skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/1048516· OSTI ID:1048516
 [1]
  1. Iowa State Univ., Ames, IA (United States)

Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. The consolidation of ultra-fine powders (dia. ≤ 5μm) resulted in a significant reduction in dispersoid size and spacing, consistent with initial scanning electron microscopy studies on as-atomized cross-sectioned particles that suggested that these powders solidified above the threshold velocity to effectively solute trap Y within the α-(Fe,Cr) matrix. Interestingly, when the solidification velocity as a function of particle size was extracted from the aforementioned theoretical particle cooling curves, it could be offered as supporting evidence for these microstructure observations. Thermal-mechanical treatments also were used to create and evaluate the stability of a dislocation substructure within these alloys, using microhardness and TEM analysis of the alloy sub-grain and grain structure. Moreover, elevated temperature tensile tests up to 800°C were used to assess the initial mechanical strength of the ODS microstructure.

Research Organization:
Ames Lab., Ames, IA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC02-07CH11358
OSTI ID:
1048516
Report Number(s):
IS-T 3044
Country of Publication:
United States
Language:
English

Similar Records

Reactive gas atomization processing for Fe-based ODS alloys
Journal Article · Mon Aug 08 00:00:00 EDT 2011 · Journal of Nuclear Materials · OSTI ID:1048516

Reactive gas atomization processing for Fe-based ODS alloys
Journal Article · Wed Aug 24 00:00:00 EDT 2011 · Journal of Nuclear Materials · OSTI ID:1048516

Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production
Technical Report · Tue Aug 05 00:00:00 EDT 2014 · OSTI ID:1048516

Related Subjects