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Abstract
ROBUST DECISION-MAKING APPLIED TO MODEL SELECTION

The scientific and engineering communities are relying more and more on numerical 
models to simulate ever-increasingly complex phenomena. Selecting a model, from 
among a family of models that meets the simulation requirements, presents a challenge 
to modern-day analysts. To address this concern, a framework is adopted anchored in 
info-gap decision theory. The framework proposes to select models by examining the 
trade-offs between prediction accuracy and sensitivity to epistemic uncertainty. The 
framework is demonstrated on two structural engineering applications by asking the 
following question: Which model, of several numerical models, approximates the 
behavior of a structure when parameters that define each of those models are unknown?
One observation is that models that are nominally more accurate are not necessarily 
more robust, and their accuracy can deteriorate greatly depending upon the assumptions 
made. It is posited that, as reliance on numerical models increases, establishing 
robustness will become as important as demonstrating accuracy.

(Approved for unlimited, public release on August xx, 2012, LA-UR-12-xxxx.)
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Outline
• Opening comments on “culture change”

• Framework for establishing robustness

• Application to Earthquake engineering
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Despite nearly two decades of tremendous 
ASC achievements, “culture” remains a 
significant hurdle at National Laboratories.

• A computational model is still considered “good-quality”
if its predictions match the physical measurements.

• These predictions are, in fact, only “post-dictions.”

• It renders “validation” synonymous to calibration.

• Calibration requires to execute physical experiments.

• Calibrated models are well-known to exhibit little-to-no 
forecasting “power” away from tested configurations.
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“ +             =              ”
Measurements Predictions Agreement?

The quote below exemplifies this state-of-
the-practice; it is from one of the most well-
respected designers at Los Alamos.

“If the measurements are shown in blue 
and predictions are shown in yellow, then 
all that I want to see is green.”
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(#) Caveat: As long as the “extrapolation”
of predictions away from settings that 
have been tested, is justified physically.

My contention is that “predictability” is the 
quantification of prediction accuracy and 
uncertainty, including away from settings 
that have been tested experimentally.(#)

Average accuracy of the model, 
“anchored” at settings that have 
been tested experimentally.

Overall prediction 
uncertainty, including 
away from settings that 
have been tested.
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Mature technology is available to analyze 
aleatoric sources of uncertainty … but 
progress has been slow when dealing with 
issues that do not fit this “mold.”
• What if a source of uncertainty cannot be described as 

random variability of one of the code parameters?

• What about types of uncertainty that are due to our 
ignorance, such as an assumption or discretization?

• How are different types of uncertainty aggregated?

• How to establish the forecasting “power” of a model that 
may have been (partly) calibrated?

• ... And numerical uncertainty, due to truncation effects, is 
still largely ignored. (But that’s another story.)

Page 08 of 33 — LA-UR-12-xxxx



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

U N C L A S S I F I E D

Outline
• Opening comments on “culture change”

• Framework for establishing robustness

• Application to Earthquake engineering

• Application to the CX-100 wind turbine blade

• Concluding remarks

Page 09 of 33 — LA-UR-12-xxxx



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

U N C L A S S I F I E D

My contention is that this lack-of-progress 
results from our tendency to often treat 
ignorance and variability interchangeably.

• Changes in predictions, due to (random) experimental 
variability, can be explored through statistical sampling.

• The role of an assumption, such as the level of mesh 
resolution or choice of a particular model structure, is to 
mitigate an existing lack-of-knowledge (or ignorance).

• It makes no sense to “sample” these assumptions!

• Instead, one should demonstrate that the predictions are 
as insensitive as possible (or “robust”) to these choices.

“Lack-of-knowledge ≠ Randomness”
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Consider, for example, a foam material … 
Can predictions, that may be sensitive to 
how the material is modeled, be trusted?

Reference: LA-UR-04-4650.

Nominal 
Curve

Foam
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The influence on predictions exercised by a 
family of candidate material models is 
explored, up to a given level of ignorance.
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Robustness is quantified by exploring the 
effect on code predictions of progressively 
increasing the level of ignorance.
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This framework integrates decision-making 
seamlessly, irrespective of the type of 
uncertainty considered in the analysis.

  *

MQMU = 
U  
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Uncertainty
Variable, q1

Predictions,
y = M(p;q)

Uncertainty
Variable, q2

yTest

R
y

RMax

RMax yTest

α*

2D Uncertainty 
Space, U(α*;qo)

“Accuracy”

“Robustness”

For model selection, “performance” is 
simply defined as the prediction accuracy.
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For any family of models, there always is a 
trade-off between prediction accuracy and 
robustness to ignorance. (It is a theorem!)

• Accuracy R is quantified using a fidelity-to-data metric.

• Robustness α* is the maximum level of ignorance α for 
which all models of a family U(α;qo) meet the accuracy 
requirement RMax.

• The accuracy RMax and robustness α* 
of a family of models are antagonistic!

 Robustness"   0"
 Accuracy






TestR = y   y(p;q)

  Max o
α   0

α*   Argmax R R  for all y U α;q


  

Reference: Ben-Haim, Y., Hemez, F.M., Royal Society Proceedings A, Sep 2011. LA-UR-11-0497.

Yakov Ben-Haim, 
Technion, Israel

Page 16 of 33 — LA-UR-12-xxxx



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

U N C L A S S I F I E D

Outline
• Opening comments on “culture change”

• Framework for establishing robustness

• Application to Earthquake engineering

• Application to the CX-100 wind turbine blade

• Concluding remarks

Page 17 of 33 — LA-UR-12-xxxx



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

U N C L A S S I F I E D

1D Model Prediction 
of Linear Vibrations

1D Model Prediction
of Nonlinear VibrationsThree-story Frame Structure of the 

Los Alamos Engineering Institute

Detail of the 
Contact Mechanism

This application selects a computational 
model to simulate the vibration response of 
a scaled, three-story frame structure.
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Schematics of the 1D Model
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Mass, Stiffness, Viscous Damping

The 1D model simulates bending vibration 
with a calibrated assembly of masses, 
spring stiffness and damping coefficients.

M x + C x + K x = F
Equation-of-motion
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2D Finite Element Model 
(with 12,048 Elements)

1st Bending (25.67 Hz)

2nd Bending (51.33 Hz) 3rd Bending (81.60 Hz)

The 2D model represents the frame using 
(linear) beam and shell finite elements.
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Detail of the Contact Mechanism

Detail of Sliding Supports

The 3D model implements Abaqus (6.10-1) 
quadratic tetrahedral continuum elements, 
contact/friction surfaces, and a few shells.

3D Finite Element Discretization
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The problem is to select an accurate model 
given that each candidate simulation relies 
on different sets of (arbitrary) assumptions.

• 1D Parameterization:

Unknown Definition
1 Aluminum elastic modulus
2 Aluminum mass density
3 Bolt “radius of influence”

Unknown Definition
1 Elastic modulus of floors
2 Mass density of floors
3 Elastic modulus of columns

Unknown Definition
1 Spring bending stiffness
2 Base stiffness
3 Mass of floor plate
4 Mass of column
5 Mass of 3rd-floor column
6 Mass of contact backstop
7 Mass of connection bolt

• 2D Parameterization:

• 3D Parameterization:
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RMax = 4 Hz

α* = 6%

The 1D model provides better trade-offs 
between robustness and accuracy than the 
3D model, at any level of ignorance.

Credit: Christopher Stull, LANL (AET-6). LA-UR-12-0379.

A calibrated model 
has no robustness.

“An accuracy of 4 Hertz 
is guaranteed for the 1D 
model if one can limit the 
uncertainty to ± 6%.”
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If the uncertainty exceeds ± 13%, or a 
prediction error worse than 8 Hertz can be 
tolerated, then the 2D model is the best.

Preference 
Reversal !!

“The 1D model is better 
as long as the prediction 
accuracy needs to be 
better than 8 Hertz.”
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ANSYS Finite Element Model
(SHELL-281 Elements, 8-cm Mesh Size)

Sandia’s 9-meter CX-100 Composite Blade

Numerical Model

Measurements

Numerical Model

Measurements

First B
ending

Second B
ending

Test-analysis Correlation

This application selects a computational 
model to simulate the bending deformation 
of Sandia’s CX-100 wind turbine blade.
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Spar CapSpar Cap Geometry

The six sections of the model, determined 
from the material makeup, are assigned 
isotropic, smeared material properties.

Spar Cap
Shear Web

Blade Cross-section

Root
Leading Edge 

with Balsa Leading 
Edge 

Trailing 
Edge Spar Cap 

Definition of Six Regions of the Model

Reduced Uncertainty 
After Inference

Range of Uncertainty 
Before Inference

Inference UQ of the
Spar Elastic Modulus
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Representation Using
High-fidelity Solid Elements

Representation Using Point 
Masses and Stiffening Springs

Blade with 
Added Masses

Two competing models are developed to 
simulate the vibration in a configuration of 
the blade that has not been calibrated.

Credit: National Renewable Energy Laboratory 
and Stuart Taylor, LANL (INST-OFF).

?

?
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(Solid-65)

(Mass-21, Combin-14)

Each modeling strategy relies on different 
sets of (arbitrary) assumptions that affect 
the prediction accuracy in various ways.

• Solid-mass Parameterization:

Unknown Description
(1; 2) (Translation; rotation) springs at 1.60-m section

3 Point mass at 1.60-m section
(4; 5) (Translation; rotation) springs at 6.75-m section

6 Point mass at 6.75-m section

• Point-mass Parameterization:

Unknown Description
(1; 2) (Elastic modulus; density) of 1.60-m section
(3; 4) Center-of-gravity (X; Y) coordinates of 1.60-m offset mass

5 Density of 1.60-m offset mass
(6; 7) (Elastic modulus; density) of 6.75-m section
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RMax = 1 Hz

α* = 50%

RMax = 1.65 Hz

The solid-mass model (green line) is more 
accurate and more robust to ignorance than 
the point-mass model (blue line).

Credit: Kendra Van Buren, Clemson University. LA-UR-12-7103.

Solid-mass Model

Point-mass Model
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Physics that 
can be resolved

Sub-scale 
physics that must 
be modeled

N O T I O N A L

Concluding Remarks

• In the activity of modeling, robustness to ignorance 
deteriorates as the fidelity-to-data improves.

• Models, especially those implemented to simulate the 
sub-scale physics that cannot be resolved explicitly, 
should be selected by exploiting these trade-offs.

• Relying, therefore, on 
calibration only to select 
models is a dangerous 
proposition!

• Robust decision-making 
offers a framework to 
integrate uncertainty, and 
study these trade-offs.
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Actual 2008 inflation rate ≈ 3.5%

Credit: Bank of England.
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“Doubt is not a pleasant condition, but 
certainty is absurd.” – Voltaire
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