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Abstract 

Recently, our lab has developed monoanionic tridentate ligand, ToR, showing the 

corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc 

and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic 

reactivity of the ToR-supported rhodium compounds. 

Tl[ToR] has been proved to be a superior ligand transfer agent for synthesizing rhodium 

complexes. The salt metathesis route of Tl[ToM] with [Rh(-Cl)(CO)]2 and [Rh(-

Cl)(COE)]2 gives ToMRh(CO)2 (2.2) and ToMRhH(3-C8H13) (3.1) respectively while Tl[ToP] 

with [Rh(-Cl)(CO)]2 affords ToPRh(CO)2 (2.3). 2.2 reacts with both strong and weak 

electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds 

correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated 

to give high diastereoselectivity. Parallel to COE allylic CH activation complex 3.1, the 

propene and allylbenzene allylic CH activation products have also been synthesized. The 

subsequent functionalization attempts have been examined by treating with Brønsted acids, 

Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing 

multiple bonds able to be inserted. Various related complexes have been obtained under these 

conditions, in which one of the azide insertion compounds reductively eliminates to give an 

allylic functionalization product stoichiometrically. 

3.1 reacts with various primary alcohols to give the decarbonylation dihydride complex 

ToMRh(H)2CO (4.1). 4.1 shows catalytic reactivity for primary alcohol decarbonylation 

under a photolytic condition. Meanwhile, 2.2 has been found to be more reactive than 4.1 for 



xi 
 

catalytic alcohol decarbonylation under the same condition. Various complexes and primary 

alcohols have been investigated as well. The proposed mechanism is based on the 

stochiometric reactions of the possible metal and organic intermediates. Primary amines, 

hypothesized to undergo a similar reaction pathway, have been verified to give 

dehydrogenative coupling product, imines. 

In the end, the well-developed neutral tridentate Tpm coordinates to the rhodium 

bis(ethylene) dimer in the presence of TlPF6 to give the cationic complex, 

[TpmRh(C2H4)2][PF6] (5.1). 5.1 serves as the first example of explicit determination of the 

solid state hapticity, evidenced by Xray structure, among all the cationic TpmRM(C2H4)2
+ 

(TpmR = Tpm, Tpm*, M = Rh, Ir) derivatives. The substitution chemistry of this compound 

has been studied by treating with soft and hard donors. The trimethylphosphine-sbustituted 

complex activates molecular hydrogen to give the dihydride compound. 
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Chapter 1. Introduction of ligand supported metal complexes for investigation of bond 

activation  

Bond Activation via Oxidative Addition 

This thesis describes oxidative addition of HH, CX, CH, OH and NH bonds to 

rhodium complexes to provide insight into these reactions and possible catalyses. The related 

investigation of the first two types of bond activation (HH, CX) will be addressed in 

Chapters 5 and 2, where we have studied oxidative addition reactions en route to CH, OH 

and NH bond activation in chapters 3 and 4. 

 

Scheme 1.1. The mechanism of catalytic olefin hydrogenation using Wilkinson reagent as 

the catalyst. The step of oxidative addition of H2 to the metal center is highlighted by the 

dashed box. 
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Rhodium has the greatest role versus all transition metals in catalysis in terms of 

practicability and utility.1 The well-known Wilkinson catalyst, RhCl(PPh3)3, catalyzes the 

homogeneous alkene hydrogenation (Scheme 1.1).2,3 Another important application is the 

industrial procedure to prepare acetic acid that employs Monsanto process. The process 

involves the carbonylation of methanol to form the product and this reaction is catalyzed by 

the complex cis-[RhI2(CO)2]
 (Scheme 1.2).46 

 

Scheme 1.2. Catalytic cycle for the Monsanto acetic acid synthesis. The key step circled by 

the dashed line represents the oxidative addition of MeI to the rhodium metal center. 
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These two well-studied catalytic reactions demonstrate the influential power of rhodium 

complexes facilitating transformations in which the common and critical feature of the 

processes is that the metal center inserts into the relatively unreactive HH and CI bonds 

under the reaction conditions to generate MH and MC bonds respectively (M = Rh). 

This type of metal insertion is typically called oxidative addition. The newly formed 

MH or MC bonds provide reaction pathways that are not available to the HH and CI 

bonds. That is, the bond activation of HH and CI bonds provides a reaction pathway with 

lower energy barrier and allows the cycle to proceed to give the desire products. Oxidative 

addition is ubiquitous in organometallic chemistry and plays a critical role in numerous 

catalysis processes in addition to the hydrogenation and the acetic acid synthesis described 

above.7,8 

 One could consider a bidirectional reaction pathway that contains CH functionalization 

to form carbon-heteroatom bonds as well as the reverse CE (E = OH, NH2) bond cleavage 

(Defunctionalization) to give simple hydrocarbons (Scheme 1.3). In fact, the activation (of 

OH or NH bonds) of the hydrogen containing unit, E, is the initial and consequential step 

during the process of CE bond cleavage. The development of a general method for in-depth 

exploration of such bidirectional reaction mechanisms is critical due to the following 

justification. 

C H C E E = NH2, OH
Functionalization

Defunctionalization  
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Scheme 1.3. The concept of bidirectional CH bond functionalization and CE bond 

defunctionalization. 

The ubiquitous CH bonds constitute the most basic framework of organic molecules. 

The inert nature of CH bonds leads to the difficulty for metals to oxidatively insert to give 

simultaneously the MH and MC intermediates for further functionalizations. Therefore, 

the direct conversion of CH bonds into CE (E = N, O) bonds, providing versatile 

functionalized molecules, remains a great challenge.9,10 Thus far, chemists have been 

pursuing various methods for converting unreactive CH bond to synthetically useful 

functionalities under mild and selective conditions.  

Meanwhile, the vast majority of these simple hydrocarbons are derived from crude oil or 

reserved in a natural gas. The public have realized the impending crisis of running short of 

the oil resources. Moreover, the demand for renewable feedstocks for producing chemicals 

has recently increased. One of the solutions is the transformation biomass into selected 

chemical products.11 However, the highly oxygen and nitrogen containing materials in 

biomass could tremendously reduce the burning efficiency.12 Therefore, we have an 

immediate demand to develop an efficient deoxygenating process (defunctionalization) to 

convert biomass to fuels and commercial chemicals.12,13 

To cover this bidirectional reaction pathway, Chapter 3 entails the study of rhodium 

mediated CH bond activation and functionalization while Chapter 4 deals with catalytic 

photon promoted OH and NH bond activation to give hydrocarbons. 

Development of Ancillary Ligands 
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To explore the process of CX, CH, OH, NH and HH activation chemistry, a 

suitable and robust ancillary ligand has to be used for the ease of the observation of the 

reaction intermediates. Cp and its derivatives have long been utilized for bond activation 

chemistry of group 9 transition metals.14 Tp and its derivatives, on the other hand, are viewed 

as the analogues of Cp, sharing some common features: 1) Monoanionic L2X type ligand. 2) 

5-e donors for electron counting purpose. 3) Three coordination sites occupied on a metal.15 

Despite these similarities, the nature of hard N-donors on a Tp pyrazole motif is quite 

different from a relatively soft Cp ancillary ligand. The biting angle of a Tp (262) ligand is 

significantly greater than that of a Cp (150), making Tp a sterically bulkier and better-

protected ligand for coordinated metal center. More importantly, based on the coordination 

environment, the Tp complex could render several informative NMR splitting patterns 

including C3v, Cs and C1 symmetry of the overall complex whereas the rotational property of 

a Cp ligand obviates the possibility of giving various symmetries.16 

 

Figure 1.1. Comparison of Cp, Tp and ToR ligands. 

However, some disadvantages of using Tp as the supporting lignad have been reported 

that the isomerization process and BN bond cleavage could lead to complex 

decomposition.17 These downsides would hinder the investigation toward mechanistic study. 
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Therefore, we have developed the Tp analogue, tris(oxazolinyl)phenylborate scorpionate 

ligand, to circumvent such possible problems while keeping the all the characteristics (hard N 

donors, bulk, informative NMR) of Tp.18 We envision that the ease of tuning the steric bulk 

of ToR ligand by varying the substituent on oxazolines would result in diverse reaction 

behaviors.19 In fact, oxazolines are derived from readily available amino acids which are 

belonged to a collection of an easily accessible chiral pool. The installation of chiral motifs to 

the ancillary ligand might be beneficially applied to asymmetric synthesis and catalysis. Here 

in this thesis, we study the bond activation chemistry by employing the rhodium metal 

supported by the newly-developed ToR ligand, spanning from synthesis and characterization 

to catalysis and mechanistic study. 

Thesis Organization 

The thesis contains six chapters. Chapter 1 gives a brief general introduction of the topic. 

Chapters 2 through 5 are journal articles of which 2 and 3 have been already published. The 

thesis ends in Chapter 6 with a general conclusion. All the published journal articles are 

modified to some degree to have a coherent description. 

Chapter 2 describes the synthesis of the rhodium dicarbonyl complexes as well as the 

regioselectivity and stereoselectivity of these complexes toward various electrophiles, giving 

the CX activation complexes in certain cases. One of the starting ligand transferring agent, 

Tl[ToM] was synthesized by James Dunne that the compound description and the X-ray 

diagram are removed from the original published paper. Chapter 3 reports the synthesis of 

several allylic CH activation rhodium complexes and numerous attempts to functionalize 
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these compounds with stepwise process. The related iridium complexes synthesized by 

Tristan Gray are removed from the original published paper. 

Chapter 4 illustrates the photocatalytic acceptorless alcohol decarbonylation and amine 

coupling. Both transformations include dehydrogenation in the initial step, in which the OH 

or NH bonds are activated by the rhodium followed by -elimination to give 

dehydrogenated and decarbonylated products. Chapter 5 describes the substitution chemistry 

of the first example of Tpm-supported rhodium bis(ethylene) complex. The phosphine-

substituted complex could activate the H2 molecule to give the dihydride complex. 
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Chapter 2. Reactions of tris(oxazolinyl)phenylborate rhodium(I) with CX (X = Cl, Br, 

OTf) bonds: Stereoselective intermolecular oxidative addition 

Modified from a paper published in Organometallics† 

Hung-An Ho,‡ James F. Dunne,¶ Arkady Ellern, Aaron D. Sadow* 

Abstract 

The achiral and enantiopure chiral compounds ToMRh(CO)2 (2.2) and ToPRh(CO)2 (2.3) 

were prepared to investigate stereoselective oxidative addition reactions and develop new 

catalytic enantioselective bond functionalization and cross-coupling chemistry. Reactivity at 

the rhodium center is first shown by the substitution of the carbonyl ligands in 2.2 and 2.3 in 

the presence of the appropriate ligand; thus treatment of ToMRh(CO)2 with P(OMe)3 provides 

ToMRh(CO)[P(OMe)3] (2.4). However, reaction of ToMRh(CO)2 and MeOTf affords the 

complex [{N-Me-2-ToM}Rh(CO)2]OTf (2.5) resulting from N-oxazoline methylation rather 

than oxidative addition to rhodium(I). In contrast, ToMRh(CO)2 reacts with allyl bromide and 

chloroform forming the rhodium (III) species (3-ToM)Rh(1-C3H5)Br(CO) (2.6) and (3-

ToM)Rh(CHCl2)Cl(CO) (2.7), respectively. Interestingly, the chiral ToPRh(CO)2 and CHCl3 

react to give one diastereomer of (3-ToP)Rh(CHCl2)Cl(CO) (2.8; 100:3 d.r.) almost 

exclusively. To evaluate the reactivity of these rhodium(I) compounds, the carbonyl 

                                                      
† Organometallics 2010, 29, 4105-4114. 

‡ Primary researcher and author 

¶ Contributed synthesis of Tl[ToM] 

* Author for correspondence 
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stretching frequencies have been examined. The data for the mono- and trivalent rhodium 

oxazolinylborate compounds indicate that the electron donating abilities of ToM is slightly 

greater than ToP, and both ligands provide electronic environments that can be compared to 

the tris(pyrazolyl)borate ligand family. 

Introduction 

Transition metal mediated bond activation via oxidative addition plays crucial roles in 

various catalytic processes.1 The oxidative addition of CX bond could involve concerted 

pathway, SN2 type, radical mechanism and ionic mechanism.2 All possible mechanisms could 

affect the stereochemistry and the catalytic reactivity. A representative example is the 

oxidative addition of MeI to the planar [RhI2(CO)2]
 metal center that undergoes SN2 

mechanism to give the trans-Me[Rh]I intermediate in Monsanto process.3 Along the line, 

Eisenberg and his co-workers have reported the first example of highly diastereoselective 

oxidative addition of MeI to the square planar chiral complex, IrI(CO)(duphos).4 Other 

examples of highly diastereoselective oxidative addition of MeI include non-square-planar 

chiral Cp complexes [Rh(5-C5H4-CH2CH(R)PPh2)(2-Olefin)] (R = Ph or Cy, Olefin = 

ethylene or COE)5 while even a stronger electrophiles, [Me3O][BF4] (Meerwein reagent) has 

also been reported to give the oxidative addition metal complex with high 

diastereoselectivity.6 The diastereoselective oxidative addition chemistry has not only been 

restricted to methylating reagent but investigated for inert CH bond. For example, 

irradiation of TpmenthRh(CO)2 pentane solution yields a stereoselective ligand 

cyclometalation product forming carbon-metal bond along with metal-hydride bond.7 

Another photolytic example involves oxidative addition of benzene and cyclohexane CH 
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bond to a racemic planar-chiral iridium dihydride complex to generate both IrC and IrH 

bonds as well.8 

On the other hand, regioselective reaction pathways provide fundamental consequences 

among synthesis, catalysis and mechanistic understanding. For a metal complex, the reaction 

site could be situated either on the ligand or metal or both such as the process of protonation 

of Cp2Ru with acids.9 Meanwhile, protonation of the complex Tp*Rh(CO)2 with HBF4·Et2O 

occurs at 2-position of pyrazole nitrogen, whereas the iridium analogue, Tp*Ir(CO)2, 

undergoes a metal-based protonation.10 In contrast, Tp*Rh(CO)L (L = CO or phosphines) 

reacts with MeI to generate a metal-methylation intermediate followed by alkyl migration to 

give the product, [Tp*RhI(COMe)L].11 

Along this context, we are interested in the stereoselectivity as well as regioselectivity of 

the achiral and chiral metal complexes toward several organic electrophiles containing CX 

bonds. Recently, we synthesized achiral tridentate ToM supporting ligand with dimethyl 

group on the oxazoline ring as well as chiral tridentate ligand ToP, equipping with chiral (S-

configured) isopropyl group on the 4- position.12 Both ToM and ToP are isoelectronic with 

well-studied Cp and Tp analogues, viewed as anionic 5 electron donor ligands. The nature of 

the metal center and the property of 2-3 equilibrium of the tris(oxazolinyl)phenylborate 

ancillary ligands to give bi- or tridentate coordination mode greatly affect the reaction 

pathway that either oxazoline nitrogen or metal center could be the reactive site. Therefore, 

the diastereoselectivity determination of the product is feasible once the electrophiles 

selectively react with the prochiral metal center (coordinated by ToP). We have discovered 

that the selective N-protonation and N-methylation of both ToM and ToP iridium complexes 
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with HOTf and MeOTf previously.12b,c Herein, we further expand the varieties of the 

electrophiles and focus on the ToM and ToP-supported rhodium complexes. We found that 

metal-centered oxidative additions are thermally accessible, N-oxazoline- versus metal-based 

selectivity is governed by the nature of the electrophile (Scheme 2.1), and the enantiopure 

oxazolinylborato rhodium(I) complex reacts with high diastereoselectivity. 

 

Scheme 2.1. Reaction pathways for the interaction of ToMRh(CO)2 (2.2) with strong and 

weak electrophiles.  

Results and Discussion 

Synthesis and characterization of Tl[ToP], ToMRh(CO)2 and ToPRh(CO)2  

Previously, we obtained LiCl containing adduct, (LiCl)2[(2-ToMIr(COD)]2, via salt 

metathesis of Li[ToM] and [Ir(-Cl)(COD)]2 , showing that the oxazoline-based ancillary 

ligand appears to be lithiophilic.12c Although 2.2 could be obtained by following the similar 

metathesis route, impurities were also observed. Thus, we decided to use an alternative 

ligand transfer agent Tl[ToM]13 to attain the goal of synthesizing 2.2. Analogously, attempts 



14 
 

to prepare Tl[ToP] (2.1) by treating Li[ToP] with TlNO3 were ineffective and neither were 

Li[ToP] or K[ToP] with TlPF6. Fortunately, 2.1 could be prepared by the reaction of Li[ToP] 

and TlOAc in methylene chloride suspension (eq 2.1). After filtration and recrystallization, 

2.1 could be isolated with moderate yield. Despite the absence of X-ray structure of 2.1, 11B 

NMR showed one single resonance at 16.0 ppm which implies the existence of only one 

boron-containing species as well as two sets of diastereotopic dimethyl group in the 1H NMR 

spectrum, meaning that the three chiral centers on the oxazolines remained enantiopure. 

Moreover, the IR stretching frequency of oxazoline CN bond appeared at 1590 cm-1 solely, 

indicating a 3coordinaiton mode of 2.1. 

  

Treating Tl[ToM] with half equivalent of [Rh(-Cl)(CO)]2 affords ToMRh(CO)2 (2.2) in 

decent yield (eq 2.2). All the methylene groups (3.50 ppm) and dimethyl groups (1.07 ppm) 

appeared to be equivalent in the 1H NMR spectrum. 2.2 also provided one signal (163.1 

ppm) in the 1H15N HMBC NMR spectrum. These two observations imply the equivalence 

of the three oxazolines of ToM. The carbonyl signal exhibited at 188.42 ppm (1JRhC = 66.6 Hz) 

in the 13C{1H} NMR spectrum and five CO absorption peaks were observed at the region 

between 1968 to 2070 cm-1 in the IR spectrum. These IR absorption peaks could be assigned 

and divided into two classes correlated to two coordination modes (2or3). Additionally, 

(2.1) 
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two CN IR absorption signals were observed in the IR spectrum, which provides further 

evidence to support the presence of 2 and 3 isomers.  

Table 2.1. Infrared and NMR spectroscopic data for tris(oxazolinyl)phenylborato rhodium 

and related tris(pyrazolyl)borato rhodium carbonyls.  

Compound CO (KBr, cm-1) CN (KBr, cm-1) 

ToMRh(CO)2 (2.2) 
2: 2070, 2010, 1997 
3: 2048, 1968 

non-coordinated: 1616  
Rh-coordinated: 1571  

ToPRh(CO)2 (2.3) 2: 2072, 2002 Rh coordinated: 1575 

ToMRh(CO)[P(OMe)3] (2.4) 
2: 1995 
3: 1965

non-coordinated: 1610 
Rh coordinated: 1576 

Tp*Rh(CO)2
14 

2: 2108, 207314c 
2: 2083, 201214c 
3: 2051, 197214c 
3: 2052, 197414c 

n.a. 

TpMeRh(CO)2
14 3: 2061, 198114a  n.a. 

TpMe2ClRh(CO)2
15a 

2: 2083, 2017 
3: 2059, 1984 

n.a. 

[{N-Me-2-ToM}Rh(CO)2]OTf 
(2.5) 

2083, 2012 1580, 1551 

(3-ToM)Rh(1-C3H5)Cl(CO) (2.6) 2058  1582 

(3-ToM)Rh(CHCl2)Cl(CO) (2.7) 2088 1575 

(3-ToP)Rh(CHCl2)Cl(CO) (2.8) 2092 1590 

TpMe2ClRh(CHCl2)Cl(CO)15b  210015b n.a. 

 

Comparing to the well explored Tp*Rh(CO)2 complex, the CO stretching frequencies of 

2.2 are lower than those of Tp*Rh(CO)2 for both 2and3 coordination modes, suggesting 

that the ancillary ToM is more electron donating than Tp*(Table 2.1). Furthermore, in general, 
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it is not uncommon to observe the 2-3 equilibrium issue for the Tp* supported group 9 

family.16 

 

Solid state structure of 2.2 revealed the 2 coordination connectivity exclusively (Fig 2.1) 

even though both 2and3 configurations are observed in solid state and form the 

equilibrium in solution phase. The X-ray crystallography shows that the complex 2.2 displays 

SP geometry formed by the two coordinated oxazolines and two carbonyls along with the 

rhodium center while the face of the third uncoordinated oxazoline is oriented nearly parallel 

to the SP plane. In addition, the six-membered ring formed by B1C5N1Rh1N2C10 

atoms adopts a boat conformation. 

Similarly, the reaction of 2.1 and [Rh(-Cl)(CO)2]2 gives the compound ToPRh(CO)2 

(2.3). The reaction proceeds to completion within 6 h and 2.3 was isolated with excellent 

yield (95%). Like 2.2, 2.3 appeared to give a single resonance in the 1H15N HMBC NMR 

spectrum (182.8 ppm) and the three isopropyl group are equivalent, showing two sets of 

diastereotopic dimethyl signals (0.72 and 0.66 ppm) in the 1H NMR spectrum. The distinct 

carbonyl peak exhibited a doublet at 186.11 ppm (1JRhC = 65.0 Hz) in the 13C{1H} NMR 

spectrum. In comparison, the 15N chemical shift of the iridium analogue, ToPIr(CO)2, showed  

a single cross-peak which was slightly more upfield (183.9 ppm) than the one of 2.3 as well 

as the more upfield 13C chemical shift of the carbonyl peak (174.5 ppm).12b 

(2.2) 
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Figure 2.1. ORTEP diagram of 2.2 drawn at 50% probability. Hydrogens are omitted for 

clarity. Bond distances (Å): Rh1C22, 1.851(2); Rh1C23, 1.854(2); Rh1N1, 2.087(1); 

Rh1N2, 2.096(2). Bond angles (°): C22Rh1C23, 86.14(8); N1Rh1N2, 92.28(7); 

N1Rh1C23, 178.37(7); N2Rh1C22, 178.52(7). Non-bonding distances (Å): Rh1N3, 

3.43; Rh1O3, 3.82; Rh1C15, 3.20. 

Not surprisingly, besides the single 15N chemical shift, the three oxazolines of ToPIr(CO)2 

appeared to be equivalent in the 1H NMR spectrum as in the case of 2.2 and 2.3. 
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Oxazoline N-methylation and substitution reactions of ToMRh(CO)2 

The chemistry of TpRh(CO)2 compounds have been reported to react with phosphines to 

provide mono-CO-substituted TpRh(CO)(PR3) complexes.11,17 Therefore, we anticipated that 

2.2 could react with one equivalent of PR3 under the same reaction pathway. Treating 2.2 

with either electron-donating PMe3 or bulkier PPh3 gives multiple products (immediately 

after addition at room temperature) and unreacted 2.2 (up to 80 °C for 5 h) respectively. Thus, 

we speculated that 2.2 could only tolerate electron-withdrawing and less bulky phosphites. 

Treating 2.2 with one equivalent of P(OMe)3 at room temperature gives the complex 

ToMRh(CO)[(P(OMe)3] (2.4) within 10 min (eq 2.3).  

 

Once again, 2.4 is fluxional that all the three oxazolines are equivalent. The only 31P{1H} 

NMR signal was observed at 90.0 ppm (1JRhP = 247.7 Hz) as a doublet coupled by the 

rhodium center. In the 13C{1H}NMR spectrum, CO appeared at 189.6 ppm as a doublet of 

doublet (1JRhC = 69.8 Hz, 2JPC = 28.5Hz). Both bidentate and tridentate 

tris(oxazolinyl)phenylborate binding modes are present in 2.4 on the basis of its observed 

infrared spectrum (CO: 1995 and 1965 cm-1; CN: 1610 and 1576 cm-1).	

(2.3) 
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Figure 2.2. ORTEP diagram of 2.4 drawn at 50% probability. Hydrogens are omitted for 

clarity. 

For the complex 2.4, the distance between the pendant oxazoline nitrogen, N2, and the 

rhodium center (N2Rh1, 3.69 Å) is somewhat longer than the one of 2.2 (3.43Å), 
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presumably due to the steric effect. The carbonyl bond length of 2.4 (1.143(4) Å) is greater 

than that of 2.2 (1.136(2) Å), which is attributed to the less electron-withdrawing nature of 

P(OMe)3 (compared to CO) so that the more electron-rich rhodium center of 2.4 back-

donates more electron densities to the carbonyl and increase the bond length. Like the solid 

structure of 2.2, 2.4 contains the six-membered ring formed by the two coordinated 

oxazolines and the rhodium center, adopting a boat conformation. 

The dicarbonyl complex 2.2 reacts with MeOTf to give the compound [{N-Me-2-

ToM}Rh(CO)2]OTf (2.5). The reaction proceeds via N-methylation route rather than the 

oxidative addition route on the rhodium center (eq 2.4). The N-methylated 2.5 exhibited a Cs 

symmetric pattern of the ancillary ligand ToM in the 1H NMR spectrum. The dimethyl groups 

(as well as the methylene groups) of the two rhodium-bounded oxazolines are inequivalent 

whereas the unbounded oxazoline dimethy groups and methylene groups are equivalent 

(dissected by a mirror plane). The cross-peak between the methylated nitrogen (211.0 ppm) 

and the methyl group (2.90 ppm) was observed in the 1H15N HMBC experiment while the 

coordinated oxazoline nitrogens appeared at 179.7 ppm.  

 

Two CO absorption bands showed at 2083 and 2012 cm-1, which are close to the CO 

stretching frequency of the compound 2.2. This provides further evidence that for this 

(2.4) 
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reaction, the reactive center is not located on the rhodium center (which gives Rh(III) 

oxidative product) but on the oxazoline nitrogen. The X-ray structure of 2.5 undoubtedly 

confirmed the connectivity proposed in the reaction (Fig 2.3). 

 

Figure 2.3. ORTEP diagram of 2.5 drawn at 50% probability. Hydrogens and the triflate are 

omitted for clarity. 

For comparison, the precedent of N-protonation or N-methylation of ToPIr(COD)12b, 

ToPIr(CO)2
12b, ToMIr(COD)12c and ToMIr(CO)2

12c has established the foundation of the 
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possible reaction pathways. Nevertheless, it has been studied that the reaction of 

Tp*Rh(CO)L (L = CO or phosphines) and MeI affords [Tp*RhI(COMe)L].11 Given that the 

electron-donating ability of 2.2 is slightly greater than Tp* analogues, the contrary 

consequence of proceeding via N-methylation route instead of the oxidative addition route 

has to be further investigated and rationalized. Thus, more details of the reactivities of 2.2 

toward various electrophiles were explored and discussed in the context below. 

Oxidative addition reactions of ToMRh(CO)2 and ToPRh(CO)2 

Treatment of 2.2 with a large excess of allyl bromide gives the oxidative addition product, 

(3-ToM)Rh(1-C3H5)Br(CO) (2.6) after 5 h (eq 2.5). The crude product was purified by 

recrystallization from a concentrated acetonitrile solution at 30 ºC. The 13C{1H} NMR 

spectrum confirmed the connectivity of the metal-bonded 1-C3H5 group where the allylic 

carbon bonded to the rhodium was observed at 20.5 ppm (1JRhC = 16 Hz). A related structure, 

Tp*Rh(1-C3H5)Br(NCMe), has been reported to show a similar 13C chemical shift and 

coupling constant (RhC = 18.0; 1JRhC = 18 Hz).18 Besides, the carbonyl group displayed a 

single resonance at 186.5 ppm (1JRhC = 60 Hz) in the 13C{1H} NMR spectrum in addition to 

the only one CO band appearing at 2058 cm-1 in the IR spectrum, excluding the possibility of 

being an acyl group (RhCO)(C3H5)). The assignment of the 1-C3H5 group was 

supported by the COSY experiment that the internal vinylic proton (6.99 ppm) has 

correlations with both the allylic protons (4.57 and 3.64 ppm) and the terminal vinylic 

protons (5.58 and 5.24 ppm). The overall molecular symmetry of 2.6 (C1) is in contrast to the 

one of 2.5 (Cs), proven by the inequivalence of all the dimethyl and methylene groups on the 

oxazolines in the 1H NMR spectrum. 
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The two diastereotopic allylic protons of the 1-C3H5 group were proved to be in close 

proximity to the two sets of dimethyl groups on the oxazolines by 1H NOESY spectroscopy. 

These four methyl groups were thus assigned as cis with respect to the 1-C3H5 group 

whereas the dimethyl group on the third ring was assigned as trans, showing no cross-peak in 

the NOESY spectrum (Fig 2.4).  

 

Figure 2.4. A Newman projection of one of two enantiomers of the racemic mixture of C1-

symmetric (3-ToM)Rh(1-C3H5)Br(CO) (2.6) viewed along the RhB bond. Through-space 

close contacts between oxazoline methyl groups and the -allyl ligand, detected using a 

NOESY experiment, are illustrated with arrows. Through-bond coupling between an 

oxazoline nitrogen and -allyl ligand is observed with a 1H15N HMBC experiment and 

highlighted in blue. 

(2.5) 
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The 1H15N HMBC experiment also coincided with the assignments that were based on 

NOESY spectroscopy. The four cis methyl groups showed correlations with two of the 

oxazoline nitrogens (163.5 and 187.8 ppm) and the rest two trans methyl groups 

correlated to the third nitrogen at 203.5 ppm. 

To expand the oxidative chemistry, we chose CHCl3 to react with compound 2.2. The 

reaction of 2.2 and CHCl3 undergoes at 60 ºC to generate CCl oxidative adduct (3-

ToM)Rh(CHCl2)Cl(CO) (2.7) (eq 2.6). In comparison, a similar reaction type has been 

published that TpMe2ClRh(CO)2 thermally reacts with CHCl3 to afford 

TpMe2ClRh(CHCl2)Cl(CO) while no reaction occurs between Tp*Rh(CO)2 and chloroform.15b 

In contrast, Tp*Rh(CNCH2CMe3)2 reacts with CHCl3 to give Tp*Rh(CHCl2)Cl(CNCH2CMe3) 

as the photolytic product and Tp*RhCl2 under thermal condition.19 The overall molecular 

symmetry of 2.7 appears to be C1, identical to compound 2.6. 

 

In the 1H NMR spectrum, the proton signal of the dichloromethyl ligand was assigned as a 

doublet at 7.81 ppm (2JRhH = 3.2 Hz). This dichloromethyl ligand showed at 63.7 ppm as a 

doublet (1JRhC = 26 Hz) in the 13C{1H} NMR spectrum and correlated to its proton in a 

1H13C HMQC experiment. The stereo proximity could be determined by the NOESY 

experiment that four methyls are assigned as cis due to the observation of cross-peaks 

(2.6) 
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between CHCl2 and the dimethyl hydrogens. These four methyls also correlated to the two 

oxazoline nitrogen resonances in the 1H15N HMBC spectrum. In this spectrum, the most 

upfield nitrogen signal (198.0 ppm) was assigned to the dimethyl trans to the CHCl2 ligand, 

which was parallel to the compound 2.6 whose most upfield nitrogen resonance was 

associated with dimethyl trans to the 1-C3H5 group. 

So far, we have demonstrated the difference of regioselectivity between ally bromide, 

chloroform and MeOTf with 2.2. For these three electrophiles, the former two are able to 

provide racemic products (2.6 and 2.7). Thus, we chose one of these (allyl bromide and 

chloroform) to study the stereoselectivity by utilizing an enantiopure ancillary ligand ToP to 

examine the formation of two diastereomers. Enantiopure compound 2.3 reacts with 

chloroform to give (3-ToP)Rh(CHCl2)Cl(CO) (2.8) at room temperature with 100:3 ratio of 

diastereomers (eq 2.7). The diastereomer ratio of the crude product was determined by 1H 

NMR spectroscopy. More specifically, the ratio was determined by the integration of CHMe2 

signals because the CHMe2, oxazoline CH2 and the C6H5 resonances are significantly 

overlapping. The major product could be obtained after column chromatography. The proton 

resonance of CHCl2 ligand was detected at 7.11 ppm (2JRhH = 3.2 Hz) in the 1H NMR 

spectrum and the carbon resonance was found at 65.7 ppm (1JRhC = 28.0 ppm) in the 13C{1H} 

NMR spectrum. The doublet of carbonyl signal of 2.8 (179.7 ppm) was comparatively more 

upfield than that of 2.7 (188.4 ppm). 
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The isopropyl methine hydrogens at  2.37 and 2.17 contained cross-peaks associated 

with CHCl2 ligand and the two corresponding oxazolines were assigned as cis in a NOESY 

experiment.  Moreover, the signals of the two nitrogens on these two cis oxazolines were 

detected at 204.3 and 217.7 ppm in the 1H15N HMBC spectrum. Intriguingly, both 2.7 

and 2.8 showed through-bond correlation between the CHCl2 ligand and cis/trans oxazoline 

nitrogens, however, the correlation between the 1-C3H5 group and oxazoline nitrogens for 

2.6 could not be observed.  

The high diastereoselectivity for eq 2.7 implies that the oxidative addition chemistry for 

2.2 would not proceed via radical mechanism. Indeed, the rate and the selectivity do not 

change when the reactions are performed in dark although the attempts to determine the rate 

law have been hindered by insufficiently separated resonances in the 1H NMR spectrum. Yet, 

the similar reaction between TpMe2ClRh(CO)2 and CHCl3 has been proposed to undergo 

thermally via SN2-type mechanism.15b Besides, the carbonyl group of 2.2 could be substituted 

by the phosphite (eq 2.3), which suggests that CO dissociation could occur prior to rhodium 

oxidation addition. While the absolute configuration of 2.8 remains unknown, the synergistic 

effect of the three chiral oxazolines provide an excellent control for the stereochemistry of 

the rhodium center during the formation of the SP and/or TBP intermediates (transition 

states). 

(2.7) 
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Conclusion 

Though the diverse regioselectivity of Tp*M(CO)2 (M = Rh or Ir) toward HBF4·Et2O has 

been documented that Tp*Ir(CO)2 reacts with the acid to give the metal hydride,10 our 

previously reported ToM and ToP iridium compounds have not given any oxidative chemistry 

on the metal center but underwent N-methylation and N-protonation exclusively.12b, c Instead, 

here we report that a combination of a fundamental study of both regioselectivity and 

stereoselectivity could be accomplished within a single system. Both Tl[ToM] and 2.1 are 

proved to be superior ligand transfer agents for synthesizing rhodium complexes and this 

would prompt us to further explore the reactivities of both compounds, which will be 

included in the next chapter. The regioselectivity of 2.2 is ascribed to the nature of 

electrophiles, relative bonding capability of OTf versus Br and Cl and electron donating 

ability of ToM and ToP versus Tp family. The ultra-high diastereoselectivity of 2.7 lays a 

foundation for future applications to asymmetric catalysis.  

Experimental 

General Procedures. All reactions were performed under an inert atmosphere using standard 

Schlenk techniques or in a glovebox unless otherwise indicated.  Dry, oxygen-free solvents 

were used throughout. Benzene, toluene, pentane, diethyl ether, and tetrahydrofuran were 

degassed by sparging with nitrogen, filtered through activated alumina columns, and stored 

under N2. Benzene-d6 and toluene-d8 were vacuum transferred from Na/K alloy and stored 

under N2 in the glovebox. All organic reagents were purchased from Aldrich. Chloroform 

was distilled from calcium hydride, and allyl bromide was distilled prior to use. Li[ToM],12a 

Li[ToP],12b [Rh(-Cl)(CO)2]2,
20 were prepared by published procedures. 1H, 11B, and 13C{1H} 
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NMR spectra were collected on Bruker DRX-400 and Avance II-700 spectrometers. 1H and 

13C{1H} resonances were assigned using standard 2D methods, including COSY, 1H13C 

HMQC and 1H13C HMBC experiments. 15N chemical shifts were determined by 1H15N 

HMBC experiments on a Bruker Avance II 700 spectrometer with a Bruker Z-gradient  

inverse TXI 1H/13C/15N 5mm cryoprobe. 15N chemical shifts were originally referenced to 

liquid NH3 and recalculated to the CH3NO2 chemical shift scale by adding 381.9 ppm. 11B 

NMR spectra were referenced to an external sample of BF3·Et2O. Elemental analysis was 

performed using a Perkin-Elmer 2400 Series II CHN/S by the Iowa State Chemical 

Instrumentation Facility. X-ray diffraction data was collected on a Bruker APEX2 CCD 

Diffractometer. 

Tl[ToP] (2.1). A suspension of Li[ToP] (1.38 g, 3.20 mmol) and Tl[OAc] (1.26 g, 4.78 mmol) 

was stirred in CH2Cl2 (100 mL) at room temperature overnight. The reaction mixture was 

then filtered to remove excess Tl[OAc] and Li[OAc], and the filtrate was evaporated under 

reduced pressure. The residue was crystallized from a concentrated diethyl ether solution at -

80 °C to afford 2.1 as a white powder (1.26 g, 2.00 mmol, 62.6%). 1H NMR (benzene-d6, 400 

MHz):  8.28 (d, 2 H, 3JHH = 7.2 Hz, ortho-C6H5), 7.57 (t, 2 H, 3JHH = 7.6 Hz, meta-C6H5), 

7.35 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 3.69 (m, 3 H, CNC(CHMe2)HCH2O), 3.51 (m, 6 H, 

CNC(CHMe2)HCH2O), 1.49 (m, 3 H, CNC(CHMe2)HCH2O), 0.76 (d, 9 H, 

CNC(CHMe2)HCH2O), 0.67 (d, 9 H, CNC(CHMe2)HCH2O). 13C{1H} NMR (benzene-d6, 

150 MHz):  136.46 (ortho-C6H5), 127.03 (meta-C6H5), 125.52 (para-C6H5), 71.51 

(CNC(CHMe2)HCH2O), 70.07 (CNC(CHMe2)HCH2O), 33.25 (CNC(CHMe2)HCH2O), 

19.42 (CNC(CHMe2)HCH2O), 18.65 (CNC(CHMe2)HCH2O). 11B NMR (benzene-d6, 128 



29 
 

MHz): 19.2. IR (KBr, cm-1):  3046 (m), 2955 (s), 1590 (s, CN), 1465 (m), 1430 (w), 

1387 (w), 1367 (w), 1263 (w), 1166 (m), 1111 (m), 1036 (w), 969 (m), 735 (w), 730 (w), 702 

(m). Anal. Calcd. for C24H35BN3O3Tl: C, 45.85; H, 5.61; N, 6.68.  Found: C, 46.08; H, 5.53; 

N, 6.61. Mp 7073 C, dec. 

ToMRh(CO)2 (2.2). Benzene (50 mL) was added to a solid mixture of Tl[ToM] (0.63 g, 1.07 

mmol) and [Rh(-Cl)(CO)2]2 (0.21 g, 0.54 mmol). The resulting mixture was allowed to stir 

at room temperature for 24 h and then filtered. The solvent was evaporated under vacuum. 

The residue was dissolved in diethyl ether, stirred for 2 h, and was then filtered. The filtrate 

was evaporated to dryness to give 2.2 as a pale green solid in excellent yield (0.53 g, 0.98 

mmol, 92%).  X-ray quality crystals were obtained from slow evaporation of a diethyl ether 

solution at 30 C. 1H NMR (benzene-d6, 400 MHz):  8.08 (d, 2 H, 3JHH = 7.2 Hz, ortho-

C6H5), 7.51 (t, 2 H, 3JHH = 7.6 Hz, meta-C6H5), 7.34 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 3.50 

(s, 6 H, CNCMe2CH2O), 1.07 (s, 18 H, CNCMe2CH2O). 13C{1H} NMR (benzene-d6, 150 

MHz): 188.42 (d, CO, 1JRhC = 66.6 Hz), 135.80 (ortho-C6H5), 127.40 (meta-C6H5), 126.12 

(para-C6H5), 79.78 (CNCMe2CH2O), 67.60 (CNCMe2CH2O), 28.70 (CNCMe2CH2O). 11B 

NMR (benzene-d6, 128 MHz):  17.3. 15N{1H} NMR (benzene-d6, 71 MHz):  163.1. IR 

(KBr, cm-1):  2966 (s), 2933 (m), 2070 (s, CO), 2048 (m, CO), 2010 (s, CO), 1997 (s, CO), 

1968 (m, CO), 1616 (m, CN), 1571 (s, CN), 1361 (m), 1288 (m), 1204 (m), 965 (m). IR 

(CH2Cl2, cm-1):  2963 (m), 2927 (w), 2069 (s, CO), 2055 (w sh, CO) 2010 (w), 1994 (s, 

CO), 1967 (w), 1616 (w), 1566 (m, CN), 1461 (w), 1360 (w), 1289 (w), 1202 (m), 963 (m), 

736 (m), 706 (m).  Anal. Calcd. for C23H29BRhN3O5: C, 51.04; H, 5.40; N, 7.76.  Found: C, 

51.51; H, 5.41; N, 7.76. Mp 204206 °C, dec. 
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ToPRh(CO)2 (2.3). A 20 mL vial was charged with 2.1 (0.21 g, 0.34 mmol), [Rh(-

Cl)(CO)2]2 (0.07 g, 0.17 mmol), and benzene (10 mL). The reaction mixture was allowed to 

stir at room temperature for 6 h and was then filtered. All volatiles were removed to afford 

2.3 as a dark green solid (0.19 g, 0.33 mmol, 95%). 1H NMR (benzene-d6, 400 MHz):  8.15 

(d, 2 H, 3JHH = 7.2 Hz, ortho-C6H5), 7.44 (t, 2 H, 3JHH = 7.4 Hz, meta-C6H5), 7.25 (t, 1 H, 

3JHH = 7.4 Hz, para-C6H5), 3.64 (m, 9 H, overlapping CNC(CHMe2)HCH2O), 2.02 (m, 3 H, 

CNC(CHMe2)HCH2O), 0.72 (d, 9 H, CNC(CHMe2)HCH2O), 0.66 (d, 9 H, 

CNC(CHMe2)HCH2O). 13C{1H} NMR (benzene-d6, 150 MHz):  186.11 (d, CO, 1JRhC = 

65.0 Hz), 134.86 (ortho-C6H5), 127.68 (meta-C6H5), 126.28 (para-C6H5), 74.51 

(CNC(CHMe2)HCH2O), 67.69 (CNC(CHMe2)HCH2O), 32.00 (CNC(CHMe2)HCH2O), 

19.28 (CNC(CHMe2)HCH2O), 15.85 (CNC(CHMe2)HCH2O). 11B NMR (benzene-d6, 128 

MHz):  17.3 15N{1H} NMR (benzene-d6, 71 MHz): 182.8. IR (KBr, cm-1):  2959 (m), 

2898 (w), 2873 (w), 2072 (s, CO), 1572 (m, CN), 1480 (w), 1464 (w), 1366 

(w), 1210 (m), 1180 (w), 1134 (w), 1118 (w), 983 (m), 961 (m), 737 (w). IR (CH2Cl2, cm-1): 

 2961 (w), 2077 (s, CO), 2007 (s, CO), 1575 (m, CN), 1481 (w), 1366 (w), 1277 (w), 1209 

(w), 1118 (w). Anal. Calcd. for C26H35BRhN3O5: C, 53.54; H, 6.05; N, 7.20.  Found: C, 

53.91; H, 5.54; N, 6.99. Mp 8082 °C, dec. 

ToMRh(CO)[P(OMe)3] (2.4). P(OMe)3 (22 L, 0.19 mmol) and 2.2 (100 mg, 0.185 mmol) 

were dissolved in benzene (10 mL) and allowed to stir for 10 min. All volatiles were 

removed under vacuum to give ToMRh(CO)[P(OMe)3] as a pale yellow solid in quantitative 

yield. X-ray quality crystals were obtained by slow diffusion of pentane into a concentrated 

toluene solution at 80 °C. 1H NMR (dichloromethane-d2, 400 MHz):  7.27 (d, 2 H, 3JHH = 
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6.8 Hz, ortho-C6H5), 7.13 (t, 2 H, 3JHH = 6.8 Hz, meta-C6H5), 7.03 (t, 1 H, 3JHH = 6.4 Hz, 

para-C6H5), 3.88 (s, 6 H, CNCMe2CH2O), 3.54 (d, 9 H, 3JPH = 12.4 Hz, P(OMe)3), 1.27 (s, 

18 H, CNCMe2CH2O). 13C{1H} NMR (benzene-d6, 175 MHz):  189.63 (dd, CO, 1JRhC  = 

69.8 Hz, 2JPC  = 27.5 Hz), 135.68 (ortho-C6H5), 127.20 (meta-C6H5), 125.46 (para-C6H5), 

78.98 (CNCMe2CH2O), 68.16 (CNCMe2CH2O), 51.82 (P(OMe)3), 28.84 (CNCMe2CH2O). 

11B NMR (benzene-d6, 128 MHz):  16.4. 31P{1H} NMR (benzene-d6, 162 MHz):  90.0 

(d, 1JRhP = 247.7 Hz). IR (KBr, cm-1):  2966 (s), 1995 (s, CO), 1965 (m, CO), 1610 (m, 

CN), 1576 (s, CN), 1462 (m), 1368 (m), 1279 (m), 1120 (s), 1017(s), 970 (m). Anal. Calcd. 

for C25H38BRhN3O7P: C, 47.12; H, 6.01; N, 6.59.  Found: C, 47.17; H, 5.93; N, 6.52. Mp 

159163 °C, dec. 

[{N-Me-2-ToM}Rh(CO)2]OTf (2.5). A benzene solution of 2.2 (0.052 g, 0.096 mmol) and 

MeOTf (0.063 g, 0.35 mmol) was stirred for 30 min and then evaporated to dryness. The 

residue was crystallized from a benzene/pentane solution at room temperature to give green 

X-ray quality crystals (0.038 g, 0.053 mmol, 55%). Trituration of the crystals with pentane 

provides a white powder without loss in yield. 1H NMR (dichloromethane-d2, 400 MHz):  

7.30 (m, 3 H, para- and meta-C6H5), 7.14 (d, 2 H, 3JHH = 6.4 Hz, ortho-C6H5), 4.48 (s, 2 H, 

CN(Me)CMe2CH2O), 4.29 (d, 2 H, 3JHH = 9.0 Hz, CN(Rh)CMe2CH2O), 4.25 (d, 2 H, 3JHH = 

9.0 Hz, CN(Rh)CMe2CH2O), 2.90 (s, 3 H, NCH3), 1.51 (s, 6 H, CN(Me)CMe2CH2O), 1.44 

(s, 6 H, CN(Rh)CMe2CH2O), 1.41 (s, 6 H, CN(Rh)CMe2CH2O). 13C{1H} NMR 

(dichloromethane-d2, 175 MHz):  183.85 (d, CO, 1JRhC = 68.3 Hz), 133.35 (ortho-C6H5), 

128.77 (meta-C6H5), 127.76 (para-C6H5), 121.54 (q, 1JFC = 319 Hz, OSO2CF3), 82.19 

(CN(Me)CMe2CH2O), 81.25 (CN(Rh)CMe2CH2O), 69.21 (CN(Rh)CMe2CH2O), 67.30 
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(CN(Me)CMe2CH2O), 30.16 (NCH3), 28.65 (CN(Rh)CMe2CH2O), 28.25 

(CN(Rh)CMe2CH2O), 24.45 (CN(Me)CMe2CH2O).  11B NMR (dichloromethane-d2, 128 

MHz):  17.3. 15N{1H} NMR (dichloromethane-d2, 71 MHz):  179.7 (NRh), 211.0 

(NMe). IR (KBr, cm-1):  3074 (m), 2971 (s), 2083 (s, CO), 2012 (s, CO ), 1580 (s, CN), 

1551 (m, CN), 1462 (s), 1434 (m), 1390 (m), 1372 (m), 1362 (m), 1325 (m), 1262 (s), 1224 

(s), 1205 (s), 1157 (s), 1031 (s), 998 (m), 964 (s), 748 (m), 736 (m), 710 (m). Anal. Calcd. for 

C24H32N3O8SF3RhB: C, 41.58; H, 4.65; N, 6.06.  Found: C, 42.00; H, 4.56; N, 5.70. Mp 

132134 °C, dec. 

(3-ToM)Rh(1-C3H5)Br(CO) (2.6). Excess allyl bromide (1.9 mL) and 2.2 (0.114 g, 0.211 

mmol) were allowed to react in benzene for 5 h at room temperature. The solution was 

filtered, the volatiles were evaporated, and the solid residue was crystallized from a 

concentrated acetonitrile solution at 30 °C overnight to give a yellow solid (0.063 g, 0.098 

mmol, 47%). 1H NMR (benzene-d6, 400 MHz, cis- and trans- designations for oxazoline 

rings are given with respect to 1-C3H5 moiety):  8.25 (d, 2 H, 3JHH = 7.2 Hz, ortho-C6H5), 

7.53 (t, 2 H, 3JHH = 7.2 Hz, meta-C6H5), 7.35 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 6.99 (m, 1 

H, RhCH2CHCH2), 5.58 (d, 1 H, 3JHH = 16.8 Hz, RhCH2CHCH2), 5.24 (d, 1 H, 3JHH = 9.6 

Hz, RhCH2CHCH2), 4.57 (br, 1 H, RhCH2CHCH2), 3.66 (d, 1 H, 2JHH = 8.4 Hz, cis-

CNCMe2CH2O), 3.64 (br, 1 H, RhCH2CHCH2), 3.40 (d, 1 H, 2JHH = 8.0 Hz, cis-

CNCMe2CH2O), 3.35 (d, 1 H, 2JHH = 8.4 Hz, cis-CNCMe2CH2O), 3.24 (d, 1 H, 2JHH = 8.0 

Hz, cis-CNCMe2CH2O), 3.21 (s, 2 H, trans-CNCMe2CH2O), 1.50 (s, 3 H, cis-

CNCMe2CH2O), 1.44 (s, 3 H, cis-CNCMe2CH2O), 1.33 (s, 3 H, cis-CNCMe2CH2O), 1.31 (s, 

3 H, cis-CNCMe2CH2O), 1.04 (s, 3 H, trans-CNCMe2CH2O), 0.81 (s, 3 H, trans-
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CNCMe2CH2O). 13C{1H} NMR (benzene-d6, 175 MHz, cis- and trans- designations for 

oxazoline groups are given with respect to 1-C3H5 moiety):  186.45 (d, CO, 1JRhC = 59.5 

Hz), 148.03 (RhCH2CHCH2), 136.34 (ortho-C6H5), 127.32 (meta-C6H5), 126.44 (para-

C6H5), 112.97 (RhCH2CHCH2), 81.94 (cis-CNCMe2CH2O), 81.22 (cis-CNCMe2CH2O), 

80.62 (trans-CNCMe2CH2O), 73.06 (cis-CNCMe2CH2O), 70.65 (cis-CNCMe2CH2O), 69.30 

(trans-CNCMe2CH2O), 29.06 (cis-CNCMe2CH2O), 28.88 (cis-CNCMe2CH2O), 27.19 (cis-

CNCMe2CH2O), 27.10 (trans-CNCMe2CH2O), 26.62 (trans-CNCMe2CH2O), 25.92 (cis-

CNCMe2CH2O), 20.53 (d, RhCH2CHCH2,
1JRhC = 15.8 Hz). 11B NMR (benzene-d6, 128 

MHz):  18.0. 15N{1H} NMR (benzene-d6, 71 MHz):  163.5 (cis), 187.8 (cis), 203.5 

(trans). IR (KBr, cm-1):  2967 (m), 2930 (m), 2058 (s, CO), 1582 (s, CN), 1462 (m), 1387 

(w), 1367 (m), 1290 (m), 1203 (m), 968 (m). Anal. Calcd. for C25H34N3O4RhBBr: C, 47.35; 

H, 5.40; N, 6.63.  Found: C, 47.09; H, 5.39; N, 6.58. Mp 174178 °C, dec. 

(3-ToM)Rh(CHCl2)Cl(CO) (2.7). A solution of 2.2 (0.107 g, 0.20 mmol) in CHCl3 (30 mL) 

was degassed by three freeze-pump-thaw cycles and then heated at 60 C for 18 h. The 

reaction mixture was allowed to cool to ambient temperature, and then it was filtered. The 

solvent was removed from the filtrate under reduced pressure, and the residue was extracted 

with toluene (10 mL) and evaporated to dryness. The resulting solid was washed with 

CH3CN (ca. 1 mL) at 30 °C to give an off-white solid (0.054 g, 0.080 mmol, 43%). 1H 

NMR (benzene-d6, 400 MHz, cis- and trans- designations for oxazoline rings are given with 

respect to CHCl2 moiety):  8.18 (d, 2 H, 3JHH = 7.2 Hz, ortho-C6H5), 7.81 (d, 2 H, 2JRhH = 

3.2 Hz, CHCl2), 7.50 (t, 2 H, 3JHH = 7.6 Hz, meta-C6H5), 7.34 (t, 1 H, 3JHH = 7.2 Hz, para-

C6H5), 3.60 (d, 1 H, 2JHH = 8.4 Hz, cis-CNCMe2CH2O), 3.33 (m, 5 H, CNCMe2CH2O), 1.60, 
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(s, 3 H, trans-CNCMe2CH2O), 1.51 (s, 3 H, cis-CNCMe2CH2O), 1.29 (s, 3 H, cis-

CNCMe2CH2O), 1.28 (s, 3 H, cis-CNCMe2CH2O), 1.11 (s, 3 H, cis-CNCMe2CH2O), 0.63 (s, 

3 H, trans-CNCMe2CH2O). 13C{1H} NMR (benzene-d6, 175 MHz):  188.42 (d, CO, 1JRhC = 

59.5 Hz), 135.19 (ortho-C6H5), 127.38 (meta-C6H5), 126.70 (para-C6H5), 82.04 (cis-

CNCMe2CH2O), 80.77 (cis-CNCMe2CH2O), 79.76 (trans-CNCMe2CH2O), 73.08 (cis-

CNCMe2CH2O), 71.41 (cis-CNCMe2CH2O), 68.88 (trans-CNCMe2CH2O), 63.74 (d, CHCl2, 

1JRhC = 26.3 Hz), 28.87 (cis-CNCMe2CH2O), 28.71 (cis-CNCMe2CH2O), 27.48 (trans-

CNCMe2CH2O), 26.96 (cis-CNCMe2CH2O), 23.68 (trans-CNCMe2CH2O), 21.08 (cis-

CNCMe2CH2O). 11B NMR (benzene-d6, 128 MHz): 17.8. 15N{1H} NMR (benzene-d6, 71 

MHz):  177.6 (cis), 187.8 (cis), 198.0 (trans). IR (KBr, cm-1):  3076 (m), 3042 (m), 

2985 (s), 2969 (s), 2890 (s), 2088 (s, CO), 2042 (w), 2037 (w), 1575 (s, CN), 1548 (m), 1496 

(m), 1464 (s), 1433 (m), 1388 (s), 1358 (s), 1293 (s), 1273 (s), 1251 (s), 1199 (s), 1155 (s), 

1114(s), 1036(m), 1024 (m), 957 (s), 933 (s), 891 (m), 800 (m), 785 (m). Anal. Calcd. for 

C23H30BN3O4Cl3BRh: C, 43.67; H, 4.78; N, 6.64.  Found: C, 43.20; H, 4.52; N, 6.46. Mp 

156159 °C, dec.  

(3-ToP)Rh(CHCl2)Cl(CO) (2.8). A solution of ToPRh(CO)2 (0.102 g, 0.175 mmol) in 

CHCl3 (20 mL) was degassed by three freeze-pump-thaw cycles and then allowed to stir 

overnight at room temperature. All volatiles were evaporated and the residue was purified by 

silica gel column chromatography, eluting with hexane/ethyl acetate (85:15) to yield a yellow 

solid (0.060 g, 0.089 mmol, 51%). 1H NMR (CDCl3, 400 MHz, cis- and trans- designations 

for oxazoline rings are given with respect to CHCl2 moiety):  7.65 (d, 2 H, 3JHH = 7.6 Hz, 

ortho-C6H5), 7.31 (t, 2 H, 3JHH = 7.2 Hz, meta-C6H5), 7.25 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 
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7.11 (d, 2 H, 2JRhH = 3.2 Hz, CHCl2), 4.95 (m, 1 H, cis-CNC(CHMe2)HCH2O), 4.84 (m, 1 H, 

cis-CNC(CHMe2)HCH2O), 4.38 (m, 4 H, overlapping cis- and trans-CNC(CHMe2)HCH2O), 

4.28 (t, 1 H, 2JHH = 9.6 Hz, trans-CNC(CHMe2)HCH2O), 4.09 (t, 1 H, 2JHH = 9.6 Hz, cis-

CNC(CHMe2)HCH2O), 4.07 (m, 1 H, trans-CNC(CHMe2)HCH2O), 2.84 (m, 1 H, trans-

CNC(CHMe2)HCH2O), 2.37 (m, 1 H, cis-CNC(CHMe2)HCH2O), 2.17 (m, 1 H, cis-

CNC(CHMe2)HCH2O), 1.02 (d, 3 H, 3JHH = 6.8 Hz, cis-CNC(CHMe2)HCH2O), 0.92 (d, 3 H, 

3JHH = 6.8 Hz, cis-CNC(CHMe2)HCH2O), 0.86 (d, 3 H, 3JHH = 7.2 Hz, trans-

CNC(CHMe2)HCH2O), 0.75 (d, 3 H, 3JHH = 6.4 Hz, cis-CNC(CHMe2)HCH2O), 0.65 (d, 3 H, 

3JHH = 6.8 Hz, cis-CNC(CHMe2)HCH2O), 0.56 (d, 3 H, 3JHH = 6.8 Hz, trans-

CNC(CHMe2)HCH2O). 13C{1H} NMR (CDCl3, 175 MHz):  179.71 (d, CO, 1JRhC  = 59.5 

Hz), 134.84 (ortho-C6H5), 127.22 (meta-C6H5), 126.63 (para-C6H5), 71.73 (trans-

CNC(CHMe2)HCH2O), 70.71 (cis-CNC(CHMe2)HCH2O), 70.25 (trans-

CNC(CHMe2)HCH2O), 69.69 (cis-CNC(CHMe2)HCH2O), 68.42 (cis-CNC(CHMe2)HCH2O), 

65.67 (d, CHCl2, 
1JRhC = 28.0 Hz), 65.14 (cis-CNC(CHMe2)HCH2O), 29.17 (cis-

CNC(CHMe2)HCH2O), 29.01 (cis-CNC(CHMe2)HCH2O), 28.64 (trans-

CNC(CHMe2)HCH2O), 20.03 (cis-CNC(CHMe2)HCH2O), 19.17 (cis-CNC(CHMe2)HCH2O), 

18.81 (trans-CNC(CHMe2)HCH2O), 14.71 (cis-CNC(CHMe2)HCH2O), 14.00 (cis-

CNC(CHMe2)HCH2O), 13.82 (trans-CNC(CHMe2)HCH2O). 11B NMR (CDCl3, 128 MHz):  

18.1. 15N{1H} NMR (CDCl3, 71 MHz):  194.2 (trans-CNC(CHMe2)HCH2O), 204.3 

(cis-CNC(CHMe2)HCH2O), 217.7 (cis-CNC(CHMe2)HCH2O). IR (KBr, cm-1): 3001 (w), 

2962 (m), 2929 (m), 2872 (m), 2092 (s, C=O), 1590 (s, C=N), 1479 (w), 1463 (w), 1372 (w), 

1364 (w), 1223 (m). Anal. Calcd. for C26H36BN3O4RhCl3: C, 46.29; H, 5.38; N, 6.23;  Found: 

C, 46.11; H, 5.03; N, 5.99. Mp 116118 °C, dec. 



36 
 

References 

 (1) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Eds. Principles and     

Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, 

CA, 1987. 

(2) Crabtree, R. Ed. The Organometallic Chemistry of the Transition Metals, 3rd ed.; Wiley-

Interscience John Wiley & Sons, INC., 2001; pp152-161. 

(3) (a) Forster, D. Adv. Organomet. Chem. 1979, 17, 255-267. (b) Howard, M. J.; Jones,    M. 

D.; Roberts, M. S.; Taylor, S. A. Catal. Today 1993, 18, 325-354. (c) Haynes, A.; Mann, B. 

E.; Morris, G. E.; Maitlis, P. M. J. Am. Chem. Soc. 1993, 115, 4093-4100. (d) Sunley, G. J.; 

Watson, D. J. Catal. Today 2000, 58, 293-307. 

(4) Janka, M.; Atesin, A. C.; Fox, D. J.; Flaschenriem, C.; Brennessel, W. W.; Eisenberg, R. 

Inorg. Chem. 2006, 45, 6559-6561. 

(5) (a) Doppiu, A.; Englert, U.; Salzer, A. Chem. Commun. 2004, 2166-2167. (b) Doppiu,    

A.; Englert, U.; Peters, V.; Salzer, A. Inorg. Chim. Acta 2004, 357, 1773-1780. 

(6) Kataoka, Y.; Nakagawa, Y.; Shibahara, A.;Yamagata, T.; Mashima, K.; Tani, K.    

Organometallics 2004, 23, 2095–2099. 

(7) Keyes, M. C.; Young, V. G., Jr.; Tolman, W. B. Organometallics 1996, 15, 4133–  4140. 

(8) Mobley, T. A.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 3253–3254. 

(9) Henderson, R. A. Angew. Chem., Int. Ed. 1996, 35, 946-967. 

(10) Ball, R. G.; Ghosh, C. K.; Hoyano, J. K.; McMaster, A. D.;Graham, W. A. G. J. Chem. 

Soc., Chem. Commun. 1989, 341–342. 



37 
 

(11) (a) Chauby, V.; Daran, J.-C.; Berre, C. S.-L; Malbosc, F.; Kalck, P.; Gonzalez, O. D.; 

Haslam, C. E.; Haynes, A. Inorg. Chem. 2002, 41, 3280-3290. 

(12) (a) Dunne, J. F.; Su, J. C.; Ellern, A.; Sadow, A. D. Organometallics 2008, 27, 2399-

2401. (b) Baird, B.; Pawlikowski, A. V.; Su, J.; Wiench, J. W.; Pruski, M.; Sadow, A. D. 

Inorg. Chem. 2008, 47, 10208-10210. (c) Pawlikowski, A. V.; Gray, T. S.; Schoendorff, G.; 

Baird, B.; Ellern, A.; Windus, T. L.; Sadow, A. D. Inorg. Chim. Acta 2009, 362, 4517-4525. 

(13) Ho, H.-A.; Dunne, J. F.; Ellern, A.; Sadow, A. D. Organometallics 2010, 29, 4105-4114. 

(14) (a) Bucher, U. E.; Currao, A.; Nesper, R.; Rüegger, H.; Venanzi, L. M.; Younger, E., 

Inorg. Chem. 1995, 34, 66-74. (b) Bucher, U. E.; Fässler, T. F.; Hunziker, M.; Nesper, R.; 

Rüegger, H.; Venanzi, L. M., Gazz. Chim. Ital. 1995, 125, 181-188. (c) Del Ministro, E.; 

Renn, O.; Rüegger, H.; Venanzi, L. M.; Burckhardt, U.; Gramlich, V., Inorg. Chim. Acta 

1995, 240, 631-639. (d) Albinati, A.; Bovens, M.; Rüegger, H.; Venanzi, L. M., Inorg. Chem. 

1997, 36, 5991-5999. 

(15) (a) Malbosc, F.; Chauby, V.; Berre, C. S.-L.; Etienne, M.; Daran, J.-C.; Kalck, P., Eur. J. 

Inorg. Chem. 2001, 2689-2697. (b) Teuma, E.; Malbosc, F.; Etienne, M.; Daran, J.-C.; Kalck, 

P. J. Organomet. Chem. 2004, 689, 1763-1765. 

(16) Slugovc, C.; Padilla-Martínez, I.; Sirol, S.; Carmona, E. Coord. Chem. Rev. 2001, 213, 

129-157. 

(17) (a) Connelly, N. G.; Emslie, D. J. H.; Metz, B.; Orpen, A. G.; Quayle, M. J., Chem. 

Commun. 1996, 2289-2290. (b) Connelly, N. G.; Emslie, D. J. H.; Geiger, W. E.; Hayward, 

O. D.; Linehan, E. B.; Orpen, A. G.; Quayle, M. J.; Rieger, P. H., J. Chem. Soc., Dalton 

Trans. 2001, 670-683. 

(18) Ikeda, S.; Maruyama, Y.; Ozawa, F., Organometallics 1998, 17, 3770-3774. 



38 
 

(19) Vetter, A. J.; Rieth, R. D.; Brennessel, W. W.; Jones, W. D., J. Am. Chem. Soc. 2009, 

131, 10742-10752. 

(20) McCleverty, J. A. and Wilkinson, G. Inorg. Synth. 1966, 8, 211. 

  



39 
 

Chapter 3. Allylic C–H bond activation and functionalization mediated by 

tris(oxazolinyl)phenylborato rhodium(I) compounds 

Modified from a paper published in Dalton Transactions† 

Hung-An Ho,‡ Tristan S. Gray,¶ Benjamin Baird, Arkady Ellern, Aaron D. Sadow* 

Abstract 

Allylic CH bond oxidative addition reactions, mediated by tris(oxazolinyl)phenylborato 

rhodium(I), provide the first step in a hydrocarbon functionalization sequence. The bond 

activation products ToMRhH(3-C8H13) (3.1), ToMRhH(3-C3H5) (3.2) and	 ToMRhH(3-

C3H4Ph) (3.3) are synthesized by reaction of Tl[ToM] and the corresponding metal olefin 

chloride dimers. Characterization of these rhodium allyl hydride complexes includes 1H15N 

heteronuclear correlation NMR experiments that reveal through-metal magnetization transfer 

between metal-hydride and the trans-coordinated oxazoline nitrogen. Furthermore, the 

oxazoline 15N NMR chemical shifts are affected by the trans ligand, with the resonances for 

the group trans to hydride typically downfield of those trans to 3-allyl and tosylamide. 

These rhodium oxazolinylborate compounds have been studied to develop approaches allylic 

functionalization. However, this possibility is generally limited by the tendency of the allyl 

hydride compounds to undergo olefin reductive elimination. Reductive elimination products 
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are formed upon addition of ligands such as CO and CNt-Bu. Also, ToMRhH(3-C8H13) and 

acetic acid react to give ToMRhH(2-OAc) (3.4) and cyclooctene. In contrast, treatment of 

ToMRhH(3-C3H5) with TsN3 gives the complex ToMRh(NHTs)(3-C3H5) (3.7). Interestingly, 

the reaction of ToMRhH(3-C8H13) and TsN3 yields ToMRhH(NHTs)OH2 (3.8) and 1,3-

cyclooctadiene via -hydride elimination and RhH bond amination. Ligand-induced 

reductive elimination of 3.7 provides HN(CH2CH=CH2)Ts; these steps combine to give a 

propene C–H activation/functionalization sequence. 

Introduction 

The process of so called CH activation/functionalization has served as a long-term “holy 

grail” for inert CH bond transformation in organometallic chemistry.1 The advance in this 

field would provide more efficient routes to construct desired molecules in both industrial 

and pharmaceutical communities.2 However, so far, numerous cases have shown that the 

hydrocarbon CH oxidative addition process could not further proceed due to easily 

accessible reverse pathway, namely CH reductive elimination, although stoichiometric 

functionalizations have been commonly seen for the past few decades.  Fortunately, a lot 

more cases with CH transformations have been achieved by using catalytic amount of metal 

catalysts. With regard to this issue, we are interested in investigating stepwise CH 

activation/functionalization sequence in a manner of isolating the intermediate products in 

each stage, which may possess potential of developing an unprecedented catalytic route as 

well as a more comprehensive understanding of the reaction mechanism. 
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More recently, the allylic CH functionalizations to form CC,3 CN4,5 and CO6 bonds 

via electrophilic palladium(II)-catalyzed transformation under oxidizing conditions have 

drawn much attention. These are classified as the electrophilic type functionalization which 

is quite dissimilar to the traditional two-electron oxidative addition of CH bonds7 that have 

been typically observed for group 9 rhodium and iridium complexes.8 While rhodium(I)-

catalyzed allylic substitution reactions have been well-studied,9 a non-cycloaddition type10 

allylic CH functionalization reaction catalyzed by Rh(I) has never been reported.11 These 

invoked our curiosity that whether the group 9 rhodium located adjacent to palladium on 

periodic table could generally accomplish such a transformation. 

For stoichiometric allylic CH activation paradigm, IrCl(N2)(PPh3)2 has represented a 

classic example of activating allylbenzene to give Ir(III) allyl hydride species.12 Fac-

coordinating ancillary ligands were later shown to facilitate allylic CH bond activations. For 

instance, Oro has reported an example of vinylic sp2 CH activation by treating Na[Tp] with 

[Ir(-Cl)(COE)2]2 to afford hydrido complex, TpIr(H)(σ-C8H13)(2-C8H14).
13 In contrast, it  

has been demonstrated that the allylic C-H activation product could be obtained by mixing 

K[Tp] and [Ir(-Cl)(COE)2]2 to give 3-coordinated compound, TpIr(H)(3-C8H13).
14 Later 

on, Tilley has shown the feasibility of the same type of activation by treating 

[Li(TMEDA)][PhB(CH2PPh2)3] ligand with this iridium dimer to give 3-coordinated 

complex as well.15 Meanwhile, regarding to the rhodium version activation, the photolysis of 

TpRh(CNneo)(PhNCNneo) in liquid propylene to generate 1-C3H5 allylic activation 

product TpRh(CNneo)(CH2CHCH2)H.16 Recently, A photo-induced allylic activation by 

irradiating Cp*Rh(CH2CHMe)2 yields Cp*RhH (3-C3H5).
17 
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On this premise, we sought to utilize the platform mentioned above to furnish the 

stepwise activation/functionalization process to have deeper insights into overall mechanism 

and develop related functionalization strategies. Herein, we report allylic CH activation of 

cyclooctene, propene and allylbenzene mediated by the fac-coordinated rhodium metal center 

as well as the first example of azide insertion into a RhH bond. Subsequent reductive 

elimination provides a functionalized propene derivative. Stereo conformation and 

configuration (endo/exo, syn/anti) has been assigned by using 1H15N HMBC, NOESY and 

COSY experiments to establish the relationship between metal hydride and oxazoline 

nitrogen coordination environment. 

Results 

Synthesis and characterization of allylic C-H activation complexes 

In Chapter 2, we have discussed the counter ion effect for ligand transfer. The reaction of 

M[ToM] (M = Li, K) and  [Rh(-Cl)(COE)2]2 in a solvent (benzene, thf, methylene chloride 

and acetonitrile) give complex mixtures that were unable to isolated and characterize at either 

elevated temperature (60 C) or room temperature. Once again, Tl[ToM] is proved to be an 

excellent transfer agent that it reacts with [Rh(-Cl)(COE)2]2 to provide ToMRhH(3-C8H13) 

(3.1). Slightly excess of the rhodium dimer (1.4 equivalent) was used to drive the reaction to 

completion within 5 h and the reaction could be scaled up to 1.8 millimoles. Analytical pure 

product was isolated after pentane extraction (eq 3.1). 
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In the 1H NMR spectrum, the characteristic metal hydride signal showed at 24.3 ppm 

(1JRhH = 11.6 Hz). Like compound 2.5, the overall symmetry of 3.1 exhibited a Cs symmetric 

pattern of the ancillary ligand ToM in the 1H NMR experiment. For the -allyl ligand, the 

central CH and the CH on the two sides appeared at 5.16 ppm (1 H) as a triplet and 3.95 ppm 

(2 H) as a doublet of doublet respectively. The NOESY experiment indicated that the cross-

peaks were found between oxazoline dimethyl trans to metal hydride and both -allyl central 

CH and the two syn--CH on each side. In addition, the rhodium hydride showed no cross-

peaks with all the -allyl-CH. Thus, we assigned the conformation of 3.1 as an exo structure. 

In the 13C{1H} NMR spectrum, the resonance at 93.9 ppm (1JRhC = 6.0 Hz) and 52.2 ppm 

(1JRhC = 11.4 Hz) were assigned as -allyl central CH and the two syn--CH respectively, 

which also correlated to the protons in a 1H13C HMQC experiment. 

 

(3.1) 
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Figure 3.1. A Newman projection of ToMRhH(3-C8H13) (3.1) viewed along the RhB bond. 

Through-space close contacts between oxazoline methyl groups -allyl ligand, detected using 

a NOESY experiment, are illustrated with arrows. 

Two distinct nitrogen resonances at 164.2 and 173.4 ppm were detected in the 1H15N 

HMBC experiment. The former chemical shift represented the oxazoline nitrogen trans to 

RhH bond while the latter one represented the two equivalent oxazoline nitrogens bisected 

by symmetry mirror plane. Moreover, the through bond cross-peak between the rhodium 

hydride and the trans oxazoline nitrogen was observed. The hydride resonance was further 

supported by the IR spectroscopy (RhH = 2158 cm-1). 

To expand the substrate scope of the allylic CH activation, the parent -allyl analogue is 

obtained by bubbling propene into a solution of [Rh(-Cl)(COE)2]2 in benzene at room 

temperature to generate [Rh(-Cl)(C3H6)2]2 in situ in the first step followed by adding 

Tl[ToM] in the second step to give ToMRhH(3-C3H5) (3.2). During the course of the reaction, 

the exo conformer formed exclusively within 1 h with complete conversion (monitored by 1H 

NMR spectroscopy in benzene-d6). The final ratio turns out to be 4:1 (exo:endo) after 2 h at 

room temperature. Prolonged sitting (up to 2 d) or heating at elevated temperature (80 C, 2 h) 

would not change the ratio (eq 3.2). This is somewhat contrast to the observation of 

Tp*RhMe(3-C3H5) that the endo isomer is the only conformer obtained after heating at 60 

C when starting with 7:1 (endo:exo) mixture.18 
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The NOESY experiment confirmed the conformer assignment that a cross-peak was detected 

between the central -allyl CH and the rhodium hydride of endo-3.2. The hydride signal of 

endo-3.2 appeared at 22.7 ppm as a broad singlet while the hydride of exo-3.2 showed at 

23.3 ppm as a doublet (1JRhH = 10.0 Hz) in the 1H NMR spectrum. Also, in the same 

spectrum, the coupling constant between the central and terminal syn--allyl CH was 

identical (7.2 Hz) whereas the one between central and terminal anti--allyl CH was slightly 

different (11.2 Hz for endo and 11.6 Hz for exo). Both endo and exo conformers display a Cs 

symmetry splitting pattern like the case of exo-3.1. The two rhodium hydrides of both 

conformers and the corresponding trans oxazoline nitrogen displayed a cross-signal in the 

1H15N HMBC experiment. The existence of metal hydrides was confirmed by stretching 

frequency of RhH showing at 2090 and 2080 cm-1 in the IR spectrum. 

X-ray crystal structure was obtained at –30 C and revealed that both conformers co-

crystallize (Fig 3.2). The RhN bonds trans to hydride Rh1N3 (endo: 2.298(3) � and 

Rh2N5 (exo: 2.223(3) Å) are longer than the two RhN bonds trans to the allyl ligand 

(endo: Rh1N1, 2.107(3); Rh1N2, 2.109(3); exo: Rh2N4, 2.128(3); Rh2N6, 2.141(3) Å). 

The RhN distances trans to the allyl ligand in the exo conformer are slightly longer than the 

(3.2) 
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RhN distances in the endo conformer. Lastly, both conformers of 3.2 could be obtained by 

treating 3.1 with propene in benzene-d6 at room temperature with elimination of cyclooctene. 

 

Figure 3.2. ORTEP diagram of endo-3.2 (left) and exo-3.2 (right) drawn at 50% probability. 

All hydrogens (except the central -allyl CH and the hydride) are omitted for clarity. The two 

isomers co-crystallize, but their relative orientation has been altered above to more clearly 

illustrate the rhodium centers’ coordination geometry, and this figure does not represent their 

relative positions in the unit cell. Selected bond distances (Å) for endo-3.2: Rh1H1r, 1.67(6); 

Rh1N1, 2.107(3); Rh1N2, 2.109(3); Rh1N3, 2.298(3); Rh1C22, 2.160(5); Rh1C23, 

2.099(6), Rh1C24, 2.139(5). Selected bond distances (Å) for exo-3.2: Rh2N4, 2.128(3); 

Rh2N5, 2.223(3), Rh2N6, 2.141(3); Rh2C46, 2.147(7); Rh2C47, 2.035(8); Rh2C48, 

2.096(7) . 

Similar to the preparation of 3.2, the synthesis of ToMRhH(3-C3H4Ph) (3.3) is carried 

out by treating [Rh(-Cl)(COE)2]2 dimer with excess of allylbenzene to in situ generate 

[Rh(-Cl)(C3H5Ph)2]2 followed by Tl[ToM] addition (eq 3.3). 
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3.3 adopts an endo conformation as well as a syn configuration (the phenyl group is syn 

to central -allyl CH). The diagnostic rhodium hydride appeared at 22.5 ppm in the 1H 

NMR spectrum and a cross-peak between the hydride and the central -allyl CH was 

identified. The assignment of the four Hs of the -allyl group was determined by COSY 

experiment that the central CH (5.62 ppm) correlated with both the internal benzylic proton 

(3.98 ppm) and two terminal protons (syn, 3.22 ppm; anti, 2.84 ppm). The coupling constant 

(3J) of the latter ones is 9.6 (syn) and 11.2 Hz (anti) respectively. In the 13C NMR spectrum, 

the central π-allyl carbon appeared at 90.06 ppm (1JRhC = 3.5 Hz) where the terminal π-allyl 

carbon and the benzylic π-allyl carbon showed at 36.54 (1JRhC = 12.25 Hz) and 54.52 ppm 

(1JRhC = 10.5 Hz), which further supports the structure proposed. Due to the C1 symmetry of 

the whole molecule, the three oxazoline nitrogens are inequivalent, exhibiting three different 

signals (168.2, 172.1 and 179.9 ppm) in the 1H15N HMBC spectrum. As the case with 

3.1 and 3.2, the oxazoline nitrogen trans to the hydride gave a cross-peak between that itself 

and the hydride. 

The solid state structure was obtained from a concentrated toluene solution at –30 C. 

The CC distances in the group appear to be almost equivalent (C22C23, 1.416(5) and 

C22C30, 1.406(5) Å). The steric repulsion between the π-allyl phenyl and the ancillary ToM 

(3.3) 
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results in longer distance of Rh1C23 (2.195(4) Å) compared to the Rh1C30 (1.406(5) Å) 

(Fig 3.3). 

 

Figure 3.3. ORTEP diagram of 3.3 drawn at 50% probability. Hydrogens are omitted for 

clarity except H22 and H23. Selected bond distances (Å): Rh1N1, 2.101(3); Rh1N2, 

2.280(3); Rh1N3, 2.132(3); Rh1C22, 2.113(4); Rh1C23, 2.195(4), Rh1C30, 2.148(4).  

Selected angles (°): N1Rh1N2, 87.5(1); N1Rh1N3, 84.1(1); N2Rh1N3, 84.9(1); 

C23C22C30, 120.6(4). 

We have discussed three examples of allylic CH activation, which fulfill the first step of 

stepwise CH activation/functionalization. We will continue to illustrate the reactivities of 

the succeeding functionalization attempts in the following context. 
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Reactions of ToMRhH(3-allyl) toward CE (E = C, N, O)bond formation 

We tested a broad scope of oxygen, nitrogen and carbon-based nucleophiles (Nuc) to 

study the reactivities of ToMRhH(3-allyl) toward these nucleophiles. These nucleophile 

reagents include alcohols, amines, alkoxide and enolates. We did not observe the 

C(allyl)Nuc bond formation however the reductive elimination pathway dominates. For 

example, the reaction between 3.1 and neopentyl alcohol or tert-butyl amine gives the 

formation of cyclooctene along with rhodium black precipitate in benzene-d6 solution at 60 

to 80 ºC. Nevertheless, a weaker nucleophile such as a Brønsted acid could provide 

identifiable product although cyclooctene generated by reductive elimination (or protonation) 

mechanism is still the major outcome. For instance, treating 3.1 with acetic acid in benzene at 

room temperature gives ToMRhH(2-OAc) (3.4). The crude product is purified by pentane 

extraction and then toluene recrystallization to give analytical pure product in moderate yield 

(eq 3.4). 

3.1
HOAc

benzene, rt, 10 min

3.4

- COE

O
O

Ph B
N

O

O
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Rh

O
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H

 

Reaction with acetic acid-d1 provides a mixture of 3.4 and ToMRhD(2-OAc) (3.4-d1) in a 

3:1 ratio. This implies that the reductive elimination of cyclooctene (followed by OH 

oxidative addition) is the minor pathway whereas the major one is the direct protonation of 

3-C8H13 (followed by substitution). 3.4 could also be generated when treating 3.3 with Ac2O 

(3.4) 
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overnight in benzene at 80 C. The featured hydride appeared at 13.2 ppm (1JRhH = 11.6 Hz) 

in the 1H NMR spectrum while the carbonyl carbon of the OAc was detected at 190.3 ppm in 

the 13C{1H} NMR spectrum. Two nitrogen signals were observed in the 1H15N HMBC 

spectrum owing to the Cs symmetry of the whole molecule. The oxazoline nitrogen trans to 

the hydride was assigned at 154.3 ppm. The X-ray structure was obtained in concentrated 

toluene at 30 C (Fig 3.4). 

 

Figure 3.4. ORTEP diagram of 3.4 drawn at 50% probability. Hydrogens (except hydride) 

are omitted for clarity. Selected bond distances (Å): Rh1H1r, 1.7(1); Rh1N1, 2.20(1); 

Rh1N2, 1.97(1); Rh1N3, 2.01(1); Rh1O4, 2.069(9); Rh1O5, 2.092(9). Selected bond 

angles (°): N1Rh1H1r, 177(4); N1Rh1N2, 87.7(4); N1Rh1N3, 85.8(4); N2Rh1N3, 

85.2(5); N2Rh1O4, 167.7(4); N3Rh1O5, 168.6(4); O4R1O5, 61.8(4). 
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Next, we anticipated that a viable alternative route is to transform the complexes to 

cationic species, which would be more vulnerable toward nucleophilic attack (either the 

metal center or π-allyl group). Thus, the reaction of 3.2 and Lewis-acidic electrophile 

B(C6F5)3 in benzene-d6 at 60 C or methylene chloride-d2 at 40 °C overnight affords a 

mixture of unidentified products. No free olefin was detected in these reaction mixtures. 

However, it reacts with a weaker electrophile to form the RhEle bond (Ele = electrophile). 

For instance, treating 3.3 with NBS gives ToMRhBr(3-C3H4Ph) (3.5) overnight at room 

temperature (eq 3.5). 

 

Like 3.3, the proton assignment of -allyl group of could be accomplished by the COSY 

experiment while the coupling constants and the NOESY experiment unambiguously 

indicated the configuration and the conformation of 3.5, which remains identical to 3.3 as 

endo-syn. Based on the COSY experiment, the central -allyl CH (6.54 ppm) correlated with 

the benzylic CH (5.43 ppm) as well as the terminal syn (4.45 ppm) and anti (4.14 ppm) -

allyl protons. Due to the C1 symmetry of 3.5, three nitrogen cross-peaks were detected in the 

1H15N HMBC spectrum whereas the most upfield resonance (181.5 ppm) was assigned as 

the one trans to bromide. 

(3.5) 



52 
 

To this point, our approach has been focusing on nucleophilic and electrophilic 

substitution reactions and now it is necessary to vary the synthetic route which might benefit 

and achieve the catalytic functionalization goal. Ligand insertion followed by reductive 

elimination, however, is a commonly utilized strategy to construct CE bonds. We began the 

examination with simple unsaturated hydrocarbons such as ethylene and Me3SiC≡CH. 

Unfortunately, for example, the reaction of ethylene and both 3.1 (benzene-d6, room 

temperature, overnight) and 3.2 (benzene-d6, 80 ºC, overnight) result in decomposition of the 

starting complexes. Moreover, neither 3.1 nor 3.2 give insertion products (the acetylene 

decomposed instead) when reacting with Me3SiC≡CH. Yet, both 3.1 (benzene-d6, room 

temperature, 2 h) and 3.2 (benzene-d6, 60 ºC, 2 h) react with CO to give dicarbonyl complex 

ToMRh(CO)2 (2.2) via reductive elimination of cyclooctene. Subsequently, we discovered 

that isoelectronic isocyanide would also react with 3.1 to give ToMRh(CNt-Bu)2 (3.6) at 

room temperature (eq 3.6) with cyclooctene elimination although the insertion reaction 

pathway has not been observed in both cases (CO and CNt-Bu). 

 

In a solution phase, 3.6 behaves like 2.2 that the constitutional equilibrium (2 and 3) 

cause the equivalency of oxazoline dimethyl and methylene groups. Therefore, in the 1H 

NMR spectrum, methylene signal was detected at 3.71 ppm (6 H) whereas the dimethyl one 

was assigned at 1.35 ppm (18 H) respectively. The 1H15N HMBC experiment also supports 

(3.6) 
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this observation that only one oxazoline cross-peak was detected at 159.6 ppm while the 

isocyanide nitrogen exhibited at 201.1 ppm. IR spectroscopic evidence further indicated the 

 

Figure 3.5. ORTEP diagram of 3.6. Ellipsoids are shown at 50% probability. Hydrogens are 

omitted for clarity. Selected bond distances (Å): Rh1N1, 2.094(4); Rh1N2, 2.087(4); 

Rh1C22, 1.881(6); Rh1C27, 1.884(7). Selected bond angles (°): N1Rh1C22, 174.9(2); 

N2Rh1C27, 178.4(2); N1Rh1N2, 85.2(2); C22Rh1C27, 84.8(2). 
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presence of two isomers in solution that four isocyanide C≡N stretching frequencies were 

observed. The X-ray structure was obtained by slow evaporation of ether into methylene 

chloride solution at 30 ºC. Undoubtedly, the structural connectivity shows 2 coordination 

is the only isomer in the solid state (Fig 3.5). 

Up to now, several non-polar and polar multiple bond species have been examined for 

insertion chemistry and none of them give satisfactory desire inserted products. Thus, we 

decided to consider other possible insertion routes. 1,3-dipolar dinitrogen compounds 

(nitrous oxide, diazos and azides) have been well known to undergo 1,3-dipolar 

cycloaddition. Meanwhile, these three compounds could also serve as good atom transfer 

carriers that deliver oxygen, carbon and nitrogen respectively with extrusion of molecular 

nitrogens. For example, N2O
19 has been applied to inserting oxygen into a MC or MH 

bond and azides (RN3)
20 have been reported to give corresponding nitrene insertion 

consequences as well. 

 

Treating 3.2 with N2O in benzene-d6 at 80 C affords unidentified products over 2 h. The 

reaction between 3.2 and diazoacetate does not render any detectable insertion products but 

decomposition result. Nonetheless, TsN3 reacts with two isomeric mixture 3.2 to give the 

nitrene insertion compound ToMRh(NHTs)(3-C3H5) (3.7) at room temperature for 24 h (eq 

(3.7) 
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3.7). exo-3.7 adopts Cs symmetry for the whole molecule and  is the only isomer that exists in 

this reaction.  

 

Figure 3.6. ORTEP diagram of 3.7. Ellipsoids are drawn at 50% probability. Hydrogens are 

omitted for clarity. Selected bond distances (Å): Rh1N1, 2.140(2); Rh1N2, 2.119(3); 

Rh1N3, 2.121(3); Rh1N4, 2.085(3); Rh1C22, 2.181(3); Rh1C23, 2.145(3); Rh1C24, 

2.181(3). Selected bond angles (°): N1Rh1N4, 83.8(1); N2Rh1N4, 163.0(1); 

N3Rh1N4, 84.4(1); Rh1N4S1, 138.5(2). 



56 
 

The stereo conformation was confirmed by NOESY experiment and two 15N cross-peaks 

(177.6 and 255.4 ppm) were found in the 1H15N HMBC experiment that the latter one is 

the oxazoline nitrogen trans to NHTs group. The π-allyl group displayed three signals at 5.60, 

5.17 and 4.19 ppm, representing the central proton, two anti terminal protons (3JHH = 12.4 Hz) 

and two syn terminal proton (3JHH = 8.8 Hz) respectively in the 1H NMR spectrum. X-ray 

structure (obtained from vapor diffusion of pentane into toluene solution at 30 ºC) further 

validates the conformation assignment (Fig 3.6), which disclose the exo-3-C3H5 disposition. 

Later, we predicted that the reaction between 3.1 and TsN3 would follow the same 

pathway to give the complex ToMRh(NHTs)(3-C8H13). Surprisingly, when the reaction is 

carried out at room temperature, it proceeds to completion within 2 h to afford the complex 

ToMRhH(NHTs)(OH2) (3.8) instead. By monitoring the reaction of 3.1 and TsN3 in benzene-

d6 by NMR spectroscopy, the formation of 1,3-COD was observed along with vigorous N2 

evolution (eq 3.8). 

 

The distinctive hydride peak was located at 15.75 ppm (1JRhH = 9.2 Hz) in the 1H NMR 

spectrum and the related absorption was detected at 2067 cm-1 in the IR spectrum. The C1 

symmetry of the complex 3.8 was noted to display three different cross-peaks (228.6, 

205.8 and 154.1 ppm) of 15N signal for oxazoline nitrogens in the 1H15N HMBC 

(3.8) 
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spectrum. The X-ray quality structure was obtained by vapor diffusion of pentane into 

benzene solution at room temperature (Fig 3.7) 

 

Figure 3.7. ORTEP diagram of 3.8 drawn at 50% probability. Hydrogens (except hydride) 

are omitted for clarity. Selected bond distances (Å): Rh1H1r, 1.88(7); Rh1N1, 2.234(6); 

Rh1N2, 2.016(7); Rh1N3, 2.064(7); Rh1N4, 2.088(6); Rh1O6, 2.101(6). Selected bond 

angles (Å): N1Rh1H1r, 173(2); N2Rh1O6, 179.2(3); N3Rh1N4, 176.9(3); 

Rh1N4S1, 131.5(4). 
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Unfortunately, the reaction of 3.3 and TsN3 could not give any identifiable products 

(benzene-d6, overnight, room temperature). Moreover, neither Adm-N3 nor Me3Si-N3 gives 

insertion amido products (MNHR, R = Adm or Me3Si) for complexes 3.1-3.3. 

Excitingly in the end, the reaction of 3.7 and CO at 65 °C results in C–N bond reductive 

elimination and CO coordination to give ToMRh(CO)2 (2.2, 81% yield) and allyl(tosyl)amine 

(eq. 3.9). The organic product, identified by GC-MS and 1H NMR, is formed in 29% yield. 

 

Discussion 

Attempt to synthesize ToPRhH(3-C8H13) could not be achieved by introducing a similar 

synthetic route for 3.1 synthesis. In fact, the reaction between 2.1 and [Rh(-Cl)(COE)2]2 

renders an isolable {ToPRh} species. Coordinated cyclooctene and metal hydrides were not 

observed, which indicates that the ancillary ligand, ToP, is not able to mediate allylic CH 

activation. This is somewhat unexpected due to similar electronic and steric properties of 

ToM and ToP. On the other hand, the richness of the chemistry included in this chapter is once 

more attributed to the important starting material, Tl[ToM]. As was mentioned earlier in 

Chapter 2, Tl[ToM] serves as the best ligand transfer agent comparing to the analogues, 

Li[ToM] and K[ToM]. For comparison,11, 12 counter ion effect has been brought up in the 

context above that different coordinated cations would lead to diverse reaction pathways. 

Therefore, it is reasonable that Li[ToM] and K[ToM] afford complex mixtures. 

(3.9) 
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Several possible azide insertion reactions and mechanisms have been proposed. To 

rationalize the mechanism in our system, 1) Co(Me)3(PMe3)3 has been reported to react with 

TsN3 to give the N()-inserted (1,1-insertion) triazenide complex, Co(2-(MeN()-

N2Ts)(Me)2(PMe3)3.
21 2) The triazenide complex has also been synthesized as the 

intermediate of hafnium amido complex inserted by azide reagents. The isotope study 

suggested that it proceeds via 1,3-hydrogen migration (from N() to N()) followed by N2 

extrusion.22 3) More recently, Leung and his co-workers has discovered the insertion of 

nitrene (from PhINTs) into IrC bond via proposed formation of Ir(V) imido intermediate.23 

Presumably, this intermediate is generated via N() coordination followed by N2 extrusion. 

To summarize, Scheme 3.1 shows the two possible mechanisms for rhodium amido 

formation where (1) involves the formation of Rh(III) triazenide intermediate. The second 

and third step of this proposed mechanism is based on the first two points mentioned above. 

In contrast, pathway (2) proceeds via formation of Rh(V) imido intermediate. Again, 

dinitrogen extrusion and subsequent insertion steps are based on the third point noted above.  

Besides, the isomerization of 3.2 was monitored during the course of the formation of the 

two isomers. The isomerization implies the un-coordination and re-coordination (3-1-3) 

process of the -allyl group. In addition, PhB(CH2PPh2)3IrH(3-C8H13) has been documented 

to undergo -eleimination in the presence of PMePh2 to give the compound [Ir](H)2PMePh2 

accompanied by cyclooctene elimination,13b in which the ancillary phosphine arm 
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Scheme 3.1. Two possible mechanisms for the reaction of 3.2 and tosylazide that gives a 

tosylamide. 

dissociation is less likely to occur. Thus, it is reasonable to propose the 1-allyl intermediate 

rather than oxazoline dissociation that generate an open site for azide nitrogen coordination 

in the first step of both possible mechanisms (Scheme 3.1). To further argue the rationale of 

the two mechanisms, both CO and CNt-Bu could act as 1,1-insertion substrates. However, in 

our system, both ligands promote reductive elimination of cyclooctene instead of undergoing 

insertion into RhH bond. This is perhaps the azide insertion product is irreversibly trapped 

by 1,3-coordination in the beginning followed by 1,3-hydrogen migration and N2 elimination. 

Moreover, Rh(V) imido species is a highly reactive intermediate if it ever exists. Therefore, 

mechanism (1) is a more plausible reaction pathway for rhodium amido formation. 



61 
 

 

Scheme 3.2. Proposed mechanism for divergent pathways in reactions of 3.1 and 3.2 with 

tosylazide. 

The fate of the insertion intermediate is demonstrated in Scheme 3.2 that 3.1 undergoes 

-elimination to form 1,3-cyclooctadiene and the compound 3.8 whereas 3.2 undergoes re-

coordination of 1-C3H5 to give the complex 3.7. 

We have demonstrated in the previous chapter that 15N NMR spectroscopy plays a crucial 

role and a powerful tool for structural and stereo assignment. The through-metal 1H15N 

correlations confirmed the connectivity of the ancillary ligand, the metal center and the actor 

ligand. Table 3.1 shows the 15N chemical shift values relative to the trans ligand and RhN 

distances for the compounds reported in this chapter. The 15N NMR chemical shift of the 

oxazoline trans to hydrides in 3.1 and 3.2 are the farthest downfield while 3.3 is about 15 

ppm upfield with respect to them. The oxazoline trans to the tosylamide has the farthest 

upfield 15N NMR chemical shift, and those trans to weak-field bromide, water, and acetate 

ligands also have upfield chemical shifts. 
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Table 3.1. 15N NMR chemical shift data and MN distances for oxazoline nitrogen in 

{ToMRh} compounds. 

Compound 15N trans 
to hydride 

MN 
distance 
trans to H 
(Å) 

15N trans to 
allyl 

MN 
distance 
trans to 
allyl 

15N trans to a 
heteroatomic 
ligand 

ToMRhH(3-C8H13) 
(3.1) 

164.2 n.a.a 173.4 n.a.a n.a.c 

endo-ToMRhH(3-
C3H5) (endo-3.2) 

165.6 2.298(3) 173.8 2.107(3) 
2.109(3) 

n.a.c 

exo-ToMRhH(3-
C3H5) (exo-3.2) 

164.8 2.223(3) 173.1 2.141(3) 
2.128(3) 

n.a.c 

ToMRhH(3-C3H4Ph) 
 (3.3) 

179.9 2.280(3) 168.2,        

172.1 

2.101(3) 
2.132(3) 

n.a.c 

ToMRhH(2-O2CMe) 
(3.4) 

154.3 2.20(1) n.a.d n.a.d 221.0 (OAc)

ToMRhBr(3-C3H4Ph) 
(3.5) 

n.a.b n.a.a,b 191.1,        

181.5 

n.a.a 217.6 (Br) 

ToMRh(NHTs)(3-
C3H5) (3.7) 

n.a.b n.a.b 177.6 2.140(2)  
2.121(3) 

225.4 
(NHTs) 

ToMRhH(NHTs)OH2 
(3.8) 

154.1 2.234(6) n.a.d n.a.d 228.6 
(NHTs)         

205.8 (OH2) 
a An X-ray crystal structure was not obtained. b The compound does not contain a metal hydride. c The 
compound does not contain a heteroatomic ligand. d The compound does not contain an allyl group. 

Conclusion 

Although Rh(II)-catalyzed insertion chemistry of carbene and nitrene into CH bonds to 

give functionalized CC and CN bond formation products has been well developed and 

extensively applied,24 we are currently investigating a new catalytic route for functionalizing 
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allylic CH bonds, in which, to the best of our knowledge, disclosing the first example of 

nitrene insertion into RhH bonds. We have completed the non-catalytic stepwise allylic 

CH activation/nitrene insertion/reductive elimination process (Scheme 3.3). Although the 

third step gives the non-regenerated Rh(I) dicarbonyl complex as well as the 

allyl(tosyl)amine product, we will be continuing to seek for a suitable method to invoke the 

reductive elimination and accomplish the catalytic cycle. 

 

Scheme 3.3. Stepwise functionalization of an allylic CH bond to generate the CN bond 

formation product. 

In addition, we have proved the fac-coordinated ToM is a proper ancillary ligand for the 

allylic CH activation even though the electronically and sterically similar ToP ligand could 

not promote such a transformation. However, we have illustrated a potentially possible 

reaction method that is able to expand to asymmetric functionalization of allylic C-H bonds 
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as long as an appropriate chiral ancillary ligand could facilitate this type of chemistry. All the 

issues addressed above are all under investigation. 

Experimental 

General Procedures. All reactions were carried out under an inert atmosphere using 

standard Schlenk techniques or in a glovebox. All solvents were dried and degassed unless 

otherwise indicated. All reagents were purchased from Sigma-Aldrich and used without 

further purification. Tl[ToM]25, [Rh(-Cl)(C)2]2
26, and TsN3

27 were prepared according to 

reported procedures. All NMR spectra were obtained at room temperature using Bruker 

DRX-400 and Avance II-700 spectrometers. 15N NMR chemical shifts were determined by 

1H-15N HMBC experiments recorded on an Avance II-700 spectrometer; the chemical shift 

values are reported relative to CH3NO2. 
11B NMR spectra chemical shifts are reported 

relative to BF3·Et2O. GC-MS data were obtained on an Agilent 7890 A GC system 

containing an HP-5MS capillary column and an Agilent 5975C mass selective detector. 

Elemental analyses were obtained at the Iowa State Chemical Instrumentation Facility using 

a Perkin-Elmer 2400 Series II CHN/S. Single crystal X-ray analysis was carried out on a 

Bruker APEX2 CCD Diffractometer.  

ToMRhH(3-C8H13) (3.1). Benzene (50 mL) was added to a solid mixture of Tl[ToM] (0.187 

g, 0.319 mmol) and [Rh(-Cl)(COE)2]2 (0.160 g, 0.223 mmol) giving a suspension. The 

resulting mixture was stirred at room temperature for 5 h and then filtered. The solvent was 

removed from the filtrate under reduced pressure. The resulting residue was extracted with 

pentane (3 × 25 mL), and the extractions were combined and evaporated to dryness to give 

analytically pure ToMRhH(3-C8H13) (3.1, 0.134 g, 0.225 mmol, 70.6%) as a brown solid in 
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good yield. 1H NMR (benzene-d6, 400 MHz):  8.45 (d, 2 H, 3JHH = 7.6 Hz, ortho-C6H5), 

7.58 (t, 2 H, 3JHH = 7.6 Hz, meta-C6H5), 7.38 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 5.16 (t, 1 H, 

CH(CH)2(CH2)5, 
3J HH = 8.0 Hz), 3.95 (dd, 2 H, 3JHH = 16.4 Hz, 3JHH = 8.0 Hz, 

CH(CH)2(CH2)5), 3.74 (d, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.60 (d, 2 H, 2JHH = 8.4 Hz, 

CNCMe2CH2O), 3.33 (s, 2 H, CNCMe2CH2O), 2.51 (m, 2 H, (CH)3CH2(CH2)3CH2), 2.21 (m, 

1 H, (CH)3(CH2)2CH2(CH2)2), 1.74 (m, 2 H, (CH)3CH2(CH2)3CH2), 1.50 (m, 1 H, 

(CH)3(CH2)2CH2(CH2)2), 1.45 (m, 4 H, (CH)3CH2CH2CH2CH2CH2), 1.17 (s, 6 H, 

CNCMe2CH2O), 1.12 (s, 6 H, CNCMe2CH2O), 0.82 (s, 6 H, CNCMe2CH2O), 24.27 (d, 1 H, 

1JRhH = 11.6 Hz, RhH). 13C{1H} NMR (benzene-d6, 175 MHz):  136.81 (ortho-C6H5), 

126.93 (meta-C6H5), 125.75 (para-C6H5), 93.93 (d, 1JRhC = 6.0 Hz, CH(CH)2(CH2)5), 81.96 

(CNCMe2CH2O), 80.93 (CNCMe2CH2O), 68.41 (CNCMe2CH2O), 67.92 (CNCMe2CH2O), 

52.15 (d, 1JRhC = 11.4 Hz, CH(CH)2(CH2)5), 38.41 ((CH)3CH2(CH2)3CH2), 29.52 

((CH)3CH2CH2CH2CH2CH2), 29.49 ((CH)3CH2CH2CH2CH2CH2), 28.82 (CNCMe2CH2O), 

28.57 (CNCMe2CH2O), 28.33 (CNCMe2CH2O). 11B NMR (benzene-d6, 128 MHz):  18.7 

15N NMR (benzene-d6, 71 MHz):  164.2 (trans to RhH), 173.4 (cis to RhH)� IR (KBr, 

cm-1):  3076 (w), 3040 (w), 2959 (m), 2927 (m), 2843 (m), 2158 (m, RhH), 1598 (s, CN), 

1462 (m), 1383 (m), 1363 (m), 1275 (m), 1195 (m), 1156 (m), 996 (m), 972 (m), 933 (w). 

Anal. Calcd. for C29H43BRhN3O3: C, 58.50; H, 7.28; N, 7.06.  Found: C, 58.85; H, 7.48; N, 

7.10. Mp: 132135 °C, dec. 

ToMRhH(3-C3H5) (3.2). Propene was bubbled through a solution of [Rh(-Cl)(COE)2]2 

(0.500 g, 0.697 mmol) in benzene (100 mL) for 10 min to form [Rh(-Cl)(C3H6)2]2. Tl[ToM] 

(0.56 g, 0.96 mmol) was added as a solid to the [Rh(-Cl)(C3H6)2]2 solution at room 



66 
 

temperature, and the resulting mixture was stirred for 1 h. The solution was then filtered, and 

the volatile materials in the filtrate were evaporated to dryness. The resulting residue was 

extracted with pentane (3 × 50 mL) and stored at 35 °C overnight. The solids were then 

collected as an analytically pure, light-brown, flaky powder (0.39 g, 76%). This powder was 

then recrystallized from toluene at 30 °C to obtain X-ray quality crystals of co-crystallized 

exo-3.2 and endo-3.2. R (KBr, cm-1):  3075 (m), 3035 (m), 2967 (m), 2927 (m), 2899 (m), 

2090 (s, RhH), 2080 (s, RhH), 1598 (s, CN), 1567 (m,CN), 1460 (m), 1382 (m), 1365 (m), 

1351 (m), 1275 (m), 1197 (m), 1155 (m), 1021 (w), 992 (m), 975 (m), 902 (m), 703 (m). 

Anal. Calcd. for C24H35BRhN3O3: C, 54.67; H, 6.69; N, 7.97.  Found: C, 54.71; H, 6.37; N, 

7.71. Mp: 204206 °C, dec. Although the two conformers are not independently isolated, the 

NMR spectroscopic data for each is provided separately facilitate interpretation. exo-3: 1H 

NMR (benzene-d6, 400 MHz):  8.46 (d, 2 H, 3JHH = 7.6 Hz, ortho-C6H5), 7.58 (t, 2 H, 3JHH 

= 7.6 Hz, meta-C6H5), 7.38 (t, 1 H, 3JHH = 7.6 Hz, para-C6H5), 4.91 (m, 1 H, CH(CH2)2), 

3.66 (d, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.61 (d, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 

3.34 (s, 2 H, CNCMe2CH2O), 2.91 (d, 2 H, 3JHH = 7.2 Hz, syn-CH(CH2)2), 2.28 (d, 2 H, 3JHH 

= 11.6 Hz, anti-CH(CH2)2), 1.05 (s, 6 H, CNCMe2CH2O), 1.02 (s, 6 H, CNCMe2CH2O), 0.79 

(s, 6 H, CNCMe2CH2O), 23.20 (d, 1 H, 1JRhH = 10.0 Hz, RhH). 13C{1H} NMR (benzene-d6, 

175 MHz): δ 136.71 (ortho-C6H5), 126.97 (meta-C6H5), 125.78 (para-C6H5), 93.41 (d, 1JRhC 

= 7.0 Hz, CH(CH2)2), 81.82 (CNCMe2CH2O), 80.53 (CNCMe2CH2O), 69.00 

(CNCMe2CH2O), 67.74 (CNCMe2CH2O), 32.99 (d, 1JRhC = 10.5 Hz, CH(CH2)2), 28.72 

(CNCMe2CH2O), 28.38 (CNCMe2CH2O), 28.11 (CNCMe2CH2O). 11B NMR (benzene-d6, 

128 MHz):  18.415N NMR (benzene-d6, 71 MHz):  165.6 (trans to RhH), 173.1 (cis 
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to RhH). endo-3: 1H NMR (benzene-d6, 400 MHz):  8.56 (d, 2 H, 3JHH = 6.8 Hz, ortho-

C6H5), 7.63 (t, 2 H, 3JHH = 7.6 Hz, meta-C6H5), 7.41 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 5.10 

(m, 1 H, CH(CH2), 3.64 (d, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.47 (d, 2 H, 2JHH = 8.4 Hz, 

CNCMe2CH2O), 3.29 (s, 2 H, CNCMe2CH2O), 3.01 (d, 2 H, 3JHH = 7.2 Hz, syn-CH(CH2)2), 

2.51 (d, 2 H, 3JHH = 11.2 Hz, anti-CH(CH2)2), 0.94 (s, 6 H, CNCMe2CH2O), 0.79 (s, 6 H, 

CNCMe2CH2O), 0.76 (s, 6 H, CNCMe2CH2O), 22.74 (s, br, 1 H, RhH). 13C{1H} NMR 

(benzene-d6, 175 MHz): δ 136.77 (ortho-C6H5), 127.05 (meta-C6H5), 125.81 (para-C6H5), 

88.28 (d, 1JRhC = 7.0 Hz, CH(CH2)2), 80.11 (CNCMe2CH2O), 79.97 (CNCMe2CH2O), 69.53 

(CNCMe2CH2O), 67.36 (CNCMe2CH2O), 37.46 (d, 1JRhC = 10.5 Hz, CH(CH2)2), 28.38 

(CNCMe2CH2O), 27.85 (CNCMe2CH2O), 27.63 (CNCMe2CH2O). 11B NMR (benzene-d6, 

128 MHz):  17.7� 15N NMR (benzene-d6, 71 MHz):  164.8 (trans to RhH), 173.8 (cis 

to RhH). 

ToMRhH(3-C3H4Ph) (3.3). Allylbenzene (0.59 mL) and [Rh(-Cl)(COE)2]2 (0.159 g, 0.22 

mmol) were allowed to react in benzene (10 mL) for 30 min to generate [Rh(-

Cl)(C3H5Ph)2]2. The resulting solution was then added solid Tl[ToM] (260 mg, 0.44 mmol) 

and stirred overnight. Solids were filtered off and the filtrate was evaporated to dryness. The 

residue was washed with pentane (2 × 2 mL) and the resulting solid was dissolved in toluene 

(10 mL). The toluene solution was concentrated to 0.5 mL and the solid was collected as a 

green powder (0.160 g, 0.265 mmol, 59.8%). 1H NMR (benzene-d6, 400 MHz):  8.51 (d, 2 

H, 3JHH = 7.6 Hz, ortho-C6H5), 7.60 (t, 2 H, 3JHH = 7.6 Hz, meta-C6H5), 7.44 (d, 2 H, 3JHH = 

7.6 Hz, ortho-CH2CHCHPh), 7.39 (t, 1 H, 3JHH = 7.6 Hz, para-C6H5), 7.11 (t, 2 H, 3JHH = 7.2 

Hz, meta-CH2CHCHPh), 7.09 (t, 1 H, 3JHH = 7.2 Hz, para-CH2CHCHPh), 5.62 (m, 1 H, 
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CH2CHCHPh), 3.98 (d, 1 H, 3JHH = 10.4 Hz, CH2CHCHPh), 3.64 (d, 1 H, 2JHH = 8.4 Hz, 

CNCMe2CH2O), 3.48 (dd, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.40 (dd, 2 H, 2JHH = 8.0 Hz, 

CNCMe2CH2O), 3.22 (d, 1 H, 3JHH = 9.6 Hz, syn-CH2CHCHPh), 3.20 (d, 1 H, 2JHH = 8.4 Hz, 

CNCMe2CH2O), 2.84 (d, 1 H, 3JHH = 11.2 Hz, anti-CH2CHCHPh), 1.02 (s, 3 H, 

CNCMe2CH2O), 0.91 (s, 3 H, CNCMe2CH2O), 0.83 (s, 3 H, CNCMe2CH2O), 0.76 (s, 3 H, 

CNCMe2CH2O), 0.72 (s, 3 H, CNCMe2CH2O), 0.39 (s, 3 H, CNCMe2CH2O), 22.48 (s, br, 1 

H, RhH). 13C{1H} NMR (benzene-d6, 175 MHz):  145.57 (ipso-CH2CHCHPh), 136.74 

(ortho-C6H5), 129.43 (meta-CH2CHCHPh), 129.21 (ortho-CH2CHCHPh), 127.09 (meta-

C6H5), 125.86 (para-C6H5), 125.54 (para-CH2CHCHPh), 90.06 (d, 1JRhC = 3.5 Hz, 

CH2CHCHPh), 81.39 (CNCMe2CH2O), 79.89 (CNCMe2CH2O), 79.38 (CNCMe2CH2O), 

69.91 (CNCMe2CH2O), 68.06 (CNCMe2CH2O), 67.56 (CNCMe2CH2O), 54.52 (d, 1JRhC = 

10.5 Hz, CH2CHCHPh), 36.54 (d, 1JRhC = 12.25 Hz, CH2CHCHPh), 28.52 (CNCMe2CH2O), 

27.91 (CNCMe2CH2O), 27.59 (CNCMe2CH2O), 27.48 (CNCMe2CH2O), 27.03 

(CNCMe2CH2O), 26.89 (CNCMe2CH2O). 11B NMR (benzene-d6, 128 MHz):  19.7. 15N 

NMR (benzene-d6, 71 MHz): 168.17 (cis to RhH), 172.10 (cis to RhH), 179.94 (trans 

to RhH). R (KBr, cm-1):  3041 (m), 2967 (m), 2927 (m), 2882 (m), 2081 (m, RhH), 1590 (s, 

CN), 1462 (w), 1366 (m), 1351 (m), 1276 (m), 1198 (m), 1177 (m), 1153 (m), 1022 (w), 999 

(m), 970 (m). Anal. Calcd. for C30H39BRhN3O3: C, 59.72; H, 6.52; N, 6.96.  Found: C, 60.18; 

H, 6.11; N, 6.88. Mp: 191192 °C, dec.

ToMRhH(2-OAc) (3.4). Acetic acid (0.021 g, 0.346 mmol) and 3.1 (0.103 g, 0.173 mmol) 

were allowed to react in benzene (10 mL) at room temperature for 10 min. The resulting 

mixture was then evaporated to dryness. The residue was extracted with pentane (15 mL), 
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dried under vacuum, and crystallized in toluene at 35 °C to give a brown solid (0.043 g, 

0.076 mmol, 44.0%). 1H NMR (benzene-d6, 400 MHz):  8.40 (d, 2 H, 3JHH = 7.2 Hz, ortho-

C6H5), 7.57 (t, 2 H, 3JHH = 7.6 Hz, meta-C6H5), 7.38 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 3.78 

(s, 2 H, CNCMe2CH2O), 3.52 (d, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.47 (d, 2 H, 2JHH = 

8.4 Hz, CNCMe2CH2O), 1.59 (s, 3 H, O2CMe), 1.25 (s, 6 H, CNCMe2CH2O), 1.17 (s, 6 H, 

CNCMe2CH2O), 1.11 (s, 6 H, CNCMe2CH2O), 13.23 (d, 1 H, 1JRhH = 11.6 Hz, RhH). 

13C{1H} NMR (benzene-d6, 175 MHz):  190.29 (O2CMe), 136.31 (ortho-C6H5), 127.36 

(meta-C6H5), 126.38 (para-C6H5), 82.22 (CNCMe2CH2O), 80.33 (CNCMe2CH2O), 68.42 

(CNCMe2CH2O), 67.03 (CNCMe2CH2O), 28.38 (CNCMe2CH2O), 27.66 (CNCMe2CH2O), 

23.91 (O2CMe). 11B NMR (benzene-d6, 128 MHz):  18.2. 15N NMR (benzene-d6, 71 MHz): 

 154.3 (trans to RhH), 221.0 (cis to RhH). IR (KBr, cm-1):  2963 (m), 2927 (m), 2076(m, 

RhH), 1597 (s, CN), 1470 (s, COO), 1387 (w), 1367 (m), 1284 (m), 1263 (m), 1202 (m), 

1162 (m), 1026 (w), 999 (w), 968 (m). Anal. Calcd. for C23H33BRhN3O5: C, 50.66; H, 6.10; 

N, 7.71. Found: C, 51.05; H, 6.23; N, 7.50. Mp 115118 °C, dec. 

ToMRhBr(3-C3H4Ph) (3.5). A benzene solution of 3.3 (0.104g, 0.172 mmol) and NBS 

(0.031 g, 0.174 mmol) was stirred at room temperature overnight. The resulting solution was 

evaporated to dryness and washed with pentane (2 mL) and ether (4  1.5 mL). The residue 

was dried under vacuum to give a brown solid (0.049 g, 0.072 mmol, 42%). 1H NMR 

(methylene chloride-d2, 700 MHz):  7.91 (d, 2 H, 3JHH = 6.3 Hz, ortho-CH2CHCHPh), 7.79 

(d, 2 H, 3JHH = 7.0 Hz, ortho-C6H5), 7.39 (t, 1 H, 3JHH = 7.0 Hz, para-CH2CHCHPh), 7.33 (t, 

2 H, 3JHH = 7.7 Hz, meta-CH2CHCHPh), 7.21 (t, 2 H, 3JHH = 7.0 Hz, meta-C6H5), 7.14 (t, 1 H, 

3JHH = 7.0 Hz, para-C6H5), 6.54 (m, 1 H, CH2CHCHPh), 5.43 (d, 1 H, 3JHH = 13.3 Hz, 
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CH2CHCHPh), 4.45 (d, 1 H, 3JHH = 8.4 Hz, syn-CH2CHCHPh), 4.14 (d, 1 H, 3JHH = 11.9 Hz, 

anti-CH2CHCHPh), 4.11 (d, 1 H, 2JHH = 7.7 Hz, CNCMe2CH2O), 3.98 (d, 1 H, 2JHH = 8.4 Hz, 

CNCMe2CH2O), 3.96 (d, 1 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.92 (d, 1 H, 2JHH = 7.7 Hz, 

CNCMe2CH2O), 3.77 (d, 1 H, 2JHH = 7.7 Hz, CNCMe2CH2O), 3.70 (d, 1 H, 2JHH = 8.4 Hz, 

CNCMe2CH2O), 1.52 (s, 3 H, CNCMe2CH2O), 1.40 (s, 3 H, CNCMe2CH2O), 1.31 (s, 3 H, 

CNCMe2CH2O), 1.18 (s, 3 H, CNCMe2CH2O), 0.98 (s, 3 H, CNCMe2CH2O), 0.75 (s, 3 H, 

CNCMe2CH2O). 13C{1H} NMR (methylene chloride-d2, 175 MHz):  141.77 (ipso-

CH2CHCHPh), 135.85 (ortho-C6H5), 129.38 (meta-CH2CHCHPh), 128.61 (ortho-

CH2CHCHPh), 127.04 (para-CH2CHCHPh), 126.59 (meta-C6H5), 125.67 (para-C6H5), 

112.29 (CH2CHCHPh), 81.40 (CNCMe2CH2O), 80.74 (CNCMe2CH2O), 80.56 

(CNCMe2CH2O), 72.26 (CNCMe2CH2O), 72.12 (CNCMe2CH2O), 70.22 (CNCMe2CH2O), 

64.71 (CH2CHCHPh), 37.34 (d, 1JRhC = 12.25 Hz, CH2CHCHPh), 28.18 (CNCMe2CH2O), 

27.86 (CNCMe2CH2O), 27.81 (CNCMe2CH2O), 27.45 (CNCMe2CH2O), 26.75 

(CNCMe2CH2O), 26.21 (CNCMe2CH2O). 11B NMR (methylene chloride-d2, 128 MHz):  

18.2.  15N NMR (methylene chloride-d2, 71 MHz): 181.5 (cis to RhBr), 191.1 (cis to 

RhBr), 217.6 (trans to RhBr). R (KBr, cm-1): 3039 (w), 2975 (w), 2883 (w), 1590 (s, 

CN), 1466 (w), 1387 (w), 1368 (w), 1286 (m), 1245 (w), 1202 (m), 1028 (w), 1001 (w), 973 

(m). Anal. Calcd. for C30H38BRhN3O3Br: C, 52.81; H, 5.61; N, 6.16; Found: C, 52.86; H, 

5.48; N, 5.90. Mp: 215218 °C, dec. 

ToMRh(CNt-Bu)2 (3.6). CNt-Bu (51 µL, 0.46 mmol) was added to a benzene solution of 3.1 

(0.138 g, 0.232 mmol). The resulting solution was stirred for 2 h, and then the volatile 

materials were evaporated under reduced pressure. The residue was then washed with ether 
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to give a yellow solid (0.100 g, 0.153 mmol, 66.2%). 1H NMR (benzene-d6, 400 MHz):  

8.42 (d, 2 H, 3JHH = 7.2 Hz, ortho-C6H5), 7.48 (t, 2 H, 3JHH = 7.6 Hz, meta-C6H5), 7.25 (t, 1 H, 

3JHH = 7.2 Hz, para-C6H5), 3.71 (s, 6 H, CNCMe2CH2O), 1.35 (s, 18 H, CNCMe2CH2O), 

0.97 (s, 18 H, CNCMe3). 
13C{1H} NMR (benzene-d6, 175 MHz):  135.47 (ortho-C6H5), 

128.50 (d, 1JRhC = 63.5 Hz, RhCNCMe3), 127.35 (meta-C6H5), 125.37 (para-C6H5), 79.00 

(CNCMe2CH2O), 68.33 (CNCMe2CH2O), 55.98 (CNCMe3), 30.76 (CNCMe2CH2O), 28.70 

(CNCMe3). 
11B NMR (benzene-d6, 128 MHz):  18.015N NMR (benzene-d6, 71 MHz):  

159.6 (CNCMe2CH2O), 201.1 (CNCMe3). R (CH2Cl2, cm-1): 2962 (m), 2924 (m), 2892 

(m), 2865 (w), 2208 (w, C≡N), 2147 (s, C≡N), 2103 (s, C≡N), 2068 (s, C≡N), 1614 (m, C=N), 

1585 (s, C=N), 1460 (m), 1431 (w), 1368 (m), 1352 (m), 1274 (m), 1196 (m), 1173 (w), 1162 

(w), 1119 (w), 1036 (w), 966 (m). Anal. Calcd. for C31H47BN5O3Rh: C, 57.15; H, 7.27; N, 

10.75  Found: C, 57.00; H, 6.94; N, 10.32. Mp: 216219 ºC , dec. 

exo-ToMRh(NHTs)(3-C3H5) (3.7). 3.2 (0.101 g, 0.192 mmol) was added to a solution of 

TsN3 (38 mg, 0.19 mmol) in benzene (10 mL). The resulting solution was stirred for 24 h. 

The benzene solvent was evaporated in vacuo, and the residue was dissolved in a minimal 

amount of toluene and cooled to 30 °C for crystallization. Orange needles were collected by 

filtration at 30 °C, giving analytically pure ToMRh(NHTs)(3-C3H5) (3.7) in good yield 

(0.109 g, 0.157 mmol, 81.7%). 1H NMR (benzene-d6, 400 MHz):  8.26 (d, 2 H, 3JHH = 7.2 

Hz, ortho-C6H5), 7.86 (d, 2 H, 3JHH = 8.4 Hz, ortho-C6H4Me), 7.54 (t, 2 H, 3JHH = 7.6 Hz, 

meta-C6H5), 7.36 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 6.87 (d, 2 H, 3JHH = 8.0 Hz, meta-

C6H4Me), 5.60 (m, 1 H, CH(CH2)2), 5.17 (d, 2 H, 3JHH = 12.4 Hz, anti-CH(CH2)2), 4.19 (d, 2 

H, 3JHH = 8.8 Hz, syn-CH(CH2)2), 3.58 (d, 2 H, 2JHH = 8.0, CNCMe2CH2O), 3.39 (d, 2 H, 
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2JHH = 8.4 Hz, CNCMe2CH2O), 3.03 (s, 2 H, CNCMe2CH2O), 1.97 (s, 3 H, C6H4Me), 1.40 (s, 

6 H, CNCMe2CH2O), 0.92 (s, 6 H, CNCMe2CH2O), 0.37 (s, 6 H, CNCMe2CH2O). 13C{1H} 

NMR (benzene-d6, 175 MHz):  147.44 (ipso-C6H4Me), 140.17 (para-C6H4Me), 136.40 

(ortho-C6H5), 129.34 (meta-C6H4Me), 127.18 (meta-C6H5), 126.71 (ortho-C6H4Me), 126.32 

(para-C6H5), 103.09 (d, 1JRhC = 5.3 Hz, CH(CH2)2), 82.78 (CNCMe2CH2O), 80.63 

(CNCMe2CH2O), 70.07 (CNCMe2CH2O), 69.08 (CNCMe2CH2O), 47.49 (d, 1JRhC = 10.5 Hz, 

CH(CH2)2), 28.31 (CNCMe2CH2O), 27.58 (CNCMe2CH2O), 27.51 (CNCMe2CH2O), 21.45 

(C6H4Me). 11B NMR (benzene-d6, 128 MHz):  18.3. 15N{1H} NMR (benzene-d6, 71 MHz): 

 177.59 (cis to RhNHTs), 255.43 (trans to RhNHTs). R (KBr, cm-1): 3341 (m, NH), 

3000 (m), 2970 (m), 2928 (m), 2885 (m), 1591 (s, CN), 1462 (m), 1370 (m), 1287 (s, SO2), 

1262 (m), 1203 (s, SO2), 1158 (m), 1134 (s, SO2), 1088 (s), 998 (m), 965 (s, SO2). Anal. 

Calcd. for C31H42BN4O5RhS: C, 53.46; H, 6.08; N, 8.04. Found: C, 53.90; H, 6.38; N, 7.85. 

Mp: 200202 °C, dec. 

ToMRhH(NHTs)OH2 (3.8). 3.1 (0.166 g, 0.279 mmol) was added to a solution of TsN3 

(0.055 g, 0.279 mmol) in 10 mL of benzene (10 mL). The resulting mixture was stirred at 

room temperature for 3 h. All volatiles were evaporated, and the residue was washed with 

pentane (2 × 2 mL) to give a brown solid (0.126 g, 0.187 mmol, 67.0%). 1H NMR (benzene-

d6, 400 MHz):  8.39 (d, 2 H, 3JHH = 6.8 Hz, ortho-C6H5), 8.19 (d, 2 H, 3JHH = 8.0 Hz, ortho-

C6H4Me), 7.56 (t, 2 H, 3JHH = 7.2 Hz, meta-C6H5), 7.37 (t, 1 H, 3JHH = 7.6 Hz, para-C6H5), 

6.88 (d, 2 H, 3JHH = 8.0 Hz, meta-C6H4Me), 3.79 (d, 1 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 

3.73 (d, 1 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.58 (d, 1 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 

3.47 (d, 1 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.38 (d, 1 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 
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3.30 (d, 1 H, 2JHH = 8.8 Hz, CNCMe2CH2O), 2.32 (s, 1 H, NHTs), 1.92 (s, 3 H, C6H4Me), 

1.63 (s, 3 H, CNCMe2CH2O), 1.61 (s, 3 H, CNCMe2CH2O), 1.08 (s, 3 H, CNCMe2CH2O), 

1.06 (s, 3 H, CNCMe2CH2O), 0.89 (s, 3 H, CNCMe2CH2O), 0.71 (s, 3 H, CNCMe2CH2O), 

15.75 (d, 1 H, 1JRhH = 9.2 Hz, RhH). 13C{1H} NMR (benzene-d6, 175 MHz):  142.41 (ipso-

C6H4Me), 142.31 (para-C6H4Me), 136.38 (ortho-C6H5), 129.78 (meta-C6H4Me), 127.30 

(meta-C6H5), 126.37 (ortho-C6H4Me), 126.31 (para-C6H5), 82.25 (CNCMe2CH2O), 80.70 

(CNCMe2CH2O), 79.70 (CNCMe2CH2O), 69.48 (CNCMe2CH2O), 67.14 (CNCMe2CH2O), 

66.98 (CNCMe2CH2O), 28.93 (CNCMe2CH2O), 28.79 (CNCMe2CH2O), 27.77 

(CNCMe2CH2O), 27.57 (CNCMe2CH2O), 27.53 (CNCMe2CH2O), 27.29 (CNCMe2CH2O), 

21.51 (C6H4Me). 11B NMR (benzene-d6, 128 MHz):  18.2. 15N{1H} NMR (benzene-d6, 71 

MHz):  154.1 (trans to RhH), 205.8 (trans to RhOH2), 228.6 (trans to RhNHTs). R 

(KBr, cm-1): 3379 (br, OH), 3300 (w, NH), 3042 (w), 2964 (m), 2927 (m), 2889 (m), 2067 

(m, RhH), 1594 (s, CN), 1495 (w), 1462 (m), 1433 (w), 1388 (w), 1367 (m), 1357 (m), 1289 

(s, SO2), 1267 (s, SO2), 1205 (s, SO2), 1160 (m), 1126 (w), 1090 (m), 1028 (w), 991 (m), 

969 (s, SO), 881 (w). Anal. Calcd. for C28H40BN4O6RhS: C, 49.86; H, 5.98; N, 8.31  Found: 

C, 49.91; H, 6.01; N, 8.30. Mp: 184186 °C, dec. 
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Chapter 4. Acceptorless photolytic alcohol decarbonylation and amine coupling 

catalyzed by tris(oxazolinyl)boratorhodium compounds 

Modified from a paper to be submitted to Angewandte Chemie International Edition 

Hung-An Ho,‡ Arkady Ellern, Aaron D. Sadow* 

Abstract 

The compound ToMRhH(3-C8H13) (3.1) reacts with an excess amount of methanol, 

ethanol and benzylalcohol to afford the complex ToMRh(H)2CO (4.1). We carried out 

catalytic primary alcohol decarbonylation by using 4.1 as the catalyst under photolytic 

condition, which generates hydrocarbons, CO and H2 as the products. A series of rhodium 

and iridium complexes were examined for screening the catalyst efficiency of an alcohol 

decarbonylation, and it turned out that the compound ToMRh(CO)2 (2.2) is even more 

reactive than 4.1 for decarbonylation of primary alcohols. To further expand the generality, 

alkyl and aryl alcohols have been investigated by using 10 mol% of 2.2 to produce 

hydrocarbons in excellent yields under UV irradiation. Several alkyl and aryl amines were 

also studied under the same catalytic conditions. The net reaction of the amine transformation 

is the imine formation resulting from amine coupling and it serves as the first example of 

photocatalytic amine coupling under oxidant-free condition. To study the reaction 

mechanism, ToMRhH(Ph)CO (4.2) and ToMRhH(C4H3O)CO (4.3) are synthesized by treating 

3.1 with benzaldehyde and furfural respectively. Also, 3.1 and 1 atm of H2 react in 
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acetonitrile to give the complex ToMRh(H)2(NCMe) (4.4). These compounds react with 

alcohol and benzaldehyde under thermal and/or photolytic conditions. Our mechanistic 

studies suggest photo-chemical ligand dissociation is not turnover-limiting, and studies of 

putative intermediates suggest several pathways may be involved in these conversions. 

Introduction 

Strategic substrate dehydrogenation has become a popular method for both bond 

formation and functional group transformation, where alcohols and amines have served as 

central roles for substrates selection.1  

RCH2XH
R H

X

X = O

- CO

decarbonylation
RH

X = NH
coupling

+ RCH2NH2
X = NH

X = O, NH

dehydrogenation

- NH3

RCH=NCH2R

RCH2OH RH + CO + H2 H = 22-30 Kcal/mol

RCH2NH2 —
2
1 RCH=NCH2R + NH3 + H2—

2
1 —

2
1

Net,

H = 7 Kcal/mol

- H2

 

Scheme 4.1. Catalytic hydrocarbon formation and imine synthesis via dehydrogenation and 

decarbonylation/coupling process. 

The dehydrogenated products of primary alcohols and amines could be further converted to 

hydrocarbons and imines via aldehyde decarbonylation and amine coupling respectively, in 
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which the net reactions are both endothermic (2230 Kcal/mol for alcohol decarbonylation 

and 7 Kcal/mol for amine coupling) (Scheme 4.1).2 The alcohol decarbonylation process 

contains potential to be applied to removing highly oxygenated biomass-derived materials to 

become value-added fuels3,4 while imines are important synthetic intermediates in organic 

synthesis, such that direct transformation of amines to imines has drawn much attention.5  

Numerous examples have been demonstrated for stoichiometric alcohol decarbonylation. 

The original synthesis of Vaska's iridium complex involved ethylene glycol 

decarbonylation.6 The reaction between Cp*IrCl2(PMe3) and primary alcohols gives the 

carbonyl-incorporated complex [Cp*IrR(CO)(PMe3)]Cl (R = Me, Et, Ph) as the product.7 

Some iridium pincer compounds have also been documented to decarbonylate alcohols under 

thermal or photolytic conditions.8 Tp*Rh(1,3-COD) reacts with methanol photolytically to 

afford the dihydride carbonyl complex Tp*Rh(H)2CO.9 Also, Tp-coordinated ruthenium 

complex TpRuCl(PPh3)(CH3CN) undergoes decarbonylation with various primary alcohols 

in the presence of NaBH4.
10 Under basic conditions, Wilkinson and his co-workers have 

disclosed decarbonylation of methoxide by the complex RuHCl(PPh3)3 to generate 

Ru(H)2(CO)(PPh3)3.
11 Some other ruthenium complexes have been investigated to mediate 

the alcohol decarbonylations.12 Meanwhile, limited catalytic cycles have been furnished and 

typically require a CO trap (for Pauson-Khand type reactions)13 or a base to couple with CO 

to expel thermodynamically favorable CO2 to increase the decarbonylation efficiency.14 

On the other hand, photocatalytic amine coupling under aerobic conditions for imine 

synthesis have been a hot topic very recently. This type of reaction often needs molecular 

oxygen as an oxidant either at high pressure or atmospheric pressure. Zhao and co-workers 
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reported selective formation of imines by aerobic photocatalytic oxidation of amines on 

TiO2.
15 Another example of using inorganic metal oxide for amine oxidation includes using 

Nb2O5 photocatalyst under 1 atm of O2 with visible light.16 In addition, mesoporous graphite 

carbon nitride (mpg-C3N4) species for oxidation of amines into imines under 0.5 MPa O2 in 

excellent yields.17 Herein, we report an acceptorless (a CO trap and/or a base is not needed) 

alcohol decarbonylation as well as the first example of photocatalytic amine coupling under 

oxidant-free condition. 

Results and Discussion 

Stoichiometric alcohol and aldehyde decarbonylation reactions 

In Chapter 3, we reported the synthesis of 3.1 via salt metathesis of Tl[ToM] and [Rh(-

Cl)(COE)2]2. Reductive elimination of 3.1 in reactions with various nucleophiles or 2 

electron donors give the related complexes as well as cyclooctene as the major reaction 

pathway. That is, 3.1 could be viewed as a masked equivalent of the reactive {ToMRh(I)} 

species precursor, and we attempt to utilize this pathway to react with primary alcohols 

(methanol, ethanol and benzyl alcohol). We initially added excess methanol to the solution of 

3.1 in benzene-d6. At room temperature, only starting materials are observed in mixtures of 

3.1 and MeOH. However, 3.1 reacts with excess of methanol upon heating to 60 ºC in 

benzene-d6 to give ToMRh(H)2CO (4.1) within 3 h in moderate yield (eq 4.1). 
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Intriguingly, treating 3.1 with either ethanol or benzyl alcohol under the same condition 

gives 4.1 as the only major product accompanied with methane or benzene formation 

respectively. These reactions were monitored by 1H NMR spectroscopy in benzene-d6.  

 

The reaction between 3.1 and ethanol-d6 in benzene affords ToMRh(D)2CO, revealing that the 

metal hydride is originated from alcohols. 4.1 is Cs symmetric as evidenced by the splitting 

pattern in the 1H NMR spectrum in which three singlets were observed at 1.03, 0.99 and 0.98 

ppm for the methyl groups in the oxazolines. However, the chemical shifts of all the 

methylene protons are too close to be distinguished. More importantly, the distinctive 

dihydride resonance displayed a doublet at 13.33 ppm (1JRhH = 18.4 Hz). In the 13C{1H} 

NMR spectrum, the carbonyl signal was detected at 192.05 ppm (1JRhC = 68.3 Hz). The 

through-bond cross-peak between the rhodium hydride and the trans oxazoline nitrogen was 

detected in 1H15N HMBC experiment (166.6 ppm) like the cases in the previous chapter 

whereas the oxazoline nitrogen trans to CO was observed at 176.8 ppm. Lastly, the 

absorption band at 2019 cm-1 in the IR spectrum indicated the presence of CO. 

(4.1) 

(4.2) 
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A reasonable and possible intermediate of the alcohol decarbonylation is the formation of 

an aldehyde. Therefore, it is realistic to investigate the interaction between 3.1 and an 

aldehyde. Treating 3.1 with benzaldehyde in benzene-d6 gives the complex ToMRhH(Ph)CO-

d6 (4.2-d6) at room temperature over 6 h (eq 4.3). 

 

On the other hand, photolysis of the dicarbonyl complex 2.2 (ToMRh(CO)2) in benzene-d6 

with UV light provides the same product, 4.2-d6 (eq 4.4). For comparison, benzene CH 

bond activation mediated by Tp*Rh(CO)2 was reported two decades ago. The benzene CH 

activation product, Tp*RhH(Ph)CO, is known to react with benzene-d6 to give 

Tp*RhH(Ph)CO-d6.
18  

 

Owing to the C1 symmetry of the complex 4.2-d6, six distinct oxazoline dimethyl and 

methylene peaks displayed in the 1H NMR spectrum. The 13C signal of the phenyl ipso 

carbon bonded to the rhodium center was detected at 143.07 ppm (1JRhC = 25.7 Hz). The 

chemical shift at 192.71 ppm (1JRhC = 65.8 Hz) in the 13C{1H} NMR spectrum as well as an 

absorption at 2030 cm-1 in the IR spectrum confirmed the presence of CO.  

(4.3) 

(4.4) 
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To further expand the generality of an aldehyde-decarbonylated complex such as 4.2, the 

reaction between furfural and 3.1 was carried out to give the compound ToMRhH(C4H3O)CO 

(4.3) at room temperature over 20 min (eq 4.5). 

 

The complex 4.3 does not undergo hydrocarbon exchange with the solvent to give 4.2-d6. In 

addition, like the complex 4.2, 4.3 was not isolated because it decomposes upon evaporation 

of the solvent. The diagnostic hydride appeared at 12.08 ppm (1JRhH = 18.8 Hz) in the 1H 

NMR spectrum. Also, three sets of doublet of doublet peaks for rhodium-bonded furyl group 

were observed at 7.59, 6.41 and 6.32 ppm representing 5-, 4- and 3-furyl protons respectively. 

This assignment was based on both chemical shifts and coupling constants. Moreover, the 

13C chemical shift of the furyl carbon bonded to the rhodium center was detected at 150.71 

ppm (1JRhC = 32.0 Hz) as well as the one at 3- position (119.72 ppm, 2JRhC = 4.4 Hz). Besides, 

the peak at 190.65 ppm in the 13C{1H} NMR spectrum was assigned as CO resonance (1JRhC 

= 61.8 Hz). Regarding to the IR spectrum, the indicative absorption at 2280 and 2045 cm-1 

were assigned to hydride and CO respectively. 

Even though 4.3 could not be isolated, its reactions with P(OMe)3 generates the CO-

monosubstituted compound 2.4 along with the reductively eliminated furan (eq 4.6). 

(4.5) 
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This reaction strongly supports the proposed structure and the connectivity of 4.3. 

In addition to an aldehyde, {ToMRh(H)2} is also a highly possible intermediate during the 

decarbonylation process. We therefore sought a {ToMRh(H)2} compound with a labile ligand, 

treating 3.1 under 1 atm H2 in acetonitrile affords ToMRh(H)2NCCH3 (4.4) at room 

temperature in 3 h (eq 4.7). 

 

The proton signal of the acetonitrile in 4.4 appeared at 0.61 ppm and the distinctive hydride 

peak displayed at 16.20 ppm (1JRhH = 18.4 Hz) as a doublet in the 1H NMR spectrum. The 

1H15N HMBC experiment showed that the through metal cross-peak was observed between 

the metal hydride and the trans oxazoline nitrogen at 159.8 ppm whereas the oxazoline 

nitrogen trans to the acetonitrile was observed at 192.5 ppm as well as the nitrile nitrogen 

(NCCH3) at 198.7 ppm. The hydride absorption bands in the IR spectrum were detected at 

2054 and 2034 cm-1. The X-ray quality crystal was obtained by slow vapor diffusion of ether 

into CH2Cl2 solution of 4.4 at –30 C. 

(4.6) 

(4.7) 



85 
 

 

Figure 4.1. ORTEP diagram of 4.4. Ellipsoids are drawn at 50% probability. All hydrogens 

except the hydrides are omitted for clarity. Selected bond distances (Å): Rh1N1, 2.193(3); 

Rh1N2, 2.173(3); Rh1N3, 2.041(3); Rh1N4, 1.987(3), Rh1H1r, 1.53(4), Rh1H2r, 

1.56(4). Selected bond angles (°): N2Rh1N1, 86.90(10); N4C22C23, 178.1(4); 

H1rRh1H2r, 80.(2); N1Rh1H1r, 95.5(14); N2Rh1H2r, 97.9(16). 
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 In Chapter 3, 3.1 reacts with acetic acid via protonation of 3-C8H13 to give 3.4 (eq 3.4), 

and this was observed by a labeling experiment with AcOD. However, treating 3.1 with 

methanol-d4 does not generate cyclooctene-d1. This indicates that the reductive elimination is 

the only reaction mechanism for alcohol decarbonylations. Additionally, 3.1 is unchanged 

when heated at 60 C in benzene for 6 h in the absence of aldehydes and alcohols and the 

reductive elimination rate decreases in the following order: CO ~ CNt-Bu > aldehyde > 

alcohol. These observations clearly suggest the substrate-induced reductive elimination of 3.1 

is the first step for alcohol and aldehyde decarbonylations. 

Catlaytic alcohol decarbonylations and amine couplings 

Several attempts were made to develop the catalysis for this conversion. Initially, we 

used 10 mol% of 4.1 as the catalyst and cyclohexanemethanol (CyCH2OH)19 as the substrate 

in toluene-d8. This mixture was heated at 120 C for 24 h, but the resulting mixture contained 

only the alcohol starting material and black precipitate afterward. Next, we considered about 

using sacrificial reagent to assist in removing the major side products, H2 and CO. For 

example, norbornene has been reported as an excellent hydrogen acceptor especially in 

alkane dehydrogenations.20 Thus, one or more equivalents of norbornene was added to the 

mixture of CyCH2OH and 4.1 in toluene-d8, heated at 120 C. However, decomposition of 

rhodium species occurs after 12 h without conversion of CyCH2OH. For another example, 

trimethylamine N-oxide (Me3NO) has been known as a reagent for metal carbonyl 

decarbonylation to give trimethylamine and CO2.
21 Unfortunately, Me3NO is an ineffective 

additive when employing in the reaction at room temperature. 
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We then attempted on other strategies to achieve catalytic conversion. Light has been 

well studied for photo-induced CO dissociation from a metal complex. A classic example 

involves the photolysis of W(CO)6 in the presence of 2 electron donor (L) to obtain 

W(CO)5L, as well as many other types of reactions.22 Initially, we investigated the photolysis 

of benzene solution of CyCH2OH with 10 mol% of 4.1 at room temperature under flood lamp 

(60 W) irradiation. The result showed that all the materials remained and no change was 

detected. A small amount of CyCH2OH could be converted to cyclohexane (CyH) after 

irradiating with rayonet reactor (250 nm) within 24 h (2.1%). Excitingly, photolysis of the 

reaction mixture with 450 W medium pressure mercury UV lamp gives 68% yield of CyH. 

The yield exceeds 95% after continuous 72 h irradiation (eq 4.8, Table 4.1, entry 1). GC-MS 

of aliquots of the catalytic reaction mixtures of CyCH2OH indicates the presence of the 

aldehyde, CyCHO. The gas phase withdrawn from a head space in this reaction was analyzed 

by GC-MS, revealing that D2 and CO were formed during the decarbonylation process.23 

 

Switching the solvent to either acetonitrile-d3 or methylene chloride-d2 under the same 

conditions does not give any converted product (Table 4.1, entries 2 and 3). The sacrificial 

“acceptor” reagents did not increase the conversion efficiency. Instead, the reaction is 

inhibited by adding norbornene, which gives only 15% yield (Table 4.1, entry 4). Meanwhile, 

addition of Me3NO results in catalyst decomposition (Table 4.1, entry 5). Several rhodium 

chloride dimers commonly used in catalysis were investigated in this reaction. However, 

none of these readily available rhodium complexes catalyze the conversion of CyCH2OH  

(4.8) 
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Table 4.1. Conditions and catalysts tested for the catalytic decarbonylation of CyCH2OH.a 

Entry Solvent Catalyst/ Additive Time (h) Yield (%)b 

1 C6D6 4.1 72 > 95 

2 CD2Cl2 4.1 24 0 

3 CD3CN 4.1 24 0 

4 C6D6 4.1/ norbornenec 24 15 

5 C6D6 4.1/ Me3NOc 24 0 

6 C6D6 [Rh(CO)2Cl]2 24 0 

7 C6D6 [Rh(COE)2Cl]2 24 0 

8 C6D6 [Rh(COD)2Cl]2 24 0 

9 C6D6 [Rh(CO)2Cl2]2/ 

dppm 

24 0 

10 C6D6 [Rh(CO)2Cl2]2/ 

dppp 

24 

72 

0.8 

1.6 

11d C6D6 [Rh(dppp)2Cl] 24 0 

12d C6D6 [Rh(CO)Cl(dppp)]2 24 0 

13d C6D6 [Rh(dppe)2Cl] 24 0 

14d C6D6 [Rh(dppe)ClCO] 24 0 

15 C6D6 Cp*Rh(CO)2 24 0 

16 C6D6 Cp*Ir(CO)2 24 0 

17 C6D6 Tp*Rh(CO)2 72 36 

18 C6D6 ToMRh(CO)2 (2.2) 24 > 95 

19 C6D6 ToPRh(CO)2 (2.3) 72 56 

20 C6D6 ToMIr(CO)2 24 0 

21 C6D6 (acac)Rh(CO)2 24 0 

22 C6D6 Bp*Rh(CO)2 24 0 

23 C6D6 [{N-Me-2-
ToM}Rh(CO)2]OTf 
(2.5) 

24 0 

a Reaction conditions: 0.09 mmol of CyCH2OH, 0.009 mmol of catalyst, 0.7 mL of solvent, 450 W medium 
pressure Hg lamp. b NMR yield. c 1 equiv of the additive. d Thermal conditions, in the dark at 110 ºC. 
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(Table 4.1, entries 68). 

Furthermore, the combination of [Rh(CO)2Cl]2 and dppm shows no conversion at all 

whereas the carbonyl dimer with dppp gives 0.8 and 1.6 % conversion after 24 h and 72 h 

respectively (Table 4.1, entries 9 and 10). Rhodium(I) phosphine-based aldehyde 

decarbonylation catalysts are not active for alcohol dehydrogenation/decarbonylation under 

thermal or photochemical conditions.24 For example, [Rh(dppp)2]Cl does not provide 

detectable quantities of cyclohexane under photolytic conditions, and a mixture of 

[RhCl(CO)2]2 and dppp gives only 1.6% conversion after 72 h of photolysis (Table 4.1, 

entries 1114). 

Cp*M(CO)2 (M = Rh, Ir) and Tp*Rh(CO)2 are known to react with CH bonds under 

photochemical conditions.18,25
 However, neither Cp*M(CO)2 compound provides 

cyclohexane from CyCH2OH under the photolytic conditions (Table 4.1, entries 15 and 16). 

Interestingly, Tp*Rh(CO)2 catalyzes the partial conversion of CyCH2OH to CyH, CO, and H2 

under photolytic conditions (Table 4.1, entry 17). 2-Tp*RhCO was proposed as a 

photochemically generated intermediate in CH bond activation studies;26 an isoelectronic 

[ToMRhCO] intermediate should be accessible from the photolysis of the dicarbonyl 2.2, and 

this initial photolysis would provide an entry into a catalytic sequence of dehydrogenation 

and decarbonylation based on 4.1 and 2.2. In fact, 2.2 is also an active catalyst for 

photochemical (but not thermal) alcohol decarbonylation and surprisingly, more active than 

4.1 (Table 4.1, entry 18). In contrast to the rhodium complexes, the iridium analogue, 

ToMIr(CO)2,
27 is not an effective catalyst under these conditions for alcohol decarbonylation 

(Table 4.1, entry 20). We speculated that the bidentate dicarbonyl complexes could catalyze 
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the decarbonylation. The (acac)Rh(CO)2 and Bp*Rh(CO)2 complexes as well as the cationic 

[{N-Me-ToM}Rh(CO)2]OTf (2.5) were tested, yet these complexes fail to convert the alcohol 

to the alkane (Table 4.1, entries 2123). 

We then investigated the reaction using 2.2 as the catalyst for the decarbonylation of a 

sereis of primary alcohols (Table 4.2). The overall yield ranges from 81% to 99 %.  

Table 4.2. Substrate scope of the photolytic alcohol decarbonylation.a 

 

Entry R Time (h)  Yield (%)b 

1 Cyp 24 93 

2c Cy 24 94 

3c Ph 24 92 

4 4-MeC6H4 24 92 

5 4-MeOC6H4 24 88 

6 4-t-BuC6H4 24 90 

7d 4-XC6H4 24 0 

8 4-FC6H4 36 95 

9 PhCH2 24 99 

10 PhCH2CH2 24 94 

11 2-Naphthalyl 72 84 

12 4-PhC6H4 72 81 

13 Me3SiCH2 36 90 
a Reaction conditions: Reaction conditions: 0.09 mmol of alcohols, 0.009 mmol of 2.2, 0.7 mL of benzene, 450 
W medium pressure Hg lamp. b GC yield. c Use toluene as the solvent. d X = CO2Me, NO2, Cl. 
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The alkyl alcohols (Table 4.2, entries 1 and 2) including silicon substituted 2,2-dimethyl 

butanol (Table 4.2, entry 13) were converted in excellent yields. 

The benzyl alcohol derivatives were also decarbonylated to give arenes. Some of these 

functionalized substrates contain ether linkage or fluorine substituted phenyl rings (Table 4.2, 

entries 36 and 8). In contrast, this catalyst system do not tolerate ester, nitro and chloro 

functional groups, presumably due to deactivation of the reactive ToMRh(CO) intermediate 

by these moieties (Table 4.2, entry 7). Other alkyl/ aryl-tethered alcohols are also 

successfully decarbonylated (Table 4.2, entries 9 and 10). The biphenyl and naphthalyl 

methanol provide a slightly lower yield and longer reaction time probably due to the steric 

effect (Table 4.2, entries 11 and 12). 

A dehydrogenation process of an alcohol must occur to generate an aldehyde as observed 

by GC-MS, and we suspected that amines could also undergo a dehydrogenation process 

whereas it has been documented that even a double dehydrogenation would proceed to form 

a nitrile.28 Subsequently, we carried out the reaction under the same alcohol decarbonylation 

condition, using isobutylamine as the substrate instead. We discovered that the isobutylamine 

was indeed dehydrogenated, followed by coupling of another starting amine reagent to give 

the condensation product, N-iso-butylidene-iso-propylamine along with ammonia formation. 

The results of the imine synthesis via amine coupling are summarized in Table 4.3. The 

dehydrogenation/coupling process of various amines was examined by using 2.2 as the 

catalyst. Linear aliphatic amines provide the corresponding imines in good yield (Table 4.3, 

entries 1 and 2) while cyclic/branched aliphatic amines were coupled in slightly better yield 
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than the linear ones (Table 4.3, entries 3 and 4). Benzylamine and the related para or ortho 

substituted derivatives were also investigated and the coupled imine products were obtained  

Table 4.3. Oxidant-free imine synthesis from various primary amines.a 

 

Entry RCH2NH2 RCH2NCHR Yield(%)b 

1 n-C6H13NH2 n-C6H13NCH(C5H11) 79 

2 n-C7H15NH2 n-C7H15NCH(C6H13) 77 

3 

  

85 

4 
  

86 

5 

  

92 

6 

  

90 

7 

  

85 

8 

  

88 

9 

 
 

86 

10 

  

79 

a Reaction conditions: Reaction conditions: 0.09 mmol of alcohols, 0.009 mmol of 2.2, 0.7 mL of benzene, 450 
W medium pressure Hg lamp. b GC yield. 
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at high yields (Table 4.3, entries 59). Phenylethylamine process proceeds under the same 

condition (Table 4.3, entry 10). 

Catalytic reaction mechanism 

To study the reaction mechanism, we attempted to determine a rate law for the 

photocatalytic decarbonylation of CyCH2OH. It was unsuccessful, probably due to the 

catalyst decomposition over the reaction course. However, plots of ln[C6H13CH2OH] vs. time 

are linear for 2 half-lives (10 mol% of 2.2, 4.5 h), suggesting that the substrate is present in 

the transition-state for the turnover-limiting step. As  mentioned earlier, the dehydrogenation 

process to give an aldehyde is likely involved. We were curious about the interaction of an 

aldehyde with either 4.1 or 2.2. Thermolysis of 4.1 or 2.2 with CyCHO gives decomposition 

results under both stoichiometric and catalytic conditions without conversion to CyH. 

Nevertheless, photolysis of CyCHO with either 4.1 or 2.2 under catalytic conditions converts 

the aldehyde to the decarbonylated product, CyH and the reaction yields reach 58% and 62% 

respectively within 30 min in benzene-d6 (eq. 4.8). 

 

Obviously, the decarbonylation of an aldehyde is faster than the 

dehydrogenation/decarbonylation of an alcohol under the same photolytic and catalytic 

conditions. 

We attempted to decipher the overall mechanism and study which steps proceed 

thermally and which require light. The photo-dissociation of CO ligand to produce carbonyl-

(4.8) 
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free intermediate is a possible step in the catalytic cycle. The reaction between carbonyl-free 

4.4 and CyCHO gives 4.1 and CyH in toluene-d8 at 110 ºC for 1.5 h (eq 4.9), which is in 

contrast to the photochemical reaction between carbonyl-containing 4.1 and CyCHO 

CyCHO

toluene-d8, 110 °C
- CH3CN

+ CyH

4.1

Ph B
N

O

O

N
Rh

O
N CO

H
H

4.4

Ph B
N

O

O

N
Rh

O
N

NCCH3

H
H

 

Compound 4.4 could also react with an alcohol under thermal conditions. For example, 4.4 

reacts with CyCH2OH to give the complex 4.1, CyH and H2 in toluene-d8 at 110 ºC (eq 4.10). 

 

These two equations imply that 4.4 mediates sequential dehydrogenation and 

decarbonylation processes under thermal conditions. Comparing these two equations and the 

reactions of 4.1 with CyCH2OH or CyCHO under photolytic conditions, the results indicate 

that the carbonyl group in 4.1 and 2.2 hampers both alcohol and aldehyde thermal 

decarbonylations. 

Moreover, complex 4.2 could also be another possible intermediate during the 

decarbonylation process. It is important to investigate the interactions between this 

(4.9) 

(4.10) 
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compound and other substrates. 4.2 reacts with PhCHO at room temperature in the dark to 

give 2.2 and two equivalents of benzene (eq 4.11). 

 

It is worth noting that treating 3.1 with two equivalents of PhCHO also provides the complex 

2.2 via the observable intermediate 4.2. Meanwhile, 4.2 reacts with an alcohol as well. For 

instance, the reaction between 4.2 and PhCH2OH at room temperature affords 4.1, one 

equivalent of PhH and one equivalent of PhCHO (eq 4.12). 

 

Finally, both 4.2 and 4.3 react with H2 to give 4.1 and one equivalent of hydrocarbon in 

benzene-d6 at room temperature (eq 4.13). 

 

(4.11) 

(4.12) 

(4.13) 
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Combining these pieces of information of stochiometric reactivities, we could draw a 

catalytic cycle where several thermal and photolytic pathways are involved (Scheme 4.2). 

Complex 4.1 and 4.2 act as key joints for the three main cycles. The two sub-level cycles of 

an aldehyde decarbonylation under photolytic conditions are also crucial and indispensable 

for the overall mechanism. 

 

Scheme 4.2. Catalytic cycles involved in ToMRh-mediated photocatalytic decarbonylation of 

primary alcohols with benzyl alcohol as the example substrate. 

Conclusion 

We have demonstrated acceptorless photolytic alcohol decarbonylation and amine 

coupling catalysis. The catalyst screening, substrate scope and reaction mechanism of alcohol 

decarbonylations are described here in this chapter. Although the mechanism of amine 
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coupling has yet not been entirely studied, it is presumably related to the alcohol 

decarbonylation mechanism. The catalysis cycle is complicated by several possible 

intermediates and a more detailed mechanism investigation is hindered by kinetics 

experiments due to the catalyst decomposition.  

However, a sequential dehydrogenation/decarbonylation mechanism of an alcohol is 

established that we discovered the aldehyde decarbonylation is in fact faster than the alcohol 

decarbonylation. In addition, an aldehyde decarbonylation occurs at approximately the same 

rate with 4.1 as with 2.2, but 2.2 is more efficient for alcohol decarbonylation than 4.1. This 

also suggests that the photon-assisted ligand dissociation is not the turnover-limiting step. 

One could rationalize the enhanced reactivity of using 2.2 as supposed to 4.1 as the pre-

catalyst for an alcohol decarbonylation by considering the ligand-dissociated intermediate 

[ToMRhCO] versus [ToMRh(H)2], which are generated by CO dissociation of 2.2 and 4.1 

respectively. The other justification is that 2.2 is not accessible when 4.1 is used as the pre-

catalyst while 4.1 is when 2.2 is used as the pre-catalyst. This would reduce the catalytic 

efficiency that both 4.1 and 2.2 are proved to catalyze sequential alcohol 

dehydrogenation/decarbonylation processes as well as aldehyde decarbonylations. 

To this end, we illustrate a proof of concept of the dehydrogenative 

decarbonylation/coupling methodologies. We are currently searching more efficient 

photocatalytic systems as well as thermally accessible methods under more ambient 

anaerobic conditions. 

Experimental 
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General. All manipulations were performed under an inert atmosphere using standard 

Schlenk techniques or in a glovebox. Pentane, benzene, toluene, diethyl ether and thf were 

degassed by sparging with N2 and then dried with activated Al2O3 on an IT Solvent 

Purification System. Ethanol and methanol were dried over Na and distilled. Benzene-d6 and 

toluene-d8 were stirred over NaK alloy and then vacuum transferred. All other reagents were 

purchased from Sigma-Aldrich and used as received. ToMRh(CO)2 (2.2),29a ToPRh(CO)2 

(2.3),29a [{N-Me-2-ToM}Rh(CO)2]OTf (2.5),29a ToMRhH(3-C8H13) (3.1),29b ToMIr(CO)2,
29c 

[Rh(dppp)2Cl],30a [Rh(dppp)Cl(CO)]2,
30b [Rh(dppe)ClCO],30b [Rh(dppe)2Cl],30c 

Cp*Rh(CO)2,
31a Cp*Ir(CO)2,

31b Tp*Rh(CO)2,
32 (acac)Rh(CO)2,

33 Bp*Rh(CO)2,
34 were 

synthesized according to the literature procedures. All NMR spectra were obtained at room 

temperature using Bruker DRX-400 and Avance II-700 spectrometers. 15N NMR chemical 

shifts were determined by 1H-15N HMBC experiments recorded on an Avance II-700 

spectrometer; the chemical shift values are reported relative to CH3NO2. 
11B NMR spectra 

chemical shifts are reported relative to BF3·Et2O. NMR yields were determined using  

tetrakis(trimethylsilyl)silane as the internal standard. Elemental analyses were obtained at the 

Iowa State Chemical Instrumentation Facility using a Perkin-Elmer 2400 Series II CHN/S. 

GC-MS was conducted with Agilent 6890 GC system equipped with Agilent DB-5 column. 

Mass detection is processed by Micromass GCT. Photolysis experiments were performed 

with ACE Inc. Hanovia 450 W medium pressure mercury lamp equipped with a water-

jacketed quartz well cooled to 0 °C. 

ToMRh(H)2CO (4.1). A solution of ToMRhH(3-C8H13) (3.1, 0.196 g, 0.329 mmol) and dry 

ethanol (5 mL) was stirred in benzene (20 mL) at 60 °C for 3 h. The solution was allowed to 



99 
 

cool to room temperature, and the reaction mixture was evaporated to dryness. The residue 

was extracted with benzene (20 mL), the extracts were reduced under vacuum, and the solid 

residue was then extracted with ether (15 mL). Evaporation of the ether gave a solid residue, 

which was finally extracted with pentane (2 15 mL).The pentane solution was cooled at 35 

°C. The pale brown precipitate was isolated by filtration and dried under vacuum to give 

ToMRh(H)2CO (0.088 g, 0.171 mmol, 52.0%). 1HNMR (benzene-d6, 400 MHz):��8.40 

(d,2 H, 3JHH = 7.6 Hz, ortho-C6H5), 7.57 (t, 2 H, 3JHH = 7.6 Hz, meta-C6H5), 7.37 (t, 1 H, 3JHH 

= 7.2 Hz, para-C6H5), 3.53 (m, 6 H, CNCMe2CH2O), 1.03 (s, 6 H, CNCMe2CH2O), 0.99 (s, 

6 H, CNCMe2CH2O), 0.98 (s, 6 H, CNCMe2CH2O), 13.33 (d, 2 H, 1JRhH = 18.4 Hz, 

RhH).13C{1H} NMR (benzene-d6, 175 MHz):��192.05 (d, CO, 1JRhC = 68.3 Hz), 136.46 

(ortho-C6H5), 127.24 (meta-C6H5), 126.25 (para-C6H5), 80.40 (CNCMe2CH2O), 66.79 

(CNCMe2CH2O), 65.67 (CNCMe2CH2O), 28.60 (CNCMe2CH2O), 28.49 (CNCMe2CH2O), 

28.11 (CNCMe2CH2O). 11B NMR (benzene-d6, 128 MHz):�18.0. 15N{1H} NMR 

(benzene-d6, 71 MHz):�166.6 (trans to RhH), 176.8 (trans to CO). IR (KBr, cm-

1):��2970 (m), 2926 (m), 2895 (m), 2019 (s,CO), 1606 (m,CN), 1459 (m), 1365 (m), 

1354 (w), 1277 (m), 1196 (m), 1159 (m), 963 (m). Anal. Calcd. for C22H31BN3O4Rh: C, 

51.29; H, 6.06; N, 8.16. Found: C, 51.45; H, 5.99; N, 7.99. Mp: 186189 °C, dec. 

ToMRhD(C6D5)CO (4.2-d6). Method A: Photolysis of ToMRh(CO)2 in benzene-d6. A 

light-green solution of ToMRh(CO)2 (2.2, 0.012 g, 0.023 mmol) dissolved in benzene-d6 was 

degassed with freeze-pump-thaw cycles (2) and then irradiated using a 450 W mercury 

lamp. After 15 min. of irradiation, the solution was again degassed and irradiated for an 

additional 15 min. to give a brown solution. The yield was 54% based on 1H NMR 
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integration relative to a Si(SiMe3)4 standard. No other soluble ToMRh-containing species 

were detected by 1H NMR spectroscopy. Attempts to isolate 4.2 by evaporation of the 

volatile materials or by crystallization gave an intractable black material that did not 

redissolve in benzene, so the compound was generated in situ for further reactivity studies. 

Method B: Reaction of ToMRhH(3-C8H13) and benzaldehyde. A solution of ToMRhH(3-

C8H13) (3.1, 0.015 g, 0.025 mmol) dissolved in benzene-d6and benzaldehyde (0.003 g, 0.025 

mmol) were mixed at room temperature. The mixture was allowed to react for 6 h to give the 

product. The yield was 72% based on integration relative to a Si(SiMe3)4 standard. 1HNMR 

(benzene-d6, 400 MHz):��8.35 (d,2 H, 3JHH = 6.8 Hz, ortho-C6H5), 7.56 (t, 2 H, 3JHH = 7.2 

Hz, meta-C6H5), 7.37 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 3.58 (d, 1 H, 2JHH = 8.4 Hz, 

CNCMe2CH2O), 3.54 (d, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.45 (d, 1 H, 2JHH = 8.4 Hz, 

CNCMe2CH2O), 3.42 (d, 1 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.32 (d, 1 H, 2JHH = 8.4 Hz, 

CNCMe2CH2O), 0.98 (s, 3 H, CNCMe2CH2O), 0.96 (s, 3 H, CNCMe2CH2O), 0.90 (s, 3 H, 

CNCMe2CH2O), 0.88 (s, 3 H, CNCMe2CH2O), 0.82 (s, 3 H, CNCMe2CH2O), 0.46 (s, 3 H, 

CNCMe2CH2O). 13C{1H} NMR (benzene-d6, 175 MHz): δ 192.71 (d, 1JRhC = 65.8 Hz, CO), 

143.07 (d, 1JRhC = 25.7 Hz, ipso-RhC6D5), 136.45 (RhC6D5), 136.33 (ortho-BC6H5), 127.24 

(RhC6D5), 127.13 (meta-BC6D5), 126.26 (para-BC6H5), 80.92 (CNCMe2CH2O), 80.07 

(CNCMe2CH2O), 79.71 (CNCMe2CH2O), 69.30 (CNCMe2CH2O), 69.06 (CNCMe2CH2O), 

66.40 (CNCMe2CH2O), 29.05 (CNCMe2CH2O), 28.97 (CNCMe2CH2O), 28.57 

(CNCMe2CH2O), 28.52 (CNCMe2CH2O), 27.33 (CNCMe2CH2O), 26.13 (CNCMe2CH2O). 

11B NMR (benzene-d6, 128 MHz):17.5. 15N{1H} NMR (benzene-d6, 71 MHz):164.0, 
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168.0, 174.2. IR (KBr, cm-1):  2982 (w), 2884 (w), 2030 (s,CO), 1645 (s, CN), 1459 (m), 

1366 (w), 1277 (m), 1197 (m), 970 (m). 

ToMRhH(C4H3O)CO (4.3). A solution of ToMRhH(3-C8H13) (3.1, 0.018 g, 0.030 mmol) in 

benzene-d6was allowed to react with furfural (0.029 g, 0.030 mmol) at room temperature. 

The mixture turned light brown over 20 min. at room temperature (83%, NMR yield). 

Evaporation of the volatile materials provided a black solid that did not redissolve in benzene, 

so the compound was used without isolation. 1HNMR (benzene-d6, 400 MHz):��8.33 (d, 2 

H, 3JHH = 6.8 Hz, ortho-C6H5), 7.59 (dd, 1 H, 3JHH = 2.0 Hz, 4JHH = 0.8 Hz, 5-C4H3O), 7.55 (t, 

2 H, 3JHH = 7.6 Hz, meta-C6H5), 7.37 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 6.41 (dd, 1 H, 3JHH 

= 2.0 Hz, 3JHH = 2.8 Hz, 4-C4H3O), 6.32 (dd, 1 H, 3JHH = 2.8 Hz, 4JHH = 0.4 Hz, 3-C4H3O), 

3.51 (m, 6 H, CNCMe2CH2O), 0.95 (s, 3 H, CNCMe2CH2O), 0.93 (s, 3 H, CNCMe2CH2O), 

0.90 (s, 3 H, CNCMe2CH2O), 0.89 (s, 3 H, CNCMe2CH2O), 0.86 (s, 3 H, CNCMe2CH2O), 

0.67 (s, 3 H, CNCMe2CH2O), 12.08 (d, 1 H, 1JRhH = 18.8 Hz, RhH). 13C{1H} NMR 

(benzene-d6, 175 MHz): δ 190.65 (d, 1JRhC = 61.8 Hz, CO), 150.71 (d, 1JRhC = 32.0 Hz, 2-

C4H3O), 143.05 (5-C4H3O), 136.49 (ortho-C6H5), 127.23 (meta-C6H5), 126.29 (para-C6H5), 

119.72 (d, 2JRhC = 4.4 Hz, 3-C4H3O), 112.06 (4-C4H3O), 80.84 (CNCMe2CH2O), 80.37 

(CNCMe2CH2O), 80.12 (CNCMe2CH2O), 68.32 (CNCMe2CH2O), 68.02 (CNCMe2CH2O), 

66.45 (CNCMe2CH2O), 29.02 (CNCMe2CH2O), 28.93 (CNCMe2CH2O), 28.45 

(CNCMe2CH2O), 28.26 (CNCMe2CH2O), 25.80 (CNCMe2CH2O), 24.24 (CNCMe2CH2O). 

11B NMR (benzene-d6, 128 MHz):��17.9. 15N{1H} NMR (benzene-d6, 71 

MHz):��167.6 (trans to RhH), 173.6, 179.5. IR (KBr, cm-1):  2916 (m), 2849 (m), 

2280 (s,RhH), 2045 (m, CO), 1576 (m, CN), 1453 (m), 1330 (m), 1161 (m), 812 (m). 
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ToMRh(H)2NCCH3 (4.4). A solution of ToMRhH(3-C8H13) (3.1, 0.150 g, 0.252 mmol) in 

CH3CN (25 mL) was degassed by two freeze-pump-thaw cycles and then charged with 1 atm 

H2. The solution was allowed to stir for 3 h at room temperature and was then filtered. The 

filtrate was evaporated to dryness, and the residue was extracted with benzene. Benzene was 

removed under vacuum and the residue was washed with pentane (3 mL) and toluene (1.5 

mL) to give a brown solid (0.056g, 0.105 mmol, 42%). 1HNMR (benzene-d6, 400 

MHz):��8.58 (d,2 H, 3JHH = 7.2 Hz, ortho-C6H5), 7.62 (t, 2 H, 3JHH = 7.6 Hz, meta-C6H5), 

7.40 (t, 1 H, 3JHH = 7.6 Hz, para-C6H5), 3.75 (d, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 3.71 (d, 

2 H, 2JHH = 8.4 Hz, CNCMe2CH2O),3.58 (s, 2 H,CNCMe2CH2O),1.39 (s, 6 H, 

CNCMe2CH2O), 1.17 (s, 6 H, CNCMe2CH2O), 1.11 (s, 6 H, CNCMe2CH2O), 0.61 (s, 3 H, 

NCMe), 16.20 (d, 2 H, 1JRhH = 18.4 Hz, RhH). 13C{1H} NMR (benzene-d6, 175 MHz): δ 

136.79 (ortho-C6H5), 128.92 (NCCH3), 127.08 (meta-C6H5), 125.80 (para-C6H5), 80.29 

(CNCMe2CH2O), 79.62 (CNCMe2CH2O), 67.72 (CNCMe2CH2O), 66.16 (CNCMe2CH2O), 

29.07 (CNCMe2CH2O), 28.65 (CNCMe2CH2O), 28.27 (CNCMe2CH2O), 2.06 (CNMe). 11B 

NMR (benzene-d6, 128 MHz):��18.0. 15N{1H} NMR (benzene-d6, 71 MHz):��159.8 

(trans to RhH), 192.5(trans to NCCH3), 198.7 (NCMe). IR (KBr, cm-1): �2961 (m), 

2924 (m), 2878 (m), 2282 (w, NC), 2054 (m, RhH), 2034 (m, RhH), 1603 (s, CN), 1463 (m), 

1363 (m), 1273 (m), 1200 (m), 970 (m). Anal. Calcd. for C23H34BN4O3Rh: C, 52.29; H, 6.49; 

N, 10.61  Found: C, 51.96; H, 6.33; N, 10.13. Mp: 214217 °C, dec. 

Representative example of catalytic decarbonylation and amine coupling conditions. A 

mixture of cyclohexanemethanol (0.09 mmol), catalyst (0.009 mmol), cyclooctane (0.09 

mmol) as an internal standard and benzene (0.7 mL) was loaded into a J-Young style NMR 
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tube. The tube was positioned adjacent to the jacket outer wall of a Hanovia lamp (c.a. 1 cm) 

and subjected to irradiation with 450 W medium pressure mercury lamp. After the photolysis, 

the solution was diluted with CH2Cl2 and the yield of cyclohexane was determined by GC-

MS from a calibration curve. 
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Chapter 5. Synthesis and characterization of cationic rhodium ethylene complexes 

supported by tris(pyrazolyl)methane 

Modified from a paper to be submitted to Journal of Organometallic Chemistry 

Hung-An Ho,‡ Arkady Ellern, Aaron D. Sadow* 

Abstract 

New types of rhodium complexes supported by tris(pyrazolyl)methane (Tpm) have been 

synthesized. The structure, bonding properties and equilibrium behaviors in the solution state 

as well as in the solid state by Xray crystallography have been investigated by using 1H and 

1H15N HMBC spectroscopy. Two Tpm supported rhodium bis(ethylene) compounds 

[TpmRh(C2H4)2][PF6] (5.1) and [TpmRh(C2H4)2][BArF
4] (5.2) are synthesized via salt 

metathesis. Treatment of 5.1 with -acidic ligands CO and CN(t-Bu) gives the bridging 

dinuclear complex [(TpmRh)2(-CO)3][PF6]2 (5.3) and disubstituted species [TpmRh(CNt-

Bu)2][PF6] (5.5) respectively. The breakup of bridging dimer 5.3 to react with C2H4 (1 atm) 

to form monomeric [TpmRh(CO)(C2H4)][PF6] (5.4). On the other hand, mono-substituted 

complexes [TpmRh(C2H4)L][PF6] (5.6, L = NCCH3; 5.7, L = tht; 5.8, L = PMe3) are 

generated by treating first compound with ligands. Exposure of 5.8 to a H2 atmosphere 

affords the rhodium dihydride complex [TpmRh(H)2PMe3][PF6] (5.9). The hapticity of the 

compounds listed above are tridentate in solution except 5.5, which exhibits a 2-3 
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equilibrium behavior. The hapticity of these compounds in the solid state are also determined 

by crystallography. 

Introduction 

Tris(pyrazolyl)borate (Tp) tridentate, monoanionic ligands have been well studied since 

their first report by Trofimenko in 1966.1 The tridentate coordinate anionic Tp ligands are 

considered as five electron donors in the covalent model, and therefore may view as 

isoelectronic Cp analogues. The synthesis and catalysis applications of Tp-supported metal 

complexes have also been extensively reported.2 For example, rhodium and iridium 

complexes bearing Tp ligands have been shown to activate inert CH bonds of alkanes and 

alkenes.3 Tp*Rh(PPh3)2 and Tp*Rh(COD) are catalytic active in hydrophosphinylation.4 Also, 

the combination of [Rh(COD)Cl]2 with Tp gives a regioselective quinoline hydrogenation 

catalysis in one-pot system.5 

On the other hand, tris(pyrazolyl)methane (Tpm) and its derivatives are neutral analogues 

of tridentate Tp spectator ligands, yet have drawn less attention.6 A series of Tpm rhodium 

diene complexes were first7 disclosed by Elguero and his co-workers.7a Several other iridium 

derivatives were also synthesized, and these show the reactivity toward alcohol activations.7b 

More recently, the substitution chemistry of the cationic carbonyl Tpm*Rh(I)(CO)2
8 and the 

diene complexes Tpm*M(I)(diene)9 (M = Rh, Ir; diene = norbornadiene, COD, 2,3-

dimethylbuta-1,3-diene) have been structurally explored and studied. Besides, the cationic 

iridium bis(ethylene) complex, [TpmIr(C2H4)2][BF4], and its phosphine-substituted 

compound were compared with the Tp analogue.10 The cationic Tpm* analogue, 

[Tpm*Ir(C2H4)2][PF6], has been prepared and studied for reactivity as well.11 
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Nevertheless, the related rhodium cationic compounds containing bis(ethylene) ligands 

have remained unexplored. Here we report the synthesis and characterization of the complex 

[TpmRh(C2H4)2][X] (5.1, X = PF6; 5.2, X= BArF
4) and ethylene substitution reactions by 

various nucleophiles. Furthermore, the coordination of fac-tris chelating ligands of the group 

9 transition metals has always been complicated that these complexes often form equilibrium 

of two different bonding modes (2 and 3). The bonding mode of this type of complex in a 

solution phase does not necessarily correspond to its bonding mode in the solid state and 

(vice versa).3 To solve the difficulties, the coordination mode and fluxionality are 

investigated by 1H and 1H15N NMR spectroscopy. 

Results and Discussion 

Synthesis and characterization of rhodium bis(ethylene) complexes 

Reaction of the solid mixture of Tpm, [Rh(-Cl)(C2H4)2]2 and TlPF6 in methylene 

chloride at room temperature affords the complex [TpmRh(C2H4)2][PF6] (5.1) within 5 h (eq 

5.1). The signals of the ethylene appeared as a singlet at  2.74 in the 1H NMR spectrum. The 

three pyrazoles are equivalent which showed three signals at 8.22, 7.96 and 6.50 ppm 

respectively. The 13C NMR signal of ethylene group was observed at 51.56 ppm (1JRhC = 

12.3 Hz) in the 13C{1H} NMR spectrum. The solid state structure of the complex adopted 

TBP geometry, and all the pyrazole nitrogens are coordinated to the rhodium center (Fig 5.1). 
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 The distance of the two carbons of the ethylene ligand at the equatorial site (C11C12, 

1.461(6) Å) is, significantly, longer than the one at the axial position (C13C14, 1.251(7) Å). 

Additionally, the average distance between the rhodium and ethylene carbon is shorter for the 

equatorial C2H4 (Rh1C11, 2.081(3); Rh1C12, 2.086(3); Rh1C13, 2.167(4); Rh1C13, 

2.153(4) Å). These data are consistent with  back-donation of the rhodium equatorial ligand 

than to the axial one. In contrast, the two coordinated equatorial pyrazoles have a longer 

RhN distance (Rh1N1, 2.220(2); Rh1N6, 2.255(3) Å) compared to the axial RhN 

(Rh1N4, 2.100(2) Å). However, since the TBP geometry should generate two sets of 

pyrazole signals in 2:1 ratio (2 for the equatorial pyrazoles and 1 for the axial one) and only 

one set of signal was observed for 5.1 in the solution 1H NMR spectrum. Clearly, the 

compound is fluxional in the solution and a large portion of the equilibrium is established 

presumably due to inter-conversion between equatorial and axial positions of both pyrazoles 

and ethylene ligands rather than 2-3 equilibrium of the coordination and uncoordination of 

the third pyrazole arm (more details related to fluxionality determination will be discussed 

below). 

(5.1) 



111 
 

 

Figure 5.1. ORTEP diagram of [TpmRh(C2H4)2][PF6] (5.1) drawn at 50% probability. 

Hydrogen atoms and PF6 are omitted for clarity. The crystal was obtained by slow vapor 

diffusion of Et2O to CH2Cl2 solution at room temperature. Selected bond angles (°): 

C11Rh1C13, 88.0(2); C12Rh1C14, 85.3(2); N4Rh1N1, 83.27(9); N4Rh1N6, 

81.35(9). 

In comparison, an cationic iridium analogue, [Tpm*Ir(C2H4)2][PF6] (Tpm* = 3,5-

dimethyltris(pyrazolyl)methane) has also been reported as a highly fluxional complex in 

solution (CDCl3, 20 ºC) although no direct evidence was reported for the solid state 

structure.11 So far, to the best of our knowledge, 5.1 serves as the first example of explicitly 
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determined solid state coordination geometry, evidenced by Xray structure, among all the 

cationic TpmRM(C2H4)2
+ (TpmR = Tpm, Tpm*, M = Rh, Ir) derivatives. 

[TpmRh(C2H4)2][BArF
4] (5.2; eq. 5.1) was also synthesized following a similar procedure 

with Na[BArF
4] instead of TlPF6. As expected, the characteristic rhodium-bound ethylene 

exhibited a singlet peak (2.79 ppm) in the 1H NMR spectrum. Unsurprisingly, in the 1H NMR 

spectrum, the three pyrazoles gave only a single set of peaks again. The chemical shift of 

C2H4 was assigned to the doublet at 52.56 (1JRhC = 12.3 Hz) in the 13C NMR spectrum, 

which is slightly more downfield than C2H4 in 5.1. Besides, as to the [BArF
4] counter ion, the 

carbon connected to the boron was observed at 162.34 ppm (q, 1JBC = 49.0 Hz) whereas the 

CF3 was detected at 125.19 ppm (q, 1JFC = 271.3 Hz) in the 13C NMR spectrum. Both 11B 

(6.5 ppm) and 19F (64.8 ppm) NMR spectrum supported the existence of single species as 

only one singlet was observed individually in both nuclei NMR spectrum. 

Substitution reactions of 5.1 with -acidic nucleophiles 

Reaction of 5.1 with CO in methylene chloride is under sparging condition, three 

bridging COs are substituted for both ethylene ligands to afford [(TpmRh)2(-CO)3][PF6]2 

(5.3; eq 5.2). The binuclear compound 5.3 gave only one set of pyrazole signal in the 1H 

NMR spectrum. The CO resonance was detected at  185.13 as a doublet coupled by the 

rhodium (1JRhC = 71.0 Hz). The corresponding CO absorption in the IR spectrum exhibited 

exclusively intense absorption at 1863 cm-1. Notably, this particularly low and single IR 

absorption frequency of CO is inconsistent with a monomeric dicarbonyl complex, 

[TpmRh(CO)2][PF6] and suggests the existence of the bridging CO. This cation  has been 
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previously reported as the perchlorate salt to give the structure [(TpmRh)2(-CO)3][ClO4]2, 

that species gives a CO absorption band at 1865 cm-1.7b The Tp analogue produces a related 

dinuclear complex12,13 under the reaction condition whereas Tp* analogue gives 

Tp*Rh(CO)(C2H4) as the only product.13,14 In addition, this compound is poorly soluble in 

methylene chloride. Compound 5.3 was independently synthesized by reaction of Tpm, 

[Rh(-Cl)(CO)2]2 and TlPF6 in methylene chloride to give 5.3 as the major species. 

 

Meanwhile, complex 5.3 was further transformed into mono-substituted carbonyl-

ethylene species by reacting with ethylene to give [TpmRh(CO)(C2H4)][PF6] (5.4) at room 

temperature in methylene chloride (eq 5.3). As before, the 1H NMR spectrum of 5.4 

contained only one set of pyrazole peaks. The ethylene ligand appeared as two broad peaks at 

and 2.72, integrating to 2 H each in the 1H NMR spectrum. The two doublet peaks at 

186.98 (d, 1JRhC = 67.0 Hz) and 33.43 ppm (d, 1JRhC = 15.0 Hz) represent CO and C2H4 

respectively. The CO absorption in the IR spectrum appeared at 2046 cm-1. The related 

substitution chemistry of the compound [Tpm*Ir(C2H4)2][PF6] has been reported that mono-

substituted [Ir](CO)(C2H4) is the kinetic product while the dicarbonyl [Ir](CO)2 is the 

thermodynamic product.11 

(5.2) 
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The reaction of 5.1 with tert-butyl isocyanide gives the bis(isocyanide) complex 

[TpmRh(CNt-Bu)2][PF6] (5.5) at room temperature in methylene chloride  in excellent yield 

(eq 5.4). In the 1H NMR spectrum, the two tert-butyl groups appeared at 1.52 ppm, 

integrating to 18 protons and the three pyrazoles once more contain only one set of three 

signals. The X-ray quality crystals were grown by slow diffusion of ether into methylene 

chloride solution at 30 ºC. Compound 5.5 is coordinated with a bidentate Tpm in the X-ray 

structure. The solid phase IR spectrum of 5.5 showed two isocyanide bands at 2168 and 2129 

cm-1. In contrast, treatment of TpRh(C2H4)2 with CNRs (R = C6H11 or t-Bu) generates the 

bridging binuclear complex [TpRh]2(-CNR)3  exhibiting CN absorption band at 1735 cm-1 

in the IR spectrum while the reactions of Tp*Rh(C2H4)2 and the isocyanides gives the mono-

substituted product Tp*(C2H4)(CNR).13 

 

This indicates that complex 5.5 renders 2-3 equilibrium via rapid exchange of coordinated 

and uncoordinated pyrazole rings in the solution phase.15 

(5.3) 

(5.4) 



115 
 

 

Figure 5.2. ORTEP drawing of 5.5. Ellipsoids are shown at 50% probability. Hydrogens and 

PF6 are omitted for clarity. Selected bond distances (Å): Rh1C15, 1.909(9); Rh1C10, 

1.916(8); Rh1N3, 2.066(5); Rh1-N2, 2.071(5). Selected bond angles (°): C15Rh1N2, 

176.5(8); C10Rh1N3, 178.0(8). 

The two bound pyrazoles and the two isocyanide ligands together with the rhodium 

center display a SP geometry (Fig 5.2). This SP geometry is only slightly distorted that the 

bond angels of C15Rh1C10 and N3Rh1N2 are 88.1(3)° and 88.1(4)° respectively. 

Additionally, the six-membered ring formed by the two bound pyrazoles and the rhodium 

center adopts an envelope conformation rather than a boat one that the unbound pyrazole ring 
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is more upright toward the square plane when compared to the unbound pyrazole of the 

Tp*Rh(CNR)2 (R = t-Bu, neopentyl, 2,6-xylyl) analogues whose is roughly parallel with the 

square plane.15 

Substitution reactions of 5.1 with hard and soft Lewis basic donor 

 

Scheme 5.1. Substitution reactions of 5.1 toward various hard and soft  donors under mild 

conditions. 

 

Dissolution of complex 5.1 in CH3CN at room temperature gives 

[TpmRh(C2H4)(NCCH3)][PF6] (5.6) in quantitative yield (Scheme 5.1). The whole complex 
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is Cs symmetric that the pyrazole peaks are composed of two sets of resonances in 2:1 ratio in 

the 1H NMR spectrum, representing the two equatorial pyrazole rings and one axial ring 

respectively. Other notable resonances in the 1H NMR spectrum include the four ethylene 

protons appearing as two doublets at  2.57 and 2.24 (2JRhH = 8.4 Hz for both) as well as a 

singlet resonance at 2.26 ppm assigned to CH3CN. The corresponding coordinated ethylene 

and acetonitrile (CH3CN) peaks in the 13C NMR spectrum were observed at 123.40 (2JRhC = 

8.8Hz) and 28.20 (1JRhC = 17.5 Hz). IR spectrum was also found to be consistent with the 

formation of complex 5.6, showing the nitrile absorption band at 2129 cm-1. 

The solid state structure of 5.6 adopts TBP geometry in which the equatorial ethylene 

ligand and axial acetonitrile ligand are clearly depicted (Fig 5.3). Like the structure of 5.1, 

the bond distance of the rhodium and the two equatorial pyrazole nitrogens is longer than the 

axial one (Rh1N5, 2.213(2); Rh1N3, 2.226(3); Rh1N1, 2.033(2) Å). The CC bond 

length of the ethylene is 1.507(8) Å, which is longer than both equatorial and axial ethylenes 

of 5.1, while the average bond length of the equatorial ethylene-rhodium of 5.6 (Rh1C14, 

2.058(4); Rh1C13, 2.065(4) Å) is slightly shorter (compared to equatorial ethylene of 5.1). 

Nonetheless, both the solution phase and solid phase structure of 5.6 are undoubtedly 

demonstrated to have 3 connectivity based on these NMR spectroscopic and X-ray  

diffraction studies. 
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Figure 5.3. ORTEP diagram of 5.6 drawn at 50% probability. Hydrogens and PF6 are 

omitted for clarity. The crystal was obtained by slow evaporation of Et2O into CH2Cl2 

solution at room temperature. Selected bond distance (Å): Rh1N7, 1.987(3). Selected bond 

angles (°): N1Rh1N7, 179.5(7); C13Rh1N5: 162.3(1); C14Rh1N3, 160.3(8). 

Interestingly, the reaction of Tp*Rh(C2H4)2 with NCCH3 affords 

Tp*Rh(C2H5)(CHCH2)(NCCH3) as the kinetic product whereas the thermodynamic product 

Tp*Rh(C2H4)(NCCH3) is obtained at elevated temperature (60 ºC) via a reversible 
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pathway.14,16 In the current system, multiple unidentified products were observed when 

heating 5.6 in tetrahydrofuran-d8 solution at 60 ºC overnight, and no detectable metal 

hydride(s) appeared in the 1H NMR spectrum. 

Given the reaction of 5.1 with acetonitrile as a hard donor, we then investigated the 

interaction of 5.1 with soft donors such as tht and PMe3. The interaction of these two ligands 

with 5.1 give [TpmRh(C2H4)(tht)][PF6] (5.7) and [TpmRh(C2H4)(PMe3)][PF6] (5.8) 

respectively (Scheme 5.1). In the 1H NMR spectra of 5.7 and 5.8, the resonances attributed to 

ethylene were detected at 1.96 and 1.97 ppm respectively. 5.8 also shows the characteristic 

metal-phosphine bond at 13.36 (1JRhP = 153.9 Hz) as a doublet in the 31P NMR spectrum. In 

addition, unlike the TpM(C2H4)2 (M = Rh, Ir) analogues, 5.1 could not react with a bulkier 

phosphine such as PPh3 even at higher temperature (condition: tetrahydrofuran-d8, 70 ºC, 

overnight).17.96 

The X-ray crystal structures of both 5.7 (Fig 5.4) and 5.8 (Fig 5.5) show TBP geometry 

with ethylene bound at equatorial plane and heteroatom-containing ligand coordinated into 

axial site. The equatorial ethylene ligand of 5.7 and 5.8 shows the bond length of 1.432(2) Å 

and 1.471(7) respectively. Compared to 5.1 and 5.6, the bond length of the equatorial 

ethylenes decrease in the order of 5.6 > 5.8 > 5.1 > 5.7. Thus, we are able to conclude that 

the electron donating ability of the axial ligands decrease in the order of NCCH3 > PMe3 > 

C2H4 > tht in the corresponding complexes series. 
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Figure 5.4. ORTEP diagram of 5.7 drawn at 50% probability. Hydrogens and PF6 are 

omitted for clarity. The crystal was obtained by slow evaporation of Et2O into thf solution at 

30 ºC. Selected bond distance (Å): Rh1C5: 2.059(1); Rh1C6, 2.029(1); Rh1N1, 2.070(8); 

Rh1N3, 2.219(8); Rh1N5, 2.198(8); Rh1S1, 2.285(3). Selected bond angles (°): 

C6Rh1N3, 160.0(4); C5Rh1N5, 159.0(4); N1Rh1S1, 172.8(2). 
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Figure 5.5. ORTEP diagram of 5.8 drawn at 50% probability. Hydrogens and PF6 are 

omitted for clarity. The crystal was grown by slow evaporation of Et2O into CH2Cl2 solution 

at room temperature. Selected bond distance (Å): Rh1C11, 2.087(4); Rh1C12, 2.074(4); 

Rh1P1, 2.225(1); Rh1N1, 2.219(3); Rh1N3, 2.132(3); Rh1N5, 2.221(3). Selected bond 

angles (°): N3Rh1P1, 176.1(6); C11Rh1N1, 161.3(4); C12Rh1N5, 155.5(8). 

Lastly, numerous examples showing a route for the synthesis of the formula 

TpRM(H)2(phosphine) (M= Rh, Ir) complexes have been reported  .  
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Figure 5.6. ORTEP diagram of 5.9. Ellipsoids are drawn at 50% probability. Hydrogens  

(except hydrides) and PF6 are omitted for clarity. The crystal was obtained by vapor diffusion 

of Et2O into CH2Cl2 solution at room temperature. Selected bond distance (Å): Rh1N1, 

2.064(4); Rh1N5, 2.113(4); Rh1N3, 2.227(4); Rh1P1, 2.239(3); Rh1H1K, 1.241(1); 

Rh1H1J, 1.56(6). Selected bond angles (°): N3Rh1H1J, 177.2(0); N1Rh1H1K, 

176.3(0); N5Rh1P1, 177.1(8). 
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The preparation method typically involves hydrogenation of TpRM(C2H4)(phosphine) under 

mild conditions.13,17,18 Similarly, treatment of 5.8 with 1 atm of H2 in methylene chloride 

solution gives [TpmRh(H)2PMe3][PF6] (5.9) as the only product in quantitative yield 

(Scheme 5.1). The 1H NMR spectrum contains a doublet of doublet at 17.44 ppm (2JPH = 

34.4 Hz, 1JRhH = 23.2 Hz) in assigned to the RhH2. A doublet at 10.86 ppm (1JRhP = 118.3 Hz) 

in the 31P NMR spectrum was observed. An absorption band in the IR spectrum was detected 

at 2058 cm-1, supporting the presence of the RhH bond. The geometry of rhodium (III) 

center was confirmed by X-ray crystallography that 5.9 adopts octahedral structure. Two of 

the metal hydrides are located on the equatorial plane trans to the two pyrazoles and the third 

pyrazole is visually aligned with the phosphorus atom through the rhodium center on the 

axial axes (Fig 5.6). The solid state of 5.9 reveals the 3 coordination nature of the d6 

rhodium center without exception, comparing to the reported examples. 

NMR study for hapticity, fluxionality and ligand (C2H4) rigidity of the complexes 

TpRMLL'(M = Rh, Ir) have been known to show different coordinating modes, that is, 

either a bidentate with one arm dissociating or a tridentate that gives 18 electron species. 

Even an equilibrium behavior could co-exist for both modes, depending on the coordinating 

TpR analogues, the metal center and the L ligands. Even when the solid state coordination 

mode could be demonstrated by X-ray crystallography easily, the solution phase coordination 

mode is always more complicated that a static SP (2) geometry or a TBP (3) geometry 

could appear solely or as an dynamic equilibrium. Besides, a fluxional ligand interconversion 

with a TBP 3 coordination mode could be involved as an alternative mechanism for 

dynamic behavior (Scheme 5.2). 
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Scheme 5.2. (1) SP (2)-TBP (3) dynamic equilibrium. (2) Fluxional ligand interconversion 

equilibrium of TBP structure with 3 coordination mode. 

To address this issue, in addition to 1H NMR spectroscopy, 15N NMR spectroscopy method 

serves as one of the important tools for determining the geometry and structure for these 

metal compounds. For example, Venanzi and co-workers employed 15N NMR spectroscopy 

to determine the hapticity and fluxional behavior of the tris(pyrazolyl)borate metal 

complexes. The study concluded that the 15N chemical shift value of the coordinated N2-Pz 

(N2) would appear at a more upfield region of the spectrum (75 to 138 ppm). The average 

calculated value (N2) for dynamic 2-3 equilibrium would be close to 117 ppm for the 2 

form. Increasing portions of the 3-form of the complex would give a more upfield chemical 

shift.19 



125 
 

In our system (Table 5.1), 5.1 could not be a static (either SP or TBP) structure in the 

solution because the 1H NMR spectrum contained only one set of pyrazole resonance. 

Comparing 5.15.3, the 15N chemical shift of N2 of 5.1 (131.6 ppm) is close to that of 5.3 

(135.6 ppm) and 5.3 has been confirmed as a 3 structure. Thus, we could conclude that the 

ground state of 5.1 shows a 3 coordination mode with ligand interconversion (Scheme 5.2, 

(1)), which is similar to the TpRRh(C2H4)2 analogues.13 By applying this principle, 5.2 

(128.8 ppm) and 5.4 (136.6 ppm) are assigned to have the same coordination behavior in 

the solution. In contrast, the 15N signal of the N2 of 5.5 exhibited at 123.7 ppm. This value 

is somewhat close to the reported value (117 ppm) comparing to 5.15.4, which clearly 

indicates the tendency of giving the 2 form. Considering the combination 1H and 15N NMR 

spectroscopy of 5.5, we determine that the connectivity of 5.5 adopts dynamic 2-3 

equilibrium (Scheme 5.2, (2)). For complexes 5.65.8, although the 15N chemical shift value 

of N2 at axial site is more downfield and close to the value for the 2 form, one should be 

aware that it is the average of both equatorial and axial N2 chemical shifts that validate the 

hapticity assignments. Thus, the average 15N chemical shifts of the N2 for 5.65.8 have the 

range of 128.2 to 142.8 ppm, which represents the 3 mode. However, ligand fluxionality 

does not exist for 5.65.8 due to two sets of pyrazole peaks (2:1 ratio) showing in the 1H 

NMR spectra.  Therefore, 5.65.8 are assigned to give static 3 coordination mode in the 

solution phase. 5.9 is the only Rh(III) species among all the complexes reported in the 

context and Rh(III) has been generally considered to show 3 octahedral structure in both 

solution and solid phases. Without exception, this assignment of 5.9 is in good agreement of 

both 1H and 15N spectra data. 
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Table 5.1. 1H pattern, 15N chemical shift value and hapticity of 5.15.9 

Compounda 15N of  
N1-Pz (N

1)b 

15N of  
N2-Pz (N

2) 

1H of Pz 
(set(s)) 

1H of 
C2H4 
(set(s)) 

Hapticity 
(solution) 

Hapticity 
(solid) 

5.1, Rh(C2H4)2 -175.2 -131.6 1  1 3 3 

5.2, Rh(C2H4)2 -169.3 -128.8 1  1 3 3 

5.3, Rh2(CO)3 -174.5 -135.6 1  n.a.c 3 3 

5.4, 

Rh(CO)(C2H4) 

-174.7 -136.6 1  2 3 n.a.d 

5.5, Rh(CNt-Bu)2 -175.3 -123.7 1  n.a.c 2-3 2 

5.6, 

Rh(C2H4)(NCCH3) 

-172.5 (eq)

-173.4 (ax)

-166.6 (eq) 

-119.0 (ax) 

2 (2: 1 

ratio) 

2 3 3 

5.7, Rh(C2H4)(tht) -172.9 (eq)

-173.3 (ax)

-156.6 (eq) 

-120.0 (ax) 

2 (2: 1 

ratio) 

1 3 3 

5.8, 

Rh(C2H4)(PMe3) 

-172.6 (eq)

-174.6 (ax)

-134.3 (eq) 

-122.1 (ax) 

2 (2: 1 

ratio) 

1 3 3 

5.9,     

Rh(H)2PMe3 

-173.0 (eq)

-175.1 (ax)

-131.8 (eq) 

-134.3 (ax) 

2 (2: 1 

ratio) 

n.a.c 3 3 

aTpm and PF6 are omitted for clarity. bPz = pyrazole, ax = axial, eq = equatorial. cNo ethylene ligands. dCould 

not be determined. 

The solid state structure could not be obtained for 5.25.4. Aside from the identical cation 

structure between 5.2 and 5.1 as well as the reported complex with different counter ion and 

5.3,7b 5.4 is the only one remained uncertain for the hapticity determination in the solid state. 
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Additionally, for 5.1, 5.2, 5.4 and 5.65.8 containing ethylene ligand, it is noteworthy 

that 5.4 and 5.6 showed two sets of ethylene signals in the 1H NMR spectra while the others 

contained only one set. This implies the rigidity of the ethylene coordinated to the rhodium 

center without rotation of the RhC2H4 bonds for 5.4 and 5.6.17,20 Comparing 5.1, 5.2, 5.4, 

5.6 and 5.8 to the Tp*[Rh] analogues, complex 5.1, 5.2 and 5.6 are in accordance with the 

corresponding analogues showing either one set or two sets of ethylene signals whereas 5.4 

and 5.8 are contrary to what have been observed.13,21 

Conclusion 

The cationic bis(ethylene) rhodium compounds [TpmRh(C2H4)2][X] (5.1, X = PF6; 5.2, X 

=  BArF
4) have been synthesized and characterized. The solid state of 5.1 was obtained and 

confirmed to be a TBP structure with a tridentate-coordinated Tpm ligand. This compound 

represents the first example of bis(ethylene) rhodium complexes supported by 

tris(pyrazolyl)methane ligand. The reactivity of 5.1 was examined by reacting with -acidic 

nucleophiles as well as hard and soft Lewis basic donors. The electron donating ability is 

compared among 5.1 and 5.65.8, which shows that this ability decrease in the order of 

NCCH3 > PMe3 > C2H4 > tht, which is supported by the solid state evidence of the equatorial 

ethylene bond length. The hapticity, fluxionality and ligand rigidity were also studied by 

conducting 1H and 15N NMR spectroscopy. All the complexes reported herein appear to have 

3 connectivity in the solution phase except 5.5 which is proved to behave 2-3 equlibrium. 

The solid state hapticity is clearly described by either the X-ray structures or by comparison 

with the closely related analogues. Fluxional ligand interconversion phenomenon is also 

observed for some of the complexes (5.1, 5.2 and 5.4). The rigidity determination of 
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RhC2H4 bond was further supported by the pattern of the ethylene group in the 1H NMR 

spectra. 

Experimental 

General. All manipulations were performed under an inert atmosphere using standard 

Schlenk techniques or in a glovebox. All solvents were dried and degassed unless otherwise 

indicated. Methylene chloride, diethyl ether and thf were degassed by sparging with N2 and 

then dried with activated Al2O3 on an IT Solvent Purification System. Acetonitrile was 

degassed and distilled. Methylene chloride-d2 was refluxed over CaH2 powder and then 

vacuum transferred. All other reagents were purchased from Sigma-Aldrich and used as 

received. Tpm,22 [Rh(-Cl)(C2H4)2]2
23 and Na[BArF

4]
24 were synthesized according to the 

literature procedures. All NMR spectra were obtained at room temperature using Bruker 

DRX-400 and Avance II-700 spectrometers. 15N NMR chemical shifts were determined by 

1H-15N HMBC experiments recorded on an Avance II-700 spectrometer; the chemical shift 

values are reported relative to CH3NO2. 
11B NMR spectra chemical shifts are reported 

relative to BF3·Et2O. NMR yields were determined using a tetrakis(trimethylsilyl)silane as 

the internal standard. Elemental analyses were obtained at the Iowa State Chemical 

Instrumentation Facility using a Perkin-Elmer 2400 Series II CHN/S. 

[TpmRh(C2H4)2][PF6] (5.1) A mixture of Tpm (0.287 g, 1.34 mmol), [Rh(-Cl)(C2H4)2]2 

(0.261 g, 0.67 mmol) and TlPF6 (0.492 g, 1.41 mmol) was suspended in CH2Cl2 (30 mL). 

The mixture was vigorously stirred at room temperature for 5 h and then filtered. The filtrate 

was evaporated to dryness to give a pale orange solid (0.64 g, 1.24 mmol, 92%). 1H NMR 

(methylene chloride-d2, 400 MHz):  8.88 (s, 1 H, HCPz3), 8.22 (d, 3 H, 3JHH = 2.4 Hz, 3-Pz), 
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7.96 (d, 3 H, 3JHH = 2.4 Hz, 5-Pz), 6.50 (t, 3 H, 3JHH = 2.4 Hz, 4-Pz), 2.74 (s, 8 H, C2H4). 

13C{1H} NMR (methylene chloride-d2, 175 MHz):  142.78 (5-Pz), 133.85 (3-Pz), 108.58 (4-

Pz), 76.19 (HCPz3), 51.56 (d, 1JRhC = 12.3 Hz, C2H4). 
15N{1H} NMR (methylene-d2, 71 

MHz):  131.6 (N, 2-Pz), 175.2 (N, 1-Pz). 31P NMR (methylene chloride-d2, 162 MHz):  

142.6 (sept, 1JPF = 712.8 Hz, PF6). IR (KBr, cm-1):3142 (m), 3024 (w), 1520 (w), 

1445(m), 1411 (m), 1290 (s), 1253 (m), 1226 (w), 1096 (m), 1061 (m), 983 (w). Anal. Calcd. 

for C14H18N6PF6Rh: C, 32.45; H, 3.50; N, 16.22  Found: C, 32.55; H, 3.82; N, 16.33. Mp: 

above 300 oC, dec. 

[TpmRh(C2H4)2][BArF
4] (5.2) A mixture of Tpm (0.109 g, 0.51 mmol), [Rh(-Cl)(C2H4)2]2 

(0.099 g, 0.25 mmol) and Na[BArF
4] (0.473 g, 0.53 mmol) was suspended and stirred in 

CH2Cl2 (10 mL) for 5 h. The reaction mixture was filtered and evaporated to dryness to give 

a light brown solid (0.59 g, 0.47 mmol, 93%). 1H NMR (methylene chloride-d2, 400 MHz):  

8.01 (d, 3 H, 3JHH = 1.6 Hz, 3-Pz), 7.98 (s, 1 H, HCPz3), 7.92 (d, 3 H, 3JHH = 2.4 Hz, 5-Pz), 

7.72 (s, 8 H, ortho-BArF
4), 7.55 (s, 4 H, para-BArF

4), 6.56 (t, 3 H, 3JHH = 2.4 Hz, 4-Pz), 2.79 

(s, 8 H, C2H4). 
13C{1H} NMR (methylene chloride-d2, 175 MHz):  162.34 (q, 1JBC = 49.0 

Hz, ipso-BArF
4), 143.73 (3-Pz), 135.40 (ortho-BArF

4), 132.61 (5-Pz), 129.47 (q, 2JFC = 31.5 

Hz, meta-BArF
4), 125.19 (q, 1JFC = 271.3 Hz, CF3), 118.10 (para-BArF

4), 109.32 (3-Pz), 

77.50 (HCPz3), 52.56 (d, 1JRhC = 12.3 Hz, C2H4). 
15N{1H} NMR (methylene chloride-d2, 71 

MHz):  128.8 (N, 2-Pz), 169.3 (N, 1-Pz). 11B NMR (methylene chloride-d2, 128 

MHz):6.5. 19F NMR (methylene chloride-d2, 375 MHz):64.8. IR (KBr, cm-1): 3154 

(m), 3022 (w), 2963 (w), 2085 (m), 1611 (m), 1523 (m), 1442 (s), 1404 (s), 1355 (s), 1270 
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(s), 1252 (s), 1225 (m), 1104 (s), 1057 (s), 986 (m). Anal. Calcd. for C46H30N6BF24Rh: C, 

44.68; H, 2.45; N, 6.80  Found: C, 45.00; H, 2.57; N, 6.55. Mp: 140143 oC, dec. 

[(TpmRh)2(-CO)3][PF6]2 (5.3) In a 50 mL Schlenk flask, the solution of 5.1 (0081 g, 0.156 

mmol) in CH2Cl2 (20 mL) was bubbled through with CO for 10 min. The solution was then 

evaporated to dryness, and the solid residue was washed with Et2O (5 mL) to yield a pale 

yellow solid (0.069 g, 0.069 mmol, 88%). 1H NMR (methylene chloride-d2, 400 MHz):  

9.04 (s, 1 H, HCPz3), 8.24 (d, 3 H, 3JHH = 2.8 Hz, 3-Pz), 7.91 (d, 3 H, 3JHH = 2.4 Hz, 5-Pz), 

6.54 (t, 3 H, 3JHH = 2.4 Hz, 4-Pz). 13C{1H} NMR (methylene chloride-d2, 175 MHz):  

185.13 (d, 1JRhC = 71.0 Hz, CO), 146.17 (5-Pz), 134.41 (3-Pz), 109.13 (4-Pz), 77.46 (HCPz3). 

15N{1H} NMR (methylene chloride-d2, 71 MHz):  135.6 (N, 2-Pz), 174.5 (N, 1-Pz). 

31P NMR (methylene chloride-d2, 162 MHz):  143.8 (sept, 1JPF = 712.8 Hz, PF6). 

IR (KBr, cm-1): 3167 (w), 3137 (m), 1863 (s, CO), 1445 (m), 1412 (m), 1295 (s), 1256 (m), 

1225 (w), 1099 (m), 1062 (m), 991 (w). Anal. Calcd. for C23H20N12O3P2F12Rh2: C, 27.40; H, 

2.00; N, 16.67  Found: C, 27.80 H, 2.10; N, 16.94. Mp: above 300 oC, dec. 

[TpmRh(CO)(C2H4)][PF6] (5.4) In a 100 mL Schlenk flask, C2H4 was bubbled through a 

partially suspended 5.3 (0.055 g, 0.106 mmol) in CH2Cl2 (20 mL) for 15 min. Solvents were 

evaporated, and the solid residue was washed with Et2O (5 mL) to afford an off-white solid 

(0.049g, 0.096 mmol, 90%). 1H NMR (methylene chloride-d2, 400 MHz):  9.04 (s, 1 H, 

HCPz3), 8.29 (d, 3 H, 3JHH = 2.8 Hz, 3-Pz), 7.85 (d, 3 H, 3JHH = 2.0 Hz, 5-Pz), 6.51 (t, 3 H, 

3JHH = 2.4 Hz, 4-Pz), 2.96 (br, 2 H, C2H4), 2.72 (br, 2 H, C2H4). 
13C{1H} NMR (methylene 

chloride-d2, 175 MHz):  186.98 (d, 1JRhC = 67.0 Hz, CO), 143.84 (5-Pz), 134.03 (3-Pz), 

108.77 (4-Pz), 76.46 (HCPz3), 33.43 (d, 1JRhC = 15.0 Hz, C2H4). 
15N{1H} NMR (methylene 
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chloride-d2, 71 MHz):  136.6 (N, 2-Pz), 174.7 (N, 1-Pz). 31P NMR (methylene chloride-

d2, 162 MHz):  143.8 (sept, 1JPF = 712.8 Hz, PF6). IR (KBr, cm-1): 3161 (m), 3141 (m), 

3023 (w), 2046 (s, CO), 1520 (w), 1444 (m), 1411 (m), 1289 (m), 1255 (m), 1227 (w), 1099 

(m), 1063 (m), 980 (w). Anal. Calcd. for C13H14N6OPF6Rh: C, 30.13; H, 2.72; N, 16.22  

Found: C, 30.37; H, 3.00; N, 16.21. Mp: above 300 oC, dec. 

[TpmRh(CNt-Bu)2][PF6] (5.5) In a glovebox, CNt-Bu (0.032 g, 0.386 mmol) was added to a 

solution of 5.1 (0.100 g, 0.193 mmol) in CH2Cl2 (10 mL) in a vial (20 mL) was added at 

room temperature. The mixture was allowed to stir for 2 h. Solvents were evaporated and the 

residue was washed with Et2O (3 mL) to yield a yellow solid (0.103 g, 0.164 mmol, 85%). 

1H NMR (methylene chloride-d2, 400 MHz):  8.76 (s, 1 H, HCPz3), 8.04 (d, 3 H, 3JHH = 4.0 

Hz, 3-Pz), 7.76 (d, 3 H, 3JHH = 4.0 Hz, 5-Pz), 6.51, (t, 3 H, 3JHH = 4.0Hz, 4-Pz), 1.52 (s, 18 H, 

CNCMe3). 
13C{1H} NMR (methylene chloride-d2, 175 MHz):  145.68 (5-Pz), 134.00 (3-Pz), 

108.55 (4-Pz), 80.58 (HCPz3), 31.07 (C(Me)3), 30.66 (C(Me)3). 
15N{1H} NMR (methylene 

chloride-d2, 71 MHz):  123.7 (N, 2-Pz), 175.3 (N, 1-Pz), 191.5 (N, CNt-Bu). 

31P NMR (methylene chloride-d2, 162 MHz):  142.2 (sept, 1JPF = 712.8 Hz, PF6). 

IR (KBr, cm-1): 3135 (m), 2987 (m), 2168 (s, CN), 2129 (s, CN), 1460 (m), 1431 (w), 1407 

(m), 1392 (m), 1374 (m), 1360 (w), 1307 (m), 1284 (m), 1260 (w), 1234 (w), 1198 (m). 

Anal. Calcd. for C20H28N8PF6Rh: C, 38.23; H, 4.49; N, 17.83  Found: C, 38.66; H, 5.12; N, 

17.55. Mp: above 300 oC, dec. 

[TpmRh(C2H4)(NCCH3)][PF6] (5.6) In a glove box, 5.1 (0.120 g, 0.232 mmol) was 

dissolved in CH3CN (10 mL) in a 20 mL scintillation vial. The solution was stirred at room 

temperature for 10 min and evaporated to dryness to give a light brown solid quantitatively. 
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1H NMR (methylene chloride-d2, 400 MHz):  8.87 (s, 1 H, HCPz3), 8.24 (d, 2 H, 3JHH = 2.8 

Hz, 3-Pzeq), 8.15 (d, 1 H, 3JHH = 2.8 Hz, 3-Pzax), 8.06 (d, 2 H, 3JHH = 2.4 Hz, 5-Pzeq), 7.01 (d, 

1 H, 3JHH = 1.6 Hz, 5-Pzax), 6.49 (t, 2 H, 3JHH = 2.4 Hz, 4-Pzeq), 6.28 (t, 1 H, 3JHH = 2.8 Hz, 4-

Pzax), 2.57 (d, 2 H, 2JRhH = 8.4 Hz, C2H4), 2.26 (s, 3 H, CH3CN), 2.24 (d, 2 H, 2JRhH = 8.4 Hz, 

C2H4). 
13C{1H} NMR (methylene chloride-d2, 175 MHz):  144.03 (5-Pzeq), 140.54 (5-Pzax), 

134.80 (3-Pzax), 132.65 (3-Pzeq), 123.40 (d, 2JRhC = 8.8Hz, CH3CN), 108.36 (4-Pzeq,ax), 76.83 

(HCPz3), 28.20 (d, 1JRhC = 17.5 Hz, C2H4), 4.50 (CH3CN). 15N{1H} NMR (methylene 

chloride-d2, 71 MHz):  119.0 (N, 2-Pzax), 166.6 (N, 2-Pzeq), 173.4 (N, 1-Pzax), 172.5 

(N, 1-Pzeq), 209.4 (CH3CN) 31P NMR (methylene chloride-d2, 162 MHz):  143.8 (sept, 

1JPF = 712.8 Hz, PF6). IR (KBr, cm-1): 3140 (m), 2033 (m), 2980 (w), 2251 (w, NC), 1518 

(m), 1442 (s), 1402 (s), 1291 (s), 1252 (m), 1227 (w), 1091 (s), 1054 (m). 

Anal. Calcd. for C14H17F6N7PRh: C, 31.65; H, 3.23; N, 18.46  Found: C, 31.50; H, 2.97; N, 

17.98. Mp: above 300 oC, dec. 

[TpmRh(C2H4)(tht)][PF6] (5.7) In a glovebox, tetrahydrothiophene (0.014 g, 0.154 mmol) 

was added to a solution of 5.1 (0.080 g, 0.154 mmol) in CH2Cl2 (10 mL) in a vial (20 mL) at 

room temperature and allowed to stir at this temperature for 1 h. The solution was evaporated 

to dryness and the solid residue was washed with Et2O (3 mL) to give a light brown solid 

(0.083 g, 0.144 mmol, 93%). 1H NMR (methylene chloride-d2, 400 MHz):  8.90 (s, 1 H, 

HCPz3), 8.29 (d, 2 H, 3JHH = 2.4 Hz, 3-Pzeq), 8.16 (d, 1 H, 3JHH = 2.4 Hz, 3-Pzax), 8.02 (d, 2 

H, 3JHH = 1.2 Hz, 5-Pzeq), 7.11 (s, 1 H, 5-Pzax), 6.52 (t, 2 H, 3JHH = 2.4 Hz, 4-Pzeq), 6.32 (s, 1 

H, 4-Pzax), 2.73 (m, 4 H, S(C2H4)(C2H4)), 2.20 (d, 4 H, 2JRhH = 5.2 Hz, C2H4), 1.96 (m, 4 H, 

S(C2H4)(C2H4)). 
13C{1H} NMR (methylene chloride-d2, 175 MHz):  144.53 (5-Pzeq), 139.67 
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(5-Pzax), 134.39 (3-Pzax), 133.28 (3-Pzeq), 108.50 (4-Pzeq), 108.32 (4-Pzax), 76.72 (HCPz3), 

36.22 (S(C2H4)(C2H4)), 30.19 (S(C2H4)(C2H4)), 26.89 (d, 1JRhC = 8.75 Hz, C2H4). 

15N{1H} NMR (methylene chloride-d2, 71 MHz):  120.0 (N, 2-Pzax), 156.6 (N, 2-Pzeq), 

172.9 (N, 1-Pzeq), 173.3 (N, 1-Pzax). 
31P NMR (methylene chloride-d2, 162 MHz):  

143.8 (sept, 1JPF = 712.8 Hz, PF6). IR (KBr, cm-1): 3141 (m), 3033 (m), 2955 (m), 1521 

(m), 1440 (s), 1402 (s), 1290 (s) 1250 (s), 1222 (m), 1137 (w), 1095 (s), 1073 (m), 1056 (m), 

991 (w). Anal. Calcd. for C16H22N6PF6SRh: C, 33.23; H, 3.83; N, 14.53  Found: C, 32.77; H, 

3.56; N, 14.33. Mp: above 300 oC, dec. 

[TpmRh(C2H4)(PMe3)][PF6] (5.8) In a glovebox, PMe3 (0.013 g, 0.166 mmol) was added to 

a solution of 5.1 (0.086 g, 0.166 mmol) in CH2Cl2 (10 mL) in a vial (20 mL) at room 

temperature. The solution was stirred for 15 min and evaporated to dryness to yield a pale 

yellow solid (0.089 g, 0.156 mmol, 94%). 1H NMR (methylene chloride-d2, 400 MHz):  

8.90 (s, 1 H, HCPz3), 8.29 (d, 2 H, 3JHH = 2.8 Hz, 3-Pzeq), 8.15 (s, 1 H, 3-Pzax), 7.95 (d, 2 H, 

3JHH = 1.2 Hz, 5-Pzeq), 7.25 (s, 1 H, 5-Pzax), 6.49 (t, 2 H, 3JHH = 2.4 Hz, 4-Pzeq), 6.34 (s, 1 H, 

4-Pzax), 1.97 (m, 4 H, C2H4), 1.30 (dd, 9 H, 2JPH = 10.0Hz, 3JRhH = 0.4 Hz, PMe3). 

13C{1H} NMR (methylene chloride-d2, 175 MHz):  145.20 (5-Pzeq), 138.93 (5-Pzax), 133.76 

(3-Pzax), 133.41 (3-Pzeq), 108.39 (4-Pzeq), 108.05 (4-Pzax), 76.73 (HCPz3), 25.58 (dd, 1JRhC = 

19.3Hz, 2JPC = 3.5 Hz, C2H4), 15.86 (dd, 1JPC = 31.5 Hz, 2JRhC= 1.0 Hz, PMe3). 
15N{1H} 

NMR (methylene chloride-d2, 71 MHz):  122.1 (N, 2-Pzax), 134.3 (N, 2-Pzeq), 172.6 (N, 

1-Pzeq), 174.6 (N, 1-Pzax). 
31P NMR (methylene chloride-d2, 162 MHz):  13.36 (d, 1JRhP = 

153.9 Hz, PMe3), 143.8 (sept, 1JPF = 712.8 Hz, PF6). IR (KBr, cm-1): 3139 (m), 3029 (w), 

1521 (w), 1444 (m), 1410 (m), 1291 (s), 1253 (m), 1225 (w), 1098 (m), 1061 (s), 962 (m). 
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Anal. Calcd. for C15H23N6F6P2Rh: C, 31.82; H, 4.09; N, 14.84  Found: C, 31.77; H, 3.83; N, 

15.01. Mp: above 300 oC, dec. 

[TpmRh(H)2(PMe3)][PF6] (5.9) In a 100 mL Schlenk tube, the solution of 5.8 (0.089 g, 

0.156 mmol) in CH2Cl2 (15 mL) was treated with freeze-pump-thaw process and charged 

with 1 atm H2. The solution was stirred at room temperature for 30 min. The volatile 

components were evaporated, and the solid residue was washed with Et2O (3 mL) to give a 

pale yellow solid (0.078 g, 0.145 mmol, 93%). 1H NMR (methylene chloride-d2, 400 MHz): 

 8.97 (s, 1 H, HCPz3), 8.29 (d, 2 H, 3JHH = 2.8 Hz, 3-Pz, trans to RhH), 8.17 (d, 1 H, 2.8 Hz, 

3-Pz, trans to PMe3), 7.79 (d, 2 H, 3JHH = 2.0 Hz, 5-Pz, trans to RhH), 7.77 (s, 1 H, 5-Pz, 

trans to PMe3), 6.46 (t, 2 H, 3JHH = 2.4 Hz, 4-Pz, trans to RhH), 6.36 (s, 1 H, 4-Pz, trans to 

PMe3), 1.59 (dd, 9 H, 2JPH = 10.4Hz, 3JRhH = 1.2 Hz, PMe3), 17.44 (dd, 2 H, 2JPH = 34.4 Hz, 

1JRhH = 23.2 Hz, RhH). 13C{1H} NMR (methylene chloride-d2, 175 MHz):  145.90 (5-Pz, 

trans to PMe3), 142.08 (5-Pz, trans to RhH), 134.23 (3-Pz, trans to PMe3), 133.63 (3-Pz, 

trans to RhH), 108.46 (4-Pz, trans to RhH), 107.69 (4-Pz, trans to PMe3), 76.87 (HCPz3), 

21.16 (d, 1JPC = 36.4 Hz, PMe3). 
15N{1H} NMR (methylene chloride-d2, 71 MHz):  131.8 

(N, 1-Pz, trans to RhH), 134.3 (N, 1-Pz, trans to PMe3), 173.0 (N, 2-Pz, trans to RhH), 

175.1 (N, 2-Pz, trans to PMe3). 
31P NMR (methylene chloride-d2, 162 MHz):  10.86 (d, 

1JRhP = 118.3 Hz, PMe3), 143.8 (sept, 1JPF = 712.8 Hz, PF6). IR (KBr, cm-1): 3199(m), 

3030 (w), 2976 (w), 2058 (m, RhH), 1521(m), 1443(m), 1407(m), 1293(s), 1249(m), 

1095(m), 1057(m), 960(m). 

Anal. Calcd. for C13H21N6F6P2Rh: C, 28.90; H, 3.92; N, 15.56  Found: C, 29.10; H, 3.75; N, 

15.22. Mp: above 300 oC, dec. 
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Chapter 6. Conclusion 

The importance of fundamental study of synthetic chemistry has never faded away. 

Functional group transformation relies on the process of bond formation. However, one 

always designs a tedious synthesis route to bring two or more synthons together to produce a 

molecule and multiple steps to remove a functional group. The initial bond activation 

mediated by transition metals in the overall synthesis could provide a shortcut to achieve this 

goal. Rhodium complexes have proved to be an outstanding transition metal catalyst in every 

aspect, extending from academic area to industrial world. The sustainable development of a 

more efficient catalyst is beneficial and valuable in terms of synthesis efficiency, atom 

economy and greener chemistry in this field. 

We have introduced CX, CH, OH, NH and HH bond activation chemistry by using 

tris(oxazolinyl)phenylborate and tris(pyrazolyl)methane supported rhodium complexes. We 

have demonstrated the possibility of combining the study of regioselectivity and 

stereoselectivity in a single system. The regioselectivity depends on the species of the 

electrophiles, in that the strong electrophiles bonds to the pedant arm of the ancillary ligand 

and the weak electrophiles undergo oxidative addition on the rhodium metal center. The 

highly diastereoselective result in the case of using chiral ancillary ligand could be further 

expanded to possible applications in asymmetric catalysis. We also described a new concept 

of allylic CH activation and functionalization synthesis strategy. Several allylic CH 

activation complexes were synthesized and characterized. The stepwise azide insertion 

followed by reductive elimination to give the stoichiometric functionalized product still 

leaves a huge space for improvement and evolved to a catalytic version. 
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Meanwhile, the photon-sensitive dicarbonyl complex used in the investigation of CX 

activation and thermally susceptible allyl hydride compound studied in the exploration of 

allylic CH activation converge on the same target to show decarbonylation reactivity toward 

various primary alcohols under both stoichiometric and catalytic conditions. Aldehydes are 

observed during the course of the reaction and mechanistic study partially suggests that 

primary alcohols undergo dehydrogenation followed by decarbonylation in the overall 

mechanism. This dehydrogenative strategy occurring at the initial stage was also applied to 

primary amines. The homo-coupling of several primary amines proceed under the same 

photolytic condition to give the imines as the product presumably via dehydrogenation and 

subsequent coupling reaction pathway. Lastly, we serendipitously discovered Tpm-supported 

cationic rhodium complex as the first example of crystallographically characterized 

complexes among all the cationic TpmRM(C2H4)2
+ (M = Rh, Ir) derivatives. The substitution 

chemistry of this cationic complex was investigated, in which the trimethylphosphine-

substituted ethylene complex activates dihydrogen molecule to give the dihydride complex. 

The solution behavior (hapticity, fluxionality and ligand rigidity) as well as the solid state 

connectivity were also studied and compared by means of 1H15N HMBC spectroscopy and 

X-ray crystallography. 

ToM has been proved as a superior ancillary ligand for the rhodium-mediated bond 

activations. ToP was also verified as a highly diastereoselective-directing chiral auxiliary that 

the CX, CH and HH bond activation examples could be possibly and potentially 

expanded to asymmetric synthesis and catalysis. For the OH and NH (bond activation) 

corresponded alcohol decarbonylation and amine coupling transformation, the development 
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of a visible light-promoted or thermally accessible dehydrogenation method will be critical 

for a more practical use. A rational design of cooperative ligand-metal set is of a key 

importance of developing a catalyst with high performance for such a purpose. One of the 

improving methods is to exploit a bifunctional ancillary ligand with a suitable electron-

donating ability since the elevated electron density on the metal center might impede the 

subsequent decarbonylation step. Therefore, in this regard, a high oxidation-state transition 

metal center or an electron deficient cationic structure should also be considered. On the 

other hand, a recoverable catalyst would meet the requirement of environmental 

sustainability. In this respect, the solid-supported catalyst with high surface area could 

enhance the efficiency for the reactions in heterogeneous catalysis. These future directions 

are expected to continue to discover new types of reactive catalysts for a more general 

substrate scope under milder and environmentally friendly conditions. 


