: ANL [RE/CP-- 25604
CONF-950740 - 90

UPLIFT AND ROCKING OF A DEFORMABLE BODY
SUBJECT TO BASE EXCITATION*

Prepared by:

George A. McLennan

Argonne National Laboratory
Reactor Engineering Division
9700 S. Cass Avenue

Argonne, lllinois 60439

DISCLAIMER
or usefulness of any information,

| product,

express or implied
manufacturer, or otherwise does not necessarily constitute or imp

bility for the accuracy, completeness,

EE35Yes
SEg8E8
= B48 g8
Thomas J. Moran S agE ¢ B
528 E328S
€EZFTBSE 8
] SEEEESE
Argonne National Laboratory ESE°%°
Reactor Engineering Division RS
[S -9 —
9700 S. Cass Avenue SEEES
Argonne, lllinois 60439 SEsed
SSE g
= 8zE8
2855388
o083
£¥g=k
£
2
[+
3
&
B

The submitted manuscript has been authored
by a contractor of the U.S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States
rocess disclosed, or represents that its use woul

Government. Neither the Unit
and opinions of authors expressed herein do not necessarily state or reflect those of the

mendation, or favoring by the United States Government or any agency
United States Government or any agency thereof.

ence herein to any specific commercial

employees, makes any warranty,

p

Presentation to the 1995 ASME/JSME
Pressure Vessel and Piping Conference

Honolulu Hawaii
July 23-27, 1995

*This work was performed under the auspices of the U.S. Department of Energy,
Office of Technology Support Programs, under Contract No. W-31-109-ENG-38.

DISTRIBUTION OF THIS DOCUMENT IS UNUMlTEBwy | MASTER



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.



UPLIFT AND ROCKING OF A DEFORMABLE BODY SUBJECT
TO BASE EXCITATION

UPLIFT AND ROCKING OF A DEFORMABLE BODY
SUBJECT TO BASE EXCITATION

Thomas J. Moran
Reactor Engineering

Argonne National Laboratory
Argonne, lllinois

George A. MclLennan

Reactor Engineering

Argonne National Laboratory
Argonne, lllinois

ABSTRACT

The rolling and sliding motions of a rigid body subject to
gravity and supported by a plane surface are treated in
elementary texts on dynamics. Rocking of a riding body
supported by a horizontal surface which experiences oscilla-
tory accelerations due to an earthquake has been discussed by
Housner!, If the body is deformable there is a potential for
the dynamics of the body deformations to couple with the
rocking mode; in particular, resonances in the deformation re-
sponse can develop sufficient reaction moment at the base to
cause base uplift which would not occur if the body were
rigid. The paper presents a model suitable for studying this
phenomena including the magnitude of the uplift, impacts
occurring during stable rocking motions, and overturning,

The equations governing the plane motion of a deformable
body with rocking boundary conditions supported by a hori-
zontal flat surface subject to vertical and horizontal acceler-
ations are derived. These equations depend on dynamic
parameters of the body which are defined in terms of integrals
of assumed modes of deformation. The number of assumed
modes is arbitrary. Motions which involve uplift but not
overturning are termed rocking motions and are characterized
by impacts with the supporting plane. Integration of these
equations requires care in dealing with high frequency rock-
ing motions may occur.

NOMENCLATURE
F force acting on base of the body (N)
I impulse acting on base (N-s)

Y, J, K unit vectors in an inertial frame
M total mass of the body (kg)
R vector from inertial frame to an arbitrary point (m)
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kinetic energy (kg-m*/s?)

potential energy (N-m); volume (m”)

inertial coordinates of supporting plane (m)
transformation from inertial to body coordinates
acceleration of gravity (m/s?)

height of c.g. (m)

linear momentum (kg-m/s)

unit vectors fixed in the body

number of assumed modes of deformation

time (s)

body coordinates of an arbitrary point (m)
tipping parameter

dimensionless radius of gyration

tipping angle

position vector of an arbitrary point in body
coordinates

dimensionless time

moment of momentum about ¢.g. (kg-m?/s)
base distance from c.g. to left and right tipping axes
(m)

stiffness matrix (IN/my)

generalized coordinate

vector from inertial frame to tipping axis (m)
vector from tipping axis to c.g. (m)

left and right tipping parameters

shear deformation parameters

coriolis parameters

dilation parameters

dimensionless stiffness matrix

dimensionless mass matrix

assumed mode deformation vector function
dimensionless participation vector



INTRODUCTION

The rolling and sliding motions of a rigid body subject to
gravity and supported by a plane surface are treated in
elementary texts on dynamics. Rocking of a rigid body
supported by a horizontal surface which experiences
oscillatory accelerations due to an earthquake has been
discussed by Housner'. If the body is deformable there is a
potential for the dynamics of the body deformations to couple
with the rocking mode; in particular, resonances in the
deformation response can develop sufficient reaction moment
at the base to cause base uplift which would not occur if the
body were rigid. The purpose of this work is to develop a
model suitable for studying this phenomena including the
magnitude of the uplift, impacts occurring during stable
rocking motions, and overturning.

GEOMETRY

Consider a deformable body subject to gravity and sup-
ported on a horizontal surface which accelerates in the ver-
tical and one horizontal direction. Restrict the deformation
and rotation of the body to the plane of the supporting surface
accelerations. The body can tip (rotate) about two points,
called tipping axes, located at the "left" (point 1) and "right”
(point 2) extremities of it's "base”. These two points are
assumed to be the same material points regardless of the
deformation of the body. Two coordinate systems are used to
describe the rotation and deformation of the body: an inertial
frame with unit vectors I, J and a body-fixed frame with unit
vectors i and j. I is parallel to the support plane, horizontal,
and directed from point 1 to point 2; J is in the direction of
the gravitational acceleration, up. The body fixed vector, iis
directed from point 1 to point 2 whatever the deformation or
rotation and i and j are parallel to X and J when the body is
not tipped. The rotation of the body is described by the
tipping angle 8 measured counter-clockwise from I to i; when
8 > 0 the body is tipped about the left tipping axis, point 1,
and when 8 <0 the body is tipped about the right tipping axis,
" point 2. The boundary conditions imposed at points 1 and 2
are zero applied moment, zero displacement in the =I
direction, zero displacement in the -J direction and no tensile
force in the J direction. Positive displacements are allowed in
the +J direction, however, we will be interested in tipping
motions where only one point has a non-zero displacement at
any given time. These boundary conditions are termed
*rocking” boundary conditions.

The parameter o is defined for the purpose of locating the
tipping axis of the body relative to the center of mass of the
body. @ is termed the "tipping parameter” because it
measures the stability of the body against tipping. Three
physical dimensions are used in this definition. They are:

h the height of the center of gravity (c.g.) of the
undeformed and untipped body above the horizontal
support plane,

b, the distance from the projection of the c.g. on the
support plane to the left tipping axis, point 1,

b, the distance from the projection of the c.g. on the
support plane to the right tipping axis, point 2.
Then « is given by:

a®) -, = -b/h for 8 >0

¢®) - «, = b/h for 6 <0

The vector from the inertial reference frame to the tipping
- (X+ha)l + Y = £(X+ he,Y,0)

axis is where X and Y are the horizontal and vertical displace-
ments of the support plane from an inertial frame and the
function f(a,b,8) = (a cos 8 + b sin 8)i + (b cos 6 - a sin 8)j.
f(a,b,0) is the transformation of the vector al + bJ to the body
coordinates. Note that the function f is linear in its first two
arguments; in particular

£(X+he,Y,0) - bf G- 05 0); £(0,80)-F(XY.0)- ¢ f(’si,%,l,a)

When & =-e,, T, points to the left tipping axis and when «
= @,, I, points to the right tipping axis.

The position of the center of mass of the undeformed body
relative to the tipping axis is given by the vector r, =-ahi+
hj. The position of an arbitrary point in the undeformed body
relative to the center of mass is p, = xi + yj + zk. The
location of an arbitrary point in the deformed body relative to
the center of mass of the undeformed body is given by the
vector

p(% ¥,2,D= P (% Y,2) *_51: o(x.y2)q;0) =py + 04

where the vector functions ¢,(xy,z) are assumed-mode
deformation functions and the scalar functions qt) are
dimensionless generalized coordinates.

Finally, the position of an arbitrary point in the deformed
body relative to the inertial frame is:

R: e+ p- h[f(%va,i—, ) oi- .i] + Por 0 (xY,2q;0)
KINEMATICS
Begin by introducing a dimensionless time variable
T = y&/h t where g is the acceleration of gravity and t is time
in seconds. Use "dot" to denote derivatives with respect to

real time, t, and "prime” to denote derivatives with respect to
7. Then:
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The velocity of an arbitrary point in the body relative to the
inertial frame is:

(DR gRDR . G| X ERYAED)
- (i - aj - ikx(pof¢,q,-))e'+;—¢,<x,y,z>q;]
and the inertial acceleration of an arbitrary point is:

-~ DR g D’R %Y . 1 2
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KINETICS

The linear momentum of the body is given by the volume
integral over the body of the point inertial velocity times the
elemental mass DR

v

and the moment of momentum about the center of gravity is

h dm

DR
H - |p x —dm.
0 .:!' Dt

The kinetic energy, T, is 1/2 the integral of the inertial
velocity squared:
T - L P}_- .%_dm
2v Dt Dt
The potential energy, V, for the system is the gravitational
potential plus the strain energy of deformation, V=V, + V.
The gravitational potential is the negative of the work done
by the gravity force in an arbitrary displacement of the body.
Since the gravity force is £(0,-g,0), the gravity potential is

g (DR DR

e 2 . —~dm
2h JDt D=
v

V, - [g£0.1,8) - R dm.

The strain gnergy for a linear deformation theory takes the
fom V, - —k;q;q where the stiffness matrix, k; = k;,
depends on“a volume integral of the derivatives of the
deformation functions ¢,(x.y,2).

The following parameters describe the dynamic properties
of the body. With the exception of the total mass, M, they are
given in a dimensionless form.

M= [dm
/
(Total mass of the body)

g =

1 f(x dm - —=
X . X 2 —
Mh’;[( p)- G xpQdm - —=;
(Radius of gyration squared of the undeformed body)
1

(Deformation mass matrix)

1
= ——k.
N ® Mgh 3

(Deformation stiffness matrix)

Y‘,;"‘Mh

1
. f ¢ x &, dm - k
v
(Gyroscopic or "Coriolis" terms)

j= L
\H - “pxii * ‘p’ij = Mk “l;d)i(x»yz)dm
(Base excitation participation factors)

1

& = P, ¢, dm

1 2 o )
Mh[

(Measure of modal dilation of the body)
1
B = -MTz-k- !;pox ¢;dm
(Measure of modal shear of the body)

Using these defined parameters, the kinetic energy
may be written as

1 ¥ y
T-Meh {{[gT’ P L A - o+ 280149,
2 \l’xﬂj +2 % qjﬁﬂ] + (B Y54 q’,j"!‘x}) qjd
X Y . . X Y
+ f(—EE,e)'q!qu ok’h-uh\l&q‘i)xf(ﬁ—‘g,e)]e’}’
the potential energy takes the form
Y . s
V- Mgh {’h—' f0,1,0)(-i~ j+ ‘ll,q,-)* %Kijqiqj} >
and the linear momentum takes the form
h- JgM [£(ES 20) vu g sk (aivjeyg o]
\/g_ [ V& V& iql ]lqul) ]

The equations of motion of the body can be derived from the
Lagrangian formulation using the expressions for kinetic and
potential energy. Using the usual summation convention for
repeated subscripts the equations of motion take the form:

p’,jq’il + (ﬁ, - Yijqj - 0“!!,; - ll’,;)e'
- 2yijqj'3 S CRR H AE \]in)e’2 (6]
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where « =-a, for 8> 0; a=-a for 0<0 and
2 ¥ b ? neak [ ? % . als
(2.1, -[;-cose ,(;..1)sme]u[(71) cosﬁ-;-smﬁ]]
The stable equilibrium state when X- ¥ = 0 is
0-6-q-0, g--[k" Wy

_ which represents the deformation of the body under gravity
loading.

It is usual to introduce "material damping" into equation (1)
by adding a term 1;q’; where n);; is proportional to a linear
combination of the mass matrix j; and the stiffness matrix x;.

The resultant of the reaction force between the floor and the
body is:

s XV 2
F -£Rdm . Mg[f(?;— +18) » Ko - 4,90
S 20,q/0 - (1+ ¥ ;000 + b, gl 1+ 4,207 B)
29,90 - (@ - 0,2) 0+ v,a/li]

This force acts at the tipping axis when the body is tipped.
When the body is not tipped the angle theta is zero and the
location of the resultant reaction force is such as to have zero
moment about the center of gravity of the deformed body.
Define the parameter alpha for 6=0 so that the vector h(aitj-
,q;) is the location of the resuitant reaction force on the base
of the body relative to the deformed c.g. Then the condition
that the moment of F about the c.g. of the deformed body be
zero is h(ai+j-y,q;) x F = 0 which may be solved for a:

« - (:—' l)lpqu, - ?(Wy,q“ + l)f (ﬁj . Y,,q, _ wxj)qju (4)
¥ P
b I ll’:gqi

UPLIFT

Consider a body initially at rest on the surface subjected to
moderate base excitation. The early motion is governed by
equation (1) with 8 = 0. The reaction force is given by (3)
located at (4). If the base acceleration is sufficiently small, «
will never reach the extremities of the interval [-a,,e,] and
the body will not lift off its base. If the excitation is more
severe o will eventually reach the extremities of the interval
[-e,,e,] and uplift will occur. During uplift & remains fixed
at the extreme value, and equation (2) governs the evolution

of 8. If the excitation is not too severe, the uplift angle will
reach a maximum, the angular velocity will change sign, 6
will return to 0 and the body will impact the support plane.
Such a stable tipping motion is termed "rocking". If,
however, the excitation is quite severe € will grow
sufficiently large that the center of gravity of the body is
outside the base support and gravity will become
destabilizing. In this case 0 will begin to grow rapidly and
the body is said to overturn.

OVERTURNING

An exact condition for overturning would depend explicitly
on both the base excitation and the deformation q(t), that s,
the body may tip arbitrarily far and still return to an upright
position provided the future accelerations are sufficient to
right it. However, an unstable static equilibrium condition
can be given which approximates the limit of stable rocking
provided the future base acceleration and the deformation
accelerations are small. This equilibrium is given by the
solution to the equations:

k;Q; = -(sin®) - ¥, ;c0%0))
\pquj‘a
lllyjqj’ 1

If the static deformations are small, the unstable equilibrium
is approximately

tan@®) -

6--tan’ (). o)

When integrating the equations of rocking motion after uplift
it is prudent to check condition (5) to avoid following an
unstable trajectory.

IMPACTS

The second condition which must be checked while
integrating the rocking equations is the impact condition, 8 =
0. When impact occurs a discontinuity takes place in the
angular velocity, ©’, and the generalized velocities, q';
Consider first an impact with the body angular velocity
positive prior to the impact, i.e. 8-> 0. For such an impact
the impulsive reaction occurs at point 1 and is given by the
change in linear momentum:

B, £a;"-qi7)-(1- ¥, ;)@ -8 )i ©)
¥, @7~ )+ ¥,;907-07) - @ -, 7))

1- Ah-‘/g—h-M {'

At impact, i.e. & = 0, the moment of momentum about the
center of gravity is:

, DR
Ho(a,q,e)-fvpx —om
-Mh (2,0
W (a0
[B ;59 qj’ * (52’26,' ;15 99; - W . 9;
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The change in moment of momentum about point 1 is:
oH, - Hya,q", 67 - H(a,q",0") » h(gis )x 1

The condition that linear momentum at each point be
preserved iithin the constraints of the assumed deformations
leads to an expression for the change in the generalized
velocities in terms of the body angular velocity before and
after the impact: :

a f ¢.‘R dm-0 for id..n implies

Y )
Aqil '[st] 1 K Yy - i*Yijqj) a0’ ‘Vyi (ale’" azﬂ')]

The condition that moment of momentum about the point of

impact be preserved gives the new angular velocity of the
body in terms of the old angular velocity:

1.2%2 quf K% qu q’yﬂj'fal ) LR LAY
- (B pi'Yijqj <y, ) [P-,,] (llJ,,--ﬁj'Y;jq;*a A yj) 0 (8)
2
1 0% 25, 0,920, 9+ 20 ¥ o 301
(-8 iY590% \Py,) [p';j].l (ll!,,--ﬁj"{ijqi-a 1 \l’yj)

0 -

For an impact with O impact occurs at point 2. The same
expressions for the impulse, change in generalized velocities,
and new angular velocities hold with the substitution:

% <%y )

LR

ENERGY LOSS

The impact conditions do not conserve energy for the
system. The energy loss during impact is equal to the work
done by the impulsive force minus the change in the kinetic
energy of the body. The work done by the impulsive force is:

W

b 0 X Y

and the energy loss in an impact at point 1 with 6> 0 is:

8+38; 9550 8;°249) @7 0'%)
BeMeh [opyya,'q” w2/ g +(0] + 2, ¥y 07 (03-20,9, 077 (10)
By 5 ¥ D@8 -0 e g, 187 - ey g0

The same expression holds at point 2 when 6 <0 with the
substitution (9). The energy lost during impact may be
considered to go into higher modes of vibration not modeled
in the assumed mode model and into plastic deformation of
the body. The energy in higher modes will be dissipated by
material damping and radiation. Thus the energy lost in an
impact is an upper bound on the plastic deformation and may
be used as a damage function in assessing the effect of
rocking motion on the body.

CHATTERING

As energy is lost in each impact, the period between impacts
can become arbitrarily small. The high frequency of this
chattering motion and the associated overhead of impact
calculations becomes an impediment to efficient integration
of the equations. A practical solution is to stop the chattering
motion by setting 8 =0, 8’ = 0 when the frequency of impacts
becomes large compared to the natural frequencies of the
deformation.

SLIDING

This mathematical model does not allow for sliding relative
to the support surface during impact, tipping, or non-uplift
conditions. Sliding is presumed to be prevented by friction.
The required friction coefficient can be determined by
comparing the ratio of the horizontal to vertical component of
the reaction force or impulse. For this purpose the reaction
force (3) may be written in inertial coordinates as:

F-Mg {[%” [(a '\pxﬂjﬁ 2.2 va ;0' -(1 Yy Qj)el * \pqu;] cos(0)
- [l 2)0° + 20 48" (2-1, @)8" - ¥, 1sin(0) 1
. [1. } K-, @ 0% -20 Q0 - (1 ¥; 96"+ ¥, 9 1sin(0)

+F Qv 9,0 % 20 ;40" (-1, 90 + ¥, qJcos®) ]J }

Sliding will not occur provided the ratio of the I component
to the J component is less than the coefficient of friction
between the body and the surface. For impulses, equation (6)
may be used directly since 6 =0 so thati=Xand j=J.

NUMERICS

Under most circumstances the fundamental deformation
mode will dominate the uplift moment; higher modes may
contribute to the internal stress state of the body but normally
they will require minimum reaction moment at the base.
Thus if the normal modes in a pinned base support
configuration are known, a single mode of deformation is
sufficient for a tipping analysis of a deformable body. With
this observation in mind a FORTRAN computer code was
written to integrate the rocking equations for a deformable
body with a single deformation mode. A Runge-Kutta
integration scheme was used along with the logic to
determine the time of impacts, check for overturning,
eliminate chatter, and retain records of extreme values of
uplift, impulse, and energy loss. The code runs efficiently on
a 386 PC computer.

SUMMARY

The equations governing the plane motion of a deformable
body with rocking boundary conditions supported by a
horizontal flat surface subject to vertical and horizontal
accelerations are given by (1) and (2). These equations
depend on dynamic parameters of the body which are defined
in terms of integrals of assumed modes of deformation. The
number of assumed modes is arbitrary. The reaction force at



the surface is given by (3) and is located using (4). Equation
(4) also governs uplift. Overturning of the body is approxi-
mated by (5). Motions which involve uplift but not over-
turning are termed rocking motions and are characterized by
impacts with the supporting plane. The impulses are given by
(6), the corresponding changes in the generalized deformation
velocities are given by (7) and the changes in the angular
velocity are given by (8). These impulses result in the loss of
energy for the body given by (10). Integration of these
equations requires some care because high frequency rocking
motions can occur. Two examples are considered using a
computer simulation with a single deformation mode.
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