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Abstract 

This paper is intended to provide guidance and describe how to prepare an uncertainty 
analysis of a dimensional inspection process through the utilization of an uncertainty budget 
analysis. The uncertainty analysis is stated in the same methodology as that of the ISO GUM 
standard for calibration and testing. There is a specific distinction between how Type A and 
Type B uncertainty analysis is used in a general and specific process. All theory and applications 
are utilized to represent both a generalized approach to estimating measurement uncertainty and 
how to report and present these estimations for dimensional measurements in a dimensional 
inspection process. The analysis of this uncertainty budget shows that a well-controlled 
dimensional inspection process produces a conservative process uncertainty, which can be 
attributed to the necessary assumptions in place for best possible results.   
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1. Introduction 
 

Measurements are taken in everyday manufacturing processes. It could be as simple as 
measuring the thickness of a quarter using a caliper to the measuring of a turbine blade on a 
boat propeller using a coordinate measuring machine (CMM). Measurements are used for a 
quantitative (numerical) portrayal of a qualitative (description) item. For example, the 
ambient temperature of dimensional inspection laboratories must be in a range of 20±1ºC for 
metrology purposes. 

All measurements are subject to a measurand, an object being measured. This measurand 
can be anything from a diameter measured under a standardized temperature to the volume of 
a vessel with a standard pressure, as long as there are specific conditions to the measurement 
in question. Measurands are a necessity in all measuring routines and procedures. 

With the measurand stated, measurements of the measurand are taken.  Measurements, all 
types, have an associated error. Error is the difference between the “true” values of a 
measurement to the actual measured values. The true value is never actually known, but a 
good estimate is assessed by taking repeated measurements of the measurand in question and 
estimating with the arithmetic mean (average). The average value will give a good indication 
of where the true value might lie, though it lacks credibility because it does not have a range 
of possible values. The parameter that quantifies the boundaries of this error of the 
measurements is called the uncertainty of the measurement. This uncertainty is defined as the 
parameter associated with the result of a measurement that characterizes the dispersion 
(spread) of the values that could reasonably be attributed to the measurand. This uncertainty 
analysis will be used for manufacturing purpose in the dimensional inspection processes. 

This paper is intended to explain the detail in understanding, utilizing and reporting an 
uncertainty in measurements, both generally and for specific processes. Basic theory and 
mathematics will be included to give the reader the knowledge to understand and use the 
basic laws of uncertainty for measuring and stating uncertainty. With this analysis an 
uncertainty budget with tabulated numerical values of uncertainty sources, will be calculated 
for a specific dimensional inspection process. This paper will not provide derivation of the 
laws of propagation of uncertainty or the use of higher order terms, but will use assumptions 
in place for a more practical approach to measurement uncertainty. Higher-ordered terms will 
be explained, however not derived, in appendix 2. Small examples will be used to emphasize 
theory, and a specialized uncertainty budget will be provided in the text. All uncertainty 
principles, formulas and theory can be traced back to the ISO GUM document [1]. 
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2. General Principles 
 
2.1. What is uncertainty? 

 
What exactly is uncertainty? Uncertainty is the measure of the dispersion that may 

reasonably be associated with the intended measured value. It gives a possible range, 
centered about the measured value, within which a stated probability of where the “true” 
value may lie. It is usually a plus or minus limit, though it is not universally always stated in 
this form. 

The measuring instruments and systems usually require a scaling factor or correction for 
all intended measuring purposes. These corrections are used in order to correct to the 
necessary standard(s) used in calibrating the measuring instrument. It is essential and 
applicable to make any necessary corrections before any attempt is made toward assessing 
the uncertainty of a measurement. When calibrations of the measuring instruments are 
conducted, correction factors are implemented into the calibration of the instrument, in order 
to lower the uncertainty value associated with the calibration certificate. Depending on the 
measurement being conducted, the dimensional inspection group will either correct for large 
errors (straightness on a long straight edge that is in need of an overlapping algorithm) or 
assume negligible uncertainty effects do to other sources (temperature compensation on 
CMMs). The uncertainty stated in this paper is more geared toward testing implementation 
and not calibration, because all instruments are calibrated to a certified standard through a 
certified calibration laboratory. 

Most uncertainties are assumed to have a 95% confidence level, where a coverage factor 
k is used to expand a combined standard uncertainty. This coverage factor can range in 
different values depending on the probability distribution used for the uncertainty. For 
instance, a coverage factor of two is used for a normal (Gaussian) distribution. This coverage 
factor of two is also used for the combined standard of an uncertainty budget, because the 
combined distributions are assumed normal at a 95% confidence level. The 95% is used in all 
calibration and testing laboratories and is an established practice in Europe, Asia and North 
America. Again the ISO guide assumes a 95% combined normal distribution on uncertainty 
budget analysis. 

The first step after setting up the measurand, is constructing models of the measurements. 
A model equation is what is needed in order to figure what factors are affecting the 
measurand and contributing to the final uncertainty result. This requires a good 
understanding of metrology principles, the equipment and the environment. This typically is 
the most difficult and crucial part of calculating uncertainty. The model will be assumed 
linear, since higher-ordered terms are not considered in this report, however, if higher-order 
terms are present, do not neglect them and consider them in the model equation. Correlation 
is when two factors are independent, but can significantly affect one another. Correlation is 
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considered in the specific example approach, considering it is difficult to control all factor 
influences. These correlations will be detailed later in the paper.  

After a model is set, uncertainty must be separated into two types: Type A or Type B. 
Type A uncertainty is calculated with statistical analysis. A wide group of repeated 
measurements must be taken in order to use a Type A uncertainty. Type B uncertainty is 
found by any other means then statistical analysis. This can be done from manufacture 
specifications, calibration certificates, historical knowledge, etc. Just as a general approach, 
the specific process approach will use both Type A and Type B methods, based on the 
influencing quantities and all will factor into the uncertainty budget. 

Uncertainty can come from any type of measurement, thus leading to different types of 
units used. This is acceptable for finding standard uncertainties, but must be converted to the 
units defined by the measurand. For example, a measurand with units of MPa (Mega Pascal) 
and one quantity is the sensitivity of a test temperature, so these units must be equated. The 
temperature measurements and thus uncertainty are in ºC, so a conversion factor or weighing 
factor will be required to obtain the effects from the temperature uncertainty term. Such 
terms are known as sensitivity coefficients. Failure to apply these sensitivity coefficients will 
result in gross errors and non-sensible uncertainty values. Neglecting or incorrectly 
estimating the sensitivity coefficients are common causes of erroneous uncertainty estimates.  
In the specified example approach, the conversion factors or sensitivity coefficients will be 
evaluated where possible or necessary.  

Finally the standard uncertainties of all the influencing quantities must be combined to 
give a combined standard uncertainty, leading to an expanded uncertainty of a measuring 
system or process. The laws of propagation uncertainty use a Root-Sum-Squared (RSS) 
method, because of the assumption of a normal distribution of combined standard 
uncertainties. This will be the provided example’s approach, considering most of the factors 
can be calculated from statistical methods. This may not always be the correct way, 
considering if higher-ordered terms are involved. Based off assumptions, higher-ordered are 
negligible to other sources. A coverage factor of two will be used for the expanded 
uncertainty, since most calibration laboratories adhere to a standard practice of 95% 
confidence in all calibration certificates. 

 
2.2. Error 

 
Every measurement has an associated error. Therefore, every measurement process also 

has error. Error is the difference between the “true” value and the measured value. No 
measurement is ever one hundred percent correct, so error must be associated with this 
measurement value. Error can be calculated from the following equation: 

ߝ                    ൌ ௧௥௨௘ݔ െ  ௠௘௔௦௨௥௘ௗ    (1)ݔ

Where ߝ , is the error in the measurement, ݔ௧௥௨௘ is the true value of the measurement, not 
actually known, and  ݔ௠௘௔௦௨௥௘ௗ is the actual measured value from the measuring instrument. 



4 
 

The best estimate of the true value or the central value of a measurement is through the 
arithmetic mean, or average, of the measured values. However, this average may not be the 
true value. It may have been biased away from the true value by a combination of errors. If 
these errors could be accurately determined then they could be applied as corrections to the 
mean value, which would therefore bring an agreement into the true value of the 
measurement. These errors can be classified into two different categories: random and 
systematic.  These two types of error will be combined to effectively classify the total error 
in the measurement. In the total error, there will be at least one component of systematic 
error and one component of random error for the total error. A significant effort will be used 
to best try to identify and correct, where achievable, errors. Errors will be detailed more in 
sections 2.3 and 2.4. 

 
2.3. Systematic Error 

Systematic error is error which remains constant while the factor that it is influencing 
remains constant during measuring processes. Systematic errors, like random errors, are 
complicated to eliminate because the corrections are difficult to assign because their actual 
magnitude and sign are not precisely known. However, with a well defined measurand and 
well characterized sampling patterns and measuring instruments, these errors can potentially 
be reduced. The measurands for the processes are thoroughly thought out and analyzed for 
best representation of the process and the sampling patterns are well-characterized through 
historical testing and data.  

Some systematic errors can be reduced or possibly eliminated by a careful and well 
thought out proven measuring method, by an extensive calibration process to determine the 
actual error sign and magnitude, or in some cases, by changing the influencing quantities 
over a range and performing repeated measurements as to either characterize or randomize 
the error. Randomizing the order in which the measurement is made, will help determine if 
there is a possible way to minimize the systematic error and help minimize the nuisance 
factors. Corrections should always be applied when possible. This will allow for the best 
possible measurement estimation and the best representation of the true value. 

Using a variety of different measurement systems on the same measurand will help detect 
the systemic error. This will only be effective if the measuring systems have a comparable 
resolution. This will not work if say an optical system is used to measure a surface and then 
compared to a contact surface analyzer. Their resolutions and orientations can be very 
different from one another. Other useful aides could be inter-laboratory comparisons and 
proficiency tests. The dimensional inspection group has done both inter-laboratory and inter-
complex testing on different measuring techniques and systems. This has proven to be 
beneficial and helped correct for systematic errors. This is highly recommended when 
possible. 
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The dimensional inspection group has defined, as best as possible, measuring methods for 
reducing as much systematic error as possible. The use of calibrated standards and 
instruments are implemented into the measuring process to help identify if anything 
abnormal has happened during the measuring process. These quality checks are used during 
and after the measuring process to ensure robust quality. These checks are intended to help 
lower the actual uncertainty of the process. 

2.4. Random Error 

Random error presumably arises from the unpredictable and spatial variations of 
influential qualities. It can also be stated as random variation on the measurement. Typical 
sources for these errors are many and are inherited in the measuring instrument, the artifact 
or item under testing, the measurement procedure and the test environment. In many cases 
random error components will be immediately obvious because it occurs at a rate and 
amplitude sufficient to make taking a particular reading very difficult. If a random error is 
not detected in repeated observation, then the measuring instrument is not sensitive enough to 
detect the errors, however, this does not mean it is not good enough for its purpose. 

Estimating a random error can be done with a Type A analysis, which will be described 
in section 3.5. This analysis will require repeated measurements.  Performing at least 20 or 
more repeated measurements is often the standard sample size and produces a more accurate 
representation of the results. To fully account for all random sources of error the 
measurement system should be assembled and disassembled between each measurement. The 
latter statement is not feasible for large scale measuring systems and is intended for smaller 
scale systems. This will not be done in the dimensional inspection group’s case. 

When repeated measurements cannot be taken, then predicting the random error is 
necessary. This is a Type B analysis. The estimate of this component must be based on prior 
experience on instabilities of the particular measuring instrument or other measuring 
instruments of the same type. The dimensional inspection group uses calibrated standards, 
prior working knowledge and experience in characterizing these errors. This can be one of 
the more challenging aspects if a good understanding of the instrument and short history are 
not adequate. 

2.5. Assumptions 

The following assumptions are set to ensure that the best representations of the estimated 
uncertainties are accounted for. These assumptions are both from a generalized uncertainty 
budget approach and specific example of the dimensional measurement processes. The 
assumptions are as follows: 

 The measurement process is considered “well-behaved” and under process control 
to ensure validity to the uncertainty budget 
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 The effects of higher-ordered term and non-linearity are negligible, compared to 
other sources 

 Uncertainty components must be estimated when not available from a source, 
such as a calibration certificate and must be estimated, it is sufficient to make a 
worst case limits and use a rectangular distribution 

 A nominal coverage factor may be used. (Using an assumed normal distribution 
of 95% will be accompanied by a coverage factor of two for expanded uncertainty 
values.) 

 Temperature fluctuates in a constant range of 20±1ºC and instruments use 
temperature compensation to adjust to these fluctuations. If an instrument does 
not have temperature compensation, then the Gauge Repeatability and 
Reproducibility (GR&R) analysis will be used for an estimation of the 
temperature fluctuations, as well as other environmental effects 

 Component’s surface finish, surface profiles and flatness all meet drawing 
specifications 
 

Correlation or interaction between sources will be considered, only during the GR&R     
portion of the analysis. In turn, it will only compensate for the part-to-operator and part-to-
part portion of the data. For testing purposes, other correlated values will be assumed 
unattainable or negligible to other sources. 

These assumptions will be followed for any specified instrument in a dimensional 
measuring scenario. However, these assumptions can be altered and more can be added if 
necessary. The dimensional inspection group’s laboratories are classified as testing and 
measuring labs, so the previous assumptions in place are acceptable for a mix of research and 
development and typical production type work. 

2.6. Approach to Errors and Uncertainty 

The dimensional inspection group’s approach to both errors and uncertainties will follow 
the traditional methods for creating and presenting an uncertainty budget analysis. All error 
and uncertainty sources will be considered and either accepted or neglected for the budget as 
comparable to other sources. Any error that will be documented will be assessed for 
correction and independence before proceeding with the uncertainty analysis. The 
uncertainty sources will then be cited and determined if the effects are significant or deemed 
negligible. Since the laboratory used for measuring is more of a secondary lab on uncertainty 
analysis, the assessment of uncertainty will be part of a tertiary order from NIST traceable 
standards to a standards and calibration facility to the dimensional inspection laboratory. 
Some of the uncertainty may be on the conservative side, considering the budget is border 
line research and development and production work. All uncertainty sources will be 
published in a tabulated uncertainty analysis budget, with brief descriptions of sampling 
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patterns, formulas and calibration certificates. An example of a dimensional measuring 
process of a component will be used as an example and all numbers will be deviations from 
nominal values. 

3. Uncertainty Distributions & Sources 
 
3.1. Gaussian 

A Gaussian or normal distribution of many random variables, or random repeated 
measurements, takes the shape of a symmetric bell-curve. These values tend to focus about 
the center or average value. This distribution follows the central limit theorem.  When a set 
of readings, or measurements, is taken the best assumption to the type of probability 
distribution is the normal distribution. The average value acts as a true value, although the 
true value is not known, and can give a good estimation at a potential value. The average and 
the spread or variation, represents a possible range for the true value to possibly lie in. In 
Gaussian distribution, many measurements are needed to help reduce potential random errors 
and bias. This distribution also helps with Type A uncertainties and combined standard 
uncertainties. Here is a graph of a normal distribution: 

 

Figure 1: Normal Distribution Curve with Confidence Percentages and Sigma Values 

The probability density function used to model normal distribution curve is: 

                                         ݂ሺݔ; ,ߤ ଶሻߪ ൌ ଵ

ఙ√ଶగ
݁ିభ

మ
ሺೣషഋ

഑
ሻమ

                              (2) 
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Where ݂ሺݔሻ is the function of the measurement that describes the measurand, ߤ is the 
average or mean of the measured values and ߪଶ is the variance or spread of where the 
average or true value may potentially lie. 

In a normal distribution, the population size is infinite. This means that an infinite 
number of measurements are needed to find a possible true value. From the population 
variance ߪ the standard deviation also called sigma, can be determined by taking the square 
root,  which denotes the range of the data. However since there cannot be an infinite number 
of measurements, a sample of the population is used estimate the average, variance and 
standard deviation. In a sample, the average is ݔҧ, the variance is s2 and the standard deviation 
is s. With a sample size of about twenty of more measurements, these estimates will give 
good indications of the actual values. 

When measurements of normal distributions are taken, the shape is a bell-shaped curve, 
and has a standard deviation of approximately one sigma, or 68%, confidence that the values 
are close to the true value. Normal distributions can be 68%, 95% or 99% confident that the 
true value is somewhere in the range of values. A 95% level is the usual standard for 
calibration and testing laboratories in confidence and uncertainty. This is also the typical 
value for uncertainty in calibration certificates. 

Both Type A and B uncertainty analysis can use a normal distribution, either in 
calibration or testing, depending on what is needed. It can be used in Type A analysis for 
testing and research and development purposes, where statistical analysis is used. From this 
analysis, the standard uncertainty from the repeated measurements can be calculated and 
used for the uncertainty budget analysis. It is also common in Type B uncertainties for 
calibration and primary labs to state on calibration certificates. This distribution is slightly 
more difficult in Type B because the potential lack of historical data. 

More detail of the probability distribution uncertainties, statistical formulas and methods 
will be published in appendix 1. These methods follow the same methodology as the ISO 
GUM standard [1]. 

3.2. Rectangular 

Rectangular or uniform distribution is when the distribution of the measurements, or 
readings, is evenly spaced between the highest and lowest values of the range. It is often 
assumed that the errors have an equal probability of having a value anywhere in a specific 
range and unlikely to have random errors. This distribution leads to the measurements to be 
closer to the limits rather than the mean value. The limits are often assumed to be equal in 
magnitude and can actually be considered a half-range. Just like normal distribution, 
statistical analysis can be use to determine the standard deviation and hence the standard 
uncertainty.  The following is an illustration of a rectangular or uniform distribution: 
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Figure 2: Rectangular or Uniform Distribution 

With the rectangular distribution, where a and b values are the limits that are used to 
define the probability density function. The probability density function is as follows: 

                                ݂ሺݔሻ ൌ ቊ
ଵ

௕ି௔
, ܽ ݎ݋݂  ൑ ൑ ݔ ܾ,

0, ݔ ݎ݋݂  ൑ ൒ ݔ ݎ݋ ܽ ܾ
  (3) 

Like normal distributions, there is a confidence to the data, it being 58%, 95% and 100%, 
depending on what is needed for the calibration. Again, the standard uncertainty can be 
calculated from this expanded uncertainty by dividing by the coverage factor, which is 
different for the rectangular distribution. 

Rectangular distribution is more applicable and mostly used for Type B evaluations. The 
rectangular distribution may be considered the distribution of minimal knowledge, because 
only the limits are what is really known and in the absence of further knowledge, 
assumptions that the value has an equal probability. The dimensional inspections group’s use 
of Type B evaluations occurs when measuring calibrated artifacts. These calibrated artifacts 
are used for qualifying if the sampling pattern is adding a significant error to the 
measurement. 

3.3. Triangular 

Triangular distribution, in essence, can be seen the same way as rectangular distribution. 
The limits can be estimated in the same way as rectangular distribution; however, it also has 
a mode, or value that appears most frequently. It is used when there is evidence that the 
values near the mean are most probable and as the limits are approached, the probability 
decreases to zero. It requires less knowledge then normal distribution, but more than 
rectangular distribution. Again statistical analysis can be used to find the standard deviation, 
therefore giving a standard uncertainty value. Triangular distribution is the least commonly 
use distribution when doing uncertainty budget analysis.. There will be more focus on the 
previous two types of distributions. 
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3.4. Student’s t 

Student’s t distribution is essentially the same as a normal distribution. It takes multiple 
readings and the same statistical analysis approach is used for finding the mean and standard 
deviation. It also has the same bell-shaped curve of the normal distribution, but with a 
different sigma value. Student’s t distribution is used when the sample size is small and the 
population standard deviation is unknown. It therefore will provide a different confidence 
interval than the normal distribution. The same analysis is used for finding uncertainty in the 
Student’s t as in the normal distribution; however there is a coefficient that is multiplied by 
the standard uncertainty that gives a new confidence interval.  The value for t is found by 
using the degrees of freedom and subtracting one. A table is used to find a value for t and 
multiplied by the standard uncertainty to get a new confidence interval. When necessary this 
distribution will be used. When there is a small sample size, or historical data, this approach 
will be used. This was recently used for determining a new length formula for an older 
CMM. Again, rectangular and normal distributions will be more of the focus for the 
laboratories uncertainty budget. 

 

3.5. Type A Uncertainty Evaluations 

As stated earlier, Type A uncertainty analysis is evaluated using statistical methods. In 
most cases, the best available estimate of the true value is to calculate the mean value ߤ௫ of 
the measured quantity x that varies randomly and for which many independent measurements 
can be measured under the same conditions each time. This average can be found through the 
arithmetic mean. 

ҧݔ                                                    ൌ ଵ

௡
∑ ௜ݔ

௡
௜ୀଵ                 (4) 

Where n is the number of measurements taken and xi is the measurement at a specific 
point. This equation is used for estimating the true value that may potentially lie in the 
probability distribution used for determining the uncertainty. 

From the individual observations xi, they will differ slightly because of the influence of 
the random variation effects that are inherited in the testing. The estimated variance is the 
next necessary calculation for the repeated measurements. This estimated variance will give 
an estimate of the spread, or range, of the where the true value could lie. The estimated 
variance is s2 and is calculated by: 

௜ሻݔଶሺݏ                                         ൌ  ଵ

௡ିଵ
∑ ሺݔ௜ െ ҧሻଶ௡ݔ

௜ୀଵ            (5) 
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Where the nomenclature is the same as stated previously. This estimate of variance and 
its positive square root, s(xi), is termed the experimental or estimated standard deviation and 
characterizes the variability of the observed xi, or more specifically, the dispersion about the 
mean ݔҧ. 

So to characterize the standard uncertainty from the standard deviation, the standard 
deviation of the mean will have to be used. This will give an estimate of the standard 
uncertainty for the measurement in question. It is as follows: 

ҧሻݔଶሺݏ                                                       ൌ ௦మሺ௫೔ሻ

௡
           (6) 

ҧሻݔሺݏ                                                        ൌ ௦ሺ௫೔ሻ

√௡
         (7) 

The experimental variance of the mean ݏଶሺݔҧሻ, equation (6), and the experimental, or 
estimated, standard deviation of the mean ݏሺݔҧሻ, are equal to the positive square root of ݏଶሺݔҧሻ, 
equation (7), and will quantify how well ሺݔҧሻ estimates the populations mean of the 
measurement and can be used as a measure of uncertainty. This is sometimes stated as a Type 
A variance and Type A standard uncertainty. 

This uncertainty analysis can be used in all Type A uncertainty analysis. It can be used as 
an estimate of a population used for a curve that has been fitted with experimental data by the 
method of least squares. The estimated variances and resulting standard uncertainties of the 
fitted parameters characterizing the curve and any other predicted points can usually be 
calculated by well-known statistical procedures, like the National Institute of Standards and 
Technology’s journal article on reference algorithms using a least squares methods [2].  This 
method can be used on calibrated artifacts that the dimensional inspection group uses for 
uncertainty data and modeling actual measures points on specific components. 

The dimensional inspection group’s main use of Type A uncertainty is when a 
component is measured extensively, meaning it has produced tens of thousands of data 
points. This method makes calculation easier because of the use of spreadsheets are possible 
and reliable, up to a certain precision in the data. If the random variation in the measurements 
of the quantity that is being measured has a correlation, in time the mean and the estimated 
standard deviation of the mean may be inappropriate estimators of the desired statistics. In 
such a case, the observations will be analyzed by specifically designed software and 
statistical methods to treat the correlation of the randomly varying measurements. For 
example, Minitab® software will be used for the Gauge Repeatability and Reproducibility 
(GR&R) calculations, because it is specifically designed for the correlation, or interaction, 
between the parts and operators. The use of Type A uncertainty evaluation is meant to help 
with complex measurements such as short-term versus long-term random variations in 
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reference standards and use more simple statistical methods to analyze these measurements. 
It is also helpful with simpler measurement scenarios such as measuring set of gauge pins for 
thermal expansion uncertainty at different temperatures. The use of spreadsheets and 
statistical packages makes it easier for uncertainties to be calculated and documented. The 
dimensional inspection group’s uncertainty budget will be presented later where Type A 
uncertainty is used in three of the five uncertainty sources. More detail on the measurand and 
measuring process will be documented and specified on why that certain type was chosen for 
the sources. 

3.6. Type B Uncertainty Evaluations 

Unlike Type A uncertainty analysis, Type B uncertainty analysis is determined by any 
other means than statistical analysis. This means that measurements were not obtained in 
repeated observations and were more specifically evaluated from other scientific means 
based on the available information of the variability. Thus they are not found by standard 
variances and standard deviations. These uncertainties can be found from: 

 Previous measurement data 

 Experience with a general knowledge of the behavior and properties of relevant 
materials and instruments 

 Manufacture’s specifications 

 Data provided in calibration and other certificates 

 Uncertainties assigned to reference data taken from a handbook 

For convenience, the estimated variance will be denoted by u2(xi) and the standard 
uncertainty will be denoted by u(xi), respectively. These can also be called Type B variance 
and Type B standard uncertainty. 

When the needed information is not available for a Type B evaluation of the standard 
uncertainty, a call for more insight based on experience, knowledge of the measurement and 
skill in taking the measurement, hence a judgment call is issued. This can be recognized as a 
Type B analysis of standard uncertainty. Type B evaluations can be just as reliable as a Type 
A uncertainty analysis, with the potential of being a better representation of the uncertainty 
when it is very well characterized. This can be especially true in measurement situations 
where a Type A evaluation is based on a comparatively small number of statistically 
independent measurements. In actuality, Type B evaluations are more reliable when an 
analytical model is constructed and used for measurements.  This is because there will be a 
model to predict the measurement with all its influences (providing the model is correct), less 
error from round-off, etc. Again though, this is also one of the more difficult portions of 
uncertainty analysis. Model equations will be discussed in section 4.1. 
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If the estimate u(xi) of the uncertainty is taken from a manufacturer’s specification, a 
calibration certificate, either standards lab or manufacturer, an engineering handbook or any 
other source and its quoted uncertainty is stated to be a particular multiple of a standard 
deviation, the standard uncertainty u(xi) is simply the quoted value divided by the multiplier, 
and the estimated variance u2(xi) is the square of the quotient. In laymen terms, the expanded 
uncertainty is divided by the coverage factor for the specific distribution, and therefore the 
value is brought back to a one sigma, or standard deviation value, that can be used for the 
combined standard uncertainty in the uncertainty budget. Thus squaring that value will also 
produce the variance of the measurement.  

From previously stated, the quoted uncertainty of xi may not necessarily be from a 
multiple of standard deviation, thus potentially not from a normal distribution. Instead, it may 
be state that the quoted uncertainty is defined by an interval from 90, 95 or 99 percent level 
of confidence or a different distribution altogether. The quoted uncertainty may need to be 
divided by the appropriate coverage factor for the stated distribution. Unless otherwise stated 
in the document or source, the assumption that a normal distribution was used to calculate the 
quoted uncertainty and the standard uncertainty of xi is thus found by dividing the quoted 
values by the coverage factor for the distribution type. 

With Type B uncertainty analysis, it is important not to count the same uncertainty 
components more than once. If a component for a certain effect arises and is obtained in a 
Type B method, then the component should be treated as independent in the calculation of 
the combined standard uncertainty and only to the extent that the effects do not contribute to 
the repeated measurements of the measurand. This means that if a component is not totally 
independent of a Type A analysis, then the same uncertainty can be calculated again and has 
already been included in the statistical analysis, thus giving a flawed affect to that source. 
Correlation is a special acceptance, which will be explained in section 4.4. So with Type B 
uncertainty analysis, all methods besides statistical means can be used to state the standard 
uncertainty and Type B uncertainty is meant only to be indicative and further evaluation 
should be done out of necessity. 

4. Estimating Uncertainty Sources 
 
4.1. Model 

Before any calculations are attempted and recorded, it is necessary to consider the 
measurement system being used and the environment that it is in. A model of the 
measurement should be developed, either through explicit or implicit means, depending on 
the complexity of the measurement. A simple sketch or equation may also be the only model 
that is needed to explain the measurement. The model is intended to provide a simple means 
of describing the relationship between the input parameters and the influencing quantities to 
the measurand. This is the step that metrologists find most difficult. Generally, it will also be 
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necessary that the sensitivity coefficients, be calculated (explained in section 4.5). These 
sensitivity coefficients are necessary for conversion from one unit of measure to another to 
satisfy the measurand. They also help out with scaling the sources to balance out the total 
uncertainty. Without a model some significant uncertainties may be overlooked or it may be 
difficult to determine the sensitivity coefficients. 

In most cases, a measurand is not measured directly but found from a number of different 
quantities found through a relationship. This is when multiple measurements are not taken 
and an analytic model must be found. The analytic model can be found through the following 
function: 

                                            ܻ ൌ ݂ሺ ଵܺ, ܺଶ, … , ܺேሻ                                   (8) 

Where X1, X2,…, XN are quantities, N is the number of quantities and f is a functional 
relationship between the quantities. The same notation will be used for physical quantities 
(the measurand) and for the random variables that represent the possible outcomes of the 
observations of the quantities. When it is stated that Xi has a particular probability 
distribution, the symbols will be used in the latter sense; it is assumed that the physical 
quantity itself can be characterized by essentially a unique value. 

It is very important that the model be correct and as accurate as possible for the 
measurands. If the input quantities X1, X2,…, XN upon which the output quantity Y depends 
on, may themselves be viewed as possible measurands and may themselves depend on other 
quantities, including corrections and correction factors for systematic effects, thus leading to 
a complicated functional relationship that may never be written down explicitly. 
Furthermore,  f  may have to be determined experimentally or exist only as an algorithm that 
must be evaluated numerically. If a model of the measurement cannot be determined 
analytically, then numerical solutions through Monte Carlo and various experimental 
measurements must be taken and analyzed for determining the uncertainties. This method is 
done on certain processes where a direct model cannot be found analytically, but can be 
measured both experimentally and numerically solved using specific algorithms. An example 
for determining estimated densities of an odd-shaped geometrical artifact using thousands of 
slices of data points.  Another example is taking a production lot of mock parts and doing a 
GR&R study to find out how much influence, or variation, a certain factor can add to a 
measuring process. 

For accuracy purposes, if the data indicates that f does not model the measurement to the 
degree of accuracy needed, more quantities may need to be imputed. These input quantities 
may reflect incomplete knowledge of an unknown source that is affecting the measurand. 
Models should be used all the time when permissible, however only if the model has a strong 
characterization to it. 
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In summary, the quantities that affect the measurand model are factors whose values and 
uncertainties are directly determined in a current measurement. These values and 
uncertainties may be obtained from a single observation, multiple observations or judgment 
based on experience and may involve corrections to the measuring instrument readings and 
corrections for influence quantities. More quantity values and uncertainties are also brought 
from external sources, such as those attributed by calibration measurement standards, 
certified materials and reference data from handbooks. Again all these input quantities can be 
found from both Type A and B sources. 

4.2. Indirect Measurements 

Uncertainty components can be subject to more than one possible quantity of influence in 
the uncertainty calculation. It is more common the case when a quantity of interest is only 
accessible indirectly, or having a result that must be inferred from results of another 
measurement. Therefore, the uncertainty of an indirect source must be obtained from the 
uncertainties of those influential quantities. An example could be when determining an air 
density correction for measuring ionization in a dosimeter.  The air pressure and temperature 
measurements are the influencing quantities in the correction factor. Thus both of these 
quantities must be incorporated into a model or equation that represents the affects they have 
on the indirect measurement. 

For the uncertainty budget, when possible, indirect measurements will be specified with 
an analytic approach. This approach will be more useful for environmental effects. Again the 
GR&R will help with the most influential aspects of the measurand, but can possibly be 
lacking in the determination of indirect results. This process will be considered carefully, but 
only if a complete understanding the influencing quantities are apparent. 

4.3. Corrections 

It is a common mistake that small corrections are not applied to raw measured data or 
instruments but are still applied to calculating the uncertainty analysis. The assumption is that 
the correction of measurements could be replaced by a rectangular distribution where the 
semi-range of the distribution is equal to the magnitude of the correction. This is not a highly 
recommended process and should not be implemented into practice. 

First, corrections do not have a rectangular distribution. They have a discrete magnitude 
and sign. If corrections are negligible then neglect them, if not negligible, then they should be 
applied. The uncertainty of the corrections must be considered for inclusion in the assessment 
of the measurement uncertainty. It can be shown that, in some cases, the uncertainty will not 
be appreciably increased by including small corrections, however, the measured value may 
be in error by an amount approaching the uncertainty due to this sloppy procedure alone. 
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For example, consider a measurement where they have neglected four small corrections 
estimated to be +0.02%. Assume that the combined standard uncertainty based on all other 
terms is 0.3%. If the Root-Sum-Squared (RSS) approach is taken, then the corrections give a 
new combined uncertainty of 0.3009%, not significantly different from the initial value. 
However, the combination of the four corrections is 0.08%. If the expanded uncertainty is 
0.6%, then there has been an unaccounted bias around 13% in the measurand, something that 
was unknowingly and unintentionally introduced. Thus all corrections must be considered, 
even though they may seem negligible, it must be determined that they will not grossly affect 
the combined and expanded uncertainty. 

For all measurement types, the appropriate corrections will be done to ensure the best 
possible outcome in the data and results. These corrections will be done for the certain type 
of geometries that can be encountered such as radius corrections to spherical surfaces. 

4.4. Correlations 

Correlations can be defined as two or more input quantities that are not independent of 
one another, and can have an effect on the measurand. So if two or more systematic errors 
are correlated, then the RSS combination for uncertainty is not appropriate. It is then 
recommended that the correlated uncertainty values be added algebraically and this value 
combined with the other components in the normal RSS method. This can be considered a 
simple approach and may overestimate the uncertainty, so caution should be used. It is 
justified on the basis that, in many cases where correlations are apparent, that the correlated 
component uncertainty are completely correlated. In more complex cases, the statistically 
rigorous calculations should be used. 

The models used for correlated values can be found form the ISO GUM reference. Here 
the equations are summed for potentially multiple correlated values. The uncorrelated 
uncertainty formula can be seen as: 

௖ݑ                                                    
ଶሺݕሻ ൌ  ∑ ቂ డ௙

డ௫೔
ቃ

ଶ
௜ሻ௡ݔଶሺݑ

ଵ                            (9) 

Where ݑ௖ሺݕሻ is the combined standard uncertainty, 
డ௙

డ௫೔
 is the sensitivity coefficients and  

 ௜ሻ is the standard uncertainty. This formula stays true for non-correlated quantities, which areݔሺݑ
completely independent of one another. For the correlated terms, the ISO GUM states that the 
formula is the same, however with an extra term for the correlated values. 
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Where the first term is the same as equation (9) and the second term has 
డ௙

డ௫೔

డ௙

డ௫ೕ
 for the 

correlated values.  These correlated values can be seen as covariance, where a variance and those 
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of a standard deviation can be calculated for the correlated values. This term can be positive or 
negative and may reduce the uncertainty. These equations are the ISO GUM method for 
calculating uncertainty for components, both uncorrelated and correlated. Equation (10) will be 
looked at again later in the section, in a simplified manner. The software package that will be 
used for the GR&R uses a similar methodology for computing the operator-to-part and part-to-
part interaction or correlation, with a slight variation in the equation. More will be explained in 
section 4.8. 

Next is how to determine if an apparently independent parameter is correlated with 
another independent parameter. A simple test for correlation is to graph the two parameters 
against measurement numbers. If they can be seen to change together, say both increase for the 
second measurement, both stay the same for the same third measurement and reduce for the 
fourth, then there is clearly correlation between the two parameters. This can be seen as similar 
to a Design of Experiments (DoE) interaction scenario; however, the interaction graphs show 
intersection between two factors. Utilizing this simple technique can help detect a correlation and 
help understand the appropriate model to use for the uncertainty analysis. 

Covariances are another important aspect of correlation. The definition of a covariance is 
a type of variance that depends on each of the correlated values and their correlation coefficients. 
Covariances are calculated through standard formulas or determined experimentally. The 
estimated covariance is u(qiri), where qi and ri  are the estimates (or measured values) of the input 
parameters. The ISO GUM can be referenced for more detail. 

If qi and ri are independent pairs of simultaneous measurements, the estimates of the 
covariance, u(qiri), is: 

,௜ݍሺݑ                                                ௜ሻݎ ൌ ଵ

ሺ௡ିଵሻ
∑ ሺݍ௜ െ തሻ௡ݍ

ଵ ሺݎ௜ െ  ҧሻ              (11)ݎ

Where ݑሺݍ௜,  ௜ሻ the estimated covariance, n is is the number of measurements, qi and riݎ

are the same as previously stated. If correlation between the means is what is wanted of the two 
independent pairs of simultaneous readings then the equation changes to: 

,തݍሺݑ                                              ҧሻݎ ൌ ଵ

௡ሺ௡ିଵሻ
∑ ሺݍ௜ െ തሻ௡ݍ

ଵ ሺݎ௜ െ  ҧሻ                (12)ݎ

Where ݍത ܽ݊݀ ݎҧ are the mean values of the two simultaneous quantities. These equations 
hold true for any two simultaneous quantities and also hold true for higher-ordered terms. 

If the correlation is a complete correlation or if the correlation is going to have little 
effect, then correlation coefficients need to be determined. The correlation coefficient is stated as 
r and will give a correlation of +1 or -1 for complete correlation or close quantities to zero if 
there is not a significant correlation. The degree of correlation is given by the estimated 
correlation coefficient r(xi,xj)  and the formula is: 
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,݅ݔ൫ݎ                                                          ൯݆ݔ ൌ
൯݆ݔ,݅ݔ൫ݑ

൯݆ݔ൫ݑሻ݅ݔሺݑ
                          (13) 

Where u(xi) and u(xj) are the standard uncertainties of xi and xj. Now examining Equation 
(10), the second term is the product of the standard uncertainties and correlation coefficients of 
the quantities. Hence, when there are no correlations, the correlation coefficient goes to zero, so 
the second term in Equation (10) vanishes. If the correlation coefficient is +1 then the uncertainty 
is at its maximum and vice versa when it is at -1. This can be determined from the model or 
experience, depending on the scenario. 

If complete correlation is determined and stated, then Equation (10) can be simplified to an 
easier model. It translates to combining the two components by simply adding the standard 
uncertainty to get to a combined standard uncertainty.  So Equation (10) can be reduced to the 
following form: 
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Where ܿே is the sensitivity coefficient and will be discussed in section 4.5. These equations 
are what the statistical software package uses for determining the GR&R portion of the 
uncertainty budget. These equations are also easier to implement in the analytical uncertainly 
portion when the models are of a simpler form. 

4.5. Sensitivity Coefficients 

As mentioned earlier, sensitivity coefficients are used as scaling or converting factors of 
measurement units to those of the measurand.  This is a necessary precondition to combining the 
components of uncertainty, which are of different units like, meters and kilograms. This is also 
one of the other aspects of uncertainty analysis that can cause considerable difficulty. 

Sensitivity coefficients serve as scaling or weighing factors. They are used to figure out how 
sensitive the selective component is to the measurand, through an analytic and numerical means. 
It can be obvious when a sensitivity coefficient is needed. For example, the temperature 
coefficient of linear expansion converts uncertainties in measured temperature with units of 
degrees into uncertainties with units of length. 

Evaluating the sensitivity coefficients can be done through algebraic partial differentiation of 
the equation that models the measurement or, in more complex cases, by numerical calculations 
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which approximate the differentiation process. The general formulas for the sensitivity 
coefficients can be found in the ISO GUM. The formula is as follows: 

 

                                                             ܿ௜ ൌ డ௬

డ௫೔
                                       (16) 

Where ci is the sensitivity coefficient for the component xi, y is the measurand as a function 

of xi and  
డ௬

డ௫೔
 is the partial derivative of y with respect to xi.  The partial derivative gives the slope 

of the curve that results when the function y, the measurand, is plotted for the appropriate range    
of xi values. The slope or the derivative is the sensitivity of the measurand to a particular 
component of the function. 

It will be convenient in some cases to calculate the measurand in terms of proportional parts 
(part per million) deviation from a nominal value. This also means that the percentage from 
nominal can be used for determining the sensitivity of the measurand components and may 
sometimes be best suited for a variety of different units that can be difficult to convert to one 
single unit. However, this may only be applied for determining the major effects of a singled out 
factor and may not provide a best representation of the overall uncertainty of the measurand. 
Again, this method works only if all the influences are calculated in the parts per million terms. 

Next to forming the model, determining the sensitivity coefficients is the second most 
difficult section of uncertainty analysis. It is often best to use the SI units for all inputs as errors 
of three orders of magnitude are easily made when calculating sensitivity coefficients. All units 
for the dimensional inspection group’s approach will rely on SI units as to ease the transition 
between measurement data and using the data from other experimental processes. These 
coefficients will be used when an analytic approach is used for input quantities and when 
rigorous numerical calculations are done. 

4.6. Degrees of Freedom 

Degrees of freedom are mainly used for determining the correct selection of a coverage 
factor from a Student’s t distribution, but they also give a good indication of how well a 
components uncertainty can be relied upon. The higher the number of degrees of freedom is 
associated with a higher sampling size thus presenting a value with a lower variance or lower 
spread of the range of data. A lower number of degrees of freedom, the lower the sample size, 
presents a larger variance and dispersion, which leads to a poorer level of confidence in the data. 

Every component has an associated degree of freedom, v, and the degree of freedom is 
calculated by subtracting one from the number of readings or v = n-1 where n is the number of 
measurments. This assessment is straightforward for Type A uncertainty, but more complicated 
with Type B uncertainty. When the uncertainty has limits, cutoff for the numerical value, for 
different distributions in a Type B uncertainty, then there can be an infinite number of degrees of 
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freedom, because there is usually a complete confidence in the limits chosen for worst cases. 
This can simplify the calculations for degrees of freedom for the uncertainty components. If the 
limits chosen themselves have an uncertainty association, then there will be less degree of 
freedom assigned. The ISO GUM gives a formula for all types of distributions. 

ݒ                                                ൌ ଵ

ଶ
ቂ∆௨ሺ௫೔ሻ

௨ሺ௫೔ሻ
ቃ

ିଶ
                               (17) 

Where 
∆௨ሺ௫೔ሻ

௨ሺ௫೔ሻ
 is the relative uncertainty in the uncertainty. This number is less than one and 

can be thought of as a percentage of the actual uncertainty. A smaller number is a better defined 
magnitude of the uncertainty, thus giving a more accurate representation of the value. 

Once the uncertainty components have been combined, all that remains is to find the number 
of degrees of freedom in the combined uncertainty.  The degrees of freedom for each component 
must be combined to find the effective degrees of freedom to be associated with the combined 
uncertainty.  This is calculated using the Welch-Satterthwaite equation, which is: 

௘௙௙ݒ                                                  ൌ ௨೎
రሺ௬ሻ

∑
ೠ೔

రሺ೤ሻ

ೡ೔
೙
భ

                                (18) 

Where ݒ௘௙௙ is the effective number of degrees of freedom for uc, the combined uncertainty, vi 

is the number of degrees of freedom for ui, the ith uncertainty term, a ui(y) is the product ciu(xi), 
with the sign ci, being neglected and the other terms being the usual meaning. 

The degrees of freedoms and effective degrees of freedom will be used where necessary in 
the uncertainty budget. If a small number of runs are used in an uncertainty budget, then the 
degrees of freedom will be used for a Student’s t distribution. They will also be used for getting a 
feel for an uncertainty source that may not be reliable and used as a quality check for 
determination. Using degrees of freedom is good idea for uncertainty analysis, though often is 
underutilized. 

4.7. Confidence Intervals and Confidence Levels 

Most individuals get confidence interval and confidence level confused and interchanged, 
because one supports the other. In statistics, the confidence interval is an interval estimate of a 
population parameter and is used to indicate the reliability of that estimate. It is an observed 
interval, in principle is different from sample to sample that frequently includes parameters of 
interest, if the measurement is repeated.  In statistics, a confidence level is a measure of the 
reliability of a result.  More specifically, the term “confidence level” is meant that if confidence 
intervals are constructed across different data analysis of repeated, and possibly different, 
experiments, the proportion of such intervals that contain the true value of the parameter will 
approximately match the confidence level: this is guaranteed by reasoning underlying the 
construction of confidence intervals. However, a confidence interval does not predict that the 



21 
 

true value of the parameter has a probability of being in the confidence interval given that the 
data actually obtained. 

All confidence intervals will be brought forth by calibration certificates and manufacture 
specifications. All confidence levels in the uncertainty budget will be 95%, which can be seen as 
a standard method for calibration and primary laboratories, thus being enough for the testing 
purposes. 

4.8. Combined Uncertainty 

Once the standard uncertainties and accompanying sensitivity coefficients for each of the 
components for the measurand have been evaluated, they all need to be combined to get the 
combined standard uncertainty. This is done using Equation (9), which is from the ISO GUM. 
This equation holds true for all correlated and non-correlated uncertainty components. Again, the 
higher-ordered terms in Equation (9) have been neglected for this paper. So a simplified version 
of Equation (9) can be used for the combined standard uncertainty. 

 

ሻݕ௖ሺݑ                                                          ൌ ඥ∑ ሾܿ௜ݑሺݔ௜ሻሿଶ௡
ଵ                               (19) 

Where ݑ௖ሺݕሻ is the combined standard uncertainty of the measurand, ܿ௜ is the sensitivity 
coefficient for the ith term, ݑሺݔ௜ሻ is the standard uncertainty for the ith input of the estimate and 
Σ is the summation of all the terms, of which there are n number of terms. 

This means that the uncertainty components are converted to all the same units as the 
measurand using the sensitivity coefficients then these products are square rooted. The combined 
standard uncertainty is the square root of the sum. This is the same as previously stated RSS. For 
the combined uncertainty, all components are converted to the SI unit of millimeters (mm). This 
is true for all physical dimensional measurement uncertainties in all the dimensional inspection 
processes. 

4.9. Expanded Uncertainty 

In order to have an adequate probability where the value of the measurand lies within the 
range given by the uncertainty, the combined uncertainty is multiplied by a coverage factor. This 
coverage factor may be selected or it may be calculated to reflect the stated confidence level. For 
example, a coverage factor of two gives an expanded uncertainty (U) of 95% confidence level, 
for a normal distribution. 

This is acceptable and perhaps the best approach for testing situations where only a few 
worst case estimates are used for determining the test uncertainty. For high level calibration the 
more rigorous method may be preferred. This is what primary laboratories strive for. 
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When the uncertainty has been estimated from data with poor reliability, a large coverage 
factor may be required to maintain a 95% confidence interval. The CMM data that most of the 
uncertainty that will be calculated, is reliable in the sense that the manufacturing guidance 
known as the 9900000, calls for a 4:1 Test Accuracy Ratio (TAR), which states that a measuring 
instrument must be able to measure within 25% of a desired specification, like an engineering 
drawing.  The 9900000 guidance also states a Test Uncertainly Ratio (TUR), which is more of a 
collective effort of multiple measuring instruments, can be used for uncertainty analysis. This 
can be seen as an alternate version to an uncertainty budget. The expanded uncertainty is 
calculated from: 

 
                                                                 ܷଽହ ൌ  ሻ                               (20)ݕ௖ሺݑ݇

Where ଽܷହ is the expanded uncertainty at a 95% confidence limit, k is the coverage factor, 
and ݑ௖ሺݕሻ is the combined standard uncertainty. Again, the sub-script on the expanded 
uncertainty can also change to the level of confidence that one desires, however, it is standard 
practice the 95% is used throughout industry and government. 

By assuming that the combined uncertainty has essentially a normal distribution, which will 
also be the case for the uncertainty budget, one can also use the Student’s t factor as a coverage 
factor k. This is justified by invoking the Central Limit Theorem, which in essence states that if 
many distributions are combined, irrespective of their own shape, the combined distribution will 
approximate a normal distribution. Hence the combined uncertainty will tend toward a normal 
distribution as more and more components are included.  Again, if the sample size is small due to 
economic reasons, measuring instruments reasons, or even time constraints, then the Student’s t 
distribution will be used in place of the normal distribution. Assuming that a normal distribution 
is in effect will be the case for the uncertainty budget. The components of the uncertainty budget 
will be labeled as Types A or B, along with the types of distribution that were used to find out 
the uncertainty value. 

4.10. Gauge Repeatability & Reproducibility 

This portion of the uncertainty analysis budget is not covered in the ISO GUM or any other 
guide to measurement uncertainty. This component is used in the dimensional inspections 
groups’ uncertainty budget for many different factors and reasons. It is a commonly used method 
for understanding and correcting processes and deals with a great range of variables in 
dimensional inspection process.  A brief description of the Gauge Repeatability and 
Reproducibility study will be explained, with a much greater explanation in the reference 
“Gauge Repeatability and Reproducibility Study on a Hemi-Component with a Brown & 
Sharpe® Coordinate Measuring Machine (U)” [5]. 

Gauge Repeatability and Reproducibility, or GR&R, is a measure of the total variability 
of a gauge or measuring instrument to obtain the same measurement reading every time the 
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measurement process is undertaken for the same characteristic or parameter.  In other words, the 
GR&R indicates the consistency and stability of the measuring instrument and operator.  The 
ability of a measuring instrument to provide consistent measurement data is important in the 
control of any process. Operator consistency is also important because a good process should be 
able to be done by any qualified person.  Repeatability is the variation in the measuring 
instrument and can be traced back to the precision.  Reproducibility is variation due to the 
operator and can be traced to the accuracy.  The GR&R study will determine and quantify where 
most of the process variability exists. 

There are two statistical methods for analyzing GR&Rs.  One method is the ݔҧ (average) 
and R (range) charts and the second is Analysis of Variance (ANOVA).  ݔҧ and R is a set of 
control charts for variable data (data that is both quantitative and continuous in measurement, 
such as a measured dimension or time).  The ݔҧ chart monitors the process location over time, 
based on the average of a series of observations, called a subgroup.  The R chart monitors the 
variation between observations in the subgroup over time.   

The ANOVA method is a statistical method using the statistical approach of Analysis of 
Variance.  Analysis of Variance is a collection of statistical models, and their associated 
procedures, in which the observed variance is partitioned into components due to different 
sources of variation.  ANOVA uses either fixed-effect or random-effect modeling systems to 
assess the statistical system.  ANOVA is a chosen method for measurement systems, because of 
better accuracy in the results. 

ANOVA GR&R considers several factors that affect the measuring system: operators, 
testing methods, part setup, performance specifications and the measuring instrument itself.  
ANOVA GR&R methodology is more accurate because it not only captures the repeatability and 
reproducibility, but it also breaks down the reproducibility portion into part to part interaction 
and operator to part interaction, which can be seen as correlation in the uncertainty components.  
This can be explained by one operator having more variation between measuring components of 
smaller size compared to measuring components of larger size. The GR&R will also be used for 
the assumptions being made at the beginning of the paper. The environment, 
correlations/interactions, sampling pattern, operator influences on setup, etc., will all be 
accounted for in the GR&R calculations. 

Figure 3 demonstrates the methodology of an ANOVA GR&R 

        ANOVA GR&R 

           Variation due to Gauge                                        Variation due to Operators 

                 Repeatability                                     Reproducibility 

        Part-to-Part                                                            Operator    Operator*Part 
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Figure 3: ANOVA GR&R Tree. 

With a GR&R, the analysis method is different for both ݔҧ and R and ANOVA.  The ݔҧ  and R 
method uses a root-summed-square analysis, while the ANOVA uses a sum-of-squares or 
standard deviations analysis to calculate the Precision-to-Tolerance (ܲ/ܶ) ratio.  The ܲ/ܶ ratio, 
also known as the gauge capability ratio, is the measure of the precision of the measurement to 
the given performance specifications. Both methods quantify total process variability, which will 
be the basis for an uncertainty component in the uncertainty budget calculations. The total 
variation in the process will be calculated through a Type A uncertainty using a normal 
distribution and a 95% confidence level, thus using variations and standard deviations as the 
standard uncertainty from multiple repeated measurements. 

5. Compiling an Uncertainty Budget 
 
5.1. General Approach 

The following is a generalized approach to evaluating and expressing the uncertainty of the 
result of a measurement which can be traced back to the ISO GUM method and any lower-
echelon laboratories. 

1. Express mathematically the relationship between the measurand Y and the input 
quantities Xi on which Y depends: Y = f(X1, X2…, XN). The function f should 
contain every quantity, including all corrections and correction factors, which 
can contribute a significant component to the result of the measurement. 

2. Determine xi, the estimated value of input quantity Xi, either on the basis of the 
statistical analysis of series of observations or by other means. 

3. Evaluate the standard uncertainty u(xi) of each input estimate xi. for an input 
estimate obtained from the statistical analysis of a series of observations, the 
standard uncertainty is evaluated as a Type A evaluation of standard uncertainty. 
For input estimated by other means, the standard uncertainty u(xi), is evaluated 
by Type B evaluations of standard uncertainty. 

4. Evaluate the covariances associated with any input estimates that are correlated. 
5. Calculate the results of the measurements, that is, the estimate y of the 

measurand Y, from the functional relationship f using the input quantities Xi the 
estimates xi obtained from step 2. 

6. Determine the combined standard uncertainty uc(y) of the measurement result of 
the measurement result y from the standard uncertainties and covariance 
associated with the input estimates. If the measurements determine 
simultaneously more than one output quantity, calculate their covariance. 

7. If it is necessary to give an expanded uncertainty U, whose purpose is to provide 
an interval y-U to y+U that may be expected to encompass a large fraction of the 



25 
 

distribution of values that could reasonably be attributed to the measurand Y, 
multiply the combined standard uncertainty uc(y) by a coverage factor k, 
typically in the range of 2 to 3, to obtain U=k uc(y). Select k on the basis of the 
level of confidence required of the interval. 

8. Report the result of the measurement y together with its combined standard 
uncertainty uc(y) or expanded uncertainty U. 

More detail can be found in more formal guidelines for measurement uncertainty. 

5.2. Dimensional Inspection Group Approach 

The dimensional inspection group’s approach will, in essence, be approached in the same 
method as the general approach in section 5.1. All the necessary steps to determining the 
standard uncertainty will be done to the determined input quantities. Not all of input quantities 
can be derived from a model. The geometry of the components is much more complex than 
measuring the length of a rod. Of course the rod can expand or contract, depending on the 
material, so an analytical model can be derived and the CTE can be used to calculate the 
sensitivity coefficients for the actual length of the rod. The components will be measured using 
both Type A and Type B evaluations, depending on which will be needed. The main sources of 
uncertainty that will be looked at will be dependent on the dimensional inspection process being 
used. The main differences will be the type of instrument that will be used and the sampling 
patterns needed for the analysis section. Since the laboratory is a testing lab, calibrated artifacts, 
not necessarily standards will be used as quality and performance checks. Again this uncertainty 
will also be considered. 

For general dimensional inspection processes, the following uncertainties will be stated. A 
recent research and development project performed, called Gemini, used multiple parts and 
sampling patterns to get the appropriate data needed for the analysis. The sources considered for 
uncertainty budget analysis are: 

 The machine (Precision Measuring Machine/PMM-C) calibration certificate with 
a Type B evaluation 

 Surface Measurement of Inner Surface Standard Deviation with a Type A  
evaluation 

 Surface Measurement of Outer Surface Standard Deviation with a Type A 
evaluation 

 SS Sphere Standard Form with a Type B evaluation 

 GR&R with a Type A evaluation 

A table with the measurement deviations, distributions, divisors, standard uncertainties and 
combined uncertainties can be seen in section 6. These sources were specifically chosen for this 
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type of process because the nature of the environment, part forms, inspectors/operators, data 
density, etc.  These sources can also change when necessary. 

6. Stating Uncertainty in Testing 

The following table describes and states the uncertainty sources and actual deviations from 
the uncertainty budget for a Gemini component wall thickness inspection: 

Component Wall Thickness Uncertainty Budget:  Gemini Measurement Process (Non-
Nuke) 

Source of Uncertainty:  Type 
A&B 

value ± 
(mm) 

Probability 
Distribution 

Divisor Standard 
Uncertainty (ST) 
(mm) 

PMM-C Calibration 
Certificate  (S&CL 
File:026734 )* B 

0.00231 Normal 2 0.00116 

Profile Measurement of Inner 
Surface Standard Deviation** 
A 

0.00047 Normal 1 0.00047 

Profile Measurement of Outer 
Surface Standard 
Deviation**A 

0.00033 Normal 1 0.00033 

SS Sphere Standard Form 
(S&CL File: 041013)*** B 

0.00057 Rectangular √3 0.00033 

Gauge R&R**** A 0.00213 Normal 2 0.00213 

Combined Standard 
Uncertainty 

 Assumed 
Normal 

 ±0.00250 

Expanded Uncertainty (K=2)  Assumed 
Normal 

 ±0.00500@ 95% 

Confidence 
Table 1. Uncertainty Budget for Non-Nuke Dimensional Inspection Process 

Assumptions: 

1. Temperature fluctuates in a constant range of 20±1ºC and machines use temperature 
compensation, when available, to adjust for these fluctuations. 

2. All component’s surface finish, surface Surfaces and flatness all meet drawing 
specifications. 

3. Wall standard uncertainty calculated at pole, midpoint and equator, though equator can 
differ because of the different geometrical influence. 

* Data used from Standards and Calibration (S&L) Certificate. The volumetric scanning 
uncertainty will be calculated with the equation 
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1.2 ൅ ௅

ସ଴଴
, where L is the measured length in mm, but stated in micrometers. A diagram can be 

seen below. 

** Standard deviations are calculated from n number of measurements, taken at 1.5º azimuthally 

(0-360º) and 1º (0-mº) in the polar direction; n = data density, m = degree of polar direction. 

*** Stainless steel sphere that has been qualified as a standard by S&CL, thus the uncertainty of 

the sphere will come from measured values (five) and then used for the standard uncertainty. 

**** Gauge R&R will be serve as part of the statistical analysis of the process and will 

incorporate machine and environmental uncertainty as well as operator influences. It also takes 

into account covariance’s (interactions) between the operator and the actual part. 

Notes: 

1. Type A uncertainty is achieved through statistical analysis. Type B is non-statistical 

uncertainty, i.e. calibration certificate, manufacture specification, etc. 

2. All data is assumed continuous, though if not continuous, the equations are stated for 

discrete data, so continuous data can still be used. 

3. Utilizing the assumptions, the uncertainties from the assumptions are assumed to be 

negligible to the process. 

4. All uncertainty calculations are estimations. 

5. Combined Uncertainty calculated by the “summation in quadrature” of the standard 

uncertainties (ST): ඥܵ ଵܶ
ଶ ൅ ܵ ଶܶ

ଶ ൅ ܵ ଷܶ
ଶ … ܵ ௡ܶ

ଶ 

6. All measurements are deviations from drawings. 

7. Divisor value is used to determine the standard uncertainty, if greater than one sigma 

value. 
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Figure 4. Estimated Volume of Measurements for Measuring Instrument 

Again, this methodology is specifically designed for this type of process which is specific 
for the dimensional inspection group. This is not the absolute method for determining uncertainty 
in a measurement process. The ISO GUM is the absolute method and should be referenced for a 
more detailed general view of uncertainty analysis. This uncertainty budget can be used to help 
determine where the most error in a process can reasonably be, help determine if the tooling path 
of a machine tool needs to be adjusted for a re-machine or for helping with simulations of 
complex numerical algorithms for design work. 
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Appendix 1 – Statistics and Uncertainty Formulas 

The following statistics and uncertainty formulas are used for all uncertainty input 
quantity estimations and will be broken up into Type A and Type B evaluations. Each will come 
with a brief statement or definition for explanation purposes. 

Type A Evaluation Statistics and Uncertainty Formulas: 

If the number of measurements is n, and xi is the ith measurement (and x is the mean) then: 

Mean 

ҧݔ ൌ ෍
௜ݔ

݊

௡

ଵ

 

 

Variance 

 

ଶݏ ൌ ෍
ሺݔ௜ െ ҧሻଶݔ

݊ െ 1

௡

ଵ

 

 

Standard Deviation 

 

ݏ ൌ ඩ෍
ሺݔ௜ െ ҧሻଶݔ

݊ െ 1

௡

ଵ

 

 

Estimated Standard Uncertainty of Type A Evaluations 

ሻݕሺݑ ൌ
ݏ

√݊
 

Degrees of Freedom for Standard Uncertainty 

 

ݒ ൌ ݊ െ 1 
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Type B Evaluation Statistics and Uncertainty Formulas: 

Degrees of freedom, from relative uncertainty 
∆௨ሺ௫೔ሻ

௨ሺ௫೔ሻ
 

ݒ ൌ
1
2

ቈ
௜ሻݔሺݑ∆

௜ሻݔሺݑ
቉

ିଶ

 

If: 

ܴ ൌ
௜ሻݔሺݑ∆
௜ሻݔሺݑ

 %100ݔ

Then: 

ݒ ൌ
1
2

൤
100

ܴ
൨

ଶ

 

Rectangular Distribution 

If the semi-range is a, then the standard uncertainty, u, is given by: 

ݑ ൌ
ܽ

√3
 

The degrees of freedom (v) for a rectangular distribution are infinite if the semi-range represents 
absolute limits. 

Sensitivity Coefficients, ci 

If y is a function of x, then 

ܿ௜ ൌ
ݕ߲
௜ݔ߲

 

Combined Standard Uncertainty, uc(y) 

 

ሻݕ௖ሺݑ ൌ ඩ෍ሾܿ௜ݑሺݔ௜ሻሿଶ

௡

ଵ

 

 

Effective Degrees of Freedom, veff 
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௘௙௙ݒ ൌ
௖ݑ

ସሺݕሻ

∑
௜ݑ

ସሺݕሻ
௜ݒ

௡
ଵ

 

 

Coverage Factor, k 

 

݇ ൌ ݐ ݏᇱݏݐ݊݁݀ݑݐܵ െ  ݎ݋ݐ݂ܿܽ

 

Expanded Uncertainty, U 

 

ଽܷହ ൌ  ሻݕ௖ሺݑ݇

 

These formulas and statistics are what were used for the analysis of the uncertainty 
budget. And Excel spread sheet was used for calculating the standard uncertainties of the 
Surfaces. Minitab® statistical software package was used for determining the GR&R analysis. 
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Appendix 2 – Higher Ordered Terms 

As stated earlier, higher-ordered terms were not considered on the specific inspection 
process uncertainty budget, however, when they are present, they must be incorporated into the 
budget as to not understate or be too conservative with the uncertainty of the process. The ISO 
GUM states that the combined standard uncertainty is the positive square root of the combined 
variance. This is given from Equation (9) in the report which is: 

௖ݑ
ଶሺݕሻ ൌ  ෍ ൤

߲݂
௜ݔ߲

൨
ଶ

௜ሻݔଶሺݑ

௡

ଵ

 

This is derived from a Taylor series and neglects the higher ordered terms. If the next 
highest ordered term is considered then the uncertainty is increased significantly if the second 
ordered effect cannot be neglected. The additional term is: 

෍ ෍ ൥
1
2

ቆ
߲ଶ݂

௝ݔ௜߲ݔ߲
ቇ

ଶ

൅
߲݂
௜ݔ߲

߲ଷ

௝ݔ௜߲ݔ߲
ଶ൩ ௝ሻݔଶሺݑ௜ሻݔଶሺݑ

௝ୀଵ

௡ିଵ

௜ୀଵ

 

Those with well-developed mathematical skills will be able to follow the method given in 
the ISO GUM. There are examples of higher-ordered terms in the ISO GUM for reference.  

Higher-ordered terms are always present. However, in linear measurements model they 
can usually be neglected.  When the measurements model is non-linear, the probability of their 
terms being significant increases. Fortunately, even with non-linear models, if the uncertainties 
are small and are calculated at specific point values, then the higher-ordered terms may still be 
negligible. 

 

 

 

 

 

 

 

 

 


