

LA-UR-12-23253

Approved for public release; distribution is unlimited.

Title: The Adversarial Route Analysis Tool: A Web Application

Author(s): Casson, William H. Jr.

Intended for: Championing Scientific Careers, 2012-08-07/2012-08-08 (Los Alamos, New Mexico, United States)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

The Adversarial Route Analysis Tool: A Web Application

Bill Casson

University of New Mexico

D-6: Risk Analysis & Decision Support Systems

Mentor: Daniel Shevitz

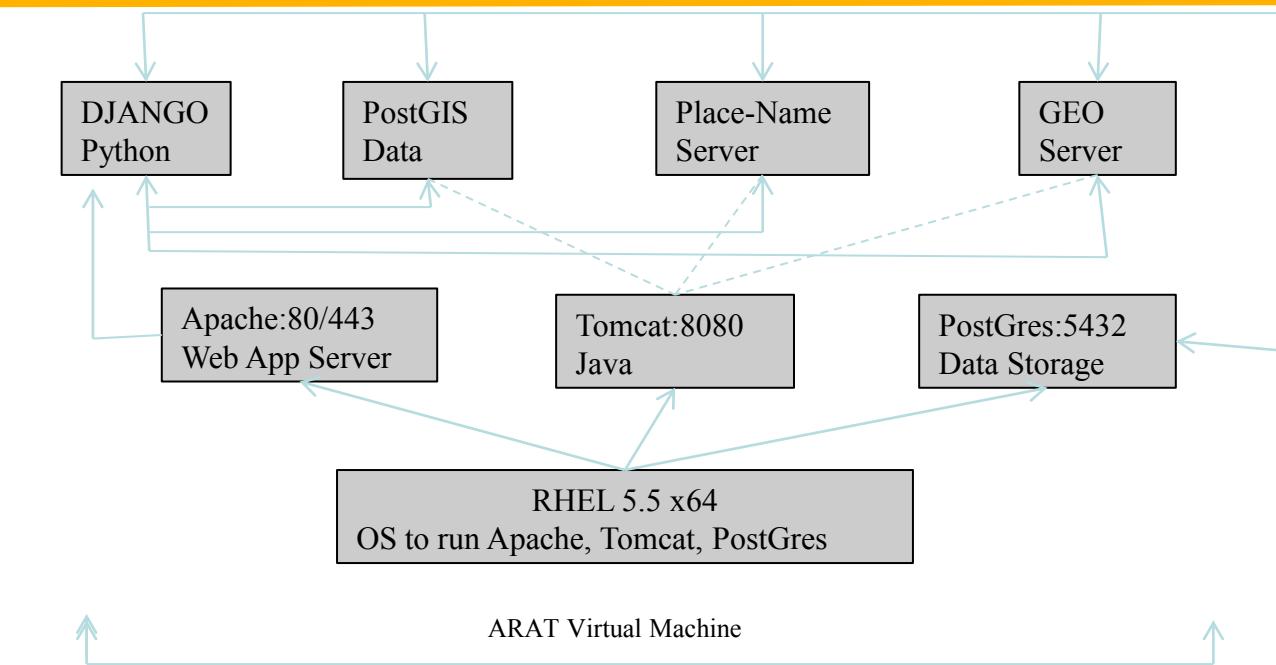
Introduction

- Motivation for the Adversarial Route Analysis Tool (ARAT)
- What is ARAT?
- My role in developing ARAT
- The ARAT software framework

Motivations

- Google Maps for adversaries
- Help the U.S. government plan operations that predict where an adversary might be
- Easily accessible and maintainable
- Simple to use without much training

ARAT: A Brief Description


- ARAT is a web-based Geospatial application similar to Google Maps
- The application is available 24/7
- Allow the analyst to modify parameters used in route finding
- ARAT can determine the set of roads to block to separate one set of places from another

My Contributions

- Wrote most of the backend code that generates the server responses
 - Designed the session and user management
 - Implemented solver algorithms in Python
 - Designed the database tables and relations that store the data and results
- Wrote most of the javascript that controls the interface
 - Designed and implemented the map user interface and interactions
- Designed some of the front end layout
- Setup the web server

ARAT Architecture

UNCLASSIFIED

Software Stack

- Servers
 - Tomcat
 - Geoserver
 - SLD
 - Layer Definitions
 - Solr
 - Apache
 - WSGI
 - Python
 - Django
 - PostGIS
 - SQL
 - Geospatial extensions
- Client
 - HTML
 - Javascript
 - OpenLayers
 - jQuery
 - CSS

ARAT Demonstration

- Basic route analysis
 - Dijkstra's shortest path algorithm
- Inference model scenario parameters; arc weights
- Weighted route analysis
 - waypoints
 - checkpoints
- Time rings; breadth first search algorithm
- Adversary isolation
 - minimum cut sets
 - Ford-Fulkerson algorithm

Summary

- ARAT is live
- Implemented on Joint Worldwide Intelligence Communications System (JWICS)
- Real users, real problems, in near real-time