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Abstract 
Los Alamos National Laboratory: Applied Mathematics for Power Systems (AMPS) 

PI: Michael Chertkov, Los Alamos National Laboratory, chertkov@lanl.gov, (505)-695-5684 

Senior Investigators: Scott Backhaus (LANL), Russell Bent (LANL), Daniel Bienstock (Columbia), Jose 
Blanchet (Columbia), Stephen Boyd (Stanford), Duncan Callaway (LBNL), Richard Chen (SNL), Bert 
Debusschere (SNL), John Doyle (Caltech), Aric Hagberg (LANL), Ian Hiskens (Michigan), Steven Low 
(Caltech), Habib Najm (SNL), Feng Pan (LANL), Ali Pinar (SNL), Kameshwar Poolla (UC Berkeley), 
Nikolai Sinitsyn (LANL), Konstantin Turitsyn (MIT), Pravin Varaiya (UC Berkeley) 

 

Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is 
rapidly transforming electrical power networks by crossing previously distinct spatiotemporal 
scales and invalidating many traditional approaches for designing, analyzing, and operating 
power grids. This trend is expected to accelerate over the coming years, bringing the disruptive 
challenge of complexity, but also opportunities to deliver unprecedented efficiency and 
reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, 
and solve emerging mathematics challenges arising in power systems and, more generally, in 
complex engineered networks. We will develop foundational applied mathematics resulting in 
rigorous algorithms and simulation toolboxes for modern and future engineered networks. 

The AMPS Center deconstruction/reconstruction approach “deconstructs” complex networks 
into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century 
modeling of engineered networks. These sub-problems are addressed within the appropriate 
AMPS foundational pillar—complex systems, control theory, and optimization theory—and 
merged or “reconstructed” at their boundaries into more general mathematical descriptions of 
complex engineered networks where important new questions are formulated and attacked. 
These two steps, iterated multiple times, will bridge the growing chasm between the legacy 
power grid and its future as a complex engineered network 
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Project Narrative 
Introduction  

The Applied Mathematics for Power Systems (AMPS) Center’s approach is built around three 
applied mathematics pillars: complex systems theory, control theory, and optimization theory (Fig. 1). 
These pillars are inherently interrelated by emerging problems in complex engineered networks and other 
areas. Different approaches that ignore one or more of these pillars are incomplete because they disregard 
fundamental couplings among the three pillars that are required to address these problems. These 
incomplete approaches would result in self-consistent but myopic mathematical formulations. Instead, the 
AMPS approach integrates these pillars through an iterative, multifaceted center. A full integration of 
these three pillars produces the necessary mathematical tools to achieve many far-reaching goals, 
including, but not limited to, a fully automated, real-time monitoring, analysis, and control system for 
large-scale electric power grids. 

Complex Systems—The AMPS Center’s approach begins with complex systems theory, where the distinct 
scales of the complete network are specified and the basic static, dynamic, and stochastic phenomena are 
analyzed. We iteratively partition, or “deconstruct” the network and its processes into non-separable 
spatiotemporal scales and identify separate sub-problems and the crucial couplings between them. Several 
methods of model reduction are applied at this stage, e.g., smoothing over spatially discrete network 
flows/injections by conversion of network flow models to Ordinary (ODE) or Partial Differential 
Equations (PDE) [6, 7], construction of hybrid dynamical system representations [8], and rare event 
analysis to identify a small number of the most probable, yet damaging, network fluctuation modes out of 
a continuous space of possibilities [9-12]. Models underlying these methods and phenomena determine 
scale-specific optimization and control sub-tasks and formulate important practical engineering problems 
in a mathematically sound form. These well-formulated control problems are passed to the control theory 
pillar.  

Control Theory—The structure of the complex network formulations is influenced by state of the art 
control concepts. The mathematical building 
blocks of control theory must also develop to 
rigorously handle new and difficult problems, 
e.g., large-scale, distributed control problems 
with hierarchical constraints that require 
actions over a wide range of time scales with 
varying degrees of information available. 
Problems that are particularly large, discrete, 
nonlinear, and/or constrained are passed to 
optimization theory. 

Optimization Theory—Although related to 
control theory, optimization theory is better 
suited to address complicated nonlinear, 
discrete problems. Their size and structure 
requires advances in the mathematical 
foundations of optimization theory and 
algorithms to improve computational 
efficiency and accuracy, e.g., novel relaxation 
methods and approximation techniques [13, 14] that produce effective bounds in practicable CPU time 
and new methods for multi-level, robust, and stochastic optimization with chance constraints. 
   

Iterative Approach—The three pillars of the AMPS Center are implemented in a hierarchical and iterative 
manner. During the natural iterative process, applied mathematics experts work across the pillars to 
jointly develop solvable formulations that are accurate and appropriate descriptions of the network. After 

Figure 1: The three applied math pillars of the AMPS 
Center and the iterative flow of model development and 
solution. 
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the partitioned sub-problem formulations are analyzed and solution methods are developed, another 
iteration occurs as these models are rejoined, or “reconstructed,” using the couplings discovered by the 
complex systems analysis during the first pass through AMPS. The first-pass models and couplings are 
revisited and reduced further to integrate them into larger and more general models capable of a fuller and 
predictive description of the complex engineered network. These iterations are carried out several times 
as the research progresses towards a comprehensive network description. The AMPS Center’s approach 
of breaking complex engineered networks into irreducible sub-problems and identifying cross-scale 
couplings provides several important properties. First, as earlier work by the AMPS team demonstrates, 
the individual sub-problems, although very challenging, are manageable and allow a feasible solution 
method [14-19]. Second, solutions to sub-problems are combined and reconstructed; and model reduction 
is applied again to derive a more challenging composite model. Finally, the AMPS Center’s 
“deconstruction/reconstruction” approach, done in multiple iterations and with feedback, provides a 
natural set of goals and milestones against which our success is measured. The AMPS approach is in 
sharp contrast to existing “software” based approaches that couple complicated problems relying on 
subject matter expertise, rules-of-thumb, or convenience [20-24]. Instead, AMPS offers a mathematically 
sound approach to problem-driven model reduction and reconstruction. 
 

The AMPS Center leadership (Fig. 8) is organized around the three applied math pillars. Michael 
Chertkov, who has 12 years of experience as a research scientist at LANL, will serve as Director. 
Chertkov’s past project leadership includes two directed research projects with a total of $11M in funding 
over the last 6 years. We use a co-lead structure that pairs a LANL and non-LANL researcher for each 
pillar. One of the primary tasks of the co-leads is to ensure that the researchers within each pillar are 
collaborating closely and interacting across pillars and to monitor the progress of this crosscutting 
research. Each co-lead is responsible for organizing annual meetings of the team, as well as quarterly 
video teleconferences. Hiskens and Chertkov will lead the complex system pillar. Hiskens leads ARPA-E 
and OE efforts at the University of Michigan. He also has extensive experience in the power engineering 
industry and in academia in building complex system models of electric power systems [25-31]. Low and 
Backhaus lead the control theory pillar. Low is a recognized leader in control theory [32-34] with current 
experience leading DOE mission-related efforts, as exhibited by his ARPA-E project Scalable Real-time 
Decentralized Volt/VAR Control. Backhaus leads LANL’s DOE-funded collaboration with New Energy 
and Industrial Technology Development Organization  [35] that focuses on design and demonstration of 
coordinated control of diverse sets of resources for local mitigation of photovoltaic fluctuations. 
Bienstock and Bent lead the optimization pillar. Bienstock has pioneered development efforts in new 
optimization techniques for complex power system problems [36, 37] with his ASCR project 
Reconfiguring Power Systems to Minimize Cascading Failures: Models and Algorithms. Bent is PI or Co-
PI on three LANL directed and exploratory research projects related to power grids (including 
Chertkov’s) and leads optimization efforts for the National Infrastructure Simulation and Analysis Center 
[38]. 

The AMPS Center team is composed of a core group of LANL researchers and a strong team of 
participants from academia and other national laboratories. The LANL researchers are centered at 
LANL’s interdisciplinary Center for Nonlinear Studies (CNLS) and are supported by LANL's major 
institutional investments in Information Science and Technology. The LANL group, and a large fraction 
of the external collaborative connections, grew naturally out of a LANL-directed research project on 
Smart Grids led by Chertkov during the past three years. This group of researchers began the 
development of new mathematical methods for the electrical grid by attacking problems that bridge 
spatiotemporal scales and making a number of significant contributions in probabilistic network risk 
measures [9, 39], data-driven network models [40], continuum models of nonlinear networks [39], control 
of distributed resources [15, 16, 41], and new algorithms for operations-based network expansion [42, 
43].  
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One of the LANL team’s key strengths is aggressive outreach to complementary expertise necessary to 
solve emergent mathematics problems. This approach carries over to the AMPS Center, which gathers the 
additional expertise in complex systems, control theory, and optimization theory needed to develop a 
comprehensive applied mathematics approach to complex engineered networks. An organizational chart 
(see the Management Plan) demonstrates the alignment of researchers with the AMPS Center. The 
Columbia (Bienstock), SNL (Pinar, Chen), Stanford (Boyd), LANL (Bent, Pan), and Cal Tech (Low) 
groups bring state of the art expertise in modern optimization theory, including contingency analysis [9, 
36, 44-47], new message-passing frameworks for distributed optimization and control [48], stochastic 
optimization [49], and novel convex relaxations of previously intractable optimization problems [13]. UC 
Berkeley (Poolla, Varaiya), LBNL (Callaway), Cal Tech (Doyle, Low), and Michigan (Hiskens) 
contribute significant expertise in control theory, including risk-limiting generation control [50-60] 
analysis of cyber-physical control [61, 62], theory of energy markets [63-65], and statistical modeling and 
control of electrical loads [33, 34, 66-77]. LANL (Chertkov, Hagberg, Sinitsyn), Columbia (Blanchet), 
MIT (Turitsyn), and SNL (Najm, Debusschere) bring expertise in complex networks, including rare  
event analysis [11, 12, 78-83], robust and stochastic network control with chance constraints [84], 
cascading events on networks [37, 85], and uncertainty quantification [86-89].  

Because the expertise required to solve the challenges of the future engineered networks does not exist at 
a single institution, this proposal organizes the recognized leaders in each of these fields into a tightly 
integrated team. This team combines expertise in core applied mathematics with experience in advancing 
applied mathematics to significantly 
impact complex engineered networks. 
Such combined experience is difficult to 
find and takes many years to nucleate. 
Over the last several years, the AMPS 
team members already developed a 
productive, cohesive relationship: they 
have submitted joint papers, held 
multiple visits, and exchanged students 
and postdocs. Collaborations on papers, 
proposals, and student exchanges are 
indicated by blue lines in the 
collaboration diagram in Fig. 9 in the 
Management Plan. The AMPS team is 
well positioned to have an immediate 
impact. 

The AMPS Center proposed budget 
includes resources for 50% commitment 
by the Director, ~35% research 
commitment by the pillar co-leads, and 
25-35% research commitment by the key 
staff. LANL’s interdisciplinary CNLS, 
which has a long track record of 
organizing meetings and conferences 
(10-15 per year), has committed to 
supporting the conference agenda of 
AMPS, and will support three post docs 
and three to five student internships in 
the related area of complex networks (see Appendix). As the project evolves, scientific problems are 
solved, and new problems arise. Risk mitigation is performed by reallocating funds for postdocs and 
students among the key staff to achieve flexibility in scientific emphasis.  

Figure 2. The six representative groups of applied 
mathematics challenges extracted from the pool of complex 
engineered network problems and how they crosscut the three 
pillars of AMPS. The arrows show spatial and temporal 
dimensions. 
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Connection to DOE Mission The AMPS 
Center strongly supports the DOE mission. 
In particular, this proposal is aligned with 
the mission of the Office of Electricity 
Delivery and Energy Reliability (OE), 
which states its expectation to “lead 
national efforts to modernize the electric 
grid; enhance security and reliability of the 
infrastructure; and facilitate recovery from 
disruptions to energy supply” [90]. This 
proposal identifies the core applied 
mathematics challenges needed to address 
the open questions of OE that intersect 
with the scientific goals of DOE’s Office 
of Advanced Scientific Computing 
Research (ASCR) Applied Mathematics 
Program [91, 92], including algorithms for 
solving large-scale, nonlinear optimization 
problems and uncertainty quantification in 
complex engineered networks [92]. The 
AMPS Center provides a bridge between 
basic applied mathematics research and 
the emerging needs of OE. 

Research Plan 

Methodological Overview 

It is impossible to create a monolithic numerical model of complex engineered networks that spans all 
spatiotemporal scales and includes all of the relevant phenomena. Instead, the AMPS Center will develop 
interrelated models that yield a high fidelity representation of complex engineered network behavior and 
provide the physical intuition, insight, and predictive power crucial for designing, controlling, and 
assessing risk in these networks. The AMPS Center methodology is built on three applied mathematics 
pillars—theory of complex systems, control theory, and optimization theory—that are implemented in a 
“deconstruction-reconstruction” (DC/RC) approach. 

In their work over the last several years, AMPS team members used their expertise in complex systems 
analysis to identify the irreducible classes of spatiotemporal scales associated with the electrical grid and 
the fundamental couplings between these classes [9, 14-16, 39]. We transformed the unintuitive collection 
of superficially unrelated electric grid functions (shown on the lowest level in Fig. 2) into rigorous classes 
of phenomena at the core of applied mathematics. Each of the representative classes contains several 
phenomena from the lowest layer, interrelated by fundamental spatiotemporal overlaps in their 
mathematical description. The classes discussed in this proposal are fast network dynamics, continuum 
and flow dynamics, network cascades, coarse-scale network analysis, fine-scale network analysis, and 
operations-based planning. Additional classes are added when the need arises. 

Each of the six classes defines a fundamental applied mathematics problem. By analyzing the 
mathematical structure within each class (or phenomena within the class), we map the class onto the best-
suited applied mathematics pillar: control theory, optimization theory, or additional complex systems 
analysis. This breakout is shown along the “vertical” axis in Fig. 2. In general, problems involving 
continuous time and mostly continuous variables map to the control theory pillar, whereas those problems 
involving discrete time and discrete variables map to the optimization pillar. Nevertheless, the breadth of 
the phenomena within each class results in crosscuts between the pillars. This mapping in Fig. 2 

Figure 3. A “reconstruction” roadmap for the applied 
mathematics challenges identified by the AMPS Center. The 
roadmap shows the development of a series of applied 
mathematics toolboxes and their connection to complex 
engineered networks 
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represents the AMPS Center’s initial deconstruction of complex engineered networks. Our vision of 
complex engineered networks will evolve as we advance the state of the art within each pillar. Our first 
step in this evolution develops each of the six classes individually to address their underlying applied 
mathematical challenges and their connection to existing and future problems in complex engineered 
networks (as identified by the phenomena within each class).  If the challenges in any of the classes prove 
too great, the deconstruction approach is carried out further until classes of tractable problems are 
reached.   

The individual phenomena, or even individual classes, are initially attacked by single researchers or 
groups of researchers from the same applied mathematics pillar. Then researchers from different pillars 
will collaborate to reconstruct the individual phenomena and classes to create more general, descriptive, 
and predictive models of complex engineered networks, justifying the crosscutting research that is only 
supportable by a multi-disciplinary center such as AMPS. Our reconstruction methodology is illustrated 
pictorially in Fig. 3. The base of the pyramid is composed of the six applied mathematics problems 
identified by the deconstruction in Fig. 2. Once these problems are well formulated and computationally 
tractable, they are reconstructed in a pair-wise fashion on the second level in Fig. 3. The choice of the 
pairs is dictated by which reconstructions are most useful for the complex network under study and is 
revisited as priorities change. The combinations at the second level create new applied mathematics 
toolboxes that are critically important for the evolution of complex engineered networks. Higher levels of 
reconstruction yield models of complex engineered networks that provide revolutionary capabilities such 
as real-time simulation and monitoring of the complex engineered networks. Based on our work over the 
last several years, we expect that the problems on the bottom layer are technically feasible; however, the 
level of technical risk increases at each layer as we move up the pyramid though the series of pair-wise 
reconstructions.  The higher risk is in the upper levels is compensated by the higher reward of success at 
these levels.   

The Fundamental Example of a Complex Engineered Network 

The AMPS Center is focused on key applied mathematics contributions discussed earlier.  These 
contributions are motivated through application to the electrical power grid—arguably the most complex 
engineered network. The power grid has relied on power engineering best practices and subject-matter 
expertise to define the appropriate separation of the spatiotemporal scales, but as the grid evolves, many 
of these separations are quickly losing relevance and utility due to increasing complexity. Starting at the 
lowest level (shown in Fig. 2), the full range of electrical grid phenomena spans a huge range of 
spatiotemporal scales. The range of temporal scales is roughly nine orders of magnitude—from tens of 
milliseconds (i.e., a few AC cycles) to many years. The range of spatial scales is four to five orders of 
magnitude—from ~10-100 m (i.e., an individual node in an electrical distribution circuit) to the 1000-km 
national scale of large interconnections. Within this spatiotemporal domain lie phenomena as diverse as 
1) grid transients that propagate over 1000-km interconnections in seconds, 2) decade-scale network 
expansion planning ranging from 1-km distribution circuits to 1000-km interconnections, and 3) 
consumer demand response acting on the second to hour scale in 1-10 km distribution networks. Using 
these and other examples from the power grid, we discuss in detail a subset of the problems and applied 
mathematics challenges arising from a loss of separation of space and time scales and the AMPS Center’s 
approach to addressing the challenges.  

Deconstruction—Complex Systems Theory Pillar and Its Challenges 

Even when the basic nonlinear evolution equations of a network node and its interaction with other nodes 
are well known, the aggregate behavior of these networks is often unpredictable. For example, the time 
dependence of the network injections may be highly uncertain or network parameters and/or nodal 
injections may not be measured. Further, networks with a large number of nodes can show emergent 
behavior that is not obvious from the governing equations. The key mission of the complex system pillar is 
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to develop general complex system models at the appropriate level of network detail necessary to isolate 
and analyze the relevant static, dynamic, and stochastic phenomena.  

The complex system pillar crosscuts and feeds the control and optimization pillars of AMPS. It is utilized 
in all of the individual problems at the lowest level of the pyramid in Fig. 3. Solving these problems 
requires three different complex systems approaches. First, when network parameters are known or can be 
reasonably estimated but the network injections are uncertain, alternative mathematical descriptions are 
required to describe the probabilistic effects of this uncertainty on the network. Second, when there is a 
high degree of uncertainty in network parameters or they are not measured, data-driven methods are 
needed to extract static, dynamical, and stochastic models from the available data. Third, an exact 
description of the lowest levels in a hierarchical network may not be required, but reduced-order models 
of these lower levels must appropriately describe the internal network structure, preserve any emergent 
behavior of the real network, and predict the interaction with the higher-level network.  

Complex Systems—Coarse Scale Network: Contingency Analysis through Distance to Failure  

Problem: Injections at network nodes are 
often uncertain, e.g., generation produced by 
wind farms in power systems, but a 
probability distribution over the space of the 
uncontrolled injections of the network may 
be known or reconstructed from 
measurements by Uncertainty Quantification 
(also Machine Learning) techniques [93-95]. 
It is then natural to ask—what are the most 
probable states in the space of uncontrolled 
injections that cause failure? The 
dimensionality of this space is very large; 
methods are needed to efficiently search and 
quantify the distance to and likelihood of 
rare, yet most probable failure modes.  

Challenge: Searching through high-dimensional spaces of probability distributions for the most probable 
network failure mode is often intractable, but the properties of the boundary between the feasible and 
infeasible regions in the probability space depend on the mathematical structure of the network flow and 
the network control equations. The applied mathematical challenge is how to exploit the structure of these 
equations to simplify the search and devise computationally tractable algorithms.  

Approach: For linear power flow models of electrical networks, the feasibility domain is a polytope in a 
multi-dimensional space of parameters characterizing renewable resources. The structure of this polytope 
depends on the spatiotemporal properties of other components in the network. For example, when the 
controllable generation is adjusted via secondary control [96], the output of these generators are rescaled 
to maintain net power flow balance. The resulting polytope is tractable in the sense that it has as many 
facets as the number of linear inequalities defining the feasible region, i.e., twice the number of edges in 
the system. In previous work [9, 39, 97], we exploited this structure to develop an “instanton” search 
algorithm based on approaches from mathematical physics that search for a rare but important instance of 
interest in huge probability spaces [98] (Fig. 4). As we showed in [10], the tractability property is the key 
to resolving the resulting inference (maximum a posteriori) problem exactly and efficiently. 

AMPS generalizes this methodology to a number of other challenging problems in the complex network 
domain. Our first step extends the instanton approach to more realistic nonlinear power flow models and 
incorporates a broader range of feasibility conditions, including voltage collapse [6, 7] and loss of 
synchrony [99]. Other generalizations include extending the methodology to a spatially continuous 
setting, formalized in terms of spatial ODEs [6, 7], where the network is treated as a one- or two- 

Figure 4. An instanton measures the distance and 
direction from the most probable configuration of the 
uncertain resources to the boundary of the feasibility 
domain in the space S of fluctuating network injections. 
The instanton also quantifies the probability of 
encountering failure along this direction.   
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dimensional inhomogeneous medium. Our more challenging extensions will include dynamical failures of 
the network at different temporal and spatial scales. Connecting to current electrical-grid operating 
practices, the instanton methodology fundamentally extends the commonly accepted N-1 contingency 
(robustness) analysis [96]. Like N-1, it warns of potential future operational trouble, but it does so in a 
much broader and more ambitious setting by accounting for fluctuations in resources and dynamics. We 
will use the results of our approach to formulate objectives for the failure-avoiding schemes of the control 
theory pillar and risk-sensitive formulations of the optimization theory pillar.  

Complex Systems—Fast Network Dynamics: Data-driven Models  

Problem: Large, complex engineered networks that span thousands of kilometers may support transient 
wave propagation initiated by a disturbance at one of thousands of nodes, e.g., fast-propagating electro-
mechanical dynamical transients launched by the loss of a large electrical generator. Direct time 
simulation of these waves may not be feasible because the network parameters cannot be updated at a rate 
sufficient for near real-time simulation. Methods are needed to estimate dynamical response with large 
parameter uncertainty.  

Challenge: System identification via purposeful probing of the network can provide estimates of the 
dynamical responses, but most complex engineered networks are critical infrastructure and such probing 
interferes with network reliability. The applied mathematical challenge is to develop real-time, model-
independent descriptions of the network dynamics using ambient network noise collected during normal 
operations, e.g., using Phasor Measurement Unit  data from the electrical grid [100].  

Approach: System identification methods [101] are typically used to extract dynamical model parameters 
via purposeful probing or by leveraging noise in dynamical systems. If all the parameters are identified, 
the resulting model is used to predict dynamics or for system control. However, large electrical grids can 
have over 100,000 dynamical parameters. Even if all the parameters could be identified, the speed of the 
disturbance propagation and the stochastic nature of future electrical grid are unlikely to allow enough 
time for computations to predict the impact of all possible disturbances. In previous work [40], we 
demonstrated how online analysis of electrical grid noise data from modern grid sensors can be used to 
estimate the dynamical directed sensitivity between pairs of network nodes. These pair-wise responses, or 
pair-wise Green functions [40], are used to forecast network-wide impacts of an initially localized 
disturbance. These data-driven methods are fast because they bypass the model construction and 
simulation stages of dynamical prediction. 

The AMPS Center will extend these techniques by developing new mathematical methods aimed at 
solving systems of inhomogeneous linear ODEs to deconstruct the Green functions and resolve the 
problem of learning the hidden network parameters from available data. We will utilize these new 
representations of network dynamics in an automatic or semi-automatic form for new models of control. 
We will apply similar techniques to extract the dynamical models of aggregate, reduced-order models of 
distribution networks (see below). The lack of such models is a major uncertainty in assessing the 
dynamical stability of electrical grids. We will leverage our expertise in analysis of uncertain ODE 
models [86-89], model reduction [102, 103], and compressive sensing [104, 105] to quantify the 
uncertainty, thereby enabling the control theory and optimization theory pillar activities that require these 
reduced model representations.  

Complex Systems—Continuum/Flow Dynamics: ODE/PDE Models for Emergent Behavior 

Problem: Analysis of the electrical grid generally focuses on detailed models of generation and 
transmission, with connections to the distribution network commonly represented by deterministic, 
aggregate load models. Such representations are notoriously inaccurate [106] and lead to large 
uncertainties in dynamical models of transmission networks. In addition, these models are completely 
inadequate as distributed generation grows and loads become actively controlled. More sophisticated 
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models are needed to combine higher fidelity models with the reality that the composition of distribution-
level devices is continually changing, and thus can only ever be known approximately.  

Challenge: The high density and large number of devices in distribution networks preclude the detailed 
component-level modeling used in transmission network models. A fundamentally different approach to 
distribution-level models is required to capture the interactions within the distribution network and the 
single-point interaction with the transmission network while avoiding parametric details that are 
impossible to ascertain. Figure 5 gives an 
example of how complex the single-point 
interaction can become.  

Approach: In previous work [6], we 
derived abstract models of distribution 
networks using ODEs that resolved many 
individual components (e.g., loads) in an 
aggregated, spatially continuous fashion. 
We have also derived PDE versions of 
these models that capture both the 
continuous spatial and temporal behavior 
of these systems. Rigorous and consistent 
derivation of ODE/PDE models from the 
spatially discrete models is a challenging 
task. It involves homogenization in space 
to account for disorder in characteristics of 

lines, loads, and generation with a minimal 
number of key parameters while not losing 
the mathematical description of important 
constraints on device operation [15]. In 
addition, stochastic representations are 
needed to account for temporal uncertainty. 
The initial ODE/PDE models we 
developed in [6] are superior to discrete-
element models for capturing dynamic 
interactions and emergent behavior. Examples include Fault-Induced Delayed Voltage Recovery 
(FIDVR) that manifests as two distinct, overlapping, stable solutions to an ODE model of a distribution 
network [107] and limit cycle behavior attributed to time-dependent interactions between the distribution 
grid and the power electronic controls in network with even relatively small amounts of solar PV [57]. 

The AMPS Center will extend our previous work by creating comprehensive ODE/PDE models that 
incorporate the different devices and controls that are making inroads into electrical distribution networks, 
e.g., PV systems, electric vehicle charging, and frequency responsive loads. The interaction of new 
components and sophisticated controls will generate a richer set of emergent behaviors in future 
distribution grids; these collective behaviors will impact the higher-level transmission grid. This was 
illustrated in [7], where emergence of multiple competing and dynamically stable low voltage solutions in 
a feeder with distributed generation was discovered. We will use spectral analysis techniques to isolate 
and analyze these behaviors, creating formulations that can be used by the control theory pillar to manage 
them. Our ODE/PDEs approach will be computationally tractable and easy to adjust, making it the only 
reasonable approach to model such emergent phenomena.  

Solution Methods I—Control Theory and Its Challenges 

The future controls of complex engineered networks are fundamentally different from today in several 
ways. First, to gain the flexibility needed to integrate stochastic network injections, future controls will 

Figure 5. Power injection region for a simple three--bus 
network demonstrating the high degree of complexity, even 
for such a simple system. The projection to the left shows an 
elliptical shape, which is the space of all possible 
combinations of real power injections for two of the system 
buses. The projection to the rear shows a donut shape; it is 
the space of all possible combinations of real and reactive 
power injections at one of the buses.[3] 
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reach deep into fine network scales and control many millions of small injections, instead of the few 
thousand, high-level large injections controlled today. Second, future complex engineered networks will 
be subject to far greater local and global fluctuations, and fast emergency control actions intended to 
protect locally may lead to an unintended cascade of additional control events that disable the network 
globally. Significant advances in control theory that enable scalable, coordinated control of millions of 
distributed assets and incorporate global situational awareness into local protective control decisions are 
the key missions of the AMPS control theory pillar. Problems of interest include developing new methods 
that provide performance guarantees in aggregated or autonomous distributed control frameworks where 
control is required over different time scales with different levels of information, e.g., slow control modes 
where centrally communicated information is available to fast emergency control with local information 
and some inferred global information. Developing adaptive controls is also important because failures, 
corrective actions, or network expansion can cause network structural changes. To address these 
problems, we propose novel control schemes that control large numbers of devices with a small number 
of signals, PDE formulations of control that provide robust guarantees on performance, and incorporation 
of rapid simulation of global network behavior into local protective control decisions. 

The control theory pillar is strongly connected to the complex systems and optimization pillars. The 
complex systems pillar partitions complex network models into irreducible spatiotemporal couplings that 
yield reduced-order models. Control theory is the mechanism by which controls are designed and 
analyzed to extract the desired behavior from these models. Advances in control theory enable the 
analysis of more difficult models, thereby driving the complex systems pillar to address more difficult 
problems. Models that are too large or involve difficult nonlinearities are formulated in control theory, but 
are solved in the optimization pillar.  

Control Theory—Network Cascades: Modeling and Controlling Undesired Propagations  

 
Problem: Emergency control of complex 
networks is traditionally performed at the 
local level to provide fast response to 
initially local problems, e.g., a local 
network overload. These automated 
control actions are designed to protect the 
network in the immediate area, but lack 
of global information and situational 
awareness can lead to poor global 
outcomes, such as the initiation of a chain 
of cascading local actions that disable the 
network globally [108, 109] (Fig. 6). 
There are a small number of specially 
designed protective schemes at critical 
locations in the electrical grid that 
incorporate global information via 
“hardwired connections.” Nevertheless, 
the increasing level of fluctuations from 
stochastic generation will cause a 
proliferation of an unsustainable number of such schemes. Instead, global information must be 
incorporated into local decisions in a principled manner; simulation of possible cascades is a promising 
route. 

Challenge: From an applied mathematics standpoint, cascading behavior on complex engineered 
networks epitomizes a multi-scale stochastic process, both in time and space, giving rise to two 
complementary technical challenges: the accurate simulation of a cascade based on initial conditions and 

Figure 6. Simulation of the 2011 San Diego cascading black 
out. The green lines are operating normally. The blue lines 
were the lines that tripped. Red, orange, yellow, white are 
lines that were progressively more overloaded. Details of the 
approach are found in reference [2] 
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the rapid computation of mitigating actions. Current techniques [110-112] can simulate complex 
networked systems with tens of thousands of edges and nodes in practicable computational time, albeit at 
the cost of simplification in the modeling of some dynamics important during cascading processes and not 
fully accounting for wide stochastic variance. New methods and models are required that faithfully 
represent these dynamics while enabling fast computation.  

Approach: Cascade simulations generally include random behavior of the initial timing of the event. 
Moreover, as shown in [85], different sequences of the cascading events result in undesirable final 
network states (such as outages) of greatly varying size. For cascades in the electrical grid, these results 
suggest that controlled tripping (topology modifications) of lines at the early stages of the cascade 
development is extremely advantageous, but algorithms are needed to identify the optimal control actions. 
Our ongoing research [37] suggests that real-time algorithms based on massive and parallel simulations of 
the cascade using noisy and partial observations of a cascade’s progress yield optimal controls to arrest 
the cascade. The algorithms for computing optimal control are akin to learning (or “boosting”) methods, 
sifting in real time through a large amount of synthetic data to deduce the control. Developing these 
computational learning algorithms is a natural extension of our ongoing work [37]. To improve the 
simulation component, we envision a parallel approach designed to capture the complexities of cascades 
in a methodologically valid manner, while yielding effective algorithms to mitigate cascades. First, we 
will develop reduced-order stochastic models of the short-term dynamics that exert great influence at 
pivotal points in a cascade. Second, we will develop new approximate statistical methods based on deep 
understanding of the underlying interactions and scale separations and importance sampling of entire 
sequences of steps to reduce the inherent combinatorial complexity of cascades. 

Control Theory—Fine-Scale Network Control: New Principles and Challenges of Distributed 
Control of Millions of Grid-Interactive Devices 

Problem: Integrating significant levels of stochastic generation (e.g., wind and photovoltaic) into the 
future electrical grid requires reaching deep into fine distribution network scales to tap into the latent 
control flexibility of the millions of small injections (loads, generation, and storage) in these networks. 
Exploiting this latent resource, however, presents problems [32]. Foremost is the extreme computational 
burden of coordinating the control of the millions of injections required to create a significant impact on 
the grid as a whole. Controlling the loads individually is not feasible so new methods are required. In 
addition, when these injections are controlled, the electric power flows in these fine-scale (distribution) 
networks are modified from their nominal design values, resulting in networks that are significantly more 
fragile. Therefore, the algorithms that implement the control over the injections must be locally aware to 
avoid violations of flow and nodal constraints in these distribution networks. 

Challenge: A crucial challenge is overcoming the computational burden of controlling a large number of 
injections. The true challenge is not just developing algorithms that are computationally feasible for large 
problems, but developing algorithms whose performance improves as the number of devices increases. 
Communication limitations suggest a need for algorithms that are fully distributed or centrally 
implemented with a small number of control signal/information channels. In addition, mathematical 
methods are required to provide guarantees of algorithm performance under widely variable disturbance 
and network conditions. Analysis of such guarantees must be extended to include the violation of nodal 
and flow constraints.  

Approach: In previous work, we developed a range of different algorithms for control of electric vehicle 
(EV) charging. These range from stochastic direct load control using a single number disseminated via 
broadcast communication [16, 33, 66, 69, 71, 72, 113], broadcast of a single dynamic pricing signal 
combined with hysteretic local controllers [57, 74, 114-116], and game-theoretic methods involving bi-
directional, individually addressed communication [26, 113, 115]. The first two methods demonstrate 
excellent scaling properties where the variance in the controlled EV charging load decreases relative to 
mean load as the number of EV under control increases. All of these methods, however, are capacity 
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based; they do not consider the effects of the controlled power flows on the internal constraints in the 
distribution network. Within the AMPS Center, we will extend these methods to include models of 
network flow constraints.  

The integration of distributed photovoltaic (PV) generation into low-level electrical distribution networks 
is a good example of how low-level network internal constraints are violated when the network is forced 
into configurations for which it was not designed. The spatiotemporal correlations of solar irradiance 
fluctuations can create sudden and large reversals of electrical power flow causing nodal voltage to drift 
outside the bounds of normal operations, and resulting in damage to consumer devices. One 
straightforward control solution limits PV generation by acting directly on the fluctuating injections, but 
this very suboptimal solution severely constrains the ability of the low-level networks to supply 
generation to the higher-level network. Alternative formulations by AMPS team members [15, 17, 117] 
leverage control of reactive power generated by the PV inverters to mitigate this effect. Both control 
algorithms rely on distributed control because it is robust to communications failure and the temporal 
scales of the irradiance fluctuations are fast enough to preclude centralized control. The performance of 
these distributed control algorithms [15] was validated using Monte Carlo sampling of irradiance 
conditions, network load, and network configuration. Within the AMPS Center, we will develop more 
principled probabilistic measures of control performance using stochastic and uncertainty quantification 
methods. These new probabilistic measures will enable design of novel distributed and robust control 
schemes that provide coordinated and guaranteed operations for the grid consisting of millions of 
integrated devices. 

Control Theory—Fine-Scale Network Control: Limited Control Flexibility and Coupling across 
Time Scales 

Problem: The operation of some electrical loads (e.g., thermal processes) is deferrable without significant 
impact on the end-use function. Nevertheless, there are constraints—based on the physical characteristics 
of the loads and user preferences—on how much load shifting is possible. These constraints, which are 
directly analogous to those incurred by energy storage [118], create new couplings over time where 
control decisions made at one moment affect the flexibility of the control at future times. These future 
effects must be included in the immediate decision-making. Further complications arise because these 
loads are typically discrete, i.e., on/off loads that are not continuously adjustable. New control 
formulations are needed that address the unique nature of these loads.  

Challenge: The couplings created by limited deferability of loads over time create a need for models of 
time evolution, but the discrete, on/off nature of these loads presents a mathematical challenge because 
the time-dynamics involve discontinuous state transitions that are not easily addressed via continuous-
time control formulations. In addition, individually modeling and controlling millions of these discrete 
loads is not computationally feasible.  

Approach: In previous work [41, 114], we explored first-principles methods for modeling and 
controlling large homogeneous collections of these unique loads. We developed [41] a first-principles 
approach, based on two Fokker-Planck PDEs, that describes the continuous-time evolution of probability 
distributions of temperature for the on and off states. Coupled boundary conditions on these PDEs at the 
extremes of the temperature range create a flow of probability between the on and off states, representing 
the discontinuous state transitions of individual loads. Analysis of these PDEs allows extraction of 
response functions that guide design of controls for the aggregate load and the probability distributions. 
We also explored feed-forward methods [41] that leverage the unique dynamics of these loads to preplan 
controlled responses. The AMPS Center will extend this work to descriptions of heterogeneous 
collections of loads. We propose a completely new perspective on the Chapman-Kolmogorov equations 
through a rigorous treatment of randomness. We will develop new mathematical tools to represent system 
energy and thermal states with dynamic nonparametric probability distributions, where state transitions 
evolve according to Markov chains. This discrete state model formulation is represented in standard linear 
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time invariant-state space formulation and facilitates the large-scale state estimation methods for which 
this formulation is especially well suited. 

Solution Methods II—Optimization Theory and Its Challenges 

Complex engineered networks can be very large, spanning a wide range of spatiotemporal scales. 
Optimization is required for coordinating large numbers of network resources to manage uncertainty in 
demands, availability, and capacity. The resulting optimization problems are often nonlinear, non-convex, 
mixed integer, and stochastic, making them computationally intractable (NP-Hard), and placing them far 
beyond the reach of commercial software. The key mission of AMPS in the optimization pillar is to 
develop significant advances in optimization theory to address currently intractable problems. Problems 
of interest include multi-level models, where the lower-level optimization problems are themselves NP-
Hard. The lower levels may also include non-standard constraints that encapsulate results from complex 
network analysis, e.g., new dynamical stability criteria [99], models of nodal responses to exogenous 
information [39], and functional evaluation through simulations [1, 14]. To solve these problems, we 
propose novel relaxation methods and approximation techniques that produce effective bounds in 
practicable CPU time and new methods for multi-level, robust, and stochastic optimization with 
constraints accounting for risk—all of these together with careful leveraging of massive distributed 
computing resources. 

The optimization pillar is strongly connected with the control theory and complex systems pillars. The 
complex systems pillar provides information about temporal and spatial couplings required to build the 
optimization models. Optimization is then a mechanism by which complicated sub-models of control 
theory can be solved. Advances in optimization inform complex systems about the problem structures and 
details that are tractable, which may change the spatial and temporal couplings that are modeled. 

Optimization Theory—Fine-Scale Networks: Decentralized (Message Passing) Optimization 

Problem: Increasingly, optimization is faced with models that are so large that the problem cannot be 
constructed in one place because the communications bandwidths are insufficient. This is especially true 
for optimization of networks of physical devices, where network-state information can be quite large. 
Decentralized optimization techniques are required that utilize more limited communication between 
individual devices, with components exchanging messages about their state and planned actions (decision 
variable assignments) and negotiating to minimize network-wide cost.  

Challenge: The challenge in this area is to develop distributed decentralized algorithms for complex 
networks that not only converge to a feasible solution, but also provide guarantees on optimality or 
approximations to optimality. Distributed optimization with optimality guarantees is required for 
coordinating the large numbers of devices that manage uncertainty in demand, availability, and capacity 
in future complex engineered networks, including the future electrical grids, where vast numbers of 
devices are employed to control power flows, consumption, and generation locally. This distributed 
optimization represents a fundamental break from current practices that optimize a comparatively smaller 
number of aggregated devices in a centralized fashion. 

Approach: We have recently demonstrated the basic concept of completely decentralized optimization 
[48] by developing a method for coordinating time-dependent flows on a network. We have shown that 
guaranteed optimality can be achieved in decentralized optimization while only passing simple messages 
and maintaining the privacy of the devices. Much like internet protocols, decentralized peer-to-peer 
exchange of information is a very resilient, secure, and reliable system that automatically coordinates 
individual devices, and optimizes an overall network objective. Such a structure for distributed 
optimization reacts to changes in real-time (as a feedback system does) and also provides a feed-forward 
ability to anticipate known or predicted upcoming events. Our approach can solve a problem involving 
around 30 million optimization variables, e.g., a future electrical grid with 100,000 devices exchanging 
energy for one day in 15-minute intervals over 250,000 capacity-limited, lossy lines–in minutes on a basic 
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desktop 8-core machine. This fundamental advance demonstrates the potential of decentralized 
optimization in the domain of complex engineered networks. Within the AMPS Center, we will develop 
the fundamentals of distributed optimization science including the generalization of a message-passing 
methodology to account for loops in power flows and integer constraints and controls (non-convex NP-
Hard problems). We will produce new convex relaxations of complex nonlinear optimization problems 
that may be implemented on a distributed platform [119].  

Optimization Theory—Operations-based Planning: Multi-Level Optimization  

Problem: Traditionally, the design of complex networked systems has been optimized using simplified 
models of network operations. These simplified models reduced the computational complexity and 
yielded results that were considered good enough, e.g., the outer optimization of grid expansion planning 
has  historically approximated the inner optimization of the bi-level problem with linear power flow 
models [1, 4, 14, 42, 120-135].  Situations are arising, however, where using overly reduced models has 
led to network designs with adverse operational characteristics, e.g., loop flows [128] and negative energy 
prices [136] in power systems, pointing to the need for fundamentally new network expansion planning 
algorithms that integrate high fidelity models of operations. These examples provide motivation for new 
results in one of the emerging challenges in optimization—bi-level or multi-level optimization of 
nonlinear and discrete models, where one or more lower-level optimization problems are embedded in 
another optimization problem [1, 4, 14, 42, 120-135, 137, 138] 

Challenge: Purely linear multi-level optimization 
problems are NP-Hard but there are well known 
solution concepts for such problems [138]. In 
contrast, addressing multi-level problems important 
for complex engineered networks requires 
considerable advances. These problems have 
nonlinear or discrete aspects [139], such as optimal 
electrical grid design coupled to models of power 
flows, operations, and security.  

Approach: We adopt three strategies for solving 
multi-level problems: 1) improving the quality of the 
lower bounds, 2) creating decomposition algorithms 
to improve the quality of the upper bounds, and 3) 
generalizing the cutting plane algorithms. The lower 
bound strategy builds on our team’s recent efforts in 
developing convex relaxations of complex nonlinear 
optimization problems, such as AC optimal power 
flows [13] and iterated improvements of linear 
approximations to nonlinear problems [140]. The 
decomposition strategy considers methodologies that 
split complex problems across their natural temporal, 
spatial, and level boundaries, while at the same time providing mechanisms to pass information between 
the different decompositions to improve global solution quality (upper bounds). In previous work, we 
pioneered efforts to improve the bi-level couplings through decomposition for planning utilizing 
nonlinear (AC) power flow models [1, 4, 14, 17-19, 42, 117, 128-130, 141] (concurrently with a handful 
of other researchers in the field [131-133]). This work has demonstrated how our basic applied 
mathematics has transitioned to impact DOE-related missions, as shown in Fig. 7. The cutting plane 
approach is based on our success in screening power system vulnerabilities via worst-case interdiction 
analysis [36, 44-47] and bringing those models into problems like unit commitment and transmission 
planning [134, 135, 142]. In order to bring N-k security operations into planning, we propose to extend 
linear bi-level and multilevel optimization methods in security-constrained power system optimization to 

Figure 7. The work of [1] was applied to aid 
the state of New Mexico in its transmission 
planning studies [4, 5] 
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consider discrete components (in the lower-levels). Efficient flow-cover algorithms will be used to find 
small sets of contingency elements that fail a power system. This approach relies on solving a bi-level 
integer program using inequalities derived from the generalized flow-cover inequalities [143, 144] and 
disjunctive cutting planes [145, 146].  

Optimization Theory—Operations Based Planning: Stochastic/Robust Optimization with 
Probabilistic Risk Constraints 

Problem: The control of complex engineering networks takes place on several levels and time scales. The 
lowest level is often preprogrammed as continuous-time automatic feedback control that responds to fast 
changes in network conditions without any external intervention. Often, the next highest level is an 
optimization problem that deploys network assets for optimal steady-state performance. This step 
effectively designs or plans the resources available for automatic control in future time periods. When 
fluctuations in the network conditions between optimizations are relatively minor, utilization of mean 
conditions is sufficient. However, complex engineered networks, especially the electrical grid, are 
expected to survive large fluctuations in network injections and network flows in the future. Deploying 
networks assets by “optimizing for the mean” or through traditional scenario-based stochastic programs 
with recourse is no longer sufficient. Instead, methods of stochastic and/or robust optimization that 
incorporate models of automatic control system response are needed to balance optimal network 
performance with resilience to rare but damaging fluctuations.  

Challenge: Robust and stochastic optimizations are two methods of accounting for uncertainty. 
Formulating and incorporating new constraints expressing the uncertainty in a combined fashion presents 
significant mathematical and computational challenges because of the mathematical structure of the 
models of network flows and automated control responses. The main challenge is the probabilistic nature 
of the so-called “chance constraints” and their intricate dependence on the optimization parameters. An 
example is a chance constraint that expresses that the probability of overloading a line being less than a 
pre-defined small number, which follows from solving the power flow equations. The challenge is to 
model these constraints so that the problem is computationally tractable.  

Approach: In previous work [84], we used real-time control and optimal dispatch of traditional 
generators in electrical networks to pioneer the development of stochastic and robust optimization 
formulations with chance constraints. Instead of optimizing the output levels of renewable generators with 
mean forecasts, we developed a stochastic optimal power flow model that minimizes the expected 
generation cost under chance-constraints and ensure that the likelihood of transmission line overloads is 
below a small but non-zero probability. In this approach, we leveraged properties of the wind forecast 
errors and a simplified model of power flow (DC approximation) to derive a computationally tractable 
conic optimization problem. Within AMPS, we will continue this research direction. First, we seek to 
utilize more realistic models of electric power flows, even though these models introduce additional 
nonlinear complications in expressing implicit dependence on optimization parameters for robust and 
stochastic optimization. Second, we extend this approach to additional control schemes at other 
spatiotemporal scales, including the operation of electrical distribution networks, e.g., control of real and 
reactive power dispatch from storage in these networks. In both situations, we will develop novel, 
computationally tractable, conic derivations. 

Challenges of Reconstruction 

Figure 3 shows how our deconstruction/reconstruction DC/RC approach reduces complex engineered 
networks into classes of computationally feasible sub-problems based on analysis of the spatiotemporal 
scales and the primary applied mathematics pillars. This complexity reduction identifies the crucial 
couplings between these sub-problems and across spatiotemporal scales. Figure 3 also shows how our 
multifaceted, integrated approach describes a path for discovering relevant new models of increasing 
complexity that are addressed with the broad expertise available across the center. The structure in Fig. 3 
is informed by our DC/RC approach as we integrate and develop control and optimization algorithms by 
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reconstructing the Level 1 problems that are most closely coupled across spatiotemporal scales. Members 
of the AMPS team are already developing the six primary focus areas at Level 1 in the pyramid. These 
include coarse-scale network control [84], operations-based planning [42, 43], fine-scale network control 
[15, 16, 26, 57, 113-115], continuum/flow dynamics [6, 107], network cascades [37, 85], and fast network 
dynamics [99, 147]. Developing these individual areas is crucial for attacking design, control, and risk 
assessment for complex engineered networks. However, it is the integration of these areas into a logical 
framework that creates a set of applied mathematics toolboxes that are more powerful than the constituent 
pieces. Next, we describe how AMPS will pursue this integration. 

Level 2—Integrated Control and Design of Complex Stochastic Networks 

Problem: The need for operations-based planning motivates the discovery of new applied mathematics 
for solving nonlinear, discrete, multi-level optimization problems—a challenge that is amplified when 
control is embedded as a decision variable in a design problem. It is easy to envision that a distributed 
control strategy would find a particular network design to be optimal, whereas a centralized control 
strategy would find an entirely different design is required. Thus, it is important to co-design the control 
and network configuration to discover the optimal combined control and network design. Critically, this 
requires a novel integration of control algorithms and optimization algorithms. 

Challenge: In independent optimization problems, it is reasonable to expect that a single optimization 
strategy yields good results (mixed-integer optimization with Bender’s decomposition, column 
generation, etc.). In contrast, combined control and optimization problems are multi-level problems that 
may have very different and challenging structures requiring advances in the applied mathematics to find 
high quality solutions, e.g., advances in the relatively new field of hybrid optimization [148].  The 
challenge is to discover structural properties of classes of problems that lend themselves to being solved 
efficiently by different optimization strategies, e.g., constraint programming for feasibility problems, 
mixed-integer program for discrete optimization with tight linear relaxations, and semi-definite 
programming for problems with tight convex relaxations. Novel combinations of these strategies are 
required to solve classes of problems that exhibit two or more such structures.   

Approach: The AMPS Center will advance to Level 2 in this area by developing a new hybrid control-
optimization paradigm for problems that are currently intractable using existing approaches, e.g., co-
design of network control and topology. Our initial approach involves modeling control strategies 
(policies) as 0-1 variables and embedding them directly into multi-level optimization problems. A second 
approach relaxes this set of variables to allow the selection of multiple control strategies across 
spatiotemporal scales or operating modes, where the modes are selected through column generation. A 
third approach combines constraint programming with convex optimization [119] to produce a powerful 
new paradigm for solving optimization with difficult feasibility constraints such as chance constraints. 
There are compelling reasons to believe that combining approaches will prove to be effective, including 
recent work demonstrating that previously unsolvable scheduling (pure optimization) problems [149] can 
be solved by combining mixed integer programming with constraint programming and our own work in 
combining constraint programming with local search to solve network restoration scheduling [150-155].  

Level 2—Reduced-Order Models of Fine-Scale Network Dynamics and Control  

Problem: The ODE/PDE models from continuum/flow dynamics are powerful techniques for describing 
fine-scale networks where the large numbers of nodes are homogenized to create a continuous 
representation. However, significant mathematical difficulties arise when these models are combined with 
control schemes to create composite models for designing and analyzing fine-scale network controls, e.g. 
infinite dimensionality of the control, model parameter uncertainty, and dynamics which may have been 
ignored at the homogenization step. 

Challenge: New applied mathematics techniques are required to discover distributed, decentralized, and 
low-order control schemes and to analyze these schemes for control performance and stability guarantees. 
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Challenges in this process arise from model uncertainty from homogenization of PDEs and the need to 
include the myriad of new distributed devices of the fine-scale networks.  

Approach: The analysis of the PDE models provides significant insight into the dynamics of fine-scale 
networks.  It is expected that the continuum dynamics have a set of fast modes that are stable and decay 
rapidly and a smaller set of slow modes that are potentially unstable and need to be controlled.  We will 
segregate the fast and slow modes using spectral analysis to verify the damping of the fast modes and 
isolate the critical slow modes. Examples of slow modes include oscillatory and wave-like disturbances 
such as voltage oscillations caused by power flows interacting with the collective behavior of power 
electronics [57] and power flow-voltage waves caused by coupling to induction motor dynamics [107].  
Other slow modes are hysteretic in nature, e.g.,  collective behaviors associated with FIDVR [147].  By 
isolating the slow modes, we enable coarse-grained formulations in a frequency-wave vector space 
suitable for the design of low-order controls. Our approach incorporates model uncertainty and stochastic 
information by utilizing concepts from stochastic and robust control [156] in our new formulations 

Level 2—Emergency Monitoring and Control of Networks 

Problem: Fast dynamics can generate short-term, locally large deviations from the predictions of static 
network models. The deviations trigger local protective actions that are often not detected by network 
cascade simulations based on static network models.  These interactions elucidate the need for combining 
two very challenging subjects in applied mathematics–fast network dynamics and network cascades [157, 
158].  Efficient combination of these models will contribute a comprehensive computational, adjustable, 
and much needed toolbox for emergency control that currently does not exist [159]. 

Challenge: The disparity in time scales between models of fast dynamics and the quasi-static network 
models used in cascade simulations creates a significant challenge.  The computational expense of the 
dynamical simulations and stochastic nature of the cascades makes the direct integration of the dynamical 
simulations and cascade models computationally intractable.  However, fast dynamics must be included 
to yield an accurate and predictive model of cascading failures in complex engineered networks.  New 
applied mathematics methods are required to merge these two disparate models.   

Approach: We will address this challenge by bypassing the direct time simulations and instead integrate 
fast dynamics with cascade simulations using the data-driven methods of the Complex Systems pillar.  By 
monitoring ambient electrical grid frequency and voltage noise, we will create a large-scale, multi-
scenario database of pair-wise electromechanical-wave Green’s function responses that will be used to 
estimate the fast dynamics between all pairs of network nodes.  Our approach enables the rapid estimation 
of the fast dynamics at each node in the network following discrete cascading events such as the sudden 
removal of a transmission line or the emergency disconnect of a large generator.  Estimates of the 
dynamic excursion at each node allow the cascade simulation to efficiently scan for dynamically triggered 
failures that propagate the cascade farther.    

Levels 3 and 4—Higher Levels of Integration 

The Level 2 models discussed in the prior section are beyond the reach of current network analysis tools. 
Resolving these models requires coherent efforts from all the participants of AMPS. Nevertheless, the 
applied mathematics challenges of complex engineered networks are evolving and new challenges will 
arise. Levels 3 and 4 in Fig. 3 exist to ensure flexibility to meet such challenges and reduce risk. The 
solutions at Level 1 and Level 2 provide the fundamental tools to address emergent questions. The 
combinations at higher levels also provide a mechanism for transitioning the applied mathematics to tools 
that support DOE mission. For example, when the science of new instabilities matures and the science of 
EM wave diagnostics becomes computationally efficient, a full-scale stability analysis is feasible. Such a 
combination allows the extraction of qualitative understanding of how collective distribution effects, such 
as FIDVR voltage collapse and collective transmission systems failures (e.g., of the loss of synchrony 
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type), affect and interact with each other. Ultimately, the research outlined in this proposal provides 
foundational applied mathematics to bring the grand challenge of real-time simulation and monitoring of 
complex engineered networks, including the power grid, to fruition.  

Management Plan 

This large, multi-institutional project requires a strong management structure to maintain project cohesion 
and to build and maintain momentum. Here we outline our plans for managing the overall effort. 

Management Structure & Budget  

Management of the AMPS 
project will be shared among 
the team, including the 
Director, the Science Team 
co-Leads, Laboratory and 
University Leads, SciDAC 
Institute Liaisons, and Senior 
Personnel (Fig. 8 and Table 1). 
The Director, Michael 
Chertkov is responsible, along 
with Science Team and 
Laboratory leads, for overall 
project coordination, including 
organization of meetings and 
conference calls, tracking 
progress, and reporting to 
DOE Program Managers. 
Chertkov has demonstrated 
both strong scientific and 
organizational leadership. He 
has set the scientific direction of two LDRD projects (totaling $11 million over 6 years), including 
directing research by many students, postdocs, other LANL staff, and collaborating researchers. During 
these projects, he went well beyond stated requirements by organizing unique project reviews that 
brought together a diverse set of researchers into mini-conferences. These conferences helped to establish 
additional collaborative connections and stimulate discussions that resulted in concurrent DITRA/DOD 
and NSF funding. The most recent project on smart grids results in more than 30 publications in peer-
reviewed journals and conferences (over three years), and more than 10 invited talks, including a super-
session presentation at IEEE/PES and a plenary talk at SIAM/DS. The AMPS Center team is stronger 
because of connections made in this manner. Chertkov has organized 15 high visibility conferences, the 
most recent of which was a technical conference on mathematical advances for power grids, held May 21-
25, 2012. This conference was the culmination of the LDRD project on Smart Grids [160]. In consultation 
with the AMPS Center’s pillar leads, Chertkov will take on a similar role for this work, setting the broad 
scientific direction in the three pillars. He will take responsibility for overall project coordination, 
including managing the budget, reporting requirements, and tracking the scientific progress against 
project milestones via quarterly project meetings. Further, Chertkov will build a robust applied math and 
scientific community around complex engineered networks by continuing his outreach. He will 
disseminate the results of the AMPS Center and maintain and create new collaborative relationships by 
organizing seminars and conferences.  These seminars and conferences will provide an opportunity for 
applied mathematicians and other scientists to interact with the AMPS Center  

 

 

Figure 8. Breakdown of the team and leadership between the three 
pillars of AMPS. 
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Table 1. AMPS’s Center annual budget breakdown by institution and applied mathematics pillar.  

Institution Lead Director 
($K) 

Complex 
Systems 

($K) 

Control 
Theory 

($K) 

Optimization 
Theory 

($K) 

Total 
($K) 

LANL Chertkov 250 525 125 450 1,350 

SNL Pinar  200  250 450 

LBNL Callaway  100 100  200 

Cal Tech Low  100 200 100 400 

Columbia Bienstock   100 200 300 

Berkeley Poolla   275  275 

Stanford Boyd    200 200 

Michigan Hiskens  100 100  200 

MIT Turitsyn  125   125 

 

The Science Team leads are 
responsible for tracking progress 
on relevant tasks for each applied 
mathematics pillar. They also 
form a committee that will help 
with decisions on scientific 
direction and will communicate 
with each other on shared tasks. 
In the complex system pillar, 
Chertkov and Hiskens form the 
leadership; for the control theory 
pillar, Low and Backhaus form 
the leadership, and Bent and 
Bienstock lead the optimization 
pillar. Laboratory and University 
leads are responsible for tracking 
budget and deliverables for all 
work performed by their 
institutions and will ensure 
timely reporting. The Science 
Team leads are also responsible 
for organizing annual workshops 
and meetings to reach out to the 
greater scientific community. Senior personnel will not only perform work, they will also advise students 
and postdocs on the project. The team’s focus on student and postdoc education ensures that the impact of 
the AMPS Center extends beyond its duration, as the center will train the scientists needed to contribute 
in this area over the next 20-30 years. Table 1 demonstrates how the annual funding is allocated between 
applied math pillars and institutions. Annual funding for individual science topics is listed with the 
Science Team leads, and annual funding for each institution is listed with the Lab and University leads. 
Annual funding for Senior Personnel is specified in the budget documents.  

Figure 9. Pre-existing collaborations between AMPS team members. 
A line represents collaboration in the form of a paper, a student, or a 
postdoctoral researcher 
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Project Coordination 

Success of AMPS depends critically on the strength of the partnerships formed between participating 
complex systems, control, and optimization scientists. This partnership is natural, as many of the team 
members have worked together previously and are working together on other projects (Fig. 9). We 
present here additional mechanisms for maintaining project cohesion in a distributed multi-institution 
project. Project managers and science team leads will coordinate regular conference calls for sharing their 
latest results and planning of upcoming collaborations and visits. When new expertise is required, 
relevant researchers outside of the team will be invited to share their work at one of our seminar series (at 
LANL, Caltech, and Berkeley). These seminars will occur on a monthly basis. On a quarterly basis, DOE 
program managers will be invited to join the calls as an informal form of project reporting. Physical 
meetings will take place periodically, taking advantage of existing conferences or meetings when 
possible. Dedicated project meetings for all project participants will occur at least annually in the form of 
workshops and more frequent if significant fractions of people are present at a large meeting (e.g., 
SIAM/DS, CDC, IEEE PES, INFORMS). Other meetings will be scheduled as needed to address specific 
issues. 

Our primary means 
of collaboration is 
through the team’s 
students and 
postdocs. Students 
funded under 
AMPS will spend 
summers at CNLS, 
interacting with one 
another and LANL 
scientists. Many of 
the post-doctoral 
positions will be 
joint appointments, 
which will ensure 
inter-institutional 
collaboration. 
Indeed, this team’s 
existence is a 
product of our 
recent success 
using this structure 
to promote 
collaboration and 
group cohesiveness. 
We highlight two examples of this collaboration. First, Sean Harnett a graduate student at Columbia 
under direction of Bienstock, spent summer 2011 at LANL working on incorporating the concept of 
robustness in optimization of power flows. This developed into collaboration of Chertkov with Bienstock 
and Harnett on stochastic and robust OPF with probabilistic (chance) constraints. Harnett will spend 
summer 2012 at LANL, extending the subject that now forms the basis for his Ph.D. thesis. Second, in 
September 2011, Bent (LANL) hired Annarita Giani, formerly a postdoc at Berkeley under the direction 
of Poolla, as a postdoctoral researcher. In just six months, this collaboration has led to a conference paper 
on power grid security [61] and two (nearly completed) journal submissions.  

Metric for Success (Deliverables) 

Figure 10. AMPS Center Project timeline. 
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There are several key measurements for project success. First, for any science project, peer-reviewed 
publications are a critically important metric; publications in applied math, network science, statistics, 
control theory, operations research, and optimization theory are expected from this project. As one of the 
projects goals is creating and building a set of analysis and mathematical tools, as well as novel control 
and optimization algorithms for complex engineered networks, we set aggressive publication targets of 
five per year for each mathematics areas. Second, we will issue annual reports at the end of each fiscal 
year. The reports will be delivered and presented to ASCR and DOE program offices, such as OE, to 
ensure the results of this project have impact on DOE mission. Third, at the conclusion of the fourth year 
of the project, the annual report will include results of impact outside of the power grid application 
domain, demonstrating that the new applied mathematics of AMPS has far-reaching impacts. Fourth, as 
the power grid is evolving rapidly and there are numerous opportunities for “game changing” 
technologies to be introduced, we emphasize flexibility in our metrics, as noted in the previous discussion 
of Levels 3 and 4. A section of the annual reports will survey emerging mathematical challenges, discuss 
how the existing program plan will address those challenges, and suggest modifications to the research 
agenda of AMPS to handle those challenges. Our fifth metric of success is a demonstration of 
collaboration outside the confines of the AMPS Center. We have the unique opportunity to exchange 
ideas with the SciDAC institutes and other ASCR projects at LANL, SNL, and LBNL, as well as 
Columbia. These include Bienstock’s Reconfiguring Power Systems to Minimize Cascading Failures: 
Models and Algorithms project (ASCR); Germann’s Exascale Co-Design Center for Materials in Extreme 
Environments (ExMatEx) and Algorithms (ASCR); Najm’s QUEST—Quantification of Uncertainty in 
Extreme Scale Computations; Hagberg’s Dynamics through randomness: New mathematical approaches 
for complex networks (ASCR); Pinar’s Scalable methods for representing, characterizing and generating 
large graphs (ASCR), and Debuscherre (PECASE Early Career). Success here is measured through joint 
papers and reports. Finally, in the last year of the project we will provide a transition plan for the program 
offices of DOE (such as OE) to adopt and use the science developed under the project. 

Project Timeline 

The primary tasks of the AMPS Center are described in Figs. 2 and 3. We will work on all three major 
project pillars for the duration of the project, following the time line sketched in Fig. 10, but also we will 
adjust as needed after receiving reviews, organizing workshops, and receiving ASCR/DOE guidance. 
Work will begin on different tasks, shown in Fig. 2, at different stages of the project, moving from the 
Complex System pillar to the Control Theory pillar and Optimization Theory pillar (in this order), and 
then returning back and extending formulations when the next level of understanding and sophistication is 
achieved. As our project continues (beyond year 2), we will work on progressively more complex/multi-
faceted problems, advancing up the levels shown in Fig. 3.   Our progression up the pyramid of Fig 3 is 
adaptable to an environment of changing resources.   

Conclusion 

This proposal describes our vision for developing novel applied mathematics for impact in complex 
engineered networks, such as power grids. This proposal has identified three pillars of applied 
mathematics: complex systems, control theory, and optimization, which require basic mathematical 
advances to meet the future needs of engineered networks. The advances include crosscutting 
technologies in the fields of fast network dynamics, continuum and flow dynamics, network cascades, 
coarse-scale network control, fine-scale network control, and operations-based planning. The key 
contributions of this AMPS Center are the development of general applied mathematical solution 
concepts in each of these areas, and mathematically sound methods for decomposing and reconstructing 
problems that cross-temporal and spatial boundaries. AMPS will provide the foundational applied 
mathematics to bring the grand challenge of real-time simulation and monitoring of the complex 
engineered networks, including the electric power grid, to fruition 
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