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CHAPTER 1. Introduction

Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a

long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band

structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively iso-

lated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during

the recent years. It draws so much attentions not only because of its potential application

in future electronic devices but also because of its fundamental properties: its quasiparticles

are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such

as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured ex-

perimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)],

Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling

in p-n junctions [Cheianov and Fal’ko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson

(2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Al-

though both electron-phonon coupling and photoconductivity in graphene also draws great

attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii

(2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electron-

phonon coupling and Schwinger pair production is an intrinsic graphene property that has not

been investigated.

Our motivation for studying clean graphene at low temperature is based on the following

effect: for a fixed electric field, below a sufficiently low temperature linear eletric transport

breaks down and nonlinear transport dominates. The criteria of the strength of this field

[Fritz et al. (2008)] is

eE = T 2/~vF (1.1)

For T >
√
eE~vF the system is in linear transport regime while for T <

√
eE~vF the system
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is in nonlinear transport regime. From the scaling’s point of view, at the nonlinear transport

regime the temperature T and electric field E are also related. In this thesis we show that

the nontrivial electron distribution function can be associated with an effective temperature T ∗

which exhibits a dependence on electric field E and electron-phonon coupling g:

T ∗ ∝ E1/4

g
(1.2)

The anamolous exponent 1
4 may obtained from scaling. Meanwhile, yet we cannot obtain the

distribution function, however, argument based on scaling gives us the current dependence on

electric field:

J ∝
√
E

g2
(1.3)

which is a very different result compared with the results in which electrons do not experience

scattering. This result provides us with important insighht into the correct nonequilibrium

distribution function because now we know what the electric field dependence of current must

be.

Due to the applied field, the electronic system produces heat which prevents us from reaching

a steady state. In order to remove Joule heat, we imagine that we have a graphene flake attached

to a semiconductor substrate. Joule heat either transport to its environment or to the substrate

as shown in 1.1. The red lines represent heat current flowing from high temperature sample to

the low temperature reservoir. However, for a very large system, the temperature gradient is 0 in

the plane so heat cannot be conducted outside in the horizontal direction, while the energy gap

in semiconductor also forbids electron current from flowing into the substrate. But for phonon

thermal current, the temperature gradient is large in the vertical direction, so heat can be

transported into the substrate via phonons. There are two possible channels of phonon degrees

of freedom, acoustic phonon and optical phonon. As we can see from Fig. 1.2 [Kusminskiy et al.

(2009)], since the optical phonon excitation energy is too large for a low temperature system,

it is note likely to be excited by the nonlinear electric field, so the possible way left is by

electron-acoustic phonon scattering. Here acoustic phonon acts as a heat bath to absorb the

Joule heat created by pair production process. Hence the scattering process is determined by

electron-acoustic phonon interaction which will be introduced in section 3.3.
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Figure 1.1 Heat transport in graphene attached on a semiconductor substrate. The red lines
represent thermal current flowing from high temperature sample to low temperature
reservoir.

Figure 1.2 Phonon dispersion relation in graphene. Here we can see that the minimum excita-
tion energy for optical phonon is about 70 meV, which corresponds to 840 K. So
optical phonon does not contribute to thermal phonon current at low temperature.
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This thesis is organized as follows: electronic properties such as linear band structure, current

for Dirac fermions, and electron-phonon coupling will be introduced in chapter 2; theoretical

concepts like Boltzmann equation with electron-phonon coupling, Schwinger mechanism, and

effective temperature will be included in chapter 3; we will use scaling to obtain the electric

current as well as the relation between effective temperature T ∗, electric field, and electron-

phonon couppling constant in nonlinear regime in chapter 4. In the end, we will show that

in relaxation time approximation, both explicitly solving distribution function and scaling in

relaxation time approximation give us the same result which confirms the advantage of using

scaling as a tool to obtain the correct nonlinear transport behavior.
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CHAPTER 2. Electronic properties of graphene

At low energies, graphene can be described by a theory of N = 4 two-component fermions.

The two components correspond to fermions associated with the two sublattices of the hon-

eycomb lattice structure, and N = 4 corresponds to 2 symmetry inequivalent nodes of the

dispersion and 2 for spin. To obtain these results, it is sufficient to start from a tight-binding

model with Hamiltonian H = H0 of spinless fermions ci hopping on the honeycomb lattice. The

kinetic energy is

H0 = −t
∑
i,j

c†icj (2.1)

The honeycomb lattice (2.1) of nearest-neighbor distance a consists of two interpenetrating

triangular lattices with lattice spacing
√
3a. We define blue (B) and red (R) sublattices with

the fermions on the respective sublattices given by

ci =


ai for i ∈ R

bi for i ∈ B

(2.2)

The lattice vectors for the R and B lattices are (upper and lower corresponding to x and y,

respectively):

s1 =
√
3a

 1

0

 and s2 =
√
3a

 1
2

−
√
3
2

 , R sublattice

s1 =
√
3a

 1

0

 and s2 =
√
3a

 1
2
√
3
2

 , B sublattice (2.3)

The reciprocal lattice vectors are
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b1 =
4π

3a


√
3
2

1
2

 and b2 =
4π

3

 0

−1

 , R sublattice

b1 =
4π

3a


√
3
2

−1
2

 and b2 =
4π

3

 0

1

 , B sublattice (2.4)

We also need to define the vectors u and v that connect the two sublattices. The three vectors

that point from the R sublattice to the B sublattice are

u1 = −aŷ

u2 = a

(√
3

2
x̂+

1

2
ŷ

)

u3 = a

(
−
√
3

2
x̂+

1

2
ŷ

)
(2.5)

while the vectors vi that point from the Blue sublattice to the red sublattice are clearly the

minus of the ui:

v1 = aŷ

v2 = −a

(√
3

2
x̂+

1

2
ŷ

)

v3 = a

(√
3

2
x̂− 1

2
ŷ

)
(2.6)

Next, we derive a Dirac-like Hamiltonian for H, starting with the analysis of H0.

2.1 Kinetic energy term

In tight binding model the kinetic energy of electrons in grapene can be written as

H0 = −t

 ∑
i∈R,j n,n

a†ibj +
∑

i∈B,j n,n
b†iaj

 (2.7)

now we do Fourier transformation to transform the creation and annihilation operators from

real space to momentum space, such as

bi =
∑
q

e−iq·ribq (2.8)
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thus

H0 = −t

 ∑
i∈R,j n,n

∑
k,q

ei(k·ri−q·rj)a†kbq +
∑

i∈B,j n,n

∑
k,q

ei(k·ri−q·rj)b†kaq


= −t

∑
i∈R

∑
ui

∑
k,q

ei(k−q)·ri−iq·uia†kbq +
∑
i∈B

∑
vi

∑
k,q

ei(k−q)·ri−iq·vib†kaq

 (2.9)

where the summation over ui and vi gives us

cu(q) ≡
∑
ui

e−iq·ui

= eiqya + 2 cos

[√
3

2
qxa

]
e−

i
2
qya (2.10)

and

cv(q) ≡
∑
vi

e−iq·vi

= e−iqya + 2 cos

[√
3

2
qxa

]
e

i
2
qya (2.11)

The sums over ri then yield delta functions constraining k = q, so that we finally obtain

H0 = −t
∑
k

(
cu (k) a

†
kbk + cv (k) b

†
kak

)

= −t
∑
k

(
a†k b†k

) 0 cu (k)

cv (k) 0


 ak

bk

 (2.12)

where k is sitting inside the first Brillioun zone (BZ) and now we can diagonalize the 2 × 2

matrix to obtain the spectrum of eigenvalues:

E(k)2 = t2cu(k)cv(k) (2.13)

or,

E(k) = ±t

√√√√1 + 4 cos2

[√
3

2
kxa

]
+ 4 cos

[√
3

2
kxa

]
cos

[
3

2
kya

]
(2.14)
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The dispersion E(k) has nodes at periodic positions in k-space, with the six closest to the origin

being at 4π
3

(
± 1√

3
, 0
)
and 4π

3

(
± 1

2
√
3
,±1

2

)
. Two of these are inequivalent, i.e., not connected by

the reciprocal lattice vectors bi. The result is shown in 2.2.

We construct our Dirac theory by expanding H0 near the two nodes

k1 =
4π

3a

(
1√
3
, 0

)
=

4π

3
√
3a
x̂, (2.15)

k2 =
4π

3a

(
1

2
√
3
,−1

2

)
=

2π

3
√
3a
x̂− 2π

3a
ŷ. (2.16)

and we may expand the Hamiltonian near the two nodes (K and K ′ points):

Ho ≃ −t
∑
k

∑
i=1,2

(
a†k+ki

b†k+ki

) 0 cu(k+ ki)

cv(k+ ki) 0


 ak+ki

bk+ki

 (2.17)

Now the k points are within the triangles whose centers are the two distinguished K points

respectively with Γ points as the apexs. With the K points fixed and expanding to the first

order term, we may obtain:

H0 ≃ −3

2
ta
∑
k,i

ψ†
i (k)

 0 −kx + iky

−kx − iky 0

ψi(k)

= v
∑
k

∑
i=1,2

ψ†
i (k)k · σψi(k) (2.18)

where

ψ1(k) =

 ak+k1

bk+k1

 (2.19)

ψ2(k) =

 bk+k2e
iπ
3

ak+k2

 (2.20)

This matrix is diagonalized by

Uk =
eiφk

√
2

 ei(χk+θk) eiχk

−e−iχk e−i(χk+θk)

 (2.21)
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Figure 2.1 (Color online) Plot of honeycomb crystal lattice of graphene, showing two inter-
penetrating (red and blue) sub- lattices.

Figure 2.2 Dispersion relation of graphene.
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with arbitrary χk and φk i.e.

Ukv~k · σU−1
k =

 v~k 0

0 −v~k

 . (2.22)

The eigenvalues of the Hamiltonian are ±v~k. Thus we obtain new quasiparticle states for the

two bands: γk = Ukψk, with

H0,el = v~
ˆ
k

∑
λ=±

λkγ†k,λγk,λ. (2.23)

The eigenvalues are therefore

εkλ = λv~k. (2.24)

A convenient choice is χk = −θk/2 where:

Uk =
eiφk

√
2

 eiθk/2 e−iθk/2

−eiθk/2 e−iθk/2

 (2.25)

2.2 Current operator for Dirac field in graphene

In this section we derive the current operator of Dirac fermion in graphene. We expect to

use the continuity equation ∂ρ
∂t +∇ · j = 0 to find the current in graphene. Since

ρ = eψ̄ψ

= e
∑
α

(
ψ†
αψα

)
(2.26)

and we need a relation to connect the time derivatives and space derivatives of creation and

annihilation operators, we may think about Heisenberg equation of motion

dA

dt
=

1

i~
[A, H] . (2.27)

In order to get the space derivatives, we Fourier transform the bare Hamiltonian:

H0 = v~
ˆ

dk

(2π)2
ψ̄ (k)k · σψ (k)

= −iv~
ˆ
drψ̄ (r)σ · ∇ψ (r) (2.28)
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Now

dψ1

dt
=

1

i~
[ψ1, H]

= −v
(
∂

∂x
− i

∂

∂y

)
ψ2 (2.29)

similarly

dψ2

dt
=

1

i~
[ψ2, H]

= −v
(
∂

∂x
+ i

∂

∂y

)
ψ1 (2.30)

what about the electron-phonon interaction contribution? Well, as you calculate ∂ρ
∂t , you will

find its contribution to current is 0.

As we mentioned before ρ = e
(
ψ†
1ψ1 + ψ†

2ψ2

)
, so

∂ρ

∂t
= e

(
ψ̇†
1ψ1 + ψ†

1ψ̇1 + ψ̇†
2ψ2 + ψ†

2ψ̇2

)
= −ev

[
−ψ1

(
∂

∂x
+ i

∂

∂y

)
ψ†
2 + ψ†

1

(
∂

∂x
− i

∂

∂y

)
ψ2

−ψ2

(
∂

∂x
− i

∂

∂y

)
ψ†
1 + ψ†

2

(
∂

∂x
+ i

∂

∂y

)
ψ1

]
(2.31)

Now we need to find out j such that

∂ρ

∂t
= −

(
∂jx
∂x

+
∂jj
∂y

)
(2.32)

then

∂jx
∂x

= −ev

(
ψ1
∂ψ†

2

∂x
− ψ†

1

∂ψ2

∂x
+ ψ2

∂ψ†
1

∂x
− ψ†

2

∂ψ1

∂x

)
⇒ jx = evψ̄σ1ψ (2.33)

similarly,

∂jy
∂y

= −iev

(
ψ1
∂ψ†

2

∂y
+ ψ†

1

∂ψ2

∂y
− ψ2

∂ψ†
1

∂y
− ψ†

2

∂ψ1

∂y

)
⇒ jy = evψ̄σ2ψ (2.34)

so we have j = evψ̄σψ.

We use the property (valid for χk = −θk/2) that

UkσU
−1
k =

k

k
σz −

k× ez
k

σy (2.35)
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and obtain for the current an intra- and inter-band contribution:

j = jintra + jinter (2.36)

with:

jintra = evN

ˆ
k

∑
λ=±

λk

k
γ†k,λγk,λ

jinter = ievN

ˆ
k

k× ez
k

(
γ†k,+γk,− − γ†k,−γk,+

)
(2.37)

In what follows we concentrate our attention to intraband currents. We introduce the distribu-

tion function fkλ (t) for the single particle occupation of a state with momentum k and band

index λ:

fkλ (t) =
⟨
γ†k,λγk,λ

⟩
. (2.38)

It follows for the intraband current that

⟨jintra⟩ = evN

ˆ
k

∑
λ=±

λk

k
fkλ (t) . (2.39)

Within linear response, we make the ansatz

fkλ (t) = f0 (λvk) + eλ
E · k
k

f0 (vk) (1− f0 (vk)) gλ (k, t) , (2.40)

where

f0 (ε) =
1

eβω + 1
(2.41)

is the distribution funtion in equilibrium, while gλ (k, t) parametrizes the electric field induced

deviations in the occupation from its equilibrium value. gλ (k, t) will be determined from a

solution of the Boltzmann equation. Since the current vanishes for fkλ (t) = f0 (λvk), it follows

⟨jintra⟩ = e2vN

ˆ
k

k (E · k)
k2

f0 (vk) (1− f0 (vk))
∑
λ=±

gλ (k, t) . (2.42)

In case ⟨j⟩ = ⟨jintra⟩ follows for the conductivity ⟨jα⟩ =
∑

β σαβEβ that

σαβ = e2vN

ˆ
k

kαkβ
k2

f0 (vk) (1− f0 (vk))
∑
λ=±

gλ (k, t) (2.43)
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By symmetry follows σ = σxx = σyy such that

σ =
e2v

2
N

ˆ
k
f0 (vk) (1− f0 (vk))

∑
λ=±

gλ (k, t)

= e2vπN

ˆ ∞

0
dkkf0 (vk) (1− f0 (vk))

∑
λ=±

gλ (k, t) (2.44)
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CHAPTER 3. Summary of theoretical concepts

To obtain the nonequilibrium distribution function, Boltzmann transport theory, which will

be introduced in section 3.1, is used as a powerful tool to study the problem. Not only does it

lead us to the equation for distribution function, but also enable us using scaling to investigate

the nonlinear transport properties. Furthermore, we will also illusrate how biased electric

field produces heat in electronic system by elastic scattering (like impurity) in section 3.1. In

section 3.2, it will be shown how to use Dirac equation with an electric field, which acts as

shifting the Dirac point to (eEt, 0) and resulting in pair-production, to exhibit linear transport

at low electric field while gives us nonlinear transport at high electric field. The resulting

Hamiltonian shows the same structure as Landau-Zener model [Zener (1932)] therefore we can

always obtain the distribution function in the long time limit. Also, the currents due to Kubo

mechanism and Schwinger/Kibble-Zurek mechanism may also be obtained at large field limit.

In secion 3.3, we will explain the idea of effective temperature and shows the electric field -

temperature dependence under the relaxation time approximation in which both elastic and

inelastic scattering are constants.

3.1 Summary of Boltzmann transport

3.1.1 Derivation of Boltzmann equation

In this section, we use semiclassical argument to qualitatively illustrate how to we build

up Boltzmann equation which is used to study the transport process [Grosso and Parravicini

(2000)]. We all know that at thermodynamic equilibrium, the distribution function f0 obeys

the Fermi-Dirac (F-D) distribution function

f0 (k) =
1

e(E(k)−µ)/kBT + 1
.
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where T is the temperature of the system and µ is the chemical potential. However, life is not

this easy in non-equilibrium state. When external perturbations (electric fields, magnetic fields,

temperature gradients) are applied to the system, the distribution function no longer obeys the

F-D distribution function. In general the disturbed distribution function f (r, k, t), in additio

to k, depends also on the real space coordinate r, and on time t.

According to the semiclassical dynamics of carriers with energy E (k) and momentum k in

given energy band has velocity

vk =
1

~
∂E

∂k

and experience force

F =
d (~k)
dt

.

During the motion, collision processes may cause a net rate of change
[
∂f
∂t

]
coll

, which is deter-

mined by the interaction, of the number of electron in the phase space volume drdk. Using

Liouville theorem (volumes in phase space are preserved by the semiclassical equation of motion)

we must have for the distribution function

f (r+ dr, k+ dk, t+ dt) ≡ f (r, k, t) +

[
∂f

∂t

]
coll

dt (3.1)

Expanding 3.1 in Taylor series up to the first order, and we obtain the Boltzmann equation

∂f

∂r
· v +

F

~
· ∂f
∂k

+
∂f

∂t
=

[
∂f

∂t

]
coll

(3.2)

In our case, the F is the eletric force eE and
[
∂f
∂t

]
coll

is determined by eletron-phonon interaction

which will be discussed in detail in section 3.3.

3.1.2 Joule heat created by hot electrons

To qualitatively illustrate how non-equilibrium state generates Joule heat, we introduce

the relaxation times approximation by requiring
[
∂f
∂t

]
coll

= −f−f̄
τ in 3.1 with elastic impurity

scattering rate τ−1 characterizs the relaxation of the electronic distribution function f (p) to

its angular average f̄ (p). So we obtain

∂f

∂t
+ eE · ∇pf + v · ∇xf = −f − f̄

τ
. (3.3)
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Here we set ~ = 1. Assuming the solution can be expanded in powers of the applied field, we

write

f = f (0) + f (1) + f (2) + ..., (3.4)

with the assumptions that

f (n) ≪ f (n−1),

in the spirit of perturbation method and

f (0) =
1

eβ(E(k)−µ) + 1
. (3.5)

the Fermi distribution function. Now we consider we have a homogeneous system which means

the the distribution function f is indepedent of the position in the system: ∇xf = 0.

To the first order approximation
∂f

∂t
= 0 (3.6)

and we have

eE · (∇pf
(0)) = −f

(1) − f̄ (1)

τ
. (3.7)

Due to the presence of the applied electric field, the momentum of electrons is no longer isotropic.

In the sense of Taylor expansion:

f(x) = f(x0) +
df

dx
|x=x0 (x− x0) +

1

2!

d2f

dx2
|x=x0 (x− x0)

2 + ..., (3.8)

we may think f (1) as an odd function of momentum, therefore f̄ (1) is 0,

⇒ f (1) = −τeE · (∇pf
(0)). (3.9)

Then we consider the contribution from second-order correction. Since f (0)is time-independent,

f (1) is also time-independet as can be seen from the equation above:

∂f (0)

∂t
=
∂f (1)

∂t
= 0 (3.10)

So the f (2) is expected to be the leading-order term in time-dependent contribution. Then the

Boltzmann equation now look like

∂f (2)

∂t
= τ(eE · ∇p)

2f (0) − f (2) − f̄ (2)

τ
. (3.11)
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Now taking the angular average of the distribution function
ˆ

dp̂

2π
(3.12)

over every term:

f̄ (2) = tτ

ˆ
p̂

2π
(eE · ∇p)

2 f (0) (3.13)

The second-order contribution in the energy density can be calculated from

δϵ ≡ N(0)

ˆ ∞

−∞
dϵϵf̄ (2), (3.14)

where N(0) = 2mV
π is the density of state of a 2-D system at Fermi level (we take ~ = 1), V is

the volume of the system. The reason we use the density of state at fermi level is because we

believe that only the electron distribution at the nearby of Fermi surface makes contribution to

the change in energy

δϵ = N (0)

ˆ ∞

−∞
ϵtτ

ˆ
p̂

2π
(eE · ∇p)

2 f (0)

=
V 2t

R
(3.15)

which obviously is the Joule heating.

As we can see that the energy increases linearly with respect to time, so it is impossible

to reach a steady state (∂f∂t = 0) under the assumption there is only elastic scattering process;

therefore we have to introduce an inelastic scattering process to remove the heat.

3.1.3 Summary of Arai’s method

In this section, we will explain the idea of effective temperature and show the electric field -

temperature dependence at large field which is the feature of nonlinear transport [Arai (1983)].

In the previous section, we see that with elastic scattering process alone system cannot reach a

steady state so inelastic scattering process is needed. In the non-equilibrium current carrying

state considered, the lowest electron temperature attainable in a biased resistor is given by

the lowest temperature where the inelastic scattering is capable of maintaining a steady state.

This nonequilibrium noise should be observable for electric fields sm\rangle_{\mbox{inter}}all

enough that Joule heating is insufficient to drive the phonons out of equilibrium.
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We begin by considering the Boltzmann equation for a simplified model containing the

essential physics. The elastic impurity scattering rate τ−1
imp characterizs the relaxation of the

electronic distribution function f (p) to its angular average f̄ (p). The inelastic scattering

τ−1
ph relaxes the energy by changing the magnitude of the momentum and therefore drives the

distribution to thermal equilibrium as represernted by the Fermi distribution feq. The heat

bath temperature enters through feq.

Result are obtained by self-consistently solving the Boltzmann equation using an iterative

procedure which retains the first two terms of a decomposition of the distribution function into

Legendre polynomials (i.e., the sp-approximation). This method holds for all two-dimensional

system as long as it obeys the transportation model introduced by Arai.

− eE · ∇pf (p) = − 1

τimp

[
f (p)− f̄ (p)

]
− 1

τph
[f (p)− feq(p)] , (3.16)

After some algebra, we have the distribution functions f (0) and f (1):

f (0) (p) =

ˆ ∞

−∞

vFdp
′

2π

( π

eEl∗

)
exp

(
−vF | p− p′ |

eEl∗

)
feq
(
p′
)
.

f (1) (p) =

(
eEl∗

vF

)(
3τ

τph

) 1
2 ∂

∂p
f (0) (p) . (3.17)

It shows that the distribution function is smeared out on an energy scale given by eEl∗ with

l∗ the drift distance. This smearing effect dominates the shape of the distribution at low

temperatures where feq is essentially a step function at pF .

We can define an effective temperature T ∗which is defined by assuming the nonequilibrium

state as a equilibrium state with temperature T ∗. Effective temperature T ∗ can be done by

using the Sommerfeld expansion [Ashcroft and Mermin (1976)]:

kBT
∗ =


kBT eEl∗ ≪ kBT

0.780eEl∗ eEl∗ ≫ kBT

(3.18)

3.2 The Schwinger mechanism of pair production

Schwinger mechanism is a process of particle-antiparticle creation and in the case of graphene,

it becomes electron-hole creation. In the conventional way, the canonical momentum p → p− eA
c
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is used to solve this term. However, as t → ∞, it can be simplified to Landau-Zener dynamics

which describes the transition rate between two states in a nonadiabatic process in the long

time limit. The schematic description is shown in Fig. 3.1 [Dora and Moessner (2010)].

The special feature of Dirac electrons relevant for transport in finite field include: (i) their

velocity is pinned to the “light cone” fermi velocity, vF , (ii) relativistic particles undergo pair

production in strong electric fields, as predicted by Schwinger, and (iii) a uniform electric

field modifies locally the geometry of the Fermi surface by moving the Dirac point around in

momentum space 3.26.

The Dirac equation of graphene near the Dirac point (the Fermi energy point) with time

dependent vector potential A = −Et in kx- direction can be described as:

H = v [σx (px − eA(t)) + σypy] (3.19)

i~∂tΨp(t) = HΨp(t) (3.20)

with v ∼ 106m/s the velocity of electron in graphene. Now we perform a time dependent unitary

transformation to diagonalize the Hamiltonian:


H ⇒ U †HU

Ψ ⇒ U †Ψ ≡ Φ

(3.21)

and the U can be expressed as

1√
2

 e−
iφ
2 e−

iφ
2

e
iφ
2 −e

iφ
2

 (3.22)

since a 2× 2 unitary matrix is isomorphic to U(1) group, there can be only one variable which

we call it φ.

U †HU = v

 (px − eA(t)) cosφ+ py sinφ −i(px − eA(t)) sinφ+ ipy cosφ

i(px − eA(t)) sinφ− ipy cosφ −(px − eA(t)) cosφ− py sinφ

(3.23)

With the new Hamiltonian being diagonalized, φ must be

tanφ =
py

px − eA(t)
(3.24)
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this also means that we have

sinφ =
py√

(px − eA(t)2 + p2y

cosφ =
px − eA(t)√

(px − eA(t)2 + p2y

(3.25)

and

U †HU = v


√

(px − eA(t)2 + p2y 0

0 −
√

(px − eA(t)2 + p2y

 (3.26)

While the left hand side of 3.20 can be written as

i~∂t(UΦp (t)) = i~(
∂U

∂t
)Φp (t) + UHΨp(t) (3.27)

since we already know the second term we only need to focus on the first term:

i~(
∂U †

∂t
) = −~

2

∂φ

∂t
U † (3.28)

From trigonometry, we have

∂φ

∂t
=

pyeE

(px − eA(t))2 + p2y
(3.29)

therefore we may obtain

i~∂tΦp(t) =

[
σzϵp(t)− σx

~v2pyeE
2ϵ2p(t)

]
Φp(t) (3.30)

Φp(t = 0) =

 0

1


assuming that at t = 0 the system is the lower state and ϵp(t) = v

√
(px − eA(t))2 + p2y. In

Dirac equation the current density operator is

j = −evσ (3.31)

as shown in section 2.2. So the current density is
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⟨jx⟩p(t) = −ev
[
cosφ

(
|α(t)|2 − |β(t)|2

)
+ 2 sinφℜ(iαp(t)β

∗
p(t))

]
(3.32)

The first term is the current from carries: electron for upper band and holes for lower band as

indicated by the minus sign. The second one describes electron transition between the upper

band and the lower band, and is responsible for Zitterbewegung.

By using 3.30, we have

i~
∂α

∂t
= ϵpα− ~v2pyeE

2ϵ2p(t)
β (3.33)

We can multiply both side of 3.33 by α∗and take the real part,

ℜ
(
α∗~

∂α

∂t

)
= ℜ

(
−iϵpα∗α+ i

~v2F pyeE
2ϵ2p(t)

α∗β

)
(3.34)

since ∂|α|2
∂t = 2ℜ(αp(t)∂tα

∗
p(t)) = 2ℜ(α∗

p(t)∂tαp(t)),

~
2

∂|α|2

∂t
=

~v2pyeE
2ϵ2p(t)

ℜ
(
iα∗

pβp
)

= −~v2pyeE
2ϵ2p(t)

ℜ
(
iαpβ

∗
p

)
(3.35)

thus the current density 3.32 becomes

⟨jx⟩p(t) = −evF
[
v (px − eEt)

ϵp(t)
(2np(t)− 1)− 2

ϵp(t)

veE
∂tnp(t)

]
(3.36)

with np (t) =| α (t) |2. In condensed matter, the first term and second term in 3.36 are called

as intraband and interband current, respectively. As we can see, the first term vanishes at half

filling after integrating over momentum because the equal amount of electrons and holes move

in the same direction: one electron with momentum k excited to upperband creating one hole

with momentum k in the lower band. The mechanism is similar to Schwinger’s pair production,

which describes the simultaneous creation of particle-antiparticle pairs; whereas in graphene, it

is electron-hole pairs.

Here we discuss the current density behavior with different magnitude of applied field E.

First case we set the field very small compared to the electron momentum p and we obtain

i~
∂

∂t

 α

β

 =

 vp −~pyeE
2p2

−~pyeE
2p2

−vp


 α

β

 (3.37)
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which is nothing else but an eigenvalue problem with initial condition α(t = 0) = 0 and

β(t = 0) = 1. We can get

α(t) ∼ α0 sin vpt

β (t) ∼ β0 cos vpt (3.38)

with β0 ∼ 1 and α0 ∼ ~pyeE
2p3v

as the eigenstate. This result is as expected because the small

electric field cannot produce significant amount of electron-hole pairs. Therefore

np(t) = | α(t) |2

=
(eE~py)2

4v2|p|6
sin2

(
v|p|t
~

)
(3.39)

As the electric field is sufficiently small, we can ignore the first term in 3.36 because it is

proportional to E2 and the effect is suppressed by the linear term ev2(px−eEt)
ϵp(t)

(−1); thus we

only need to consider the intraband current which describes intraband transition. As we want

to know the total current density, we need to sum up all the contribution from carriers:

⟨jx⟩ =
4

V
ve
∑
k

k

| k |
2vp

veE
∂tnp(t)

=
π

2

e2E

h
(3.40)

where the 4 comes electron degeneracy in graphene. The constant conductivity

σ =
π

2

e2

h
(3.41)

is the minimal conductivity [Lewkowicz and Rosenstein (2009)].

At long time limit, the pair-production np (t) obtained from Landau-Zener dynamics [Green and Sondhi

(2005)] is

np (t) = Θ (px)Θ (eEt− px) exp

[
−
πvp2y
eE~

]
(3.42)

which is the celebrated pair production rate by Schwinger [Schwinger (1951); Tanji (2009)]. The

current due to this pair-production np (t) is

⟨jx⟩Schwinger = ev
∑
λ=±

ˆ
dpxdpynp (t)

=
2e2E

3
2 t

~2
√
ev~ (3.43)
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which is the result of Schwinger/Kibble-Zurek mechanism. While for the interband current

⟨jx⟩inter =
2e2

π3~
E (3.44)

which corresponds to Kubo mechanism and is overwhelmed by the intraband current at large

field limit. Here we can see that σxx ∼ E
1
2 which demostrates nonlinear transport in graphene

at large electric field.

While the pair-production rate Sk can be written as

Sk =
dnp (t)

dt
= δ

(
~kx
eE

)
exp[−

πve~k2y
eE

] (3.45)

As refering back to 3.2, we see that we need to put Sk in the right hand side of the equation

because in this case, the change in distribution function is not only determined by the collision

integral, but also affected by the pair-production.

3.3 Electron-phonon coupling in graphene

3.3.1 The free phonon part

The free phonon part of the Hamiltonian is given as

H0,ph =
∑
qa

~ωqab
†
q,abq,a (3.46)

where ωq is the phonon frequency for the phonon branch a.

3.3.2 Electron-phonon interaction

One of the common scattering potentials is the oscillating potential produced by lattice

vibrations. This potential can be written as

US = DA
∂uq
∂x

=
DAq√
2ρωq

(
b̂†qe

−i(q·r−ωt) + b̂qe
i(q·r−ωt)

)
(3.47)

where Kq = DA | q | is related to the deformation potential DA due to a perturbed lattice

constants and band structure, and uq = Aqe
i(q·r−ωt) + A†

qe
−i(q·r−ωt) with Aq =

√
1

2ρωq
b̂q and
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A†
q =

√
1

2ρωq
b̂†q. The overall potential contributed by all the vibrational modes is therefore

U =
∑
q

Us

=
∑
q

DAq√
2ρωq

(
b̂†qe

−i(q·r−ωt) + b̂qe
i(q·r−ωt)

)
(3.48)

In the electron-phonon interaction, potential U is regarded as an one-body operator: one elec-

tron comes in, interacts with phonon, then goes out. Therefore the Hamiltonian H1 of electron-

phonon interaction can be written as

H1 =
∑
k,k′

⟨k | U | k′⟩a†kak′

=
∑
k,q

DAq√
2ρωq

a†k+qak

(
b̂†−q + b̂q

)
(3.49)

with a† and a electron creation operator and annihilation operator respectively and k =
(
k0, k

)
.

This result holds for both sublattice blue and sublattice red as well as is diagonalized. Here

we can use the symbols introduced in 2.19 and 2.20 without changing the Hamiltonian H1, so

finally we get [Prange-1964]

H1 =
∑
k,q

2∑
i=1

ψ†
i (k+ q)

(
b†−q + bq

)
Iψi (k) (3.50)

where I is a 2× 2 identity matrix.

After the proper unitary transformation U which diagonalizes electron bare Hamiltonian,

the electron phonon interaction can in gerenal be written as Prange and Kadanoff (1964)

He−ph =
∑

k,k′,λλ′a

gλλ
′,a

k,k′ γ
†
k,λγk′,λ′

(
b†k′−k,a + bk−k′,a

)
(3.51)

where gλλ
′,a

k,k′ is the electron-phonon matrix element between electrons in states (k, λ) and (k′, λ′)

with phonon mode a where the phonon momentum q = k′−k is determined by momentum

conservation:

gλλ
′,a

k,k′ =
Dq√
2ρmωq

⟨
kλ|k′λ′

⟩
(3.52)
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Figure 3.1 Schematic description of temporal evolution of Landau-Zener dynamics. For any
arbitrary point in p-space, the energy difference between the corresponding two
points in the upper and lower band is ∆E = 2pvF . As the time evolves, their ener-
gies are getting closer and closer, and reaching the closest distance ∆Emin = 2pyvF
at t∗ = px

eE ; then they move away from each other. The nonadiabatic process in-
duces a transition between the two bands until the transition is completed when
the two states are far from each other. In our case we choose at , all the electrons
lie in the lower band.

Table 3.1 Symbols and their corresponding physical meanings in a phonon scattering potential
US = DA

∂u
∂x = KqAqe

±i(q·x−ωt)

Symbol Physical meaning
DA lattice deformation potential
Kq DA | q |
b̂†q phonon creation operator
b̂q phonon annihilation operator
q momentum of phonon
ω energy of single phonon with speed of light c = 1
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where ρm ≃ 0.76mg/m2 is the mass density of graphene and values for the deformation coupling

constant are in the range D ≃ 10− 30eV [Hwang-2008]. For the matrix element follows

⟨
kλ|k′λ′

⟩
=

(
UkU

−1
k′
)
λλ′ (3.53)

=
1 + λλ′

2
cos

(
θk − θk′

2

)
− i

1− λλ′

2
sin

(
θk − θk′

2

)
(3.54)

which yields ∣∣⟨kλ|k′λ′
⟩∣∣2 = 1 + λλ′ cos (θk − θk′)

2
. (3.55)

eiθk =
kx + iky

k
(3.56)

eiθk+q =
kx + qx + i (ky + qy)√

k + q + 2k · q
(3.57)

cos (θk − θk′) = ℜ
[
eiθke−iθk+q

]
(3.58)

=
k · (k+ q)

k |k+ q|
(3.59)

3.3.3 Collision operator due to electron-phonon coupling

We consider the quantum Boltzmann equation of fermions with distribution function fλ (k, t)

∂fkλ (t)

∂t
+
eE

~
· ∂fkλ (t)

∂k
= Ikλ (t) (3.60)

and the collision integral due to electron-phonon coupling can be written as

Ikλ = −2π

ˆ
k′,λ′

∣∣∣gλλ′,a
k,k′

∣∣∣2 [fkλ (1− fk′,λ′
)
+
(
fkλ − fk′,λ′

)
nq,a

]
×δ
(
εkλ − ωk−k′,a − εk′,λ′

)
+2π

ˆ
k′,λ′

∣∣∣gλλ′,a
k,k′

∣∣∣2 [fk′,λ′ (1− fkλ)−
(
fkλ − fk′,λ′

)
nq,a

]
×δ
(
εkλ + ωk−k′,a − εk′,λ′

)
(3.61)

3.4 Solution of the linearized Boltzmann equation

Next we insert the small electric field expansion into the collision integral, i.e. we consider

fkλ = f0kλ + eλ
E · k
k

f0kλ
(
1− f0kλ

)
gλ (k) . (3.62)
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where f0kλ =
(
eβvλk + 1

)−1. Note that

f0kλ
(
1− f0kλ

)
=

eβvk

(eβvk + 1)
2 (3.63)

is in fact independent on λ. It then follows that

Ikλ = −2πe

ˆ
k′,λ′

∣∣∣gλλ′,a
k,k′

∣∣∣2 [f (0)kλ

(
−λ′E · k′

k′

)
f0k′λ′

(
1− f0k′λ′

)
gλ′
(
k′
)

+
(
1− f

(0)
k′,λ′

)
λ
E · k
k

f0kλ
(
1− f0kλ

)
gλ (k)

]
×
[
(1 + nq,a) δ

(
εkλ − ωq,a − εk′,λ′

)
+ nq,aδ

(
εkλ + ωq,a − εk′,λ′

)]
+2πe

ˆ
k′,λ′

∣∣∣gλλ′,a
k,k′

∣∣∣2 [f (0)k′λ′

(
−λE · k

k

)
f0kλ

(
1− f0kλ

)
gλ (k)

+
(
1− f

(0)
kλ

)
λ
E · k′

k′
f0k′λ′

(
1− f0k′λ′

)
gλ′
(
k′
)]

×
[
nq,aδ

(
εkλ − ωq,a − εk′,λ′

)
+ (1 + nq,a) δ

(
εkλ + ωq,a − εk′,λ′

)]
(3.64)

3.4.1 Coupling to longitudinal accustic phonons

In case of longitudinal acustic phonons, we have

∣∣∣gλλ′,a
k,k′

∣∣∣2 =
D2
(
k− k′)2

2ρmωk−k′

∣∣⟨kλ|k′λ′
⟩∣∣2

=
D2
(
k− k′)2

2ρmωk−k′

1 + λλ′ cos (θk − θk′)

2
. (3.65)

The phonon frequency is ωq = cq and we take the limit c/v ≪ 1. To leading order, this

implies that we can neglect the phonon frequencies ωq in the delta functions that guarantee

energy coservation. This in turn implies that we can restrict ourselves to intraband scattering

processes with λ′ = λ. Finally, for the bose-factor follows in the limit c/v ≪ 1 that

nq ∼ 1 + nq ∼ T

cq
. (3.66)

and under this limit, the angular dependence only shows on
∣∣∣gλλ′,a

k,k′

∣∣∣2 and E · k′. This leads us

to an identity equation

ˆ
dθk′

∣∣∣gλλ′,a
k,k′

∣∣∣2 E · k′

k′
=

ˆ
dθk′

∣∣∣gλλ′,a
k,k′

∣∣∣2 (E · k) (k · k′)

k2k′
(3.67)
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It follows that

Ikλ =
4πeTE · kλ

kc

ˆ
k′

∣∣∣gλλ,ak,k′

∣∣∣2 gλ (k)
q

[(
k · k′

kk′

)
f0k′λ

(
1− f0k′λ

)
− f0kλ

(
1− f0kλ

)]
× [δ (εk − εk′)] (3.68)

Since the energy of electron is much larger than that of phonon, we may use the quasielastic

scattering process, i.e. δ
(
εkλ − εk′,λ

)
= δ (vk − vk′), to obtain the collision integral. Since

f0kλ only depends on |k|, it further follows that f0kλ = f0k′λ = f0 (vλk). Inserting the electron

phonon scattering element yields

Ikλ = −eTD
2E · kλ

4ρmc2v
gλ (k) f

0
kλ

(
1− f0kλ

)
(3.69)

Inserting this result into the Boltzmann equation, 3.60, yields

− eE · k
k

eβvk

(eβvk + 1)
2βvλ = −2πe

E · k
k

λ
D2T

8πρmvc2
k

eβvk

(eβvk + 1)
2 gλ (k) (3.70)

which finally yields

gλ (k) =
4ρmc

2

D2

v2

T 2k
. (3.71)

If we insert this resul into 2.44 for the conductivity we find

σ = e2v2π
4ρmc

2

D2

v

T
N

ˆ ∞

0
dx

ex

(ex + 1)2

= e2
4πρmc

2N

D2

v2

T
. (3.72)

reintroducing proper units yields

σ = N
e2

~
θ0
T

(3.73)

with the temperature scale

θ0 =
4π~2ρmc2v2

kBD2
. (3.74)

whose numerical value is 3 × 105K for D = 20 eV. The result for conductivity measurement

[Hwang and Sarma (2008)] turns out to be the same as our result.
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3.4.2 Relaxation rate

The natural definition to introduce a relaxation time τ is via

dfkλ
dt

= −1

τ

(
fkλ − f0kλ

)
(3.75)

which yields

τ−1 = − Ikλ
fkλ − f0kλ

. (3.76)

In our case this corresponds to (introducing proper units)

τ−1 =
D2kBT

~24ρmvc2
k = π

T

θ0
vk (3.77)

which agrees with the result of [Hwang and Sarma (2008); Stauber et al. (2007)].
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CHAPTER 4. Scaling theory

such that the new action S looks like

S =
1

b2

ˆ Λ

0

k′dk′

(2π)2
T
∑
m,λ

(
−iωm + λv

k′

b
~
)
γ†λ

(
k′

b
, ωm

)
γλ

(
k′

b
, ωm

)

+
1

b2

ˆ Λ

0

q′dq′

(2π)2
T
∑
m

(
−iωm + c

q

b
~
)
d†
(
q′

b
, ωm

)
d

(
q′

b
, ωm

)

+
1

b4

ˆ Λ

0

k′dk′

(2π)2

ˆ Λ

0

q′dq′

(2π)2
T 2

∑
m,n,λ

g

√
q′

b
⟨k′, λ | k′ + q′, λ⟩

×γ†λ

(
k′

b
, ωm

)
γλ

(
k′ + q′

b
, ωn

)[
d†
(
q′

b
, ωn−m

)
+ d

(
−q′

b
, ωm−n

)]
(4.1)

Here we assume that both γ
(
k′

b , ωm

)
and d

(
q′

b , ωm

)
scale as

γ

(
k′

b
, ωm

)
= bρ

(
k, ω′

m

)
d

(
q′

b
, ωm

)
= bρ

(
k, ω′

m

)
(4.2)

since their bare Hamiltonians look the same, they must obey the same scaling law. Then we

assume that

ω′
m = bζωm (4.3)

which implies

T ′ = bζT (4.4)

from their relation shown in Matsubara frequency. In renormalization group approach, it is

expected that the action is independent of scaling. So ωm and k must share the same scaling

law:

ζ = 1 (4.5)
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then we may obtain

ρ = 2 (4.6)

from either the bare electron action and bare phonon action.

Let’s move to electron-phonon interaction term to find out the exponent η of coupling

constant g:

g′ = bηg (4.7)

it is straightforward to find that

η = −1

2
(4.8)

In the end, although we may use the canonical momentum to find that E′ = b2E. I think it

is easier to use Coulomb electric field to obtain the same conclusion:

E =
e2

r2
r̂ (4.9)

then since r scales as 1/k, so
1

r2
=
b2

r′2
(4.10)

then

E = b2E′ (4.11)

Thus in the finite electric field, we have

SΛ
b
(E, T, g) = SΛ

(
b2E, bT, b−

1
2 g
)

(4.12)

which is consistent with our result at the beginning of this chapter.

4.1 Trial ansatz

We make the ansatz

f (k, g, E, T ) = θ (kx) exp

(
−
ˆ kx

0

γ (k′x, ky, g, E, T )

eE
dk′x −

π~vk2y
eE

)
. (4.13)

Inserting the ansatz into the Boltzmann equation yields

e

~
E

∂

∂kx
f (k) = δ

(
~kx
eE

)
exp

(
−
π~vk2y
eE

)
− γ (k)

~
f (k) (4.14)
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which umplies

γ (k) = ~
I (k; [f ])

f (k)
(4.15)

which demonstrates that γ (k) plays the role of a scattering rate, as it occurs in the relaxation

time approximation.

It follows either by direct inspection or by using the scaling laws of I (k; [f ]) and f (k) that

γ (k, g, E, T ) = b−1γ
(
bk, b−1/2g, b2E, bT

)
(4.16)

If γ = Dk, with D independent on k, as it occurs from the relaxation time approximation, it

follows

D (g,E, T ) = D
(
b−1/2g, b2E, bT

)
. (4.17)

At T = 0 holds that

D (g,E) = D
(
gE1/4

)
. (4.18)

To leading order in g we expect that D is quadratic, so we get D (g,E) = d0g
2
√
eE with

unknown constant d0. A solution based on the above ansatz and consistent with the scaling

laws would then be

f (k, g, E, T ) = θ (kx) exp

(
− d0g

2

√
eE

ˆ kx

0
kdk′x −

π~vk2y
eE

)
. (4.19)

It holds
ˆ kx

0
kdk′x =

ˆ kx

0

√
k′2x + k2ydk

′
x = k2y

ˆ kx/|ky |

0

√
1 + t2dt

=
k2y
2

 kx
|ky|

√
1 +

(
kx
|ky|

)2

+ arc sinh

(
kx
|ky|

)
=

 kx |ky| kx ≪ |ky|
1
2k

2
x kx ≫ |ky|

≃ kx

(
|ky|+

1

2
kx

)
(4.20)

where the last approximation is rather convenient for explicit calculations and does not change

any of our fundamental conclusions. It then follows

f (k, g, E, T ) = θ (kx) exp

(
− d0g

2

√
eE

kx

(
|ky|+

1

2
kx

)
−
π~vk2y
eE

)
. (4.21)
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Now we only need to determine the constant d0 that is only allowed to depend on c, v,and ~

which are the only remaining variables of the problem. Thus, for ~ = 1 the dimension of d0

must be some power of velocity = length/time. This puts important constraints on the form of

d0. The dimension of γ is energy. Thus, the dimension of D is energy × length and it follows

indeed that the unit of d0 is ~−1/2velocity−3/2. Thus, it must hold that

d0 = ~−1/2v−3/2ξ
( c
v

)
, (4.22)

where ξ (ε) is a dimensionless function with dimensionless argument ε = c/v . It follows

j = N2ev

ˆ
d2k

(2π)2
k̂xf (k)

= N
4ev

2π

ˆ π/2

−π/2

dφ

2π

ˆ ∞

0
kdk cos (φ) exp

(
−

(
d0g

2 cosφ
(
|sinφ|+ 1

2 cosφ
)

√
eE

− π~v sin2 φ
eE

)
k2

)

= N
4ev

2π

√
eE

d0g2

ˆ π/2

−π/2

dφ

2π

cos (φ)

cosφ
(
|sinφ|+ 1

2 cosφ
)
− π~v√

eEd0g2
sin2 φ

(4.23)

For large E , when

eE ≫
(
π~v
d0g2

)2

(4.24)

we find

j = N
4ev

(2π)2
c1

√
E

d0g2
(4.25)

where

a1 =

ˆ π/2

−π/2
dφ

1

|sinφ|+ 1
2 cosφ

= 8
arctan

(
2√
5

)
− arctan

(
1√
5

)
√
5

≃ 3.443 (4.26)

This result for the current helps further to determine d0. We know that j diverges if c/v → 0

since phonons behave as elastic scatteres and no stationary state exitst, i.e. the current diverges

in the long time limit. Thus ξ (ε→ 0) → 0. To leading order we expect a ξ (ε) = ξ0ε
m with

some positive exponent m. The avalysis of the collision integral shows m = 2 and we obtain

d0 = ~−1/2ξ0
c2

v7/2
(4.27)

with dimensionless numerical constant ξ0.
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4.1.1 General dispersion

To demonstrate that the above assumtion for γ is sensible we use the more general form

γ = Dkν , with D independent on k. It follows

D (g,E, T ) = bν−1D
(
b−1/2g, b2E, bT

)
. (4.28)

At T = 0 holds that

D (g,E) =

(
E0

E

) ν−1
2

D
(
gE1/4

)
. (4.29)

To leading order in g we expect that D is quadratic, so we get

D (g,E) = (eE)
2−ν
2 d0g

2 (4.30)

with unknown constant d0. A solution based on the above ansatz and consistent with the scaling

laws would then be

f (k, g, E, T ) = θ (kx) exp

(
− d0g

2

(eE)ν/2

ˆ kx

0
kνdk′x −

π~vk2y
eE

)
. (4.31)

It holds ˆ kx

0
kνdk′x = kx

(
|ky|ν +

1

1 + ν
kνx

)
It then follows

f (k, g, E, T ) = θ (kx) exp

(
− d0g

2

(eE)ν/2
kx

(
|ky|ν +

1

1 + ν
kνx

)
−
π~vk2y
eE

)
. (4.32)

It follows

j = N2ev

ˆ
d2k

(2π)2
k̂xf (k)

= N
4ev

2π

ˆ π/2

−π/2

dφ

2π

ˆ ∞

0
kdk cos (φ) e

− d0g
2

(eE)ν/2
cosφ(|sinφ|ν+ cosφ

1+ν )k
ν+1−π~v sin2 φ

eE
k2

(4.33)

It holds

ˆ ∞

0
kdke

− a

(eE)ν/2
kν+1− b

eE
k2

=
(eE)

ν
ν+1

a
2

ν+1

ˆ ∞

0
xdxe−xν+1−b(a2eE)

− 1
ν+1 x2

(4.34)

For sufficiently large E , we can ignore the second term in the exponent and obtain that

j ∝ g−
4

ν+1 (eE)
ν

ν+1 (4.35)

This only reproduces the requires scaling behavior j ∝ g−2
√
eE if ν = 1. Thus, it must hold

that the scattering rate is linear in momentum.
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4.1.2 Energy density

The energy density of the system is

E = N

ˆ
d2k

(2π)2

∑
λ

εkλfkλ (4.36)

where N = 4 reflects the valley and spin dedegeneracy. It follows from the Boltzmann equation

that the change in energy Q = dE/dt is given as

Q = N

ˆ
d2k

(2π)2

∑
λ

εkλ (Iλ (k) + Sλ (k)) . (4.37)

The unit of Q is energy
length2×time

For a stationary state one expects that Q = 0. The first term is the

cooling power due to the coupling to the heat bath, while the second term is the Joule heating

due to the pair production. It holds for the latter

Qs = N

ˆ
d2k

(2π)2

∑
λ

εkλSλ (k) =
N

(2π)2
2e2

π~
E2 (4.38)

In this analysis we used the Schwinger term as discussed above. However, the Schwinger source

term was derived for noninteracting electrons and in an interacting problem one expects a back-

reaction that leads to a modification of the source term taking into account pair creation when

there are particles present in the initial state. This yields [Kluger et al. (1998)]

Sλ (k) =
(
fkλ − fkλ

)
Svac
λ (k) (4.39)

In case of λ = + follows at particle hole symmetry:

S (k) = (1− 2fk)S
vac (k) (4.40)

Inserting this into the Qs yields Qs ∝ k2typE, where k2typ is the typical momentum of the system

that for T = 0 must be of the form

k2typ = EΘ
(
gE1/4

)
(4.41)

From our trial form for the distribution function we find k2typ ≃
√
eE/

(
d0g

2
)

which corresponds

to Θ(x) ∝ x−2. Keeping in mind that j = N2ev
´

d2k
(2π)2

k̂xf (k) implies that j ≃ Nevk2typ ≃

Nev
√
eE/

(
d0g

2
)
, we see that including back-reaction terms

Qs = jE (4.42)
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as expected from Joule heating. Inserting k2typ yields

Qs = Nv (eE)3/2 /
(
d0g

2
)

(4.43)

To analyse the relaxational part we write

Qrel (g,E, T ) = 2N

ˆ
d2k

(2π)2
εkI (k,g,T ; [f ])

= 2N

ˆ
d2k

(2π)2
εk

1

b
I
(
bk,b−1/2g,bT ;

[
f ′
])

= b−42N

ˆ
d2k

(2π)2
εkI

(
k,b−1/2g,bT ;

[
f ′
])

= b−4Qrel

(
b−1/2g, b2E, bT

)
(4.44)

In case of our trial function we know that I (k; [f ]) = −~−1γ (k) f (k) and we obtain

Qrel (g,E, T ) = −2N

~

ˆ
d2k

(2π)2
εkγ (k) f (k) (4.45)

We can first estimate this expression qualitatively and find

Qrel (g,E, T ) ≃ −Nvk4typd0g2
√
eE (4.46)

≃ −Nv (eE)3/2 /
(
d0g

2
)

The fact that Qs ≃ −Qrel demonstrates that the trial solution is indeed an acceptable stationary

solution. The notion of a typical momentum scale in the distribution function can also be used

to introduce an effective electron temperature

kBT∗ = ~vktyp (4.47)

which yields

kBT∗ =
~v (eE)1/4

d
1/2
0 g

(4.48)

This can also be seen if one explicitly determines the effective temperature via

(kBT
∗)2 ≃ (~v)2

ˆ ∞

0
kdk

ˆ 2π

0
dφk

(
−∂f
∂k

)
= (~v)2

√
eE

d0g2

ˆ π/2

0
dφ

1

cosφ
(
|sinφ|+ 1

2 cosφ
)2 (4.49)



37

CHAPTER 5. Relaxation time approximation

In this chapter, we want to see how the current reacts to a large electric field. Tf we assume

a simplified form of the collision operator with fixed, momentum independent relaxation rate.

We will then solve this simplified problem using two distinct approaches: i) we will directly

solve the Boltzmann equation and ii) we will use the scaling approach used in the previous

approach. The fact that both methods yield the same result

J ∝ E
3
2 τ

is further evidence for the reliability of the scaling approach.

5.1 Explicit Result for Relaxation Time Approximation

To proceed we use dimensionless momentum variables

p =β~vk (5.1)

and use ∇k = ~βv∇p such that the Boltzmann equation becomes with F =eτβvE

F · ∇pfpλ = −fpλ + feqpλ + λδ (px/F ) exp

(
−
πp2ykBT

F~τ−1

)
(5.2)

where feqpλ = 1
eλp+1

. This yields for the current

j =
eT 2

v

ˆ
p

∑
λ=±

λp̂fpλ. (5.3)

We want to solve the equations via Fourier transform. Note that f+ (p → ∞) → 0 while

f− (p → ∞) → 1. Thus, we rather consider fh (p) = 1 − f− (p). In analogy we call fe (p) =

f+ (p). At the Dirac point, fe (p) and fh (p) obey the same equation

F∂pxf (p) = −f (p) + feq (p) + δ (px/F ) exp

(
−
πp2ykBT

F~τ−1

)
(5.4)
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with same boundary conditions. For the current follows then

j =
2eT 2

v~2

ˆ
d2p

(2π)2
p̂f (p) , (5.5)

where we used that
´
d2pp̂ = 0.

Applying Fourier transformation to 5.4 to eliminate the derivative and then applying Fourier

transformation again, we obtain the distribution function f (p) whose contributions come from

two terms: relaxation term f rel (p) and Schwinger pair-production term fs (p),

f (p) = f rel (p) + fs (p) (5.6)

where

f rel (p) =
1

|F |

ˆ ∞

−∞
dp′x

1

ep′ + 1
e
−|px−p′x|

|F | Θ

(
px − p′x
F

)
f s (p) = sign (F ) exp

(
−
πp2ykBT

F~τ−1

)
e
− |px|

|F | Θ
(px
F

)
(5.7)

Lets consider without restriction that F > 0. Then it follows for the distribution function that:

f rel (p) =

ˆ ∞

0
ds

e−s

exp

(√
(px − Fs)2 + p2y

)
+ 1

f s (p) = Θ (px) exp

(
−
πp2yτkBT/~+ px

F

)
. (5.8)

= Θ(px) exp

(
−
vπk2y + τ−1kx

eE/~

)
(5.9)

The expression for f rel (p) is physically insightful if one returns to original units

f rel (k) =

ˆ ∞

0
dt

τ−1e−t/τ

exp

(
βv~

√
(kx − eEt)2 + k2y

)
+ 1

=

ˆ ∞

0

dt

τ
e−t/τfeq (v |K (t)|) (5.10)

where now feq (ε) = 1/
(
eβε + 1

)
and K (t) = k−eA (t).

We can now determine the current. For the analysis of jrelx we can now determine the current

(returning to dimensionless units)

j =
2eT 2

v

ˆ ∞

0
dse−s

ˆ
d2p

(2π)2
p̂feq (|P (t)|) (5.11)
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If we again consider a field along the x-direction

jx =
2eT 2

v

ˆ ∞

0
dse−s

ˆ
d2p

(2π)2
px√
p2x + p2y

1

exp

(√
(px − Fs)2 + p2y

)
+ 1

=
2eT 2

v

ˆ ∞

0
dse−s

ˆ
d2p

(2π)2
cosφ+ Fs/p√

(cosφ+ Fs/p)2 + sin2 φ

1

ep + 1
(5.12)

We substitute u = s/p and obtain

jx =
2eT 2

v

ˆ
pdpdφ

(2π)2

ˆ ∞

0
du

cosφ+ Fu√
(cosφ+ Fu)2 + sin2 φ

pe−up

ep + 1

=
eT 2

vπ

ˆ ∞

0
duL (Fu)G (u) , (5.13)

where we introduced

G (u) =

ˆ ∞

0
dp
p2e−up

ep + 1

=
1

4

(
ζ

(
3,

1 + u

2

)
− ζ

(
3,

2 + u

2

))
(5.14)

and

L (a) =

ˆ 2π

0

dφ

2π

cosφ+ a√
(cosφ+ a)2 + sin2 φ

. (5.15)

L (a) can be expressed in terms of elliptic integrals. It holds

G (u) =


3ζ(3)
2 − 7π4

120u u≪ 1

u−3 u≫ 1
(5.16)

while

L (a) =


a
2 + a3

16 a≪ 1

1− 1
4a

−2 a≫ 1
(5.17)

At large field we have L (Fu) → 1 and we find that the current saturates at

jx (F → ∞) =
πeT 2

12v
=

π

12

e (kBT )
2

v~2
(5.18)

Next we analyze the current contribution due to the Schwinger mechanism.

jsx =
2eT 2

v~2

ˆ
d2p

(2π)2
p̂xθ (px) exp

(
−
πp2yτkBT/~+ px

F

)
(5.19)

=
eT 2

2π2~2v

ˆ ∞

−∞
dpy

ˆ ∞

0
dpx

px√
p2x + p2y

exp

(
−
πp2yτkBT/~+ px

F

)
(5.20)
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We first perform the integral with respect to py and it follows

jsx =
ek2BT

2

2π2~2v

ˆ ∞

0
dpxpx exp

(
−px
F

+
πp2xτkBT/~

2F

)
K0

(
πp2xτkBT/~

2F

)
=

ekBTτ
−1F

~2π3v

ˆ ∞

0
du exp

(
−
√

u

u0
+ u

)
K0 (u)

where

u0 =
πkBT

2~τ−1
F

In the original units this becomes

js =
e2E

hπ2

ˆ ∞

0
du exp

(
−
√

u

u0
+ u

)
K0 (u) (5.21)

with

u0 =
πτ2v

2~
eE (5.22)

At high field we need to analyze large u0. Now the integral is dominated by the large u

behavior of exp (u)K0 (u) ≃
√

π
2u . It holds

ˆ ∞

0
due

−
√

u
u0

√
π

2u
= 2u

1/2
0 (5.23)

Such that

js =
e2E3/2τ

hπ2

√
2πve/~ (5.24)

Due to the E
3
2 dependence, current contributed from pair-production easily outrivals the current

from scattering process. This result is consistent with the result from section 3.2, but now there

is a restriction on the time which results in the finite scattering rate 1
τ . After such a laborious

work, we will show how to obtain the same conclusion for electric field and scattering rate

dependence in a simpler way based on scaling argument.

5.2 Scaling argument for relaxation time approximation

For Boltzmann equation in relaxation times approximation, the collision integral Iλcan be

written as written as

Iλ = −
fkλ − feqkλ

τph
(5.25)
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with τ−1
ph acting as scattering rate. For a clean graphene with τph a constant and the equilibrium

distribution function is

feqkλ =
1

eλβvk~ + 1
. (5.26)

7

Here we use scaling to exam the current behavior at large field limit in relaxation time

approximation. From the previous chapter, we know that eE · ∇kf scales as 1
b . Therefore the

collision integral must scale as 1
b as well. From

τph = bγτ ′ph (5.27)

we obtain the scaling law of collision integral:

fkλ − feqkλ
τph

=
fkλ − feqkλ
b−γτ ′ph

=
fkλ − feqkλ
bτph

(5.28)

so we know that γ = −1. In this part, τ−1
ph takes the place of coupling constant g in the previous

chapter. Here the current can be written as

Jrel =
∑
λ=±

ˆ
kdk cos θdθfλ (kx, ky, T, E, τ)

=
1

b2

∑
λ=±

ˆ
k′dk′ cos θdθfλ

(
k′x, k

′
y, bT, b

2E, b−1τ
)

=
1

b2
Ψ
(
bT, b2E, b−1τ

)
(5.29)

Again we choose b2E = E0 and T = 0 as nonlinear transport limit.

Jrel = EΨ
(√

Eτ
)

(5.30)

In the classical model, like Drude model, the conductivity is proportional to the relaxation rate

τ . From the relation between J and Ψ shown above, we know that Ψ represents the conductivity,

therefore it must obey

Ψ(x) ∝ x (5.31)

so we obtain the nonlinear current in relaxation time approximation as

Jrel ∝ E
3
2 τ (5.32)
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which is a very different result J ∝ E
1
2 as shown in the previous chapter. There is no contra-

diction between these two results. The only reason we have 5.32 is because we assume that

scattering rate is a constant while in the realistic situation it is not a constant. So the correct

answer for nonlinear current is J ∝ E
1
2 . The consistency between 5.32 and 5.24 provides us

with a confidence that scaling is a useful tool which gives us the correct transport behavior

in nonlinear regime without solving the nonlinear integro-differential Boltzmann equation. Of

course our ultimate goal is obtaining the distribution function, both Boltzmann transport and

scaling serve as powerful tools making us unveil the mysterious distribution function.
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CHAPTER 6. Summary

In this thesis, we have shown that using both scaling argument and Boltzmann transport

theory enable us understanding nonlinear electric transport behavior and the key features of

distribution function. To summarize our results, we know that the electric currrent behaves as

J ∝
√
E

g2
(6.1)

at large field under the assumption that conductivity is still proportion to 1
g2

in nonlinear regime.

Here g is the coupling constant between electrons and acoustic phonons. Second, based on the

result shown above and the ansatz for distribution function, we know that phonon-induced

scattering is more important than the electron-electron spontaneous decay and the resulting

energy balance gives an effective temperature

T ∗ ∝ E
1
2

g
(6.2)

which is a nontrivial result compared with the result done by other scientists [Viljas and Heikkila

(2010)]. In the end, we use the relaxation time approximation as an example of showing the

reliability of scaling approach by comparing the results done by explicit calculation and scaling.

These results are clearly only the first steps towards a more complete understanding of the

nonequilibrium transport of graphene. First, a complete numerical solution of the nonlinear

Boltzmann equation is needed to confirm the scaling theory and to be the starting point for

further examinations. Second in our investigation we have assumed that the heat produced by

large electric fields is instantly transported to the substrate which acts as a heat bath. A more

detailed analysis of these heat transport processes are important in order to demonstrate that

this is indeed a realistic scenario. Finally, to investigate free standing graphene layers, we need

to analyze finite samples and investigate the electron and phonon heat conductivity. In this case
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we expect that the heat transport is dominated by electron heat conduction. This brings us

back to the necessity to investigate electron-electron and electron-phonon scattering processes

in one combined hot electron transport theory, which is the intellectually most interesting

and challenging part of our future investigation. The results obtained here are a necessary

prerequisites for these future investigations.
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