

Assessment of Rooftop Area in Austin Energy's Service Territory Suitable for PV Development

Submitted by:

Steven M. Wiese, Principal Aziz Hussaini, Research Assistant Benjamin Ryan, Research Assistant Steven Lapointe, Analyst

Final Assessment and Report July 24, 2009

This assessment and report was created for Austin Energy with funding from the U.S. Department of Energy's Solar America Cities program. For more information, see http://www.solaramericacities.energy.gov/.

Table of Contents

Executive Summary	3
1. Project Objectives	
2. Data Sources	7
3. Modeling Approach	8
4. Results	12
4.a. Rooftop Area Suitable for Solar PV Development	12
4.b. Potential Rooftop PV Generating Capacity and Annual Energy	13
4.d. Potential Rooftop PV Energy Relative to Existing Generation Mix	15
4.e. Annual Energy Potential in 3 PV Development Scenarios	16
4.f. Distribution of Commercial and Industrial Rooftop Area	17
4.g. Rooftop Area by Use Category and Zip Code	18
Appendix 1. Data Sources – Detailed Information	20

Executive Summary

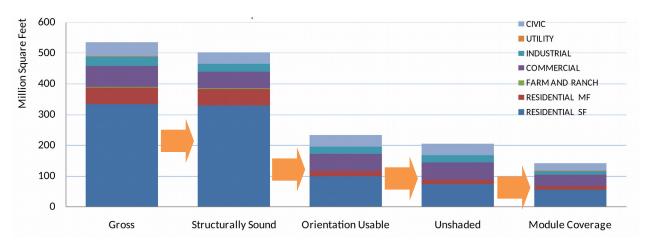
As part of the Solar America Cities program, Austin Energy proposed to perform an assessment of the rooftop area available for PV development within its service area. Austin Energy contracted with Clean Energy Associates (CEA) to perform the analysis. This report summarizes the project objectives, data sources and methodological approach employed, and results.

Key questions addressed by this project were:

- 1. What is the aggregate rooftop area, rooftop area suitable for PV project development, and potential for PV capacity and energy production from rooftop solar photovoltaic systems on key building types in Austin Energy's service area?
- 2. How do the potential capacity and annual energy production from rooftop solar electric systems compare with Austin Energy's current capacity and annual energy requirements?

CEA utilized data sources from the Travis and William County Appraisal Districts, the City of Austin and Austin Energy to construct a rooftop assessment model. In the process of identifying available data, CEA documented several other data sources and provided this information to Austin Energy.

The model developed incorporated a top-town, stepwise analytical approach to determine the rooftop square footage available on buildings in Austin Energy's service area. It began with an estimate of the gross rooftop area, then applied progressive screens to reduce this value to an estimate of rooftop area suitable for solar PV development. The screens were employed to:


- Exclude structurally unsound roofs;
- Exclude improperly oriented roofs;
- Exclude shaded rooftop area; and,
- Exclude areas not covered by modules due to spacing between modules for ventilation, serviceability, and other rooftop access requirements.

Once an available rooftop square footage figure was obtained, the model applied factors to convert the available square footage into available power (MW) and annual energy (MWh) potential under three different PV development scenarios:

- Scenario 1. Current technology (all crystalline silicon modules deployed). In this scenario, the model assumed all PV would be installed using typical currently commercially-available high-efficiency crystalline silicon solar panels.
- Scenario 2. Combination of CSi and thin film. This scenario assumed residential properties would use crystalline modules (due to their space constraints) while non-residential properties would deploy thin film technologies. Because current thin film products have a lower power density than crystalline products, this results in lower estimates of both total capacity and annual energy.

Scenario 3. All thin film. This scenario assumed that all available rooftop space was
devoted to thin film modules. Due to the lower power density rating of thin film
products, this scenario resulted in the lowest estimates of total capacity and annual
energy.

The model used data from the Travis and Williamson County Appraisal Districts and from the City of Austin's GIS to estimate the gross available rooftop square footage in Austin Energy's service area at 536 million square feet (MSF). After the screens were applied, this figure was reduced to 142 MSF available for PV development. The figure below illustrates the result of each screening step. The step which considered usable orientation had the largest affect overall, especially among residential property types.

The model then converted the rooftop area suitable for solar PV development into capacity and annual energy estimates pertaining to deployment scenario 1. It shows that the rooftop area suitable for solar PV development in Austin Energy service area could accommodate a total of about 2,446 MW (DCstc) of solar generating capacity, and generate approximately 3.3 million MWh of energy annually (see table below). Slight differences in the percentage allocations by property type are due to differences in estimated production between residential and other property types (Austin Energy's solar production data shows that residential properties have a slightly lower production factor than commercial properties).

	MW (DCstc)	%	MWh (AC)	%
RESIDENTIAL SF	950	38.8%	1,255,448	38.3%
RESIDENTIAL MF	190	7.8%	250,528	7.6%
FARM AND RANCH	5	0.2%	6,442	0.2%
COMMERCIAL	658	26.9%	893,135	27.2%
INDUSTRIAL	203	8.3%	275,660	8.4%
UTILITY	9	0.4%	12,559	0.4%
CIVIC	431	17.6%	584,836	17.8%
	2.446	100.0%	3.278.609	100.0%

The model then compared the potential rooftop solar capacity and annual energy generation to Austin Energy's current generation capacity and annual generation mix. It showed that if fully developed, the potential rooftop PV capacity would total 2,324 MW, or about 84 percent of current generating capacity. The potential annual energy generation comprises 27.6 percent of current annual energy generation, a smaller share than capacity due to the low capacity factor of PV generation relative to other generating resources.

EXISTING CAPACITY	MW (AC)	%	EXISTING ENERGY	MWH	%
COAL	607	22.0%	COAL	3,840,000	32.3%
NUCLEAR	422	15.3%	NUCLEAR	3,240,000	27.3%
NATURAL GAS	1,444	52.3%	NATURAL GAS	3,120,000	26.3%
EXISTING RENEWABLES	13	0.5%	EXISTING RENEWABLES	1,200,000	10.1%
PURCHASED POWER	274	9.9%	PURCHASED POWER	480,000	4.0%
EXISTING TOTAL	2,760	100.0%	TOTAL	11,880,000	100.0%
		% of Existing			% of Current
	MW (AC)	Capacity			Annual
POTENTIAL PV	2,324	84.2%		MWH	Energy
			POTENTIAL SOLAR	3,278,609	27.6%

Finally, the model calculated the potential annual energy generation under the three different PV development scenarios. As expected, it showed that increasing the share of thin film PV in the deployed mix resulted in lower annual energy generation than if crystalline technologies are deployed. Where Scenario 1 (crystalline deployment only) resulted in approximately 3.3 million MWh of annual solar energy production, Scenario 2 (crystalline deployment on residential rooftops; thin film deployment on commercial and industrial rooftops) resulted in about 2.5 million MWh per year, and Scenario 3 (thin film only) resulted in 1.9 million MWh per year.

		Annual MWh	
	Scenario 1	Scenario 2	Scenario 3
	CSi	CSi + TF	TF
RESIDENTIAL SF	1,255,448	1,255,448	731,187
RESIDENTIAL MF	250,528	250,528	145,911
FARM AND RANCH	6,442	6,442	3,752
COMMERCIAL	893,135	520,172	520,172
INDUSTRIAL	275,660	160,547	160,547
UTILITY	12,559	7,315	7,315
CIVIC	584,836	340,615	340,615
	3,278,609	2,541,067	1,909,498
	% of 2008	Annual Energy Ge	eneration
	27.6%	21.4%	16.1%

As additional tasks, CEA provided Austin Energy with:

- Detailed information about the largest commercial and industrial rooftops. In the commercial sector there are over 14,000 buildings with about 134 million gross square feet, and the largest 1,000 buildings in this sector encompass nearly 50% of the gross area. In the industrial sector there are 132 buildings, and the largest 10 buildings encompass about 50% of the gross area.
- Estimates of the rooftop availability for each use category by zip code, starting with City of Austin GIS data. A table summarizing the results of this analysis is included in section 4.g. of the report. While the model is intended to provide a reasonably accurate estimation in the aggregate, the level of accuracy is necessarily reduced at finer levels of granularity, such when broken down by zip codes or at the level of individual buildings. Still, we believe the zip code break down can provide a useful screening of PV development opportunities throughout the City.

In sum, this study presents an assessment of the rooftop area available for PV development within Austin Energy's service area. It is a technical potential assessment only; as such it does not consider the economic feasibility of projects, but instead presents a summary of the overall potential for rooftop PV development within the utility service area. The model employed found that if fully developed, rooftops within Austin Energy's service area could accommodate approximately 2,446 MW (DC stc) of PV capacity, capable of producing approximately 3.2 million MWh annually. This annual generation is equivalent to about 27.6 percent of Austin Energy's 2008 annual energy generation requirement. Substituting all potential PV capacity with thin film deployment reduces the annual energy production to about 1.9 million MWh annually, equivalent to about 16.1 percent of Austin Energy's 2008 annual energy generation requirement.

1. Project Objectives

The objective of this project was to create a model for assessing the amount of rooftop area on commercial, industrial, institutional, and governmental buildings in Austin Energy's service area suitable for solar electric energy development and, based on this model, determine the potential installed capacity and annual energy production from solar electric installations on the rooftops of these buildings.

Key questions addressed by this project were:

- 1. What is the aggregate rooftop area, rooftop area suitable for PV project development, and potential for PV capacity and energy production from rooftop solar photovoltaic systems on key building types in Austin Energy's service area?
- 2. How do the potential capacity and annual energy production from rooftop solar electric systems compare with Austin Energy's current capacity and annual energy requirements?

2. Data Sources

Clean Energy Associates (CEA) identified and used data from each of the following sources in conducting the rooftop assessment:

- Travis Central Appraisal District (TCAD) database
- Williamson Central Appraisal District (WCAD) database
- City of Austin Geographic Information System (GIS)
- Austin Energy Customer Information System (CIS)
- Austin Energy Solar Program database
- Austin Energy Solar Meter Readings database

In addition, several other sources of potentially relevant data were identified but not ultimately used in the data analysis:

- State of Texas Buildings Database
- Austin Independent School District (AISD) facilities data
- University of Texas facilities data

Detailed information about each identified data source is included in Appendix 1.

3. Modeling Approach

CEA's model employed a stepwise analytical approach to determine the rooftop square footage available on buildings in Austin Energy's service area. Once a square footage figure was obtained, CEA applied factors to convert the available square footage into available power (MW) and annual energy (MWh) potential. The follow sections detail the stepwise approach to modeling.

- 1. **Identify gross square footage of available rooftop space in Austin Energy's service territory by property class.** We began by identifying the gross square footage of available rooftop space in Austin Energy's service territory by property class. The key property classes identified were:
 - RESIDENTIAL SINGLE FAMILY
 - RESIDENTIAL MULTI FAMILY
 - FARM AND RANCH
 - COMMERCIAL
 - INDUSTRIAL
 - UTILITY
 - CIVIC

Because the utility service territory covers a portion of both Travis and Williamson Counties (see Figure 1 below), assessors' data from each county was overlayed with the City of Austin's Geographical Information System (GIS) to obtain property data relevant to the utility service territory. In addition, because the assessors' databases do not include tax-exempt properties, the square footage of tax exempt properties was added to the analysis using Austin's GIS and Customer Information System.

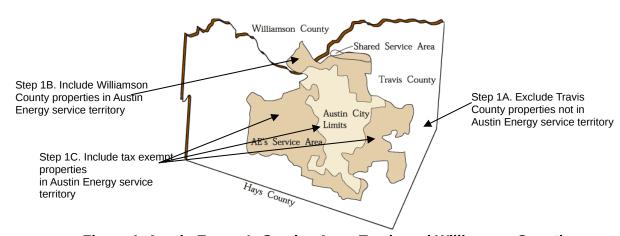


Figure 1. Austin Energy's Service Area, Travis and Williamson Counties

Neither the Counties' assessors' data nor the City's GIS data was perfectly suited to estimating rooftop space. The assessors' data, for example, contains square footage information only on areas which may be occupied. For residential properties, this does

not include garages or covered porches, both of which might be suitable for PV installations. In this sense, the assessors' data can be assumed to under-represent available rooftop space. In contrast, the City's GIS data is derived from building footprint polygons, and may include structures such as small sheds or picnic structures which might not be appropriate for PV installations. The GIS data therefore can be assumed to over-represent available rooftop space. The model derived square footage estimates from each data source but used the average of the two values as the gross square footage.

- 2. **Exclude structurally unsound roofs.** The model made adjustments to account for roofs that were structurally unsound. Adjustment factors were derived for each property type through industry experience and were reviewed for consistency with previous studies. As an example, adjustments were made to exclude mobile homes from the single family residential square footage total. This reduced the overall residential square footage by approximately 1 percent. For commercial, industrial and other categories, 80 percent of structures were assumed to be structurally sound; this figure was derived from industry experience and is supported by similar studies.¹
- 3. **Exclude improperly oriented roofs.** The model made adjustments to exclude roofs that would not be useful for PV development due to their directional orientation. The adjustment factor was 30% for residential categories and was based on previous published studies and industry experience.
- 4. **Exclude shaded rooftop area.** The model incorporated Austin Energy's database of residential solar site inspections to quantify the percentage of residential properties in each zip code which were rejected due to shading. Austin Energy produced a map showing the number and percent of non-qualifying residential surveys by zip code (see Figure 2). The model applied an adjustment factor of 75 percent for single-family residential categories, 90 percent for multi-family residential categories, and 98 percent for commercial, industrial and other categories.

The single family residential adjustment factor was derived from the Austin Energy rejection data, and applied to the residential rooftop square footage in the model on a zip code by zip code basis. The raw rejection rate was doubled before incorporation into the model, because it was assumed there would be some selection bias among the population of sites selected for such inspection (i.e., property owners who requested Austin's program inspection would tend to be those who initially considered their properties to be a suitable candidate for solar development).

¹ See, for example, Rooftop Photovoltaics Market Penetration Scenarios, Navigant Consulting - February 2008 (Prepared for NREL); and California Rooftop Photovoltaic (PV) Resource Growth Potential by County, Navigant Consulting - September 2007.

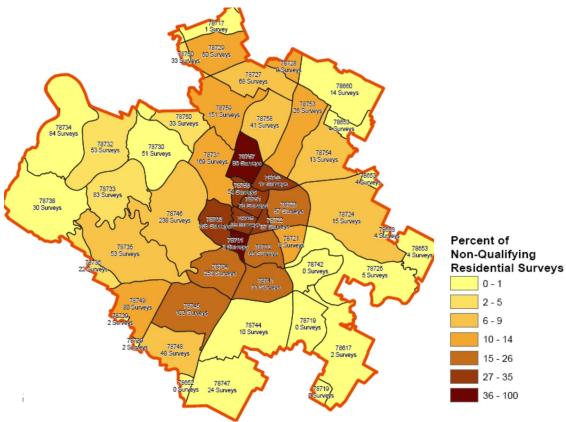


Figure 2. Concentration by Zip Code of Non-Qualifying Residential Surveys

- 5. **Exclude areas not covered by modules.** PV arrays are rarely deployed to cover 100 percent of available rooftop space. Instead, some area is left open between modules to prevent inter-array shading, to allow for ventilation, and to allow for conduit runs, mechanical equipment, and installer or other personnel access to the array and other rooftop equipment. Other areas cannot be covered with modules due to physical and/or sunlight obstructions such as roof vents and drains, rooftop air conditioning units, or other rooftop equipment. A module coverage factor of 75 percent was applied to residential properties, 70 percent for commercial and civic properties, and 50 percent for industrial and utility properties.
- 6. **Estimate rooftop area covered by PV modules.** These progressive screens resulted in an estimate of the total square footage of rooftop area which can be covered by PV modules for each property type within Austin Energy's service area.

Once the total area was obtained, the analysis continued within three PV development scenarios. In each scenario, the model calculated the total DC and AC capacity of PV systems which can be installed within the available area and the resulting expected annual energy production. The three installation scenarios were:

- Scenario 1. Current technology (all crystalline silicon modules deployed): In this scenario, the model assumed all PV would be installed using typical currently commercially-available high-efficiency crystalline silicon solar panels. A power density factor of 17.2 watts per square foot was applied to these modules to estimate the capacity which could be installed. Capacity was converted to annual energy by using factors derived from Austin Energy's metering of installed PV systems in its service territory. A production factor of 1,321 kWh/kWdc installed was used for residential systems; 1,357 kWh/kWdc for commercial and industrial systems. These factors were derived from Austin Energy's metered production data for residential and commercial solar energy systems.
- Scenario 2. Combination of CSi and thin film. This scenario assumed residential properties would use crystalline modules (due to their space constraints) while non-residential properties would deploy thin film technologies. The power density factor for the thin film modules was 10.0 watts per square foot; the energy production factors assumed in Scenario 1 were unchanged.
- **Scenario 3. All thin film.** This scenario assumed that all available rooftop space was devoted to thin film modules. Because thin film products have a lower power density than crystalline products, this results in lower estimates of both total capacity and annual energy.

4. Results

4.a. Rooftop Area Suitable for Solar PV Development

The table and graph below (Figure 3) presents a summary of the stepwise screening approach, starting with gross rooftop square footage and excluding unusable areas until arriving at an estimate of 142 million square feet of rooftop space usable for PV development within Austin Energy's service area. It shows that the gross available rooftop area within Austin Energy's service territory is approximately 536 million square feet, and that the area available for coverage with solar panels is approximately 142 million square feet. The screening step which eliminates the most square footage is the one which considers usable orientation: this screening step has the largest effect on residential rooftop area. The figure shows how this available area is divided among property types.

Million Square Feet					
		Structurally	Orientation		Module
	Gross	Sound	Usable	Unshaded	Coverage
RESIDENTIAL SF	333	328	98	74	55
RESIDENTIAL MF	55	55	16	15	11
FARM AND RANCH	2	2	1	0	o o
COMMERCIAL	70	56	56	55	38
INDUSTRIAL	30	24	24	24	12
UTILITY	1	1	1	1	1
CIVIC	46	37	37	36	25
	536	502	233	204	142

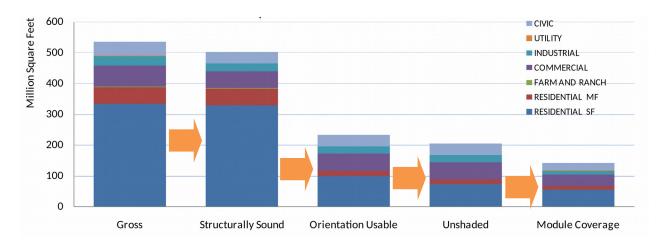


Figure 3. Rooftop Area Screening Details: Area Suitable for PV Installation, by Property Type

4.b. Potential Rooftop PV Generating Capacity and Annual Energy

The table and graph below convert the rooftop area suitable for solar PV development into capacity and annual energy estimates pertaining to deployment scenario 1. It shows that the rooftop area suitable for solar PV development in Austin Energy service area could accommodate a total of about 2,446 MW (DCstc) of solar generating capacity, and generate approximately 3.3 million MWh of energy annually. The largest contributors to total capacity and generation are in the residential, commercial and civic sectors. The pie charts and table show little difference in the relative breakdown of capacity versus energy; this is because the production factor for residential installations (1,321 kWh/kWdc) is only slightly lower than that used for non-residential installations (1,357 kWh/kWdc).

	MW (DCstc)	%	MWh (AC)	%
RESIDENTIAL SF	950	38.8%	1,255,448	38.3%
RESIDENTIAL MF	190	7.8%	250,528	7.6%
FARM AND RANCH	5	0.2%	6,442	0.2%
COMMERCIAL	658	26.9%	893,135	27.2%
INDUSTRIAL	203	8.3%	275,660	8.4%
UTILITY	9	0.4%	12,559	0.4%
CIVIC	431	17.6%	584,836	17.8%
	2,446	100.0%	3,278,609	100.0%

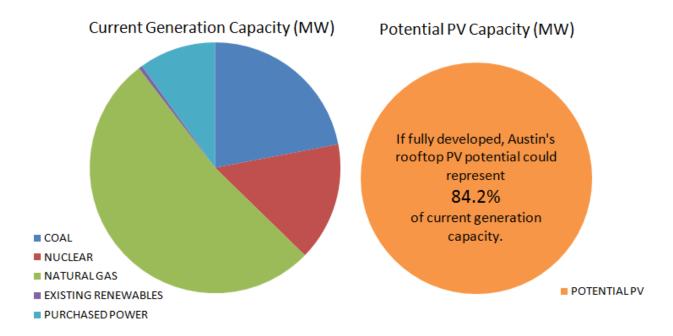


Figure 4. Rooftop PV Technical Potential Generating Capacity and Annual Energy, Deployment Scenario 1

4.c. Potential Rooftop PV Capacity Relative to Existing Generation Mix

The table and graph in Figure 5 below show Austin Energy's current generation capacity mix and display the technical potential rooftop PV capacity in comparison. Austin currently obtains energy from coal, nuclear, natural gas, renewable energy, and purchased power generators which comprise 2,760 MW of generating capacity. If fully developed the potential rooftop PV capacity would total 2,324 MW, about 84 percent of current generating capacity.

EXISTING CAPACITY	MW (AC)	%
COAL	607	22.0%
NUCLEAR	422	15.3%
NATURAL GAS	1,444	52.3%
EXISTING RENEWABLES	13	0.5%
PURCHASED POWER	274	9.9%
EXISTING TOTAL	2,760	100.0%
		% of
		Existing
	MW (AC)	Capacity
POTENTIAL PV	2,324	84.2%

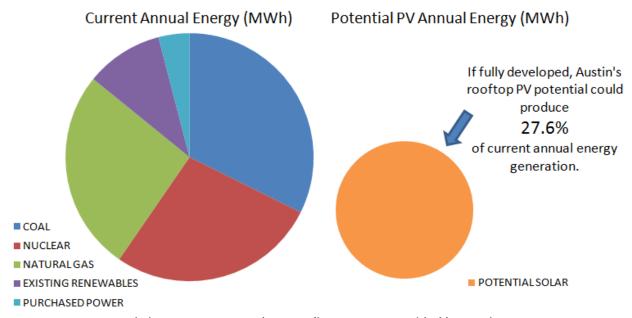

Note: Existing resource capacity figures are derived from the Austin Smart Energy Guide (Figure 12).

Figure 5. Rooftop PV Technical Capacity Potential Relative to Existing Generation Mix (Development Scenario 1)

4.d. Potential Rooftop PV Energy Relative to Existing Generation Mix

The table and graph in Figure 6 show Austin Energy's current annual energy consumption by resource and display the technical potential rooftop PV annual energy in comparison. It shows that if fully developed, Austin Energy's technical potential rooftop PV resources could produce 27.6 percent of current annual energy consumption. The potential annual energy generation comprises a much smaller share of current annual energy (27.6%) than it does of current generation capacity (84.2%) due to the low capacity factor of PV generation relative to other generating resources.

EXISTING ENERGY	MWH	%
COAL	3,840,000	32.3%
NUCLEAR	3,240,000	27.3%
NATURAL GAS	3,120,000	26.3%
EXISTING RENEWABLES	1,200,000	10.1%
PURCHASED POWER	480,000	4.0%
TOTAL	11,880,000	100.0%
		% of
		Current
		Annual
	MWH	Energy
POTENTIAL SOLAR	3,278,609	27.6%

Note: Existing resource annual energy figures were provided by Austin Energy.

Figure 6. Rooftop PV Technical Annual Energy Potential Relative to Existing Generation Mix (Development Scenario 1)

4.e. Annual Energy Potential in 3 PV Development Scenarios

The table and graph in Figure 7 below summarize the model results under the three different PV development scenarios. They show that increasing the share of thin film PV in the deployed mix results in lower annual energy generation than if crystalline technologies are deployed. Where Scenario 1 (crystalline deployment only) resulted in approximately 3.3 million MWh of annual solar energy production, Scenario 2 (crystalline deployment on residential rooftops; thin film deployment on commercial and industrial rooftops) resulted in about 2.5 million MWh per year, and Scenario 3 (thin film only) resulted in 1.9 million MWh per year.

It should be noted that the model used power density factors derived from currently commercially-available high-efficiency crystalline and thin film modules; technological changes would potentially alter these results.

		Annual MWh	
	Scenario 1	Scenario 2	Scenario 3
	CSi	CSi + TF	TF
RESIDENTIAL SF	1,255,448	1,255,448	731,187
RESIDENTIAL MF	250,528	250,528	145,911
FARM AND RANCH	6,442	6,442	3,752
COMMERCIAL	893,135	520,172	520,172
INDUSTRIAL	275,660	160,547	160,547
UTILITY	12,559	7,315	7,315
CIVIC	584,836	340,615	340,615
	3,278,609	2,541,067	1,909,498
	% of 2008	Annual Energy Ge	eneration
	27.6%	21.4%	16.1%

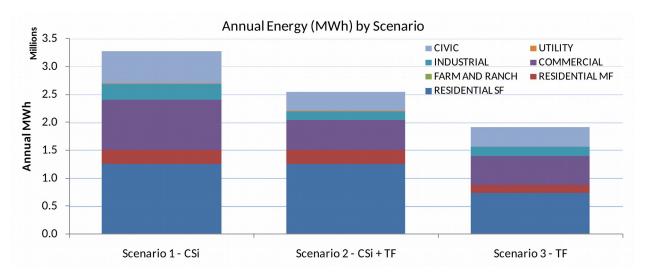


Figure 7. Rooftop PV Technical Potential Annual Energy Generation in 3 Deployment Scenarios

4.f. Distribution of Commercial and Industrial Rooftop Area

Figure 8 illustrates the distribution of gross commercial and industrial rooftop area in the Travis County Assessor's District (TCAD) data set. It shows that in the commercial sector there are over 14,000 buildings with about 134 million gross square feet, and the largest 1,000 buildings in this sector encompass nearly 50% of the gross area. In the industrial sector there are 132 buildings, and the largest 10 buildings encompass about 50% of the gross area. These figures indicate an opportunity to capture a large share of commercial and industrial rooftop space by targeting the largest buildings.

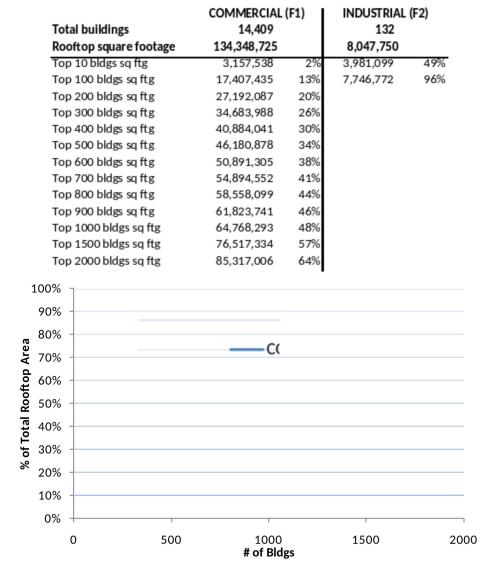


Figure 8. Commercial and Industrial Buildings Distribution

4.g. Rooftop Area by Use Category and Zip Code

On request from Austin Energy staff, Clean Energy Associates produced an estimate of the rooftop availability for each use category by zip code, starting with City of Austin GIS data rather than the combined GIS and Travis and Williamson County Assessor's District sets used in the rest of the analysis. Because of this difference, the input gross rooftop area and the output estimate of rooftop area suitable for solar development were higher than in the rest of the model.

The GIS data was run through the model in the same way as the combined data set, but with finer granularity at the zip code level. All reduction factors were applied exactly as they were in the original model, except for the shading factor.

In the original model, the residential shading factors were derived on a zip code by zip code basis, and then aggregated with weighting factors according to the total square footage in each zip code. Thus, a single residential shading factor was derived and applied to all residential square footage. In this analysis, we simply applied the shading factor data directly to residential installations in each zip code rather than applying a weighted average. Note, not all zip codes in the Austin Energy service area contained data in the shading factor study, in which case it was assumed that those areas would exhibit similar shading factors as neighboring zip codes. Because the GIS data set had broken commercial and industrial data sets into smaller (<150,000 square feet) and larger (>150,000 square feet) buildings, we also assumed a lower shading factor for larger buildings (0.98, meaning only 2 percent of area was screened out for shading). This was assumed because with such a large footprint, trees and surrounding buildings are less likely to shade these buildings' roofs.

As mentioned before, the results of this analysis were different due to the exclusive reliance on GIS data. The rooftop model started with 536 million gross square feet of rooftop area and ended with an estimate of 142 million square feet suitable for rooftop PV development. This analysis started with 704 million gross square feet of rooftop area and ended with an estimate of 188 million square feet suitable for rooftop PV development. Aside from the differences due to the input data set, no appreciable difference resulted from the minor methodological differences employed to account for shading. The ratios of rooftop area suitable for PV development to gross rooftop area were nearly identical: 26.7% in the model and 26.8% in this analysis.

The top-down analytical approach employed by the CEA model is intended to produce an overall estimate rooftop area available for solar deployment. The model is intended to provide a reasonably accurate estimation in the aggregate, though the level of accuracy is necessarily reduced at finer levels of granularity, such when broken down by zip codes or at the level of individual buildings. Still, we believe the zip code break down can provide a useful screening of PV development opportunities throughout the City.

Detailed rooftop area by use category and zip code derived from the GIS is presented in Figure 9.

Total SF	Residential	Multi Famliy	Industrial<150k	Industrial>150k	Commercial<150k	Commercial>150k	Civic	Agricultural	Zip code
35,459	13,564		17,361				1,553	2,982	78610
300,726	811				298,990			925	78613
1,747,487	533,793	39,501	52,270		411,888		692,734	17,301	78617
64,367	15,010		17,449		29,767			2,140	78652
248,345	153,876		34,718		43,836		6,338	9,576	78653
4,075,243	2,589,471	15,061	299,551	221,511	514,734		424,621	10,293	78660
107,423	107,292						131		78681
4,666,881	-	122,907	104,046		3,523,695	106,146	810,087		78701
4,696,728	1,234,569	190,774	1,063,823	63,936	1,003,244		1,139,901	481	78702
3,514,810	1,241,121	488,359	65,009		1,061,652		658,669		78703
9,003,731	2,355,837	1,262,391	408,669	77,251	3,249,161		1,650,422		78704
3,599,811	250,893	853,188	,	,	1,119,765	107,660	1,268,305		78705
1,079,327		193			_,,		1,079,134		78712
1,601,634	703,010	163,505	30,476	64,332	460,500		177,029	2,782	78717
173,001	24,452	100,000	14,892	04,002	130,014		213	3,428	78719
2,243,824	828,729	88,174	557,666		292,691		476,441	123	78721
1,059,686	350,481	56,837	102,887		309,548		239,933	123	78722
4,738,769	1,898,364	475,513	154,943		1,399,921	149,994	660,035		78723
2,065,883	948,722	61,530	485,973	88,781	164,810	149,994	295,842	20,224	78724
2,005,865	572,114	61,550	480,496	365,628	86,883		494,001	24,584	7872 4 78725
		61 700					494,001	24,584	
328,603	1,862	61,738	84,759	99,109	81,134		226 405	0.511	78726
6,546,885	3,049,662	652,514	429,725	493,629	1,581,438		336,405	3,511	78727
2,793,951	793,265	317,517	655,276	249,817	645,811	500 750	132,266		78728
5,364,435	2,360,567	526,953	218,074		1,341,507	500,759	416,576		78729
2,321,611	1,572,940	161,448	9,023		558,256		17,660	2,285	78730
7,097,705	3,799,928	879,802			1,316,234		1,101,741		78731
1,273,092	1,021,820	61,920	6,339		124,628		57,245	1,140	78732
1,903,791	1,581,934	12,455	41,259		96,184		161,372	10,586	78733
3,051,527	2,086,651	49,807	142,799		539,885		227,313	5,072	78734
3,572,171	1,729,763	417,935	58,475		1,012,950		343,685	9,363	78735
892,647	663,258	27,351	9,878		167,683		17,480	6,998	78736
2,405,264	1,402,389	95,509	80,645		464,653		355,353	6,715	78738
78,550	78,550								78739
6,177,803	1,188,580	1,876,214	263,355		1,865,707	552,560	431,327	60	78741
451,492	62,686	1,451	159,339		191,198		35,449	1,369	78742
8,892,226	2,823,253	313,840	2,045,916	602,747	2,425,411		644,842	36,216	78744
10,084,550	4,165,395	827,881	742,383		3,157,839	182,245	1,001,529	7,278	78745
10,169,427	5,315,252	545,842	2,325		3,035,788	324,487	942,852	2,881	78746
1,499,684	1,131,880	192,080	20,891		61,724		61,545	31,565	78747
4,639,673	3,092,241	212,697	110,844		648,509		560,291	15,091	78748
6,064,651	3,744,121	600,978	2,622		973,706		733,281	9,944	78749
2,486,232	1,157,620	250,624	53,364		801,610		222,195	819	78750
3,138,254	544,660	348,191	37,160		1,243,702	167,076	797,465		78751
4,401,174	394,201	476,743	180,278		2,458,332	165,230	726,391		78752
9,107,695	2,763,927	1,036,909	1,038,585	411,742	2,860,821	394,988	600,099	623	78753
4,070,932	391,107	190,964	1,294,685	349,857	1,395,323		442,404	6,591	78754
2,474,708	393,541	213,633	24,556		970,596		872,382		78756
5,115,987	-	413,489	402,659		3,333,970	302,258	663,611		78757
13,021,705	3,092,440	1,342,764	3,007,813	340,587	3,497,942	426,435	1,313,200	525	78758
11,163,198	3,928,089	1,384,475	152,310	657,182	4,429,923	85,733	525,486		78759
187,636,466	68,153,689	17,311,658	15,165,568	4,086,110	55,383,563	3,465,573	23,816,832	253,472	Total

Figure 9. Rooftop Area by Use Category and Zip Code, Derived from City of Austin GIS.

Appendix 1. Data Sources – Detailed Information

The information provided below represents a summary of available data sets; additional details have been circulated among the project team.

A. Travis Central Appraisal District (TCAD) database

Source Travis Central Appraisal District

Cost \$80 for data on CD-ROM

Contact Travis Central Appraisal District

8314 Cross Park Drive, Austin, TX 78754

(512) 835-5371 Billie Jean Stone

(512) 834-9317 ext. 349 bstone@tcadcentral.org

General TCAD offers a CD-ROM of its current database in MS Access format. The database

Description contains lot and improvement data on all taxable properties in Travis county.

Potentially
Useful Data

Database contains legal and mailing addresses of each lot, zip codes, property type (residential, commercial, etc.), lot size, bldg square footage, first floor bldg square footage, roof type, solar tax exempt status. First floor building square footage may

serve as a useful proxy for estimating available roof area.

Known LimitationsBecause the TCAD data contains information on taxable properties only, there is no information on churches, municipal and county lots, state buildings, universities,

schools, and other non-taxable entities. Improvement data does not contain some areas which may be covered with rooftop suitable for solar data, such as garages or covered porches. Database is current (as of summer 2008), though information on each individual property may not be. Using first floor square footage as a proxy for

available rooftop area may be misleading for condominium data.

Additional 24 building types are represented, though 99.7% of all first floor square footage **Information**

Current Status CD-ROM obtained by CEA, contents posted to CEA Box.net account, access

provided to Austin Energy.

B. Williamson Central Appraisal District (WCAD) database

Source Williamson Central Appraisal District

Cost \$100 for data on CD-ROM

Contact Williamson Central Appraisal District

625 FM 1460

Georgetown, Texas 78626-8050

(512) 930-3787

General WCAD offers a CD-ROM of its current database in MS Access format. The database contains lot and improvement data on all taxable properties in Williamson county.

Potentially Presumably this database contains similar or equivalent fields as the TCAD

Useful Data database.

Known Presumably this database contains similar or equivalent limitations as the TCAD

Limitations database.

Additional Austin Energy estimates it serves 4,000-5,000 customers in Williamson County.

Information

Current Status CEA evaluating utility of obtaining this database.

C. City of Austin Geographic Information System (GIS)

Source City of Austin

Cost N/A

Contact Timothy Harvey – Conservation Program Specialist

811 Barton Springs Road, Austin TX 78704-1145

(512) 482-5386

General Austin's GIS contains multiple geographic layers, each of which is created and

Description maintained by different entities within the City of Austin.

PotentiallyAn address layer contains address/lot information; a buildings layer contains building footprint shapes: zip code. Austin Energy's service area, and land use data layers

footprint shapes; zip code, Austin Energy's service area, and land use data layers are also available. Each potentially useful layer is further described in the Appendix.

Known Building footprint data is known to have derived from satellite data taken in 2003, and

Limitations so may not represent current information, particularly in areas with high rates of

development. Data accuracy of many layers is unknown.

Additional N/A

Information

Current Status Austin Energy staff will access and query the GIS for the project team.

D. Austin Energy Customer Information System (CIS)

Source Austin Energy

Cost N/A

Contact Timothy Harvey – Conservation Program Specialist

811 Barton Springs Road, Austin TX 78704-1145

(512) 482-5386

General Description Austin Energy's CIS (Customer Information System) is a database in MS Access format that is maintained by Austin Energy (AE). The database contains customer contact info, addresses, electrical usage, rate and meter information for all AE users.

Potentially Useful Data

Rate Schedule and addresses to identify type and number of users in different areas.

Known Limitations Customers may not have the proper rate schedule. Some very large residential homes may have a commercial account. Some small commercial buildings may have

a residential account. There may be more than one account per building.

Additional Information

N/A

Current Status Austin Energy staff will access and query the CIS for the project team.

E. Austin Energy Solar Program Database

Source Austin Energy

Cost N/A

Contact Timothy Harvey – Conservation Program Specialist

811 Barton Springs Road, Austin TX 78704-1145

(512) 482-5386

General Description

The Solar Program Database provides information about approximately 2,750 residential and 500 commercial buildings that have applied for solar rebates. These sites have been evaluated to determine their solar access and have been judged suitable for unsuitable for PV installations. Approximately 40 sites have also been evaluated to determine the maximum solar PV module installation potential.

Potentially Useful Data

Legal and mailing addresses of buildings, zip codes for buildings that were judged to be suitable and unsuitable, PV module installation potential versus actual installed

module capacity.

Known Limitations Accuracy of information submitted to rebate program.

Additional Information

N/A

Current Status

Austin Energy staff will access and query the CIS for the project team.

F. Austin Energy Solar Meter Readings Database

Source Austin Energy

Cost N/A

Contact Timothy Harvey – Conservation Program Specialist

811 Barton Springs Road, Austin TX 78704-1145

(512) 482-5386

General Austin Energy obtains periodic meter readings from all net metered solar customers,

Description recording in-flows and out-flows from the customer premise as well as total PV

production.

Potentially Annual kWh production from individual project sites or in the aggregate could be

Useful Data helpful in determining power/energy factors used in modeling potential.

Known Unknown.

Limitations

Additional N/A

Information

Current Status Austin Energy staff will access and query the CIS for the project team.

G. State of Texas Buildings Database

Source Texas Facilities Commission

Cost N/A

Contact Bill Bonham

Deputy Executive Director for Facilities, Design, & Construction

Texas Facilities Commission (TFC)

(512) 463-3446

General Excel worksheet with list of state buildings, including their addresses.

Description

Potentially Legal and mailing addresses of state-owned buildings.

Useful Data

Known The list would not identify building on which PV modules could not be installed due to

Limitations aesthetic or historical preservation issues.

Additional N/A

Information

Current Status CEA has contacted Mr. Bonham but has not received any data.

H. Austin Independent School District (AISD) Facilities Data

Source Austin Independent School District

Cost N/A

Contact Joe Silva – Assistant Director of Planning

Austin Independent School District

(512) 414-2667

General List of AISD-owned buildings including their addresses. AISD could possibly provide

Description design drawings for the roofs of many buildings.

Potentially Legal and mailing addresses of buildings, drawing files could be used to obtain roof

Useful Data areas.

Known The list would not identify building on which PV modules could not be installed due to

Limitations aesthetic or historical preservation issues.

Additional N/A

Information

Current Status CEA has contacted Mr. Silva but has not received any data.

I. University of Texas Facilities Data

Source University of Texas at Austin

Cost N/A

Contact University of Texas at Austin

Project Management and Construction Services

(512) 471-3042

General The University of Texas at Austin could provide a list of their buildings including their

Description addresses, and possibly design drawings for the roofs of their buildings.

Potentially Legal and mailing addresses of buildings, drawing files could be used to obtain roof

Useful Data areas.

Known From previous work experience with the University, it is known that PV modules are

Limitations not allowed to be installed on burnt orange roof tiles. Drawing files could be used to

determine which building have these roofs and eliminate them from consideration.

Additional N/A

Information

Current Status CEA has contacted the University but has not received any data.