the

FT method. Since most spectra are broad and structured the whole NMR line could not be irradiated

by means of a single RF pulse and we resorted to the following ingenious method.

The radiofrequency ν0 = ω0

2π is kept fixed while the applied field is swept over a range including

the bare resonance Larmor value given by equation 2.9:

H0 =
2π

γ
ν0.

The spectrum y-value is given (at any field value) by the integral of the spin-echo signal that follows

the Hahn sequence of pulses:
π

2
− τ − π − τ − ECHO

described in section 2.4.2. Of course the spin-echo intensity is affected by the T2 value that may

change as the field is being swept. The comparison between the signal intensity of different spectral

regions might therefore be invalidated by this T2 change.

It is worthwhile mentioning some experimental details of this data collection procedure that are

relevant to the spectral resolution. As already stated, the spectra have been measured by sweeping

11The pulse length τP should be so short that the frequency range τ−1
P includes the whole spectral line.
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Figure 2.6: Set-up 1: bath cryostat (a), (b) and NMR probe (c).

the magnetic field: this sweep is operated in a continuous way by injecting an electrical current in

the superconducting magnet through high temperature contacts. Pulse sequences are repeated over

and over during the sweep with a delay time named repetition time tRep. Every spectral point is the

average value of a set number NAvg of acquisitions. We stress that each acquisition corresponds to

a pulse sequence and sequences are repeated with a delay equal to the repetition time. Thus each

point determination takes tRep ·NAvg seconds. The sets of NAvg acquisitions relating to two successive

spectral points differ only by one value. It is required that the magnetic field change during one point

determination is small compared to the width of the spectral structures of interest. Otherwise these

features are not resolved.

For the sake of illustration typical values of the experimental parameters are given in the following.

Most 19F-NMR spectra of Cr7Ni have been collected by using tRep = 0, 2 s, NAvg = 4 and a field sweep

rate of 0,1 Tesla/min. The field change during one point determination turns out to be ∼ 10−3 Tesla,

to be compared to the spectral structures FWHM ∼ 0,05 Tesla. 53Cr-NMR spectra of Cr7Ni have

been measured by using tRep = 0, 1 s, NAvg = 64 and a field sweep rate of 0,2 Tesla/min. During one

point determination the magnetic field varies by 0,02 Tesla, a suitable value compared to ∼ 1 Tesla

broad NMR line. Both the FT method and a very slow field sweep acquisition have been adopted

in order to collect the Cr8 sharp singlet spectral line at very low magnetic fields. The experimental

values of the latter method are tRep = 0, 5 s, NAvg = 16 and a field sweep rate of 0,001 Tesla/min.

The field change during one point determination turns out to be ∼ 10−4 Tesla: the same order of

magnitude of the peak’s FWHM.
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Figure 2.7: Set-up 2: NMR spectrometer and dilution refrigerator gas handling front panel (a), dilution

refrigerator (b), dilution refrigerator NMR probe (c).

2.6.3 Low temperature apparatus

The NMR measurements reported in the experimental section of the present work have been per-

formed at very low temperatures: 1,6 K (set-up 1) and 100 mK (set-up 2). Low temperatures are

required in order to study the sample’s ground state, whose population depends on the temperature

according to the Boltzmann factor. As pointed out in the recent article by H. Amiri et al. [26] the

magnetic behaviour of AFM rings changes dramatically by increasing the temperature above the AFM

coupling constant value J/kB ∼ 30 ÷ 40K. The low temperature correlated spin dynamic turns into

a high temperature paramagnetic behaviour characterized by magnetic ions’ local spins fluctuating

almost independently from each other. Low temperatures are therefore required in order to probe the

collective behaviour of the ground state spin system, that is the purpose of the present thesis.

The NMR spectra presented in this thesis have been collected at 1,6 K. This temperature has

been achieved by using the bath cryostat shown in figure 2.6 (a), (b) and and the pumping system

in figure 2.5. The liquid Helium temperature at atmospheric pressure is 4,2 K. Lower temperatures

can be obtained by pumping the He vapour away from the liquid surface in the He bath. The lowest

temperature achieved by this technique is approximatively 1,5 K.

Measurements at temperatures as low as 100 mK have been performed by using a KelvinoxIGH

31



dilution refrigerator (Oxford Instruments)12. The temperature is measured by means of a resistance

thermometer constituted by a RuO2 chip sensor. Careful calibration of this sensor has been performed

in the temperature range 40 mK - 4,2 K. In this temperature interval the resistance curve is decreasing

with increasing temperature. A schematic diagram of the Kelvinox dilution cryostat is sketched in

figure 2.8 and some pictures of the experimental apparatus are shown in figure 2.7.

The principle of operation of the dilution cryostat was first proposed by H. London in 1951 but

the first working instruments were built and commercialized only in the 1960’s. Since then the perfor-

mances of these systems have improved and better understanding of the underlying physical processes

has been achieved. Such principles of operation are briefly described in the following [27].

When a mixture of the two Helium isotopes is cooled below the critical temperature of 0,86 K (tri-

critical point) phase separation occurs. The mixture separates into a lighter 3He-rich phase, named

’concentrated phase’ (dark blue color in figure 2.8) and a heavier 3He-poor phase, named ’dilute phase’

(light blue color in figure 2.8). The percentage of 3He in this latter 4He-rich phase is about 6÷7 %. The

enthalpy of 3He in the two phases is different: it is therefore possible to obtain cooling by evaporating

the 3He from the 3He-rich (concentrated) phase into the 3He-poor (dilute) phase.

The properties of the two phases are derived by means of a quantum mechanical treatment. It

turns out that the concentrated phase of the mixture can be regarded as ’liquid 3He’ and the dilute

phase as ’3He gas’. In the dilute 3He-poor phase, the 3He gas moves through the inert 4He liquid

without interacting. This gas is formed at the phase boundary in the mixing chamber in a process

analogous to the evaporation at a liquid surface. The cooling obtained by this is used to cool the

sample down.

When the refrigerator is started the 3He -4He mixture is cooled down to approximately 1,2 K and

condensed by means of the 1 K pot. Phase separation is achieved by reducing the vapour pressure of

the liquid in the still using the external pumping system so that the temperature is reduced to below

the tri-critical point.

In a continuously operating system the 3He must be extracted from the dilute phase in order to

prevent it from saturating and must be returned to the concentrated phase. The 3He is pumped away

from the liquid surface in the still, typically mantained at a temperature of 0, 6 ÷ 0, 7 K. At this

temperature 3He evaporates preferentially as its vapour pressure is about 1000 times higher than that

of 4He.

The concentration of the 3He in the dilute phase in the still is therefore lower than it is in the

mixing chamber producing an osmotic pressure difference that drives an 3He flow to the still. The

room temperature pumping system is used to remove the 3He from the still. The gas is then passed

through filters and cold traps and returned to the cryostat, where it is pre-cooled in the main Helium

bath and condensed on the 1 K pot.

The KelvinoxIGH gas handling system allows circulation and safe handling of the 3He -4He mixture

and auxiliary pumping operations. It can be operated manually from the front panel shown in figure

2.7 (a).

12The lowest temperature that this instrument can reach is actually 50 mK but the superconducting magnet field

sweep and the RF pulses applied to the sample produce a small temperature increase.
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Figure 2.8: Schematic diagram of a KelvinoxIGH dilution refrigerator (Oxford Instruments) [27]
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Chapter 3

Cr8

As part of the present work, 19F-NMR measurements have been performed at Ames Laboratory 1 on

Cr8 single crystals. NMR spectra have been collected at T ∼ 1, 6 K by means of the experimental

equipment labeled ”set-up 1” in section 2.6. The crystal orientation has been determined by means

of a microscope and by using schematic sketches such as the one shown in figure 3.1, representing the

orientation of the crystallographic axes with respect to the crystal’s macroscopic shape. As observed

in section 1.2.1, the a-axis is perpendicular to the molecular ring.

Figure 3.1: Orientation of the crystalligraphic axes with respect to the macroscopic crystal shape in Cr8.

This chapter describes the present’s work 19F-NMR experiments on Cr8 single crystals. The first

section illustrates the ground state measurements reproducing the previous experiments by E. Micotti

et al. (2006) [7] and in complete agreement with the results summarized in paragraph 1.2.1. The

second section deals with the excited state spectra, leading to open questions concerning the nature

of the mixing of magnetic states in Cr8.

3.1 Ground state NMR measurements

Ground state spectra can be measured in Cr8 only at Larmor fields much lower than the level crossing

field of ∼ 7 Tesla due to the finite temperature of operation. It has been observed in section 1.2.1

with reference to figure 1.4 that as the applied field approaches the level crossing threshold the energy

separation between the ground state |0, 0〉 and the excited state |1,−1〉 decreases so that this latter

1Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, IA.
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state is more easily thermally populated. Very low magnetic fields are therefore required at non-zero

temperature in order to have a negligible excited state population.

In the present work ground state spectra have been measured at T = 1, 6 K with external magnetic

fields of 1,87 Tesla and 2,34 Tesla applied along the a-axis. Figure 3.2 shows the spectra collected

by means of the field-sweep method. As the NMR line is narrow, also the FT technique described

in section 2.6.2 could be employed. Figure 3.3 shows the real and the imaginary part of the FT of

the second half of the echo signal yielding the absorption and dispersion frequency domain curves

respectively.

Figure 3.2: 19F-NMR spectra of Cr8 single crystal at T = 1, 6 K showing the singlet ground state at low

applied magnetic fields. The applied field H is perpendicular to the molecular ring and parallel to the a-

crystallographic axis.

Figure 3.3: Real (black line) and imaginary part (red line) of the FT of the second half of the echo signal.

Left: ν = 74, 95 MHz and H = 1, 87 Tesla. Right: ν = 93, 7 MHz and H = 2, 34 Tesla.
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These spectra show a narrow and non shifted NMR line as a consequence of the local 〈s〉j = 0 values

leading to a zero hyperfine term in equation 2.29. By contrast, Néel antiferromagnetic compounds

such as KMnF3 [16] and MnF2 [18] are characterized by non-zero local moments in the S = 0 singlet

ground state. Thus their ground state NMR spectra show very large hyperfine shifts and broadening

due to the finite value of the sublattice local electronic magnetization.

Careful obseravation of the NMR singlets shown in figure 3.2 reveals some structure of the spectral

peak. A slightly shifted signal might be due to the Fluorine nuclei in the Teflon constitutents of the

co-axial cable in the NMR probe 2. Those nuclei experience a magnetic field that is different from the

field at the sample because of their different position in the NMR probe.

3.2 Structured Cr8 spectra

19F-NMR measurements have been performed in Cr8 single crystals at Larmor fields approximatively

equal to 4 Tesla, 6 Tesla and 7,8 Tesla. The last value lies above the first critical field value Hc1.

These spectra have been collected by applying the magnetic field perpendicular to the a-axis, namely

parallel to the molecular ring and by applying the field along the a-axis, namely perpendicular to the

molecular ring, as shown in figure 3.4.

Figure 3.4: 19F-NMR spectra of a Cr8 single crystal at T = 1, 6 K. The applied field H is parallel to the

molecular ring namely perpendicular to the a-axis (left) and perpendicular to the molecular ring namely

parallel to the a-axis (right). Spectra at Larmor fields of about 4 Tesla, 6 Tesla and 7,8 Tesla have been

collected for both magnetic field orientations.

These spectra are broad and structured due to the thermal population of the excited magnetic

levels. The most striking feature of these experimental results is their dependence on the field orienta-

2The sample has been wrapped with weight paper and put in the copper wire coil, the coil has been wrapped with

Parafilm strips. Both the weight paper and the Parafilm strips do not contain Fluorine. Teflon tape has not been used

in order to avoid its Fluorine contribution to the NMR signal.
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tion, that is their anisotropy. In particular the spectra collected by orienting the field along the a-axis

show sharp shifted peaks and a structure that broadens with increasing applied magnetic field. These

shifted NMR lines are most likely produced by the non-zero hyperfine interaction terms resulting from

the finite expectation values of the electronic spin moments.

Nevertheless an interpretation of these experimental results by means of the proposed local mo-

ments expectation values shown in figure 1.5 is not possible. This inadequacy of the existing model is

illustrated in the following.

Figure 3.5: Schematic sketch of the intracluster hyperfine interactions between a given 19F nucleus and the

magnetic Cr3+ ions. Assumption is made that nearby ions produce a transferred hyperfine field at the nuclear

site while far away ions generate a classical dipolar hyperfine field at the 19F nucleus.

Let us assume that the local spin expectation values are given by the calculated results shown in

figure 1.5 referring to the operation temperature T = 1, 5 K. We consider the simple model schematized

in figure 3.5 where distinction is made between the two Cr3+ ions neighboring to a given 19F nucleus

and the six remaining far away magnetic ions. We assume that the hyperfine field generated at each
19F nuclear site by the electronic moments belonging to the far away Cr3+ ions can be calculated

within the point-dipole approximation by means of the classical equation 2.27. This calculation yields

hyperfine fields at the nuclear sites whose order of magnitude is 10−5 ÷ 10−3 Tesla, to be compared

to the 10−2÷ 10−1 Tesla total width of the spectral structures in the measured spectra. This classical

contribution to the NMR shifts can therefore be disregarded.

Viceversa, if the assumption is made that the contribution to the hyperfine field at the nuclear site

due to the neighboring Cr3+ ions can be described by means of an isotropic transferred interaction

term (see equation 2.32) one has:

ν =
γ

2π

(
H +A

∑
j

gj〈s〉j
)

(3.1)

where the sum extends over the two neighboring Cr3+ ions. If one relies on the theoretical result

described by figure 1.5 the eight spin moments have the same expectation value 〈s〉 = 〈s(H)〉. Equation

3.1 therefore yields:

H − ν 2π

γ
= −2Ag〈s(H)〉. (3.2)

The left handside of equation 3.2 represents the NMR shift: according to this expression the measured

shift varies linerly with the field-dependent local spin expectation value 〈s(H)〉.
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Figure 3.6: Analysis of the experimental results of figure 3.4 (right). Left: Observed spectral total spead as

a function of the local spin value 〈s(H)〉. Right: Observed NMR shift as a function of the local spin value

〈s(H)〉. In this graph the experimental NMR shift of the most positively shifted peak in spectra 3.4 (right) is

considered. The line is a guide to the eye.

The plot of the observed NMR shift versus the local spin value is illustrated in figure 3.6 (right)

where a peak with a positive field shift has been chosen in the spectra reported in figure 3.4 (right). The

non-linear behaviour shown by the curve reveals the inadequacy of the adopted model. Furthermore,

a major feature of these experimental results shown in figure 3.4 is that the spectra are largely affected

by the field orientation. This result cannot be explained within the simple model illustrated above

since the anisotropic dipolar hyperfine interaction yields a negligible contribution (see above) and

in the isotropic expression 3.1 describing the hyperfine transferred interaction the magnitude of the

magnetic moments does not show a sufficient dependence on the field orientation to explain the results

in figure 3.4.

The anisotropy shown by the experimental results seems to be consistent with the presence of a

large anisotropic transferred hyperfine interaction between the 19F nuclear magnetic moment and the

nearby electronic moments 3. This interaction depends on the direction of the pσ and pπ
19F - Cr3+

3The resonance frequency of the 19F nucleus belonging to the fluoride bridging lingand located between the magnetic

ions Cr3+ site a and Cr3+ site b can be expressed (in the case of the magnetic field being applied perpendicular to the

molecular ring) by means of equation 2.32 as follows:

ν
2π

γ
= H+[At+Aσ(3 cos2 θσ−1)a+Aπ(3 cos2 θπ−1)a]·g〈s〉a+[At+Aσ(3 cos2 θσ−1)b+Aπ(3 cos2 θπ−1)b]·g〈s〉b (3.3)

where the F− - Cr3+ a bond and the F− - Cr3+ b bond can be characterized by different values of the angles θσ and

θπ betwen the directional pσ and pπ orbitals and the axis of the applied field. If we assume the theoretical electronic

moments local expectation values shown in figure 1.5 we get:

g〈s〉a = g〈s〉b

and the NMR shift is:

H − ν
2π

γ
= −[2At +Aσ(3 cos2 θσ − 1)a +Aπ(3 cos2 θπ − 1)a +Aσ(3 cos2 θσ − 1)b +Aπ(3 cos2 θπ − 1)b] · g〈s〉. (3.4)

Thus the NMR shift turns out to be proportional to the field-dependent local spin expectation value also if the anisotropic

transferred hyperfine term is explicitely considered. As discussed in the text, this linear dependence is not shown by

the experimental results reported in figure 3.6.
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bonds with respect to the external magnetic field (see equation 2.32). The theoretical analysis of the
19F spectra in terms of anisotropic transferred hyperfine interaction requires a detailed study of the

electronic structure of the ring and it is beyond the scope of this thesis. One can only qualitatively

observe that also for the case of anisotropic interaction a spectral overall spread proportional to the

calculated 〈s(H)〉 densities is expected. Instead, the spread (see figure 3.6 left) behaves similarly to the

NMR shift (see figure 3.6 right). Thus it appears that the determination of the 〈s(H)〉 spin densities

is not a settled issue.
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Chapter 4

Cr7Cd

The present chapter focuses on the investigation of the magnetic properties of Cr7Cd heterometallic

ring by means of Nuclear Magnetic Resonance. The first section briefly illustrates one of the most

striking experimental results of the last few years concerning the magnetic properties of AFM rings:

the model independent determination of the core polarization constant Acp and of the local spin

expectation values of the Cr3+ magnetic ions in Cr7Cd by means of 53Cr-NMR by Micotti et al. [21]

in 2006. In the second section of this chapter an estimate of the Cr3+ - 19F transferred hyperfine

constant by means of 19F-NMR measurements is proposed. This yields useful information about the

percentage of p covalent character of the Cr3+ - F− bond.

4.1 53Cr-NMR

The hyperfine constant value Acp and the local spin distribution of the Cr3+ magnetic ions in Cr7Cd

have been experimentally determined by E. Micotti, Y. Furukawa, K. Kumagai, S. Carretta, A. Las-

cialfari, F. Borsa, G. A. Timco and R. E. P. Winpenny by means of 53Cr-NMR in a work published in

2006 [21]. These determinations are relevant to the analysis and discussion of the experimental results

of the present work. The value of the hyperfine constant Acp of the Cr3+ magnetic ions in Cr7Cd is

utilized in section 5.1 in the interpretation of 53Cr-NMR spectra in Cr7Ni. Also, the experimental de-

termination of the local spin moments in Cr7Cd is in good agreement with the theoretically predicted

values enabling us to use these latter calculated values in section 4.2 in the analysis of the 19F-NMR

spectra of Cr7Cd. The present section summarizes how these important results have been obtained.
53Cr-NMR spectra in Cr7Cd have been measured by means of a pulsed NMR spectrometer at

T = 1, 5 K. The magnetic field has been applied along the z axis perpendicular to the molecular

ring. The spectra have been collected point by point by integrating the Hahn echo while sweeping

the external field at the fixed Larmor frequency νL according to the procedure described in section

2.6. Due to its low natural abundance (9,54%) and to the small gyromagnetic ratio ( γ2π = 2, 406

MHz/Tesla) the 53Cr-NMR signal is very difficult to be detected 1. Nevertheless very weak 53Cr-

NMR signals have been observed at low temperature (T = 1, 5 K) and high magnetic fields (H ∼ 6÷8

Tesla).

1The signal to noise ratio turns out to be proportional to the nuclear gyromagnetic ratio γ [10].
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The observed 53Cr-NMR signals obey to the following equation:

νL =
γ

2π
(H + g〈s〉Acp) (4.1)

describing the resonance frequency νL of each 53Cr nucleus. In this equation g is the electronic Landé

factor, 〈s〉 is the electronic spin expectation value 2 of the Cr3+ magnetic ion and Acp is the hyperfine

core polarization constant whose origin is described in section 2.5.3. Due to the simmetry properties

of the molecule, we can recognize in Cr7Cd four inequivalent Cr3+ sites, namely Cr 1 - Cr 7, Cr 2 - Cr

6, Cr 3 - Cr 5, Cr 4. The usual labelling is shown in figure 4.1 (right). These sites are expected to have

different spin moment expectation values giving rise to different NMR shifts according to equation

4.1. Four NMR signals are therefore expected.

Figure 4.1: 53Cr-NMR spectrum of a Cr7Cd single crystal collected at T = 1, 5 K by applying the magnetic

field perpendicular to the molecular ring [21]. The abscissa reports the NMR frequency normalized to zero

field (see equation 4.2).

The experimental result is shown in figure 4.1 (left) where the spectral intensity i. e. the echo

signal integral is plotted as a function of the NMR frequency normalized to zero field namely:

νL −
γ

2π
H =

γ

2π
g〈s〉Acp =

γ

2π
HInt (4.2)

where the hyperfine field at the nucleus is HInt = g〈s〉Acp. Figure 4.1 shows that the sites Cr 3 - Cr

5 and Cr 1 - Cr 7 give rise to almost overlapping signals: this is due to very similar spin expectation

values. The plot of the resonance frequency νL as a function of the applied field H is shown in

figure 4.2 where the experimental results turn out to lie on straight lines as predicted by equation

4.1. The NMR signals could be assigned unambiguously to the different magnetic sites by observing

that the intensity of the signal produced by the Cr 4 site is expected to be a half of the other three

signal intesities and that, due to the antiferromagnetic ordering, adjacent sites have antiparallel spins

resulting in opposite νL versus H slopes in figure 4.2.

The value of the hyperfine core polarization constant Acp could be determined independently from

the experimental NMR shifts HExp
Int,i by means of the following sum rule:

Acp =
2HExp

Int,Cr1−7 + 2HExp
Int,Cr2−6 + 2HExp

Int,Cr3−5 +HExp
Int,Cr4

g 3
2

(4.3)

2The magnetic field is applied along the z axis perpendicular to the molecular ring and in this configuration only the

component of the electronic magnetic moment directed along the applied field is non zero.
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Figure 4.2: 53Cr-NMR frequency as a function of the applied field in a Cr7Cd single crystal at T = 1, 5 K

[21]. The magnetic field is perpendicular to the molecular ring.

where 3
2 is the ground state total spin value and g = 1, 98 is the electronic Landé factor. Equation 4.3

yields:

Acp = −12, 38± 0, 23 Tesla (4.4)

to be compared to the calculated value Acp = −12, 5 Tesla [20] (see Appendix A.1).

The electronic spin moment local expectation values have been calculated by observing that:

〈siz〉 =
HExp

Int,i

gAcp
. (4.5)

These experimentally determined values are in good agreement with the theoretical prediction shown

in figure 1.14 (left) in section 1.2.2.

4.2 19F-NMR

19F-NMR measurements have been perfomed on a Cr7Cd single crystal at T = 1, 5 K. Field-sweep

spectra have been measured at the fixed Larmor frequency νL = 280, 14 MHz corresponding to a

Larmor field value of 6,99 Tesla [γ(19F) = 40, 059 MHz/Tesla]. The spectra have been collected at

different θ values, where θ is the angle between the applied magnetic field and the c axis (or z axis)

perpendicular to the molecular ring 3.

Figure 4.3 shows the experimental results at different values of θ. The echo integral is recorded

according to the procedure described in section 2.6 and is plotted as a function of the NMR field shift,

where the zero value corresponds to the 19F Larmor field. The large and broad signal with negative

shift is produced by the 1H resonance at 6,58 Tesla due to γ(1H) = 42, 5756 MHz/Tesla. The large and

narrow non shifted signal is due to the Teflon tape (Polytetrafluoroethilene, whose chemical formula

is shown in figure 4.4) 19F resonance 4.

3It is worthwhile observing that while in Cr8 the a-axis is the axis perpendicular to the molecular ring (see figure

1.2 and 3.1) in the heterometallic rings Cr7Ni and Cr7Cd the axis perpendicular to the molecular ring is labelled with
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Figure 4.3: 19F-NMR spectra of a Cr7Cd single crystal at T = 1, 5 K and at different orientations of the

applied magnetic field. The legend reports the values expressed in degrees of the angle θ i. e. the angle

between the applied magnetic field and the c-axis perpendicular to the molecular ring. The large and broad

signal with negative shift is due to the 1H resonance. The 19F-NMR signal has been zoomed in and is shown

in the insert.

Figure 4.4: Teflon (Polytetrafluoroethilene) chemical formula.

The sample’s 19F-NMR spectra are shown in the insert of figure 4.3. These spectra present some

dependence on the direction of the applied field due to the anisotropic terms of the hyperfine hamilto-

nian namely the classical electron-nucleus dipolar interaction 2.27 that is inherently anisotropic and

the anisotropic contribution to the transferred hyperfine coupling (see equation 2.32). The 19F-NMR

spectrum is composed of a slightly shifted broad structure and of a positively shifted peak whose

position depends on the applied field direction. The NMR shift of this peak is easily identified in the

case θ = 22, 5 degrees and θ = 45 degrees as shown in figure 4.5. This signal has a 0, 66± 0, 01 Tesla

NMR shift in the case θ = 22, 5 degrees and a 0, 71 ± 0, 01 Tesla shift in the case θ = 45 degrees. A

c (see figure 1.9 and 1.11).
4These spectra have been collected in 2006 on fresh samples. The large non shifted signal is due to the 19F nuclei in

the Teflon tape i. e. Polytetrafluoroethilene tape wrapping the sample. New measurements on the same Cr7Cd samples

have been performed as part of this thesis experimental work at Ames Laboratory in 2011. In these new measurements

we wrapped the sample with weight paper and the copper wire coil with Parafilm strips in order to avoid the Teflon

contribution to the 19F-NMR signal. However these new spectra turned out to be not reliable probably due to alterations

of the five years old samples and have therefore been discarded.
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simple interpretative model is proposed in the following.

Figure 4.5: Position of the shifted peaks in the 22,5 degrees and 45 degrees spectra shown in figure 4.3.

Figure 4.6: Labelling of the 19F nuclear sites and of Cr3+ magnetic ions in Cr7Cd molecular ring (left).

Schematic diagram of the interactions giving rise to the hyperfine field at a given 19F nuclear site (right).

By analogy with the case of Cr8 discussed in section 3.2 we assume that the hyperfine field produced

by the Cr3+ magnetic ions at a given 19F nuclear site consists essentially of two terms as shown

schematically in figure 4.6 (right). The far away Cr3+ ions produce a classical dipolar hyperfine field

at the 19F nucleus. This field can be calculated within the point-dipole approximation by means of

equation 2.27 yielding hyperfine fields at the nuclear sites whose order of magnitude is 10−3 ÷ 10−2

Tesla. This contribution can therefore be neglected. Viceversa we assume that the contribution to

the hyperfine field at the nuclear site due to the neighboring Cr3+ ions can be described by means
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of a transferred hyperfine interaction term described by equation 2.32. The anisotropic terms in

equation 2.32 are proportional to the transferred hyperfine anisotropic constants Aσ and Aπ due to

the dipolar interaction averaged over the pσ and pπ wavefunctions involved in the Cr3+ - F− bond and

are responsible for the angular dependence of the spectra in figure 4.3. The separate determination

of the constants At, Aσ and Aπ from the spectra is a difficult problem and we will not try it in the

present work.

Assumption is made that the slightly shifted structure is due to the 19F nuclear sites far away from

the Cd2+ ion namely F 2, F 3, F 4, F 5, F 6 and F 7 according to the usual labelling shown in figure

4.6 (left). In fact these fluoride ions are bridging ligands located approximatively half-way between

two antiparallel Cr3+ magnetic moments. The vectorial sum of the hyperfine fields produced by these

moments at the 19F nucleus results in a small local field yielding a small NMR shift. On the other

hand the 19F nuclei neighboring to the Cd2+ non magnetic ion, namely F 1 and F 8, experience the

hyperfine field produced by one Cr3+ magnetic moment namely Cr 1 and Cr 7 respectively. We thus

assign to these 19F nuclei the most shifted peak whose position varies approximatively in the range

0, 66± 0, 01 Tesla ÷ 0, 71± 0, 01 Tesla with varying θ.

We thus propose that F 1 and F 8 NMR shift can be described by the equation:

(H − ν 2π

γ
)F1,F8 = −Ag〈s〉Cr1,Cr7 (4.6)

where g = 1, 98 is the electronic Landé factor. A is the transferred 19F - Cr3+ hyperfine constant

relating to the site neighboring to the Cd2+ ion given by equation 2.32. It is worthwhile stressing that

according to equation 2.32 this hyperfine constant includes both the isotropic contribution At and the

anisotropic terms Aσ and Aπ.

〈s〉Cr1,Cr7 is the component of the spin local expectation value at sites 1 and 7 directed along

the applied field. As observed in section 1.2.2 when the magnetic field is applied perpendicular

to the molecular ring the electronic magnetic moments are aligned along this applied field: their

expectation values have been predicted theoretically at T = 1, 5 K and are shown in figure 1.14.

These calculated values are in excellent agreement with the experimental ones as pointed out in section

4.1. The theoretical value of the Cr 1 and Cr 7 magnetic moment expressed in Bohr magnetons is

g〈s〉Cr1,Cr7 = 2, 14. This value refers to the case θ = 0. Nevertheless we assume that we can use

this value in the interpretation of the spectra even if the magnetic field is not directed along the c

crystallographic axis 5.

Equation 4.6 yields the following estimate of the transferred 19F - Cr3+ hyperfine constant [29]:

A = −0, 308± 0, 005 Tesla÷−0, 332± 0, 005 Tesla. (4.7)

These results represent the transferred hyperfine field at the 19F nuclear site per Bohr magneton in

the case θ = 22, 5 degrees and θ = 45 degrees respectively. As stated above, these values refer to the

overall transferred hyperfine constant according to equation 2.32. Somehow surprisingly the results in

equation 4.7 are negative values. This result cannot be explained in the hypothesis of a transferred

hyperfine coupling (equation 2.32) consisting of a dominant isotropic term and of negligible anisotropic

contributions, as in the case of antiferromagnetic KMnF3 and MnF2 described in Appendix A. The

5Figure 1.14 reports the values relating to θ = 0 and those relating to θ = π/2 showing only a slight difference

between them. The final result of this section estimates does not significantly change if the θ = π/2 values are used.
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negative sign could be due to a transferred core polarization interaction in which the magnetic electrons

produce an hyperfine field at the 19F nucleus via the polarization of the s core electrons of the F− ion.

In addition to this, a negative anisotropic term could dominate over the positive isotropic contribution

in equation 2.32 yielding a negative value of the overall constant. The anisotropic term can reasonably

be negative due to the angle dependent factors.

According to this latter interpretation it is possible to estimate the order of magnitude of the

percentage fp of p covalent character of the F− - Cr3+ bond in Cr7Cd. By analogy with the procedure

illustrated in Appendix A.2 and in Appendix A.3 referring to KMnF3 and MnF2 respectively, and by

assuming the modulus of the intermediate value in equation 4.7 namely A = 0, 320± 0, 005 Tesla per

Bohr magneton as a rough estimate of the order of magnitude of the anisotropic transferred component

we get6:

fp =
A · g〈s〉Cr1,Cr7

16, 5 Tesla
∼ 4, 2 % (4.8)

where g〈s〉Cr1,Cr7 = 2, 14 is the Cr 1 and Cr 7 magnetic moment expressed in Bohr magnetons. In

equation 4.8 the term A ·g〈s〉Cr1,Cr7 represents the anisotropic transferred hyperfine field produced by

the neighbouring Cr3+ electronic spin at the 19F nuclear site while the denominator is the hyperfine

direct field at the 19F nucleus due to a single unpaired 2p electron according to equation A.2.

It is worthwhile stressing that this last result represents a very rough estimate due to the fact that

the experimental result 4.7 includes both the isotropic and the anisotropic contributions and that this

latter consists of σ and π angle dependent terms. As stated above in order to evaluate the separate

At, Aσ and Aπ contributions one should be able to determine the values of the angles θσ and θπ

between the directional pσ and pπ bonds and the applied magnetic field direction. This requires the

detailed study of the molecular orbitals involved in the Cr3+ - F− coordinative bond and goes beyond

the scope of the present work.

6No error has been reported in this result as it represents only a rough estimate.
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Chapter 5

Cr7Ni

The present chapter illustrates the Nuclear Magnetic Resonance measurements that have been per-

formed in the heterometallic Cr7Ni ring as part of this thesis experimental work. Both the 53Cr-NMR

and the 19F-NMR have been investigated by means of sophisticated low temperature and high mag-

netic field facilities at Ames Laboratory 1. The first section of this chapter describes the 53Cr-NMR

measurements performed in Cr7Ni single crystals: these results are in good agreement with the theo-

retically predicted local spin moment distribution shown in figure 1.16. The second section illustrates

the 19F-NMR experiments in Cr7Ni single crystals. A detailed analysis of these results is described

with the purpose of estimating the order of magnitude of the 19F - Cr3+ and 19F - Ni2+ transferred

hyperfine constants.

5.1 53Cr-NMR

As pointed out in section 4.1, 53Cr-NMR signal is very weak and hard to be detected due to the
53Cr nucleus low natural abundance (only 9,54%) and small gyromagnetic ratio ( γ2π (53Cr) = 2, 406

MHz/Tesla). Though often unsuccessful, 53Cr-NMR experimental attempts are worthwhile due to the

straightforward information that these measurements can provide concerning the local spin moment

distribution of the magnetic Cr3+ ions.
53Cr-NMR experiments in Cr7Ni single crystals have been performed at Ames Laboratory by

means of the experimental apparatus labelled ”set-up 1” described in section 2.6 at the temperature

of operation T = 1, 6 K. Field-sweep spectra have been collected according to the procedure described

in section 2.6.2. The sample has been roughly oriented by means of a microscope. A weak broad
53Cr-NMR signal has been observed.

Figure 5.2 (left) shows some experimental spectra collected by applying the magnetic field perpen-

dicular to the crystallographic c-axis namely parallel to the molecular ring. Viceversa figure 5.3 (left)

reports some of the spectra that have been collected by applying the magnetic field parallel to the

crystallographic c-axis i. e. perperpendicular to the molecular ring. In both cases the full width at half

maximum (FWHM) of these peaks is approximatively 1 Tesla. These signals can be unambiguously

assigned to the 53Cr-NMR nucleus: in fact as the settled value of the radiofrequency increases by 1

1Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, IA.

47



MHz a ∼ 0, 42 Tesla shift of the NMR signal is observed due to γ
2π (53Cr) = 2, 406 MHz/Tesla, as

shown in figure 5.2 and 5.3.

Figure 5.1: Cr3+and F− ions in use labelling in Cr7Ni heterometallic ring.

Figure 5.2: Left: 53Cr-NMR spectra of a Cr7Ni single crystal at T = 1.6 K, the magnetic field is applied

perpendicular to the crystallographic c-axis namely parallel to the molecular ring. Right: the radiofrequency

versus applied field experimental points. Two data sets are shown corresponding to different samples and/or

slightly different orientations. The black points correspond to the spectra on the left. The straight line

represents the best fit according to equation: y = C + 2, 406 · x yielding C = 18, 57± 0, 06 MHz.

The observed 53Cr-NMR signals in Cr7Ni can be easily explained based on the following argument.

As for the case of Cr7Cd described in section 4.1, the resonance frequency νL of each 53Cr nucleus is

given by [21]:

νL =
γ

2π
(g〈s〉Acp ±H) (5.1)

where H is the applied magnetic field and g〈s〉Acp is the hyperfine core polarization field at the 53Cr

nuclear site. γ
2π refers to the 53Cr nucleus and equals 2,406 MHz/Tesla. In equation 5.1 g is the

Cr3+ electronic Landé factor whose value is 1,98. 〈s〉 is the electronic spin local expectation value

of the Cr3+ magnetic ion. As pointed out in section 1.2.2, if the magnetic field is applied along the
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Figure 5.3: Left: 53Cr-NMR spectra of a Cr7Ni single crystal at T = 1.6 K, the magnetic field is applied

parallel to the crystallographic c-axis namely perpendicular to the molecular ring. Right: the radiofrequency

versus applied field experimental points. Three data sets are shown corresponding to different samples and/or

slightly different orientations. The black points correspond to the spectra on the left. The straight line

represents the best fit according to equation: y = C + 2, 406 · x yielding C = 26, 8± 0, 3 MHz.

crystallographic c-axis or perpendicular to this axis the electronic magnetic moments turn out to be

parallel to the applied field due to the cylindrical simmetry of the magnetic Cr7Ni Hamiltonian. The

electronic spin local expectation values have been calculated at the temperature of operation T = 1, 5

K and the theoretical result is shown in figure 1.16 in the case of the magnetic field being perpendicular

to the molecular ring (left) and parallel to the molecular ring (right). These figures show that the spin

expectation values dependence on the magnetic field can be neglected in the field range of interest

4 - 8 Tesla. The local spin moment theoretical expectation values are summarized in Table 5.1 for

both field orientations, where T = 1, 5 K and H = 5 Tesla have been assumed. Acp is the hyperfine

core polarization constant of the Cr3+ ion whose origin is described in section 2.5.3. It represents the

magnetic field per Bohr magneton generated at the 53Cr nuclear site by the ion’s magnetic electrons

via the polarization of the core s electrons.

Quadrupole effects of the 53Cr (I=3/2) NMR can be disregarded since we measure the central line

transition (+1/2 → -1/2) which is shifted only in second order and by a negligible amount at the

magnetic fields of operation.

Equation 5.1 shows that the resonance radiofrequency νL of each 53Cr nucleus is a linear function

of the applied magnetic field H. The slope equals γ
2π (53Cr) = +2, 406 MHz/Tesla if the internal field

g〈s〉Acp is parallel to the applied field corresponding to a local spin moment opposite to the external

field 2. Viceversa the slope has the negative value −2, 406 MHz/Tesla if the core polarization field is

antiparallel to the applied magnetic field H: this happens when the local spin moment is parallel to

the applied field.

Figure 5.2 (left) shows some experimental spectra that have been collected by applying the magnetic

2Acp has a negative value.
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Table 5.1: Electronic magnetic moment theoretical expectation values in Cr7Ni at T = 1, 5 K and H = 5 Tesla

corresponding to figure 1.16. The g〈s〉 values represent the magnetic moments expressed in Bohr magnetons.

g = 1, 98 for the Cr3+ ions and g = 2, 2 for the Ni2+ ion.

H ⊥ c H || c
Cr 1 0,88243 1,25315

Cr 2 -0,66861 -1,07189

Cr 3 0,82501 1,18954

Cr 4 -0,66181 -1,07047

Cr 5 0,82501 1,18954

Cr 6 -0,66861 -1,0719

Cr 7 0,88243 1,25315

Ni -0,48818 -0,79632

field perpendicular to the crystallographic c-axis together with the plot of the radiofrequency as a

function of the applied field experimental points (right). Two data sets are shown corresponding to

different samples and/or slightly different orientations. The black points correspond to the spectra

on the left. Viceversa figure 5.3 refers to the case of the magnetic field being applied parallel to the

crystallographic c-axis. The discussion developed above leads to the conclusion that the experimental

points in both configurations are due to Cr 2, Cr 4 and Cr 6 equivalent sites 3. In fact, according to the

theoretical values of the electronic spin moments shown in figure 1.16 at T = 1, 5 K and reported in

Table 5.1, Cr 2, Cr 4 and Cr 6 have a negative magnetic moment, yielding a positive core polarization

hyperfine field due to Acp < 0. This means that the core polarization field is parallel to the applied

field and adds to this latter so that the radiofrequency versus magnetic field plot shows a positive

slope.

Figure 5.2 (right) and 5.3 (right) show, together with the experimental points, the best fit curve

of the form:

y = C + 2, 406 · x (5.2)

where 2,406 MHz/Tesla is the γ
2π vale of the 53Cr nucleus. The values C = 18, 57 ± 0, 06 MHz and

C = 26, 8 ± 0, 3 MHz are obtained in the case of the magnetic field being perpendicular and parallel

to the crystallographic c-axis respectively. According to equation 5.1 we assume:

C =
γ

2π
g〈s〉Acp (5.3)

where Cr 2, Cr 4 and Cr 6 g〈s〉 values are −0, 67 and −1, 07 in the case of the magnetic field being

perpendicular and parallel to the crystallographic c-axis respectively (see Table 5.1). As stated above,

according to figure 1.16 we can neglect the spin expectation values dependence on the magnetic field

3According to the theoretical predictions, Cr 2 and Cr 6 are equivalent while Cr 4 electronic magnetic moment is

very close to the one of the Cr 2 - Cr 6 pair but not exactly equal.
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in the range of interest 4 - 8 Tesla. Equation 5.3 yields:

Acp = −11, 52± 0, 04 Tesla

for the case of the magnetic field being applied perpendicular to the c-axis and

Acp = −10, 4± 0, 1 Tesla

for the case of the magnetic field being applied parallel to the crystallographic c-axis. This latter value

can be compared to the value referring to Cr 2 and Cr 6 sites in Cr7Cd obtained as follows in the case

of the magnetic field being oriented parallel to the c-axis i. e. perpendicular to the molecular ring:

H
Exp, Cr2−6

Int, Cr7Cd

g〈s〉Theo, Cr2−6

Cr7Cd

= −11, 05± 0, 02 Tesla. (5.4)

In this expression the core polarization constant relating to the Cr 2 and Cr 6 sites in Cr7Cd is cal-

culated by means of the experimental 53Cr-NMR shift H
Exp, Cr2−6

Int, Cr7Cd provided by the measurements de-

scribed in section 4.1 and reported in reference [21]. The electronic spin expectation value 〈s〉Theo, Cr2−6

Cr7Cd

in the denominator of equation 5.4 is the theoretical value shown in figure 1.14 of section 1.2.2. We

observe that value given by equation 5.4 in Cr7Cd is very close to Acp = −10, 4±0, 1 Tesla determined

for Cr7Ni in the same magnetic field orientation.

As the core polarization constant is inherently isotropic it appears reasonable to consider for Cr7Ni

the average of the values obtained in the two configurations [29]:

Acp = −10, 96± 0, 07 Tesla. (5.5)

Figure 5.4 shows the radiofrequency versus magnetic field experimental points in the case of the

magnetic field being oriented parallel to the molecular ring (left) and in the case of the magnetic

field being aligned to the crystallographic c-axis (right). The red straight lines show the theoretical

predictions obtained by assuming Acp = −10, 96 Tesla in both configurations and the constant value

g〈s〉 = −0, 67 and g〈s〉 = −1, 07 for Cr 2, Cr 4 and Cr 6 in Cr7Ni in the magnetic field range 4 - 8 Tesla

in the case of the magnetic field being oriented parallel and perpendicular to the molecular ring re-

spectively. The black curves represent the theoretical predictions obtained by assuming Acp = −10, 96

Tesla in both configurations and the local spin expectation values shown in figure 1.16 corresponding

to the calculation at T = 1, 5 K.

Figure 5.5 shows the same experimental points: in this case the theoretical predictions are obtained

by assuming the value Acp = −12, 38 ± 0, 23 Tesla corresponding to the core polarization constant

experimentally determined by means of the sum rule 4.3 in Cr7Cd [21] (see equation 4.4 in section

4.1). By comparing figure 5.4 and 5.5 it appears that the agreement is better for the lower value of the

core polarization constant given by equation 5.5. However the value Acp = −12, 38±0, 23 Tesla should

be more reliable since it has been obtained without any assumption about the local spin density g〈s〉
[21]. In this scenario the discrepancy between the experimental data and the theoretical predictions

in figure 5.5 could be due to the imprecision in the sample orientation 4. It should also be remarked

that the experimental value Acp = −12, 38± 0, 23 Tesla/Bohr magneton in equation 4.4 is in striking

4The core polarization constant does not depend on the sample orientation, viceversa the electronic magnetic moments

expectation values are affected by the orientation of the sample with respect to the applied magnetic field.
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Figure 5.4: 53Cr-NMR of a Cr7Ni single crystal at T = 1.6 K: radiofrequency versus applied field experimental

points. Left: The magnetic field is applied perpendicular to the crystallographic c-axis namely parallel to the

molecular ring. Right: The magnetic field is applied parallel to the crystallographic c-axis namely perpen-

dicular to the molecular ring. The red straight lines show the theoretical predictions obtained by assuming

Acp = −10, 96 Tesla in both configurations and the constant value g〈s〉 = −0, 67 and g〈s〉 = −1, 07 for Cr

2, Cr 4 and Cr 6 in Cr7Ni in the magnetic field range 4 - 8 Tesla in the case of the magnetic field being ori-

ented parallel and perpendicular to the molecular ring respectively. The black curves represent the theoretical

predictions obtained by assuming Acp = −10, 96 Tesla in both configurations and the local spin expectation

values shown in figure 1.16 corresponding to the calculation at T = 1, 5 K.

agreement with the value Acp = −12, 5 Tesla/Bohr magneton obtained theoretically for an unpaired

3d electron [19], [20] (see Appendix A.1). This agreement indicates that the 3d electrons in the Cr3+

ion in Cr7Ni are well localized on the magnetic ion.

Figure 5.6 shows the radiofrequency versus magnetic field theoretical curves for the three inquiv-

alent 53Cr sites in Cr7Ni for both field orientations at T = 1, 5 K. These theoretical predictions are

obtained according to equation 5.1 by assuming the calculated values of the local electronic magnetic

moments at T = 1, 5 K shown in figure 1.16 and the value Acp = −12, 38± 0, 23 Tesla experimentally

determined for Cr7Cd (see section 4.1). It is worthwhile observing that only one signal out of the

three expected signals has been detected. As stated above, this signal has been assigned to the Cr 2

- Cr 4 and Cr 6 nuclear sites. In the magnetic field range 4 - 8 Tesla the Cr 1 - Cr 7 and Cr 3 - Cr 5

signals are expected to appear at very low frequencies: 16 - 6 MHz in the case of the magnetic field

being applied parallel to the molecular ring and 26 - 18 MHz in the case of the field being directed

perpendicular to the molecular ring. The electronic instrumentation constituting the NMR spectrom-

eter is not optimized for working at such low frequencies and in these experiments the signal could

not be distinguished from the noise.

The observation of the signal at low fields, permitting the use of radiofrequencies as high as

required for the instrumentation proper work, appears to be possible at temperatures below 100 mK
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Figure 5.5: 53Cr-NMR of a Cr7Ni single crystal at T = 1.6 K: radiofrequency versus applied field experimental

points. Left: The magnetic field is applied perpendicular to the crystallographic c-axis namely parallel to the

molecular ring. Right: The magnetic field is applied parallel to the crystallographic c-axis namely perpen-

dicular to the molecular ring. The red straight lines show the theoretical predictions obtained by assuming

Acp = −12, 38 Tesla in both configurations and the constant value g〈s〉 = −0, 67 and g〈s〉 = −1, 07 for Cr

2, Cr 4 and Cr 6 in Cr7Ni in the magnetic field range 4 - 8 Tesla in the case of the magnetic field being ori-

ented parallel and perpendicular to the molecular ring respectively. The black curves represent the theoretical

predictions obtained by assuming Acp = −12, 38 Tesla in both configurations and the local spin expectation

values shown in figure 1.16 corresponding to the calculation at T = 1, 5 K.

as shown in figure 5.7. This figure displays the radiofrequency versus magnetic field theoretical curves

for the three inquivalent 53Cr sites in Cr7Ni for both field orientations at T = 0 K. These theoretical

plots are obtained according to equation 5.1 by assuming the calculated values of the local electronic

magnetic moments at T = 0 K reported in figure 1.15 and the experimentally determined value

Acp = −12, 38± 0, 23 Tesla. These curves show that at very low temperatures the Cr 1 - Cr 7 and Cr

3 - Cr 5 radiofrequency versus magnetic field plots increase monotonically with decreasing field. Many

attempts at temperatures as low as 100 mK have been done by means of the dilution refrigerator of

the experimental equipment labelled ”set-up 2” descrbed in section 2.6. However no 53Cr signal has

been detected down to 0,1 K probably due to the dilution refrigerator NMR probe low sensitivity 5.

5Cr 2 - Cr 4 - Cr 6 signal could only be detected by means of ”set-up 1” and this measurement has been repeated

in order to test its reproducibility. No 53Cr signal has ever been detected by means of ”set-up 2” in Cr7Ni.
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Figure 5.6: 53Cr-NMR of a Cr7Ni single crystal at T = 1.6 K: theoretical predictions according to equation

5.1 obtained by assuming the calculated values of the local electronic magnetic moments at T = 1, 5 K shown

in figure 1.16 and the value Acp = −12, 38 Tesla experimentally determined for Cr7Cd (see section 4.1). Left:

The magnetic field is applied perpendicular to the crystallographic c-axis namely parallel to the molecular

ring. Right: The magnetic field is applied parallel to the crystallographic c-axis namely perpendicular to the

molecular ring.

Figure 5.7: 53Cr-NMR of a Cr7Ni single crystal at T = 0 K: theoretical predictions according to equation

5.1 obtained by assuming the calculated values of the local electronic magnetic moments at T = 0 K shown

in figure 1.15 and the value Acp = −12, 38 Tesla experimentally determined for Cr7Cd (see section 4.1). Left:

The magnetic field is applied perpendicular to the crystallographic c-axis namely parallel to the molecular

ring. Right: The magnetic field is applied parallel to the crystallographic c-axis namely perpendicular to the

molecular ring.
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5.2 19F-NMR

As part of the present work, 19F-NMR measurements in Cr7Ni single crystals have been performed

at Ames Laboratory 6. The interpretation of the 19F-NMR spectra in Cr7Ni is not trivial since the

fluoride ions are bridging ligands located approximatively half way between two magnetic ions. Each
19F signal shift is therefore affected by the isotropic transferred and by the anisotropic transferred

hyperfine terms (see equation 2.32) producing complicated spectral structures. Nevertheless 19F-NMR

measurements can provide useful information concerning the order of magnitude of the 19F - Cr3+

and 19F - Ni2+ transferred hyperfine constant, to be compared to the value determined in Cr7Cd (see

section 4.2) relating to the F− - Cr3+ bonds at the sites close to the Cd2+ ion and in KMnF3 and

MnF2 relating to F− - Mn2+ bonds (see Appendix A).

The present section has the purpose of describing the determination of the value of the 19F - Ni2+

transferred hyperfine constant in Cr7Ni by means of 19F-NMR measurements. Also, the experimental

determination of the order of magnitude of the 19F - Cr3+ transferred hyperfine constant is described in

the third part of this section together with a brief discussion of the factors that make this determination

not precise. An attempt of direct fitting the 19F-NMR spectrum by means of a superposition of

Lorentzian curves accounting for non equivalent 19F nuclear sites and for the Teflon 19F signal is

presented in the last part of the present section.

5.2.1 General features

Field-sweep 19F-NMR spectra have been collected in Cr7Ni single crystals according to the procedure

described in section 2.6.2. The measurements have been performed at T ∼ 1, 6 K by means of

the experimental equipment labelled ”set-up 1” in section 2.6. Figure 5.8 shows the spectra that

have been collected at different radiofrequency values by applying the magnetic field parallel to the

crystallographic c-axis namely perpendicular to the molecular ring. In each spectrum the large signal

with a negative shift is due to the 1H resonance [γ(1H) = 42, 5756 MHz/Tesla]. The large and narrow

non shifted signal is due to the Teflon (Polytetrafluoroethilene) tape present in the co-axial cable. The

sample’s 19F-NMR spectra are shown in the insert of figure 5.8. The 19F-NMR spectrum is composed

of a slightly shifted broad structure and of a positively shifted weak signal. Figure 5.9 refers to the

case of the magnetic field being applied perpendicular to the crystallographic c-axis namely parallel

to the molecular ring.

Cr7Ni 19F-NMR spectra have been studied based on the following argument 7. Analogous to the
19F-NMR spectra in Cr7Cd we observe that each 19F signal shows an NMR shift due to the intracluster

interactions with the magnetic Ni2+ and Cr3+ ions. As for the case of Cr7Cd in section 4.2, assumption

is made that the hyperfine field produced by the magnetic ions at a given 19F nuclear site consists

essentially of two terms as shown schematically in figure 5.10. The far away magnetic ions produce

a classical dipolar hyperfine field at the 19F nucleus. This term is inherently anisotropic and can be

calculated within the point-dipole approximation by means of equation 2.27. The calculation yields

hyperfine fields at the nuclear sites whose order of magnitude is 10−3 ÷ 10−2 Tesla. This is the same

order of magnitude obtained in the case of Cr7Cd in section 4.2. This contribution can be neglected as

6Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, IA.
7The present discussion refers to the labelling and to the interactions diagram shown in figure 5.10.
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Figure 5.8: 19F-NMR field sweep spectra in Cr7Ni at T = 1, 6 K. The magnetic field is applied parallel to

the crystallographic c-axis namely perpendicular to the molecular ring. The large signal with a negative shift

is due to the 1H resonance. The 19F-NMR signal has been zoomed in and shown in the insert.

Figure 5.9: 19F-NMR field sweep spectra in Cr7Ni at T = 1, 6 K. The magnetic field is applied perpendicular

to the crystallographic c-axis namely parallel to the molecular ring. The large signal with a negative shift is

due to the 1H resonance. The 19F-NMR signal has been zoomed in and shown in the insert.
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the main spectral features show shifts whose order of magnitude is ∼ 10−1 Tesla. On the other hand

we assume that the contribution to the hyperfine field at the 19F nuclear site due to the neighboring

magnetic ions can be described by means of a transferred hyperfine interaction term (see equation

2.32). The anisotropic tranferred terms Aσ and Aπ in equation 2.32 are responsible for the angular

dependence of the spectra. However, the separate determination of the constants At, Aσ and Aπ from

the spectra is a difficult problem that requires the detailed study of the molecular orbitals involved

in the Cr3+ - F− coordinative bond: this goes beyond the scope of this work. The present analysis

therefore deals with the overall hyperfine transferred coupling constant given by equation 2.32.

Figure 5.10: Labelling of the 19F nuclear sites and of Cr3+ magnetic ions in Cr7Ni molecular ring (left).

Schematic diagram of the interactions giving rise to the hyperfine field at a given 19F nuclear site (right).

Assumption is made that the NMR frequency ν of the 19F nuclear sites far away from the Ni2+

magnetic ion i. e. F 2, F 3, F 4, F 5, F 6 and F 7, according to the usual labelling shown in figure

5.10, can be described by the equation:

ν =
γ

2π
H +

γ

2π
A(19F−Cr3+)

∑
i

g〈s〉Cr,i (5.6)

where γ
2π is the 19F gyromagnetic ratio equal to 40,059 MHz/Tesla, H is the applied magnetic field

and A(19F−Cr3+) represents the 19F − Cr3+ transferred hyperfine constant. In equation 5.6 the sum

extends over the two Cr3+ ions neighbouring to the 19F nucleus producing the signal. Assumption

is made that the two bonds involving a fluoride F− anion and its neighbouring Cr3+ magnetic ions

are characterized by the same transferred hyperfine constant, i. e. any difference in the values of

the angles θσ and θπ (see equation 2.32) is being neglected. g〈s〉Cr,i is the component directed along

the applied field of the ith Cr3+ ion electronic magnetic moment expressed in Bohr magnetons. As

mentioned in section 1.2.2, due to the simmetry of the magnetic Hamiltonian, if the magnetic field is

applied perpendicular or parallel to the molecular ring, the local spin magnetic moments are directed

along the applied field. As stated above, equation 5.6 holds for the 19F nuclear sites far away from the
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Ni2+ magnetic ion. These fluoride ions are bridging ligands located approximatively half-way between

two antiparallel Cr3+ magnetic moments. The vectorial sum of the hyperfine fields produced by these

moments at the 19F nucleus results in a small local field yielding a small NMR shift. We therefore

conclude that the slightly shifted structure of the 19F spectra can be assigned to these nuclear sites.

Viceversa the 19F nuclei neighboring to the Ni2+ magnetic ion, namely F 1 and F 8, show a

resonance frequency described by:

ν =
γ

2π
H +

γ

2π
A(19F−Cr3+)g〈s〉Cr1,7 +

γ

2π
A(19F−Ni2+)g〈s〉Ni (5.7)

where g = 1, 98 for Cr3+ and 2,2 for Ni2+ is the electronic Landé factor, A(19F−Cr3+) is the transferred
19F - Cr3+ hyperfine constant relating to the site neighboring to the Ni2+ ion and 〈s〉Cr1,7 is the

component of the electronic spin local expectation value at sites 1 and 7 aligned to the applied field.

Analogous definitions hold for A(19F−Ni2+) and 〈s〉Ni.

It is worthwhile observing that according to Table 5.1 Cr3+
1,7 and Ni2+ magnetic moments are

antiparallel and their moduli are appreciably different. We thus assign to the 19F nuclei neighboring

to the Ni2+ ion i. e. F1 and F8 the most shifted NMR signal. Based on this assumption it is possible

to determine the value of the 19F - Ni2+ transferred hyperfine constant once the A(19F−Cr3+) value is

known. The following section illustrates the procedure leading to the A(19F−Ni2+) determination.

5.2.2 Experimental determination of the 19F - Ni2+ transferred hyperfine

constant

The purpose of the present section is to describe the determination of the A(19F−Ni2+) transferred

hyperfine constant. It is worthwhile stressing that equation 5.7 describing the F 1 and F 8 NMR

frequency can be used in order to determine the A(19F−Ni2+) value once the magnetic moments g〈s〉
and the A(19F−Cr3+) value are known and by assuming that F 1 and F 8 resonance results in the most

shifted spectral feature observed in the experiments.

Assumption is made that the intermediate value A = −0, 320± 0, 005 Tesla determined in section

4.2 in Cr7Cd (see equation 4.7) can be used in equation 5.7 to describe the F 1 - Cr 1 and F 8 - Cr 7

transferred hyperfine interaction in Cr7Ni (see figure 5.10). It is worthwhile observing that the value

A = −0, 320± 0, 005 Tesla refers in Cr7Cd to the 19F sites that are close to the Cd2+ ion. Equation

5.7 describing the F 1 and F8 sites resonance frequency can be rewritten as follows:

ν = 40, 059 MHz/Tesla ·H + C (5.8)

where:

C = 40, 059 MHz/Tesla · [(−0, 320± 0, 005) Tesla · g〈s〉Cr1,7 +A(19F−Ni2+) · g〈s〉Ni]. (5.9)

Equations 5.8 and 5.9 provide the F 1 and F 8 nuclear sites NMR frequency dependence on the applied

field. The radiofrequency shows a linear dependence on the magnetic field and the intercept C value

yields the hyperfine constant A(19F−Ni2+) value, once the magnetic moments g〈s〉Cr1,7 and g〈s〉Ni are

known. Figure 5.11 (left) shows the 19F-NMR field sweep spectra at different radiofrequency values

(the same spectra are shown in figure 5.8) in the case of the magnetic field being applied parallel to the

crystallographic c-axis. The shifted signal assigned to F 1 and F 8 nuclear sites is identified by means
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of a vertical line in each spectrum. It is worthwhile observing that even if F 1 and F 8 are (almost)

equivalent nuclear sites, the shifted signal assigned to these nuclei shows a complicated structure. In

this scenario assumption is made that the experimentally observed structure is due to some degree

of mosaicity of the sample i. e. the sample consists of regions showing different orientations of the

crystallographic axes with respect to an external frame of reference. Figure 5.11 (right) displayes

the radiofrequency versus applied field plot referring to the shifted signal together with the best fit

curve according to equation 5.8. Figure 5.12 refers to the case of the magnetic field being applied

perpendicular to the crystallographic c-axis.

The fitting procedure by means of a function of the type in equation 5.8 yields C = −32, 1 ± 1, 5

MHz and C = −30, 1± 0, 4 MHz in the case of the magnetic field applied parallel and perpendicular

to the crystallographic c-axis respectively. Equation 5.9 yields :

A(19F−Ni2+) ∼ 0, 5 Tesla (5.10)

in the case of the field being applied parallel to the crystallographic c-axis and:

A(19F−Ni2+) ∼ 0, 96 Tesla (5.11)

in the case of the magnetic field being applied perpendicular to the crystallographic c-axis. These

results have been obtained by assuming the values of the electronic magnetic moments reported in

Table 5.1. These values dependence on the magnetic field has been neglected: in fact according to

figure 1.16 in section 1.2.2, the electronic spin moments dependence on the magnetic field is very small

in the range of operation 4 - 8 Tesla.

It is worthwhile stressing that the values reported in equation 5.10 and 5.11 are estimates of the

overall 19F - Ni2+ hyperfine transferred term. This results are not accurate due to the fact that the

value assumed for the 19F - Cr3+ hyperfine transferred term namely the value A = −0, 320±0, 005 Tesla

obtained in Cr7Cd does not refer to the same sample orientation. Also, the values reported in equation

5.10 and 5.11 include both the isotropic and the anisotropic transferred hyperfine terms. As observed

above, the separate determination of the isotropic and anisotropic σ and π contribution requires the

detailed knowledge of the angles θσ and θπ between the directional pσ and pπ bonds and the applied

magnetic field direction for each 19F site (see equation 2.32) and goes beyond the scope of the present

work.

5.2.3 Experimental determination of the 19F - Cr3+ transferred hyperfine

constant

In section 5.2.1 we pointed out that the NMR shift in Cr7Ni 19F-NMR spectra is essentially due to

the transferred hyperfine field produced by the neighboring magnetic ions at the 19F nuclear sites.

Viceversa the classical dipolar hyperfine contribution can be neglected. Based on these assumptions

the NMR frequency of the 19F nuclei has been derived. Equation 5.6 holds for the 19F nuclei that

are far away from the Ni2+ ion producing the slightly shifted broad spectral structure observed in the

experiments. On the other hand equation 5.7 describes the resonance frequency of the 19F nuclear

sites neighboring to the Ni2+ ion namely F 1 and F 8, producing the shifted weak signal. The detailed

analysis of this latter signal has been carried on in section 5.2.2 and the variation range of the 19F
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Figure 5.11: Left: 19F-NMR field sweep spectra of a Cr7Ni single crystal at T = 1,6 K at different radiofre-

quency values. The magnetic field is applied parallel to the crystallographic c-axis namely perpendicular to the

molecular ring. The shifted signal assigned to F 1 and F 8 nuclear sites is identified by means of a vertical line

in each spectrum. Right: the radiofrequency versus applied field plot referring to the shifted signal identified

in the spectra on the left. The best fit line according to the equation y = C + 40, 059 · x is also shown. The

fitting procedure yields C = −32, 1± 1, 5 MHz.

- Ni2+ transferred hyperfine constant value has been determined. The present section illustrates the

analogous analysis of the slightly shifted structure yielding useful information about the 19F - Cr3+

transferred hyperfine constant order of magnitude.

Equation 5.6 describing the resonance frequency of the 19F nuclear sites that are far away from

the Ni2+ ion namely F 2, F 3, F 4, F 5, F 6, F 7 is here rewritten for convenience:

ν =
γ

2π
H +

γ

2π
A(19F−Cr3+)

∑
i

g〈s〉Cr,i. (5.12)

This equation shows that the NMR frequency of these 19F nuclei shows a linear dependence on the

applied field according to:

ν = 40, 059 MHz/Tesla ·H + C (5.13)

where:

C = 40, 059 MHz/Tesla ·A(19F−Cr3+)

∑
i

g〈s〉Cr,i. (5.14)

As observed above since the fluoride anions far away from Ni2+ are bridging ligands located approx-

imatively half way between two antiparallel Cr3+ magnetic moments, the resulting 19F-NMR shift is

small and the slightly shifted structure can be assigned to these six 19F nuclear sites. However this

structure consists of many partially overlapping peaks and the unambiguous assignment of each peak

to any of the 19F nuclei listed above appears not to be possible.

Figure 5.13 shows the Cr7Ni 19F-NMR field sweep spectra collected at different radiofrequency

values by applying the magnetic field parallel to the crystallographic c-axis. Five slightly shifted
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Figure 5.12: Left: 19F-NMR field sweep spectra of a Cr7Ni single crystal at T = 1,6 K at different radiofre-

quency values. The magnetic field is applied perpendicular to the crystallographic c-axis namely parallel to the

molecular ring. The shifted signal assigned to F 1 and F 8 nuclear sites is identified by means of a vertical line

in each spectrum. Right: the radiofrequency versus applied field plot referring to the shifted signal identified

in the spectra on the left. The best fit line according to the equation y = C + 40, 059 · x is also shown. The

fitting procedure yields C = −30, 1± 0, 4 MHz.

peaks have been identified. It seems reasonable that a sixth signal exist, superimposed to one of the

identified peaks or to the Taflon tape 19F signal. These peaks show an NMR shift whose order of

magnitude is 10−1 Tesla. Figure 5.15 shows the radiofrequency versus applied field plots referring to

the five slightly shifted peaks identified in figure 5.13. The best fit lines according to the expression

y = C+40, 059·x (equation 5.13) are also shown. The fitting procedure yields the C values reported in

Figure 5.15 and in Table 5.2 representing the NMR shift of non equivalent 19F nuclear sites, according

to equation 5.13 and 5.14.

The term
∑
i g〈s〉Cr,i in equation 5.14, where the sum extends over the two Cr3+ ions neighboring

to the 19F nucleus producing the signal, can be calculated by means of the values reported in Table

5.1 in the case of the magnetic field being applied parallel to the c-axis. This term equals 0, 12÷ 0, 18

depending on which bridging 19F site we are considering: as stated above, the unambiguous assignment

of each NMR shift to any of the 19F sites far away from the Ni2+ ion is not possible. The range

of variation
∑
i g〈s〉Cr,i = 0, 12 ÷ 0, 18 produces peaks showing different shifts. Furthermore it is

worthwhile stressing that the large variation range of the C values and the fact that both positive and

negative C values have been obtained suggests that the anisotropic transferred terms in equation 2.32

largely affect the NMR shift. The anisotropic contribution to the transferred constant is given by the

following expression (see equation 2.32):

Aσ(3 cos2 θσ − 1) +Aπ(3 cos2 θπ − 1)

where θσ is the angle between the directional pσ bonds and the applied magnetic field direction while
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Figure 5.13: 19F-NMR field sweep spectra of a Cr7Ni single crystal at T = 1,6 K at different radiofrequency

values. The magnetic field is applied parallel to the crystallographic c-axis namely perpendicular to the

molecular ring. Five peaks composing the slightly shifted structure have been identified by means of vertical

lines in each spectrum.

θπ is the angle between the directional pπ bonds and the applied field direction. Figure 5.14 suggests

that the six 19F sites far away from the Ni2+ ion can give rise to different anisotropic terms thus

resulting in different NMR shifts.

Figure 5.14: Cr7Ni molecular ring. Blue: Fluorine, Magenta: Chromium, Green: Nickel. Carbonium, Oxygen

and Hydrogen atoms are not shown.

The separate determination of the isotropic At and anisotropic Aσ and Aπ contributions to the

transferred hyperfine coupling is a difficult issue that goes beyond the purpose of the present work.

Nevertheless a naive estimate of the overall transferred constant, including the isotropic and the

anisotropic contributions can be performed by considering each C value separately. For example, if

we assume that
∑
i g〈s〉Cr,i equals to the intermediate value 0,15, the results reported in Table 5.2

are obtained. These values have the same order of magnitude of the results in KMnF3 and MnF2
8

described in Appendix A. It is worthwhile stressing that the values reported in Table 5.2 represent

8In these compounds the separate determination of the isotropic component has been performed.
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Table 5.2: The C values reported in figure 5.15 and expressed in MHz and the corresponding 19F - Cr3+

overall transferred hyperfine constants expressed in Tesla per Bohr magneton.

C A

+7, 1± 0, 1 +1, 18± 0, 02

+4, 5± 0, 2 +0, 75± 0, 03

+0, 7± 0, 1 +0, 12± 0, 02

−3, 5± 0, 1 −0, 58± 0, 02

−7, 1± 0, 3 −1, 18± 0, 02

the overall transfered constant according to equation 2.32, here rewritten for convenience:

At +Aσ(3 cos2 θσ − 1) +Aπ(3 cos2 θπ − 1). (5.15)

As for the case of the 19F - Ni2+ transferred hyperfine interaction we observe that in order to evaluate

the separate At, Aσ and Aπ contributions one should be able to determine the values of the angles θσ

and θπ between the directional pσ and pπ bonds and the applied magnetic field direction for each 19F

site. This requires the detailed study of the molecular orbitals involved in the Cr3+ - F− coordinative

bond and goes beyond the scope of the present work.

5.2.4 Attempt of direct fitting a 19F-NMR spectrum in Cr7Ni

A large number of attempts of direct fitting the well-resolved 19F-NMR Cr7Ni spectra shown in section

5.2.1, 5.2.2 and 5.2.3 has been done. Most attempts have been performed by means of fitting curves

consisting of the sum of eight Gaussian peaks accounting for the sample 19F sites signals and one

Gaussian curve accounting for the Teflon tape 19F signal but no convergence has been obtained.

Analogous attempts have been tried by using Lorentzian shaped peaks. Also, attempts by means of

fitting curves consisting of four Gaussian or Lorentzian curves and one peak accounting for the Teflon

tape 19F signal have been done. None of these procedures has succeded.

Somehow better fitting results have been obtained by using the poorly resolved spectrum shown

in the insert of figure 5.16. This spectrum has been fitted by means of the following expression:

y =
2AT

π

wT

4(x− xc,T)2 + w2
T

+

3∑
i=1

2Ai
π

wi
4(x− xc,i)2 + w2

i

(5.16)

namely the superposition of a Lorentzian peak accounting for the Teflon tape 19F signal and of three

Lorentzian curves accounting for the sample’s 19F signals. The fitting parametersA, w and xc represent

the integral, the full width at half maximum (FWHM) and the center of each Lorentzian distribution.

Figure 5.16 shows the spectrum (black) and the fitting curve (red).

The fitting parameters are listed in Table 5.3: the centers of the distributions have been set as

fixed parameters according to the NMR shifts observed in the spectrum. Viceversa the areas and the

widths have been determined by the fitting procedure. It is worthwhile observing that due to the poor
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resolution of this spectrum, extremely high FWHM values have ben obtained. Also, the integrals of

the Lorentzian peaks are approximatively in the ratio 4:2:1 while the ratio 4:2:2 is expected based on

the fact that the peak’s area is proportional to the number of nuclei producing the signal and that

each molecular wheel contains eight 19F nuclear sites. However it is worthwhile observing that the

procedure of comparing the integrals of different peaks in order to determine the number of nuclei

producing the signals is not completely reliable in the case of field sweep spectra. In fact the T2

relaxation time affecting the value of the echo integral and the spectral intensity can change as the

field is being swept.

Table 5.3: Fit parameters of equation 5.16 corresponding to the fitting red curve shown in figure 5.16.

A w xc

Teflon 0,01065 0,00937 0,01677

0,05178 0,13403 -0,01

0,02794 0,12151 0,1

0,0127 0,18829 0,81
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Figure 5.15: The radiofrequency versus applied field plots referring to the five slightly shifted peaks identified

in the spectra in figure 5.13 The best fit lines according to the equation y = C + 40, 059 · x are also shown.
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Figure 5.16: 19F-NMR spectrum of a Cr7Ni single crystal. The field sweep spectrum has been collected at T

= 1.6 K at the fixed Larmor frequency of 200,295 MHz corresponding to a 5 Tesla Larmor field. The magnetic

field is applied parallel to the crystallographic c-axis namely perpendicular to the molecular ring. The red line

is the result of the Lorentzian fit in equation 5.16.
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Chapter 6

Discussion and conclusions

The purpose of the present section is to summarize and discuss the results of this thesis experimental

work. Both 53Cr-NMR and 19F-NMR measurements have been performed in different antiferromag-

netic molecular rings. While the first provide a straightforward information on the local electronic

spin distribution thanks to the direct core polarization field affecting the 53Cr-NMR shift, the latter

are more difficult to interpretate due to the transferred nature of the hyperfine fields at the 19F sites

located approximatively half way between two magnetic ions.

The 53Cr-NMR spectrum has been measured at T = 1, 5 K in Cr7Ni in the S = 1/2 ground state.

Due to the poor S/N ratio only one signal has been observed: this signal has been assigned to three

equivalent 53Cr nuclei in the ring namely site 2, 4 and 6. The 53Cr-NMR frequency dependence on

the magnetic field is found to be in good agreement with the predictions obtained by assuming the

staggered local spin density calculated theoretically and shown in figure 1.16 and a core polarization

field Acp = −10, 96 Tesla close to the value Acp = −12, 32 Tesla found previously in Cr7Cd [21].

Attempts of detecting the 53Cr-NMR signals at temperatures as low as 0,1 K by means of a 3He - 4He

dilution refrigerator didn’t succeed due to the NMR probe low sensitivity.
19F-NMR spectra have been collected in Cr8 in the ground state yielding direct evidence of the

molecular type singlet ground state i.e. the total spin value S = 0 is due to local spin expectation

values 〈si〉 = 0 resulting in a single non shifted NMR line. 19F-NMR spectra have been collected in

Cr8 at temperatures and fields at which the excited states are populated resulting in non zero NMR

shifts. However the value of the 19F - Cr3+ transferred hyperfine constant could not be determined

if assumption is made that the local spin moment expectation values are given by the homogeneous

spin distribution calculated theoretically and shown in figure 1.5.

The 19F-NMR spectra analysis in Cr7Cd and Cr7Ni has provided an estimate of the order of

magnitude of the overall transferred hyperfine constants relating to the F− - Cr3+ bond and to the

F− - Ni2+ bond. The results are reported in Table 6.1 together with the results obtained in the past

concerning the F− - Mn2+ transferred hyperfine constant in the antiferromagnetic compounds KMnF3

and MnF2 (the isotropic term is reported, see Appendix A). Somehow surprisingly we obtain a negative

value for the 19F - Cr3+ overall transferred hyperfine constant in Cr7Cd for the 19F nuclear sites close to

the diamagnetic Cd2+ ion. This can be explained by assuming a transferred core polarization negative

term and/or a dominant negative contribution of the transferred anisotropic terms in equation 2.32.
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Table 6.1: Hyperfine transferred field at the 19F nucleus expressed in Tesla per Bohr magneton. The overall

values including both the isotropic and the anisotropic contributions are reported for Cr7Cd and Cr7Ni. The

variation ranges are due to the different orientations of the sample (19F - Cr3+ constant in Cr7Cd and 19F -

Ni2+ constant in Cr7Ni) or to determinations obtained by means of different peaks (19F - Cr3+ constant in

Cr7Ni). The isotropic component is reported for KMnF3 and MnF2.

Cr7Cd −0, 33÷−0, 31 Tesla 19F - Cr3+ Sites close to Cd2+

Cr7Ni +0, 5÷+0, 96 Tesla 19F - Ni2+

Cr7Ni −1, 18÷+1, 18 Tesla 19F - Cr3+

KMnF3 +0, 61± 0, 02 Tesla 19F - Mn2+ Paramagnetic phase [16]

MnF2 +0, 59± 0, 01 Tesla 19F - Mn2+ Paramagnetic phase [17]

It is worthwhile observing that the 19F-NMR measurements in Cr8, Cr7Cd and Cr7Ni show a large

anisotropic contribution while the anisotropic term turned out to be neglible in the antiferromagnetic

compounds KMnF3 and MnF2. However, as pointed out in the text, the separate determination of

the At, Aσ and Aπ contributions to the transferred hyperfine coupling requires the detailed study of

the molecular orbitals involved in the Cr3+ - F− coordinative bond. In particular one should be able

to determine the values of the angles θσ and θπ between the directional pσ and pπ bonds and the

applied magnetic field direction for each 19F site. This goes beyond the purpose of the present work.
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Appendix A

Direct and transferred hyperfine

fields at the 19F nucleus

This appendix reports some information available in the literature concerning the hyperfine magnetic

fields at the 19F nuclear site, both direct and transferred hyperfine fields, which are useful for the

present work. Also, the theoretically calculated core polarization field in the Chromium atom is

reported. The first section reports the theoretical values of the direct hyperfine field produced at

the 19F nuclear site by an hypothetic single unpaired electron belonging to a given atomic orbital.

These values can be used to determine the percentage of 2s and 2p unpaired electron in the F−

ion when this is involved in a bonding once the experimental values of the isotropic and anisotropic

transferred hyperfine contants introduced by equation 2.32 are known. Examples of this procedure

are illustrated in the following sections of this appendix referring to the important studies about the

antiferromagnetic compounds KMnF3 and MnF2 by R. G. Shulman, V. Jaccarino, K. Knox and P.

Heller (references [16], [17] and[18]). These experimental determinations can be usefully compared to

the results of the present work as shown in table 6.1.

A.1 Theoretical values of the direct hyperfine constants in the

Fluorine and in the Chromium atom

The direct hyperfine constant relating to a single unpaired 2p electron at the 19F nuclear site in

the Fluorine atom can be calculated by means of equation 2.30 in section 2.5.3 reported here for

convenience 1:

A2p =
2

5
gµBγnh̄〈

1

r3
〉2p.

We are not considering the presence of any electron other than a single 2p electron. The expression is

obtained by averaging the nucleus-electron dipoar interaction over the 2p wavefunction. The angular

dependence of the dipolar interaction is averaged over the 2px, 2py and 2pz components of the 2p

wavefunction and thus yields a numerical factor independent of the orientation. In this hypothesis,

1This value is expressed in erg.
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the theoretical calculation based on atomic wavefunctions yields 2,3:

A2p(F) = 0, 044 cm−1. (A.1)

The corresponding value of the magnetic field produced at the 19F nuclear site by a single unpaired

2p electron is [17]:

H2p(F) = c
2π

γn
A2p(cm−1) · 1

2
∼ 16, 5 Tesla. (A.2)

where 1
2 is the unpaired electron spin 4.

The theoretical value of the direct contact hyperfine constant relating to a single unpaired 2s

electron in the 19F atom is given by equation 2.31 in section 2.5.3:

A2s =
8

3
πgµBγnh̄|ψ(0)|22s

yielding for the atomic wavefunction s 5:

A2s(F) = 1, 57 cm−1. (A.3)

The corresponding value of the direct contact hyperfine field produced by an unpaired 2s electron at

the 19F nuclear site is [17] 6:

H2s(F) = c
2π

γn
A2s(cm−1) · 1

2
∼ 588 Tesla. (A.4)

In the Chromium atom the core polarization hyperfine field at the 53Cr nucleus due to a single

unpaired 3d electron via the polarization of the s electrons has been theoretically estimated to be [20]:

Acp = −12, 5 Tesla/Bohr magneton (A.5)

as described in section 2.5.3.

A.2 Transferred hyperfine interaction in KMnF3

An interesting study of the effect of the hyperfine interactions on 19F-NMR spectra can be found in

the work by R. G. Shulman and K. Knox in KMnF3 [16]. 19F-NMR experiments have been performed

on KMnF3 single crystals. This compound has been chosen because of the high level of simmetry of

its ideal perovskite structure. As shown in figure A.1 each 19F nucleus is collinear with two Mn2+

magnetic ions whose electronic configuration is: [Mn2+] = [Ar]3d5, s = 5
2 . The F− - Mn2+ bond

distance is 2,09 Å. 19F resonance frequency is therefore affected by the hyperfine interaction between

the 19F nuclear magnetic moment γh̄I and the Mn2+ electronic magnetic moment −µBgS.

The nuclear Hamiltonian can be written 7:

H = −γh̄I ·H +
∑
j

I ·Aj · Sj +
∑
j

γh̄I · µBgSj
(3 cos2 θj − 1)

r3
j

. (A.6)

2A(cm−1) =
A(erg)
hc

.
3The expectation value 〈 1

r3 〉2p has been calculated by Barnes and Smith [22].
4Reference [17] reports the value H2p(F) = 18 Tesla.
5The numerical value of |ψ(0)|22s has been evaluated by Hartree [23].
6Reference [17] reports the value H2s(F) = 610 Tesla.
7The value of the hyperfine coupling constant is expressed in erg in equation A.6: A(cm−1) =

A(erg)
hc

.
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Figure A.1: KMnF3 crystal structure. The white spheres represent 19F atoms while the black spheres are the

Mn2+ magnetic ions [16]. Each fluoride ion is collinear with two Mn2+ magnetic ions.

The first term on the right handside of this equation is the energy of the Zeeman interaction between

the nuclear magnetic moment γh̄I and the applied magnetic field H. The other terms on the right

handside of equation A.6 describe the hyperfine interaction between 19F and Mn2+. The second

term describes the transferred hyperfine interaction and it accounts for both the isotropic and the

anisotropic contributions.

The third term is the classical expression of the dipolar interaction between a magnetic moment

γh̄I and the jth electronic spin Sj . rj is the distance between these two magnetic moments and θj

is the angle between rj and the applied magnetic field H. This interaction is inherently anisotropic.

Assuming that the electronic spins are in the paramagnetic state 8, this term turns out to be propor-

tional to the electronic static and homogeneous magnetic susceptibility and to the applied magnetic

field.

A simplified expression for the transferred hyperfine interaction described by the second term

in equation A.6 is obtained by taking advantage of the crystal symmetry and by considering only

the nearest neighbors interactions. This hyperfine term is made up of an isotropic contribution,

proportional to the transferred hyperfine constant At, and of an anisotropic contribution, proportional

to Aσ − Aπ (see equation 2.32). The interactions described by Aσ are due to unpaired spins in the

F− electronic p orbitals lying along the Mn2+ - F− internuclear axis. An example of this is the

superposition of the Mn2+ 3dz2 orbital and the F− 2pz orbital. Viceversa, the Aπ interactions arise

from unpaired spins in the F− electronic p orbitals perpendicular to the internuclear axis. A π-type

superposition is the one between the Mn2+ 3dxz orbital and the F− 2px orbital.

The value of the isotropic transferred hyperfine constant At experimentally obtained in this work

by R. G. Shulman and K. Knox is [16]:

At = (16, 3± 0, 4) · 10−4 cm−1 (A.7)

corresponding to 1, 22 ± 0, 03 Tesla 9. The anisotropic term Aσ − Aπ is two orders of magnitude

smaller.

It is worthwhile oberving that this value of the isotropic hyperfine constant At does include the

electronic g factor and does not include the electronic spin value as shown by equation A.6. On the

other hand, the hyperfine constant values determined in the experimental section of the present work do

8This holds above the antiferromagnetic ordering temperature, around 88 K.
9A(Tesla) = A(cm−1)c 2π

γn
.
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not include both the electronic Landé g factor and the spin expectation value (see for example equation

4.6 relating to the analysis of Cr7Cd 19F-NMR spetra). This fact must be carefully considered when

a comparison between the values is made. The transferred hyperfine field at the 19F nucleus per Bohr

magneton is obtained by dividing value A.7 by the electronic Landé factor g = 2 yielding 0, 61± 0, 02

Tesla per Bohr magneton to be compared to the present work’s experimental determinations as shown

in table 6.1.

The percentage fs of unpaired spin in the 2s F− orbital in KMnF3 can be derived by means of

the following procedure [16]. The 0, 61 ± 0, 02 Tesla hyperfine field per Bohr magneton at the 19F

nucleus is multiplied by the factor gS = 2 5
2 representing the electronic magnetic moment expressed

in Bohr magnetons yielding the transferred field produced by a Mn2+ ion at a 19F nuclear site. The

approximate value of this transferred hyperfine field is:

0, 61± 0, 02 Tesla · 2 · 5

2
= 3, 0± 0, 1 Tesla.

The percentage of s covalent character of the F− - Mn2+ bonding is obtained by dividing this value

by the hyperfine field produced by a single unpaired 2s electron at the 19F nuclear site A.4 yielding:

fs =
3, 0± 0, 1 Tesla

588 Tesla
= 0, 52± 0, 02 %. (A.8)

A.3 Transferred hyperfine field in MnF2

In MnF2 each 19F atom binds three Mn2+ ions: these bonds are only partially ionic. Two different

types of 19F - Mn2+ bonds can be identified in MnF2: they are labelled ”type I” and ”type II”

according to the nomenclature in use [17]. These bonds have different lengths: 2,11 Å and 2,14 Å

respectively. Also, there are two nonequivalent 19F sites, labelled Fα and Fβ as shown in figure A.2.

Figure A.2: MnF2 crystal structure in the antiferromagnetic phase. The white spheres represent Fα and Fβ

atoms while the black spheres are the Mn2+ magnetic ions [18].

A.3.1 Antiferromagnetic phase

A study of the transferred hyperfine field at the 19F nuclear site in antiferromagnetic compounds is

the one carried on by P. Heller [18] in the 1960’s by means of 19F-NMR measurements performed on

MnF2 single crystals below the antiferromagnetic transition temperature TN = 67, 4 K [28].
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The observed NMR frequency is given by:

ν =
γ

2π
|HNucl| (A.9)

where γ is the 19F gyromagnetic ratio. HNucl is the magnetic field at the nuclear site:

HNucl , α = H0 +HInt(T )ĉ+ pα(T ) ·H0 (A.10)

HNucl , β = H0 −HInt(T )ĉ+ pβ(T ) ·H0 (A.11)

where H0 is a weak external field. ±HInt(T )ĉ is the local field produced by the spontaneous electronic

magnetization of the Mn2+ ions sublattices. The third term on the right handside of equations A.10

and A.11 describes the change in the local field HNucl due to the polarization of the Mn2+ electronic

spins in the applied field.

When the applied field is zero, the local field is directed along the c axis:

HNucl , α = +HInt(T )ĉ (A.12)

HNucl , β = −HInt(T )ĉ. (A.13)

The zero-field observed frequency follows from equation A.9:

ν0 =
γ

2π
HInt(T ). (A.14)

At T = 0 K the equation:

HInt(T = 0) = (2AIz −AIIz ) g
5

2
(A.15)

holds due to the saturation of the sublattice magnetization. This is to say that at T = 0 K the Mn2+

spin expectation values in a vanishing applied field are: < S >Mn2+= ± 5
2 . In equation A.15 g is the

electronic Landé factor while AIz and AIIz are the transferred hyperfine constants relating to type I

and type II 19F - Mn2+ bonds respectively. The hyperfine fields at the two sites α and β (equations

A.12 and A.13) differ only by the sign and thus yield the same resonance frequency A.14 for H0 = 0.

The value of the zero-field 19F resonance frequency at T = 0 K ν0,0 has been determined by fitting

the experimental zero field resonance frequency ν0,T
10 as a function of the temperature [28] according

to:
ν0,T

ν0,0
= A(TN − T )R (A.16)

yielding:

ν0,0 = 159, 978 MHz =⇒ HInt(T = 0) =
ν0,0
γ
2π

∼ 3, 99 Tesla. (A.17)

Assuming g = 2 we get:

2AIz −AIIz =
HInt(T = 0)

5
2 · 2

∼ 0, 8 Tesla. (A.18)

Assumption is made that AIz ∼ AIIz yielding:

Az ∼ 0, 8 Tesla (A.19)

where Az is the average value of the transferred hyperfine field at the 19F nucleus per Bohr magneton

and here is measured in Tesla instead of cm−1 as usual.
10ν0,T has been collected only for the first 1,8 K below TN.
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A.3.2 Paramagnetic phase

19F-NMR measurements in MnF2 crystals in the paramagnetic phase have been performed by R. G.

Shulman and V. Jaccarino [17] in 1957. MnF2 can be described by the nuclear Hamiltonian 2.29 here

rewritten for convenience:

H = −γnh̄

x,y,z∑
i

IiHi +

x,y,z∑
i

3∑
j=1

Aji Ii〈Si〉
j (A.20)

where the jth sum extends over the three nearest Mn2+ neighbors of each F−. The transferred hyperfine

constant is expressed in erg and its components can be written according to the general equation 2.32.

The transferred hyperfine constant isotropic component At and the anisotropic components Aσ and

Aπ introduced in equation 2.32 have been determined by means of the observed 19F-NMR shifts. In

particular the value:

At = (15, 7± 0, 3) · 10−4 cm−1 (A.21)

has been determined. The anisotropic terms turn out to be two orders of magnitude smaller. As shown

by equation A.20 this value does include the electronic g factor and does not include the magnetic

ion spin value 5
2 . Thus the hyperfine constant per Bohr magneton is At = (7, 85± 0, 15) · 10−4 cm−1

corresponding to the hyperine field per Bohr magneton:

(7, 85± 0, 15) · 10−4 cm−1c
2π

γn
= 0, 59± 0, 01 Tesla (A.22)

to be compared to the experimental results of the present work as shown in table 6.1.

The percentage fs of s covalent character of the F− - Mn2+ bonding in MnF2 is given by 11:

fs =
0, 59± 0, 01 Tesla · 2 · 5

2

588 Tesla
= 0, 502± 0, 008 %. (A.23)

In equation A.23 the term 0, 59± 0, 01 Tesla · 2 · 5
2 represents the hyperfine transferred field produced

by a Mn2+ 5/2 spin at the 19F nuclear site while the denominator is the hyperfine direct contact field

at the 19F nucleus due to a single unpaired 2s electron given by equation A.4.

We notice that the isotropic contact transferred hyperfine field determined in the paramagnetic

phase i. e. H ∼ 0, 59 ± 0, 01 Tesla (equation A.22) is different from the one determined in the low

temperature antiferromagnetic phase i. e. H ∼ 0, 8 Tesla (equation A.19). The difference is likely due

to the fact that in the study of the paramagnetic phase the different hperfine constants At, Aσ and

Aπ have been determined separately. Therefore the hyperfine field of 0, 59 ± 0, 01 Tesla corresponds

to the isotropic transferred contact term only. In the antiferromagnetic phase we have estimated the

internal field of ∼ 0, 8 Tesla at T = 0 which includes both isotropic transferred, anisotropic transferred

and dipolar fields which can thus be higher than At only. For this reason we use in Table 6.1 the value

At = (7, 85± 0, 15) · 10−4 cm−1 = 0, 59± 0, 01 Tesla/Bohr magneton.

11The value reported in reference [17] is fs = 0, 48± 0, 02%
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Redistribution of local spin density in Cr7Ni antiferromagnetic molecular

ring from 53Cr NMR

C. Casadei 1, E. Garlatti 2, L. Bordonali 1, Y. Furukawa 3, F. Borsa 1,3, A. Lascialfari 4, S. Carretta
5, G. Timco 6, R. Winpenny 6.

(1) CNISM and Department of Physics A.Volta, Università degli Studi di Pavia, I-27100 Pavia, Italy.

(2) Department of Molecular Sciences Applied to Biosystems, Università degli Studi di Milano, I-20134

Milano.

(3) Department of Physics / Ames Laboratory, Iowa State University, 50011 Ames, Iowa (USA).

(4) Department of Molecular Sciences Applied to Biosystems, Università degli Studi di Milano, and

INSTM, I-20134 Milano, Italy.

(5) Department of Physics, Università degli Studi di Parma, I-43124 Parma (Italy).

(6) The Lewis Magnetism Laboratory, The University of Manchester, M13 9PL Manchester, United

Kingdom.

Antiferromagnetic molecular rings are an ideal playground for investigating magnetism at nanoscale.

The homometallic Cr8 ring is formed by eight Cr3+ moments (s = 3/2) which form at low temperature

a total S = 0 ground state (GS) with zero expectation value of the local spins. When one Cr3+ ion

is replaced by a diamagnetic ion (e.g. Cd2+) or a different magnetic ion (e.g. Ni2+ with s = 1) the

ground state becomes magnetic and there is a redistribution of the local spin density which can be

calculated theoretically. In a previous work we measured the 53Cr-NMR in Cr7Cd and determined

unambiguously the local spin density in the ring with excellent agreement with the theory (Phys.

Rev. Letters 97, 267204 , 2006). In this work we tried to do the same for Cr7Ni. Unfortunately,

due to poor S/N ratio, only one 53Cr was detected down to 100 mK and the 61Ni signal is too weak.

Nevertheless, by using the core polarization field Hcp = −12.3 Tesla found in Cr7Cd we could prove

that the measured 53Cr-NMR signal corresponds to sites 2, 4, 6 with the local spin density calculated
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Ion site g〈s〉 〈s〉
Cr 1 1.25315 0.633

Cr 2 -1.07189 -0.541

Cr 3 1.18954 0.601

Cr 4 -1.07047 -0.541

Cr 5 1.18954 0.601

Cr 6 -1.0719 -0.541

Cr 7 1.25315 0.633

Ni -0.79632 -0.362

theoretically, as can be evinced from the table below. The table gives the calculated spin densities

in the Cr7Ni ring in the GS at T = 1, 5 K, with the applied field perpendicular to the ring plane.

The sum of 〈s〉 is close to S = 1/2 as expected for the GS. The 53Cr-NMR signal measured at 1.6

K is in good agreement with: resonance frequency = Larmor frequency + γCr Hcpg〈s〉, with γCr =

gyromagnetic ratio of 53Cr nucleus, 〈s〉 values for sites 2,4,6 (see table) and Hcp = -12.3 Tesla.

Magnetic properties and hyperfine interactions in Cr8, Cr7Cd and Cr7Ni

molecular rings from 19F-NMR

C. Casadei 1, E. Garlatti 2, L. Bordonali 1, Y. Furukawa 3, F. Borsa 1,3, A. Lascialfari 4, G. Timco 5,

R. Winpenny 5.

(1) CNISM and Department of Physics A.Volta, Università degli Studi di Pavia, I-27100 Pavia, Italy.

(2) Department of Molecular Sciences Applied to Biosystems, Università degli Studi di Milano, I-20134

Milano.

(3) Department of Physics / Ames Laboratory, Iowa State University, 50011 Ames, Iowa (USA).

(4) Department of Molecular Sciences Applied to Biosystems, Università degli Studi di Milano, and

INSTM, I-20134 Milano, Italy.

(5) The Lewis Magnetism Laboratory, The University of Manchester, M13 9PL Manchester, United

Kingdom.

We present a detailed investigation of the static magnetic properties of molecular homometallic Cr8

antiferromagnetic (AFM) ring and heterometallic Cr7Cd and Cr7Ni rings in the low temperature

ground state, by 19F-NMR. The original idea was to utilize the 19F nucleus as a local probe for the

electronic spin densities of the nearby Cr2+ and Ni2+ spins. However, the fact that the F atom

is located midway between two magnetic ions gives rise to 19F-NMR spectra which have a compli-

cated field dependent structure, due to both isotropic transferred hyperfine contact interactions and

anisotropic dipolar and pseudo-dipolar interactions. Therefore the NMR spectra have to be analyzed

in connection with the theoretical results concerning the local spin distribution in order to establish

the values of the hyperfine interaction constants, not known at present. In Cr8 the ground state is a
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singlet with total spin S = 0. The 19F-NMR spectra at 1.6 K and at fields lower than 2 Tesla show

a single narrow line, proving that the local spin density in the ground state is zero as expected for a

molecular singlet state. When the magnetic field is not negligible with respect to the level crossing

field Hc ∼ 7 Tesla, a structure appears in the 19F-NMR spectrum which is orientation dependent (in

a single crystal), indicating a dominant anisotropic contribution to the hyperfine fields. In Cr7Cd we

could detect in the 19F-NMR spectrum a shifted line attributed to the F nuclei next to a Cr ion close

to the Cd, thus allowing the unambiguous determination of the transferred hyperfine constant F -

Cr. A similar analysis was possible on the 19F-NMR spectra in Cr7Ni. The values of the isotropic

hyperfine constants (A ∼ 1 Tesla) are comparable to the ones known for F - Mn in AFM KMnF3 and

MnF2.
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