LA-UR-12-23982

Approved for public release; distribution is unlimited.

Title: Plutonium Metallurgy
Author(s): Freibert, Franz J.
Intended for: Seaborg Institute Student Seminar

e
)
» Los Alamos

MATIONAL LABORATORY
EST.1543

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National

Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to

publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the

U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.



Plutonium Metallurgy

Franz Freibert, MST-16
Nuclear Materials Science Group

Los Alamos National Laboratory
Los Alamos, NM
August 9, 2012



Reference Materials:

Plutonium Metallurgy at Los Alamos, 1943-1945: Recollections of Edward F. Hammel,
E.F. Hammel, Self-published in 1998.

General Metallurgy
Structure of Metals, Third Edition: Crystallographic Methods, Principles and Data (International
Series on Materials Science and Technology), C.S. Barrett and T. B. Massalski

Phase Transformations in Metals and Alloys, 3rd Edition; D. A. Porter, K.E. Easterling, M. Sherif

Physical Metallurgy Principles (Prindle, Weber & Schmidt Series in Advanced Mathematics)
R. Abbaschian, R.E. Reed-Hill

Plutonium and Other Actinides
Challenges in Plutonium Science (Los Alamos Science, Vol. 1 and 2, Number 26), N.G. Cooper

“Plutonium,” Chapter 7, The Chemistry of the Actinides and Transactinides, 3rd Edition,
Springer, D.L. Clark, S.S. Hecker, G.D. Jarvinen, and M.P. Neu,

The Metal Plutonium (University of Chicago Press), A.S. Coffinberry, W.N. Miner
The Series: Plutonium 1960, Plutonium 1965, Plutonium 1970, and Plutonium 1975

Phase Diagrams of Binary Actinide Alloys (ASM Monograph Series on Alloy Phase Diagrams)
M. E. Kassner, D. E. Peterson

Plutonium Handbook : A Guide to the Technology, Vol. 1 and 2, O. J. Wick



Reference Materials: (cont.)

Plutonium Metallurgical Reports:
Physical and Mechanical Metallurgy Studies On Delta Stabilized Plutonium-Gallium Alloys
(BNWL- 13, UC- 25), H. R. Gardner (April, 1965), Battelle-Northwest/Pacific Northwest Laboratory,

Plutonium Metallurgy Notebook (BNWL- 37, UC- 25), M. E. Hasbrouck, (September, 1965)
Battelle-Northwest/Pacific Northwest Laboratory,

Plutonium Microstructures Part 1 “Impurities and Inclusions” (UCRL-53174-1, 1981) and Part 2
“Binary and Ternary Alloys” ” (UCRL-53174-2, 1983) , E.M. Cramer and J.B. Bergin, Lawrence
Livermore National Laboratory

Miscellaneous Report Archive Websites:
hitp://lasearch.lanl.gov/oppie/service - LANL Research Library Reports

http://arg.lanl.gov/source/orgs/nmt/nmtdo/AQarchive/AQhome/AQissues.shtml - Seaborg Institute
for Transactinium Science Publication Actinide Research Quarterly

http://www.osti.gov/bridge/ - Information Bridge: DOE Scientific and Technical Information

hitp://www.fas.org/sgp/othergov/doe/lan!/ - Los Alamos National Laboratory Reports

hitp://www.fas.org/irp/agency/dod/jason/ - JASON Defense Advisory Panel Reports



http://arq.lanl.gov/source/orgs/nmt/nmtdo/AQarchive/AQhome/AQissues.shtml�
http://arq.lanl.gov/source/orgs/nmt/nmtdo/AQarchive/AQhome/AQissues.shtml�
http://arq.lanl.gov/source/orgs/nmt/nmtdo/AQarchive/AQhome/AQissues.shtml�
http://arq.lanl.gov/source/orgs/nmt/nmtdo/AQarchive/AQhome/AQissues.shtml�
http://arq.lanl.gov/source/orgs/nmt/nmtdo/AQarchive/AQhome/AQissues.shtml�
http://arq.lanl.gov/source/orgs/nmt/nmtdo/AQarchive/AQhome/AQissues.shtml�
http://www.osti.gov/bridge/�
http://www.fas.org/sgp/othergov/doe/lanl/�
http://www.fas.org/irp/agency/dod/jason/�

UNCLASSIFIED

Plutonium: Materials Science and Technological Uses
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Plutonium Applications

All stem from special nuclear properties of Pu

239Pu Metal : Nuclear weapons
Early nuclear reactors

239Py Oxide : Nuclear reactors
Mixed oxide fuels
238U0,-20%%3°PuO,

238py Oxide : Radioisotope heat sources
Fuel for space power systems
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Materials Science Tetrahedron Applied to Weapons Materials

Performance
(Shock Response, Corrosion Resistance,
Density Stability, etc.)

Established
Manufacturing Process
Known performance and

margin based on well-
known causal relationship

between processing Processing Properties
specifications and resultant (Component (Mechanical, Thermodynamic, etc.)
structure, properties, and Manufacturing)
performance.

Structure
(From Microscopic to Macroscopic)

/

{Processing —_— Structure -_— Properties — Performance}
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and/or defects such as: Structural Variations
Wrought vs. Cast Fabrication, induced by environmental factors

Specifications

Aureliaoun ajqeirdasoy
Aurensoun ajgeidasoeun

Casting Asymmetries and/or and/or "aging” such as: Variations (intentional or not) propagate
Impurities and Inclu_slo_ns AIon. Inetabrlrty, through these casual relationships and must
lead to structural variations. Self-Irradiation Damage, be understood to effectively manage impact
OX|det|on and Corrosion, to performance uncertainty.
Fatigue and Fracture

lead to properties variations.



The General Relationship of Material Structure
Size Iin Determining Various Properties
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Liquid Nuclear Fuels Data
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FLUIDITY, 1/centipoise
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Volume Contraction During Melting; Emphasis on Lanthanide and Actinide Metals
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Plutonium Applications: MOX Fuels

THE PLUTONIUM-OXYGEN AND
URANIUM-PLUTONIUM-OXYGEN SYSTEMS:

A THERMOCHEMICAL ASSESSMENT

REPORT OF A PANEL ON THERMODYNAMICS
lll OF PLUTONIUM OXIDES
HELD IN VIENNA, 24-28 OCTOBER 1966
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MAMOX: Precursor Oxide Particle
Morphology and Fuels Microstructure
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Encapsulation of Pu?3® Oxide
Heat Sources for
NASA space missions

" Mars Pathfinder
3 Rover

Radioisotope Thermoelectric Generator
Pu?38 Oxide Energy Output: 0.54 watts/gram
Heat Source + Thermocouple = Electricity
Sebeck Effect: AV = aAT
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Plutonium Isotopes, Half-Lives and Typical Materials

Isotope T/ Thermal | Weapons | Accelerated Reactor Heat
Mass # | Half-life | neutron Grade Aging Grade Source
fission | Plutonium (%) Plutonium (%)
(%) (%)
Pu2s38 87.7 yrs | Probably <0.05 7.5 1.5 90.0
Pu?3® 24,100 Yes 86.1 93.6 58.1 9.1
yrs
Pu?4 | 6,560 yrs No 6 6 24.1 0.6
Pu?4t 14.4 yrs Yes 0.4 0.4 11.4 0.03
Pu?4> | 3.8 x 10° No <0.05 <0.05 4.9 <0.01
yrs
Pu?# | 8.0 x 107 No - - - -
yrs

From: Nuclides and Isotopes, 14t ed., General Electric Co., San Jose, CA, 1989.




Daughter Product Ingrowth in Weapons Grade Pu
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Radioactive Decay of Plutonium

U range 12 nm He range 10um

. O
5 MeV 2
i ‘%
Cascade size 0.8nm
265 Frenkel pairs

Frenkel pair:
Cascade size 7.5 nm QO Vacancy
2290 Frenkel pairs @ Self-interstitial

Uranium: Energy Deposition: Significant (85keV into 72,000 Unit Cells ~ 1.2meV/A3)
Residual Defect Structures: vacancies and interstitials

Inclusion Phases?: U complexes, Solute-Solvent Complexes (&-phase alloys)
Alpha Particle: Energy Deposition: Minimal (5Mev into 40x102 Unit Cells ~ 1.3neV/A3);

Residual Defect Structures: not likely
Inclusion Phases: He Bubbles




Relative
Dimensions

Perspective: Atoms to Bulk

0.5-3A
3t-5A
10’s - ~10% A

102 A - very large

Type of Defect

Atom

Unit Cell

Grains

Bulk

Process

Electron
p*, N

Point
Vacancy

Line & Plane
Dislocations,
Faults,
Boundaries

Volume
Voids,
Bubbles,
Inclusions

Flaws, “ Cracks”



Plutonium Aging: Length Scales and Properties

Atomic scale ~10 A | Nanoscale ~ 100A

Microscale ~ 100n | Macroscale ~ 100cm

-

e 5
i 5
atomic structure nano structure bulk properti
Fundamental structure of Bulk properties of
homogeneous materials average structures, and

heterogeneous materials

- Ga Distribution
- Impurities/Inclusions

- lattice damage

- Lattice Constants - void swelling / He ingrowth

- Local Micro-structure

- He bubble formation

- Self-irradiation Damage - elastic properties
- Phase Stability - density changes
- Ga, Pu diffusion - grain size

- dislocation structure

| -

€S component processes

<4

Controlling effects of
heterogeneities, process
coupling (chem, phys, mech)

- mechanical behavior

- dynamic properties

- stress-strain response

- strength, embrittlement
- weld stability

- corrosion behavior

- spall strength

- dimensional stability



Effects of Alpha Particle Decay Branch

Nanoscale: He range 10pm
» Atomic He insoluble — He atoms — -

coalesce — bubble nucleation and
formation; and
 Local heating/damage from U-decay

maintains some He in solution. e
5 MeV - o
- ———
Cascade size 0.8nm
~— _— 265 Frenkel pairs
Microscale: Macroscale:
’ Bubbles_coalesce at grain _ * Linear volume swelling with age;
boundar_u_es _(denuded region); and * Volumetric expansion with bubble
* Nonequilibrium bubble growth and growth and coalescence : and
coalescence at temperatures - Bubbles introduce changes in

greater than 500K. thermophysical properties.



Helium Bubbles in Aged 8-Pu Plutonium

Characterization and modelling of helium bubbles
in self-irradiated plutonium alloys

A.J. SCHWARTZ*7, M. A. WALL+T, T. G. ZOCCOj
and W. G. WOLFERT

tLawrence Livermore National Laboratory, Livermore, CA 94550, USA
fLos Alamos National Laboratory, Los Alamos, NM 87545, USA

.

Jlnm

Figure 1. TEM images ol 42-year-old Pu alloy. (a) The —1.4pm under-focus bright-field
TEM micrograph shows a high number density of very small helium bubbles as a dark [ringe
surrounding a light dot. (b) The + 1.4 um over-focus image reveals the bubbles as light [ringes
surrounding a dark dot. (¢) The in-focus image does not reveal the presence of bubbles due to
the absence ol a strain field.

(b)
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Figure 6. (a) Predicted helium bubble density and (b) average bubble diameter as a function
of the plutonium age or the helium content (411 ppm He is generated in 10 vears).



Effects of Uranium Decay Branch

Nanoscale: U range 12 nm

* Local “defects” or local ordering; N

» Defect concentration saturates to a value proportional
to alloy solute concentration — defect structure likely
involves solute atoms;

» Defect distorts/strains local lattice; and

 Local heating/damage from U-decay anneals out some
defects.

~_— Cascade size 7.5 nm
2290 Frenkel pairs
Macroscale:
Microscale: * \Volume swelling from damage to point of saturation;
* Defects pin dislocations; and  Aging related mechanism increases yeild strength
* Defect generated strain field and removes strain rate dependence of flow stress;
Impedes d—a’ transformation. and

« Damage introduces transient changes in elastic
moduli and other thermophysical properties.



AVIV, (%)

Defects Strain Lattice and Suppress Martensite Transformed Volume:
Thermal Expansion of 7.5% 238Pu Alloy at 9 DPA (Equivalent 90 Yrs.)

0.50

0.25

0.00

-0.25
-0.50
-0.75
-1.00
-1.25
-1.50

-1.75

iy
I

SS\S

i (Freibert, 2008) ___
S 1 T O O N O

2.0 at% Pu-Ga Alloy (9 DPA)

y. p=15.63 glcm’

1 - Cool from 30°C to -150°C, 1 hr. Hold
- Heat from -150°C to 375°C

- Cool from 375°C to -150°C, 1 hr. Hold
- Heat from -150°C to 375°C

g b~ wWN

L

- Cool from 375°C to -150°C

-150 -100 -50

Temperature (°C)

9DPA of accumulated self-
irradiation damage totally
suppresses the 6 — a'.

After damage anneals (T>150°C),
O — a’ occurs in agreement with
0.6 w/o Ga alloy (Hecker, 2001):
Transformation Onset: -130 °C.

Full reversion (o’ — &) occurs from
-150 to 150 °C.

Later thermal cycling shows:
« thermally induced swelling due to
He bubble growth on heating; but

0 50 100 150 200 250 300 350 400 °typical 0-phase thermal

expansion on cooling.



True Stress (MPa)

Self-Irradiation Damage Provides Strengthening Mechanism
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Damage (defects) likely acts to pin dislocations strengthening material under compressive
load and dominating strain rate strength dependence. These data correlate with data from
shear modulus changes (RUS) and micro-hardness measurements.
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Unalloyed Plutonium Structural, Thermodynamic
and Mechanical Properties
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Crystal Structure Data for Plutonium

Phase

Stability Space Lattice Unit Cell Atoms per X-ray Density,
Range and Space Dimensions, unit Cell gm/cm3
oC Group A
Below ~115 Simple monoclinic @21°C: 16 19.86
P2,/m a= 6.183+0.001
b= 4.822 +0.001
c= 10.963 +£0.001
p=101.79° +0.01°
~115-~200 Body-centered @190°C: 34 17.70
Monoclinic a= 9.284 +0.003
12/m b= 10.463 +0.004
c= 7.859+0.003
B= 92.13° +0.03°
~200-310 Face-centered @235°C: 8 17.14
orthorhombic a= 3.159+0.001
Fddd b= 5.768 +0.001
c= 10.162 +0.002
310-452 Face-centered @320°C: 4 15.92
cubic, Fm3m a=4.6371 +0.004
452-480 Body-centered @465°C: 2 16.00
tetragonal a= 3.34+0.01
[4/mmm c= 4.44+0.04
480-640 Body-centered @490°C: 2 16.51

cubic, Im3m

a= 3.6361 +0.004




% Length change

Plutonium: An Inherently Unstable
* D >~ Ry Element
;. /—\,

- Phase Transformations

5 Solid-Solid Allotropic Transformations

Shear and Diffusion Driven
-Thermodynamics

Quantitative and Qualitative Character
- Kinetics (Heating vs. Cooling)

Rapid vs. Sluggish Atomic Movements
- Ga as an Impurity

Interstitial (Lattice Const. increase: a’)

Pu Crystal Density .
— structure (g cm™) | - Ga Alloying
o ... Lowers 3-Pu Phase Free Energy and
f Body-centered monoclinic 17.70 .
| vy Face-centered orthorhombic  17.14 Stabilizes 3-Pu
& Face-centered cubic 15.92 [] . ; .
&' Body-centered tetragonal 16.00 Substitutional in 5-Pu (XAFS)
e Body-centered cubic 16.51 i _
- L Liuid 168€ 1l AI_ters_EIectronlc Structure (TEC — +)
Diffusional 6«<¢ transformation
| - Impact of Microstructure and Impurities
o E_‘ Grain size, Morphology, and Texture
: 6 (2at% Ga)

PugFe and other Inclusions

T | | |~ | -
0 150 300 450 600 750 900 1050 B Anharm0n|c EffeCt_S .
Temperature (K) z A Non-Debye Solid Behavior
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Unalloyed 6-Pu and 2at% Ga stabilized 8-Pu are elastically similar!

Unalloyed and Ga alloyed 6- 80

Pu exhibit same values of

bulk and shear elastic moduli: 70 |-

B, », =20.6 GPa |

o) 60 |- ---s--- Bulk modulus
G, o, =11.8 GPa ?5 ~--a—- Shear modulus
xt. o ~ 50 AN
B . =22GPa \S\
G2 .. =12 GPa 40 .

o—f, B—v, and y—>34 Pu

| | |
Present data

—o— Bulk modulus
—e— Shear modulus

Linford and Kay (1961)

Elastic modul
S

transformation are < O,
continuous. 20 S
B-Pu and y-Pu exhibit the 10+ N
same shear modulus with a 0 . . . . . N
30% variation in bulk 0 100 200 300 400 500 600 700
modulus. Temperature (K)
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Plutonium Alloys and Metallurgy
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Elements that Allox with Plutonium

Phase To R.T. Not to R.T. (>1 wt. %)
o Np, Ru, Zr
B Np, U, Zr
Y Np, Th, U, Zr
5 Al, Am, Ce, |In, Np, Nd, Pm, Ru, Si,
Ga, Sc Sm, Th, Ti, U, Zn, Zr
o' Am, Np

Ag, Al, Am, Ce, Cu, Dy, Er,
Ga, Gd, Ho, In, Lu, Nd, Ni,
Np, Os, Pd, Pm, Pr, Pt,
Rh, Ru, Sc, Si, Sm, Th, Ti,
Tm, U, Zn, Zr




Hume-Rothery Rules for Complete Solid
Solubility and Alloying

Must have the same crystal structure.

Less than =15 % difference in atomic radii.
Same valence.
Similar electronegativity.

W=

5

B
Size Foctor Unfavgrable for Solid Solutionin Iron
[ 0.59-085

Goldschmidt Atomic Diameter — Kx Units




Temperature (°C)

(a) U.S, Difngram 715°C

(b) Russiﬁn Diagram

715°C
655°C

0 5 10

Gallium (at.%)

640°C

365°C

i a + Pu,Ga
i | |

150 5 10

Gallium (at.%)

_ 15



1
o
2
o
2 Nuclei of solid nickel
5 nickel formed within liquid
= nickel
I
1455 °C ¢
Freezing
point growing into liquid
nickel
0 i
Time — Three grains
of nickel
1
4
5
]
g
Al (50% Ni Nuclei (67% Ni, 33% Cu)

in liaui
50% Cu) formed in liquid

1316 ac}--v
1249 °C \—-

Freezing -
range Dendrites (60% Ni, 40% Cu
growing into liguid
(43% Ni, 57% Cu)
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\
Time —

Three grains of solid
alloy (50% Ni, 50% Cu)

Temperature °C
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800

[=2]
[=]
o
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200

Nucleation rate more
rapid than growth;
many nuclei, growth
slow — fine grain size.

Growth rate similar

to nucleation rate; few
nuclei before
maximum growth —
fairly coarse, but
mixed, grain size.

Growth rate more
rapid than nucleation
— coarse grain size.

Number of Nuclei (n)

2 wt.%
Ga Alloy

Unalloyed Pu
Liquid phase

676 Solidification

Time



Temperaturs (C°)

800
- Casting Pu-Ga Alloys
800 £l
Equiaxed . yege . e . .
Dendritic Solidification within g+L phase field involves
equiaxed dendrite formation initiated at the mold
700 @ < walls. Microsegregation of Ga or “coring” occurs.
£
£
600
[l Bafore Flow
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Theory

Homogenization is dictated by
Fick's Second Law:
oC(x,1) _ 5 0°C(x,1)

ot OX’
where D [cm?/s] is the diffusivity
Diffusivity of Ga in Pu = ?
C(x,t) =C,sin(zx/l)exp(-t/7)
where z(t) = 1?/7z°D.
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Conclusions:

Due to its nuclear properties, Pu will remain a material of global
interest well into the future.

Processing, Structure, Properties and Performance remains a good
framework for discussion of Pu materials science

Self-irradiation and aging effects continue to be central in discussions
of Pu metallurgy

Pu in its elemental form is extremely unstable, but alloying helps to
stabilize Pu; but, questions remain as to how and why this
stabilization occurs.

Which is true Pu-Ga binary phase diagram: US or Russian?

Metallurgical issues such as solute coring, phase instability,
crystallographic texture, etc. result in challenges to casting,
processing , and properties modeling and experiments.

For Ga alloyed FCC stabilized Pu, temperature and pressure remain
as variables impacting phase stability.

Thank you for your interest!
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