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Abstract
Los Alamos National Laboratory: Applied Mathematics for Power Systems (AMPS)
PI: Michael Chertkov, Los Alamos National Laboratory, chertkov@lanl.gov, (505)-695-5684

Senior Investigators: Scott Backhaus (LANL), Russell Bent (LANL), Daniel Bienstock (Columbia), Jose
Blanchet (Columbia), Stephen Boyd (Stanford), Duncan Callaway (LBNL), Richard Chen (SNL), Bert
Debusschere (SNL), John Doyle (Caltech), Aric Hagberg (LANL), lan Hiskens (Michigan), Steven Low
(Caltech), Habib Najm (SNL), Feng Pan (LANL), Ali Pinar (SNL), Kameshwar Poolla (UC Berkeley),
Nikolai Sinitsyn (LANL), Konstantin Turitsyn (MIT), Pravin Varaiya (UC Berkeley)

Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is
rapidly transforming electrical power networks by crossing previoudly distinct spatiotemporal
scales and invalidating many traditional approaches for designing, analyzing, and operating
power grids. This trend is expected to accelerate over the coming years, bringing the disruptive
challenge of complexity, but also opportunities to deliver unprecedented efficiency and
reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable,
and solve emerging mathematics challenges arising in power systems and, more generaly, in
complex engineered networks. We will develop foundational applied mathematics resulting in
rigorous algorithms and simulation toolboxes for modern and future engineered networks.

The AMPS Center deconstruction/reconstruction approach “deconstructs” complex networks
into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century
modeling of engineered networks. These sub-problems are addressed within the appropriate
AMPS foundational pillar—complex systems, control theory, and optimization theory—and
merged or “reconstructed” at their boundaries into more general mathematical descriptions of
complex engineered networks where important new questions are formulated and attacked.
These two steps, iterated multiple times, will bridge the growing chasm between the legacy
power grid and its future as a complex engineered network
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Project Narrative
I ntroduction

The Applied Mathematics for Power Systems (AMPS) Center’s approach is built around three
applied mathematics pillars: complex systems theory, control theory, and optimization theory (Fig. 1).
These pillars are inherently interrelated by emerging problems in complex engineered networks and other
areas. Different approaches that ignore one or more of these pillars are incomplete because they disregard
fundamental couplings among the three pillars that are required to address these problems. These
incomplete approaches would result in self-consistent but myopic mathematical formulations. Instead, the
AMPS approach integrates these pillars through an iterative, multifaceted center. A full integration of
these three pillars produces the necessary mathematical tools to achieve many far-reaching goals,
including, but not limited to, a fully automated, real-time monitoring, analysis, and control system for
large-scale electric power grids.

Complex Systems—The AMPS Center’ s approach begins with complex systems theory, where the distinct
scales of the complete network are specified and the basic static, dynamic, and stochastic phenomena are
analyzed. We iteratively partition, or “ deconstruct” the network and its processes into non-separable
gpatiotemporal scales and identify separate sub-problems and the crucial couplings between them. Several
methods of model reduction are applied at this stage, e.g., smoothing over spatially discrete network
flows/injections by conversion of network flow models to Ordinary (ODE) or Partial Differentia
Equations (PDE) [6, 7], construction of hybrid dynamical system representations [8], and rare event
analysis to identify a small number of the most probable, yet damaging, network fluctuation modes out of
a continuous space of possibilities [9-12]. Models underlying these methods and phenomena determine
scale-specific optimization and control sub-tasks and formulate important practical engineering problems
in a mathematically sound form. These well-formulated control problems are passed to the control theory
pillar.

Control Theory—The structure of the complex network formulations is influenced by state of the art
control concepts. The mathematical building
blocks of control theory must also develop to

Complex Systems

rigorously handle new and difficult problems, Range of spatio-temporal
. - scales, dynamic and
e.g., large-scale, distributed control problems stochastic, UQ, model
N N - - H reduction, rare events,
with hierarchical constraints that require Blongins Siyionele ol

actions over a wide range of time scales with
varying degrees of information available.
Problems that are particularly large, discrete,
nonlinear, and/or constrained are passed to
optlmlzatlon theory Mndel-pr(::c::;?s’tochamm. Opﬁmization :
Optimization Theory—Although related to robust, distibuted, sl i
constraints, constrained, distributed,

control theory, optimization theory is better normal s emergency, b i
suited to address Comp“cated non“near, uman in the loop

discrete problems. Their size and structure

requires advances in the mathematical _. _ , .
foundations of optimization theory and Figure 1. Thethree applied math pillars of the AMPS

dgorithms  to  improve  computational Center and the iterative flow of model devel opment and

efficiency and accuracy, e.g., novel relaxation solution.
methods and approximation techniques [13, 14] that produce effective bounds in practicable CPU time
and new methods for multi-level, robust, and stochastic optimization with chance constraints.

Iterative Approach—The three pillars of the AMPS Center are implemented in a hierarchical and iterative
manner. During the natural iterative process, applied mathematics experts work across the pillars to
jointly develop solvable formulations that are accurate and appropriate descriptions of the network. After
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the partitioned sub-problem formulations are analyzed and solution methods are developed, another
iteration occurs as these models are rejoined, or “ reconstructed,” using the couplings discovered by the
complex systems analysis during the first pass through AMPS. The first-pass models and couplings are
revisited and reduced further to integrate them into larger and more general models capable of afuller and
predictive description of the complex engineered network. These iterations are carried out several times
as the research progresses towards a comprehensive network description. The AMPS Center’ s approach
of breaking complex engineered networks into irreducible sub-problems and identifying cross-scale
couplings provides several important properties. First, as earlier work by the AMPS team demonstrates,
the individua sub-problems, although very challenging, are manageable and allow a feasible solution
method [14-19]. Second, solutions to sub-problems are combined and reconstructed; and model reduction
is applied again to derive a more challenging composite model. Finally, the AMPS Center's
“deconstruction/reconstruction” approach, done in multiple iterations and with feedback, provides a
natural set of goals and milestones against which our success is measured. The AMPS approach is in
sharp contrast to existing “software” based approaches that couple complicated problems relying on
subject matter expertise, rules-of-thumb, or convenience [20-24]. Instead, AMPS offers a mathematically
sound approach to problem-driven model reduction and reconstruction.

The AMPS Center leadership (Fig. 8) is organized around the three applied math pillars. Michael
Chertkov, who has 12 years of experience as a research scientist at LANL, will serve as Director.
Chertkov’ s past project leadership includes two directed research projects with atotal of $11M in funding
over the last 6 years. We use a co-lead structure that pairs a LANL and non-LANL researcher for each
pillar. One of the primary tasks of the co-leads is to ensure that the researchers within each pillar are
collaborating closely and interacting across pillars and to monitor the progress of this crosscutting
research. Each co-lead is responsible for organizing annual meetings of the team, as well as quarterly
video teleconferences. Hiskens and Chertkov will lead the complex system pillar. Hiskens leads ARPA-E
and OE efforts at the University of Michigan. He also has extensive experience in the power engineering
industry and in academiain building complex system models of electric power systems [25-31]. Low and
Backhaus lead the control theory pillar. Low is arecognized leader in control theory [32-34] with current
experience leading DOE mission-related efforts, as exhibited by his ARPA-E project Scalable Real-time
Decentralized Volt/VAR Control. Backhaus leads LANL’s DOE-funded collaboration with New Energy
and Industrial Technology Development Organization [35] that focuses on design and demonstration of
coordinated control of diverse sets of resources for local mitigation of photovoltaic fluctuations.
Bienstock and Bent lead the optimization pillar. Bienstock has pioneered development efforts in new
optimization techniques for complex power system problems [36, 37] with his ASCR project
Reconfiguring Power Systems to Minimize Cascading Failures: Models and Algorithms. Bent is Pl or Co-
Pl on three LANL directed and exploratory research projects related to power grids (including
Chertkov’s) and leads optimization efforts for the National Infrastructure Simulation and Analysis Center
[38].

The AMPS Center team is composed of a core group of LANL researchers and a strong team of
participants from academia and other national laboratories. The LANL researchers are centered at
LANL’s interdisciplinary Center for Nonlinear Studies (CNLS) and are supported by LANL's major
ingtitutional investments in Information Science and Technology. The LANL group, and a large fraction
of the external collaborative connections, grew naturally out of a LANL-directed research project on
Smart Grids led by Chertkov during the past three years. This group of researchers began the
development of new mathematical methods for the electrical grid by attacking problems that bridge
gpatiotemporal scales and making a number of significant contributions in probabilistic network risk
measures [9, 39], data-driven network models [40], continuum models of nonlinear networks [39], control
of distributed resources [15, 16, 41], and new algorithms for operations-based network expansion [42,
43].
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One of the LANL team’s key strengths is aggressive outreach to complementary expertise necessary to
solve emergent mathematics problems. This approach carries over to the AMPS Center, which gathers the
additional expertise in complex systems, control theory, and optimization theory needed to develop a
comprehensive applied mathematics approach to complex engineered networks. An organizational chart
(see the Management Plan) demonstrates the alignment of researchers with the AMPS Center. The
Columbia (Bienstock), SNL (Pinar, Chen), Stanford (Boyd), LANL (Bent, Pan), and Ca Tech (Low)
groups bring state of the art expertise in modern optimization theory, including contingency analysis [9,
36, 44-47], new message-passing frameworks for distributed optimization and control [48], stochastic
optimization [49], and novel convex relaxations of previously intractable optimization problems[13]. UC
Berkeley (Poolla, Varaiya), LBNL (Calaway), Cal Tech (Doyle, Low), and Michigan (Hiskens)
contribute significant expertise in control theory, including risk-limiting generation control [50-60]
analysis of cyber-physical control [61, 62], theory of energy markets [63-65], and statistical modeling and
control of electrical loads [33, 34, 66-77]. LANL (Chertkov, Hagberg, Sinitsyn), Columbia (Blanchet),
MIT (Turitsyn), and SNL (Najm, Debusschere) bring expertise in complex networks, including rare
event analysis [11, 12, 78-83], robust and stochastic network control with chance constraints [84],
cascading events on networks [37, 85], and uncertainty quantification [86-89].

Because the expertise required to solve the challenges of the future engineered networks does not exist at
a single institution, this proposal organizes the recognized leaders in each of these fields into a tightly
integrated team. This team combines expertise in core applied mathematics with experience in advancing
applied mathematics to significantly
impact complex engineered networks.
Such combined experience is difficult to
find and takes many years to nucleate.
Over the last several years, the AMPS
team members dready developed a
productive, cohesive relationship: they
have submitted joint papers, held
multiple visits, and exchanged students
and postdocs. Collaborations on papers,
proposals, and student exchanges are
indicated by Dblue lines in the
collaboration diagram in Fig. 9 in the
Management Plan. The AMPS team is
well positioned to have an immediate
impact.

The AMPS Center proposed budget
includes resources for 50% commitment
by the Director, ~35% research
commitment by the pillar co-leads, and
25-35% research commitment by the key
staff. LANL’s interdisciplinary CNLS,
which has a long track record of

organizing meetings and conferences Figure 2. The six representative groups of applied
(10-15 per year), has committed to Mathematics challenges extracted fromthe pool of complex

supporting the conference agenda of engineered network problems and how they crosscut the three
AMPS, and will support three post docs pillars of AMPS. The arrows show spatial and temporal

and three to five student internships in dimensions.

the related area of complex networks (see Appendix). As the project evolves, scientific problems are
solved, and new problems arise. Risk mitigation is performed by realocating funds for postdocs and
students among the key staff to achieve flexibility in scientific emphasis.
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Connection to DOE Mission The AMPS

Center strongly supports the DOE mission.

In particular, this proposal is aligned with e

the mission of the Office of Electricity Level 4
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i . X Hetwurk Control Planning Metwork Control Dynamics Cascades Dynamics
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. . Commitment, emergency and
Research (ASCR) Applied Mathematics | wissegs || euces avar J
Program [91, 92], including algorithms for Level 1

solving large-scale, nonlinear optimization

problems and uncertainty quantification in Figure 3. A “reconstruction” roadmap for the applied
complex engineered networks [92]. The mathematics challenges identified by the AMPS Center. The
AMPS Center provides a bridge between roadmap shows the development of a series of applied
basic applied mathematics research and mathematics toolboxes and their connection to complex
the emerging needs of OE. engineered networks

Resear ch Plan
M ethodological Overview

It is impossible to create a monolithic numerical model of complex engineered networks that spans all
spatiotemporal scales and includes all of the relevant phenomena. Instead, the AMPS Center will develop
interrelated models that yield a high fidelity representation of complex engineered network behavior and
provide the physical intuition, insight, and predictive power crucia for designing, controlling, and
assessing risk in these networks. The AMPS Center methodology is built on three applied mathematics
pillars—theory of complex systems, control theory, and optimization theory—that are implemented in a
“deconstruction-reconstruction” (DC/RC) approach.

In their work over the last several years, AMPS team members used their expertise in complex systems
analysis to identify the irreducible classes of spatiotemporal scales associated with the electrical grid and
the fundamental couplings between these classes [9, 14-16, 39]. We transformed the unintuitive collection
of superficialy unrelated electric grid functions (shown on the lowest level in Fig. 2) into rigorous classes
of phenomena at the core of applied mathematics. Each of the representative classes contains several
phenomena from the lowest layer, interrelated by fundamental spatiotemporal overlaps in their
mathematical description. The classes discussed in this proposal are fast network dynamics, continuum
and flow dynamics, network cascades, coarse-scale network analysis, fine-scale network analysis, and
operations-based planning. Additional classes are added when the need arises.

Each of the six classes defines a fundamental applied mathematics problem. By anayzing the
mathematical structure within each class (or phenomena within the class), we map the class onto the best-
suited applied mathematics pillar: control theory, optimization theory, or additional complex systems
analysis. This breakout is shown along the “vertical” axis in Fig. 2. In general, problems involving
continuous time and mostly continuous variables map to the control theory pillar, whereas those problems
involving discrete time and discrete variables map to the optimization pillar. Nevertheless, the breadth of
the phenomena within each class results in crosscuts between the pillars. This mapping in Fig. 2
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represents the AMPS Center’s initial deconstruction of complex engineered networks. Our vision of
complex engineered networks will evolve as we advance the state of the art within each pillar. Our first
step in this evolution develops each of the six classes individually to address their underlying applied
mathematical challenges and their connection to existing and future problems in complex engineered
networks (as identified by the phenomena within each class). If the challengesin any of the classes prove
too great, the deconstruction approach is carried out further until classes of tractable problems are
reached.

The individual phenomena, or even individual classes, are initialy attacked by single researchers or
groups of researchers from the same applied mathematics pillar. Then researchers from different pillars
will collaborate to reconstruct the individual phenomena and classes to create more general, descriptive,
and predictive models of complex engineered networks, justifying the crosscutting research that is only
supportable by a multi-disciplinary center such as AMPS. Our reconstruction methodology is illustrated
pictorialy in Fig. 3. The base of the pyramid is composed of the six applied mathematics problems
identified by the deconstruction in Fig. 2. Once these problems are well formulated and computationally
tractable, they are reconstructed in a pair-wise fashion on the second level in Fig. 3. The choice of the
pairs is dictated by which reconstructions are most useful for the complex network under study and is
revisited as priorities change. The combinations at the second level create new applied mathematics
toolboxes that are critically important for the evolution of complex engineered networks. Higher levels of
reconstruction yield models of complex engineered networks that provide revolutionary capabilities such
as real-time simulation and monitoring of the complex engineered networks. Based on our work over the
last several years, we expect that the problems on the bottom layer are technically feasible; however, the
level of technical risk increases at each layer as we move up the pyramid though the series of pair-wise
reconstructions. The higher risk isin the upper levels is compensated by the higher reward of success at
these levels.

The Fundamental Example of a Complex Engineer ed Network

The AMPS Center is focused on key applied mathematics contributions discussed earlier. These
contributions are motivated through application to the electrical power grid—arguably the most complex
engineered network. The power grid has relied on power engineering best practices and subject-matter
expertise to define the appropriate separation of the spatiotemporal scales, but as the grid evolves, many
of these separations are quickly losing relevance and utility due to increasing complexity. Starting at the
lowest level (shown in Fig. 2), the full range of electrical grid phenomena spans a huge range of
spatiotemporal scales. The range of temporal scales is roughly nine orders of magnitude—from tens of
milliseconds (i.e., a few AC cycles) to many years. The range of spatial scales is four to five orders of
magnitude—from ~10-100 m (i.e., an individual node in an electrical distribution circuit) to the 1000-km
national scale of large interconnections. Within this spatiotemporal domain lie phenomena as diverse as
1) grid transients that propagate over 1000-km interconnections in seconds, 2) decade-scale network
expansion planning ranging from 1-km distribution circuits to 1000-km interconnections, and 3)
consumer demand response acting on the second to hour scale in 1-10 km distribution networks. Using
these and other examples from the power grid, we discuss in detail a subset of the problems and applied
mathematics challenges arising from aloss of separation of space and time scales and the AMPS Center’s
approach to addressing the challenges.

Deconstruction—Complex Systems Theory Pillar and Its Challenges

Even when the basic nonlinear evolution equations of a network node and its interaction with other nodes
are well known, the aggregate behavior of these networks is often unpredictable. For example, the time
dependence of the network injections may be highly uncertain or network parameters and/or nodal
injections may not be measured. Further, networks with a large number of nodes can show emergent
behavior that is not obvious from the governing equations. The key mission of the complex system pillar is
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to develop general complex system models at the appropriate level of network detail necessary to isolate
and analyze the relevant static, dynamic, and stochastic phenomena.

The complex system pillar crosscuts and feeds the control and optimization pillars of AMPS. It is utilized
in al of the individual problems at the lowest level of the pyramid in Fig. 3. Solving these problems
requires three different complex systems approaches. First, when network parameters are known or can be
reasonably estimated but the network injections are uncertain, alternative mathematical descriptions are
required to describe the probabilistic effects of this uncertainty on the network. Second, when there is a
high degree of uncertainty in network parameters or they are not measured, data-driven methods are
needed to extract static, dynamical, and stochastic models from the available data. Third, an exact
description of the lowest levels in a hierarchical network may not be required, but reduced-order models
of these lower levels must appropriately describe the internal network structure, preserve any emergent
behavior of the real network, and predict the interaction with the higher-level network.

Complex Systems—Coar se Scale Network: Contingency Analysisthrough Distanceto Failure

Problem: Injections a network nodes are
often uncertain, e.g., generation produced by
wind farms in power systems, but
probability distribution over the space of the
uncontrolled injections of the network may
be known or reconstructed from
measurements by Uncertainty Quantification
(also Machine Learning) techniques [93-95].
It is then natural to ask—what are the most
probable states in the space of uncontrolled
injections that cause falure? The
dimensionality of this space is very large;
methods are needed to efficiently search and
guantify the distance to and likelihood of
rare, yet most probable failure modes.

f(S)=Joint probability distribution

of forecast errors. Instanton directions

Figure 4. An instanton measures the distance and
direction from the most probable configuration of the
uncertain resources to the boundary of the feasibility
domain in the space S of fluctuating network injections.
The instanton also quantifies the probability of
encountering failure along this direction.

Challenge: Searching through high-dimensional spaces of probability distributions for the most probable
network failure mode is often intractable, but the properties of the boundary between the feasible and
infeasible regions in the probability space depend on the mathematical structure of the network flow and
the network control equations. The applied mathematical challenge is how to exploit the structure of these
equations to simplify the search and devise computationally tractable algorithms.

Approach: For linear power flow models of electrical networks, the feasibility domain is a polytope in a
multi-dimensional space of parameters characterizing renewable resources. The structure of this polytope
depends on the spatiotempora properties of other components in the network. For example, when the
controllable generation is adjusted via secondary control [96], the output of these generators are rescaled
to maintain net power flow balance. The resulting polytope is tractable in the sense that it has as many
facets as the number of linear inequalities defining the feasible region, i.e., twice the number of edgesin
the system. In previous work [9, 39, 97], we exploited this structure to develop an “instanton” search
algorithm based on approaches from mathematical physics that search for arare but important instance of
interest in huge probability spaces [98] (Fig. 4). As we showed in [10], the tractability property is the key
to resolving the resulting inference (maximum a posteriori) problem exactly and efficiently.

AMPS generalizes this methodology to a number of other challenging problems in the complex network
domain. Our first step extends the instanton approach to more realistic nonlinear power flow models and
incorporates a broader range of feasibility conditions, including voltage collapse [6, 7] and loss of
synchrony [99]. Other generalizations include extending the methodology to a spatially continuous
setting, formalized in terms of spatial ODEs [6, 7], where the network is treated as a one- or two-
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dimensional inhomogeneous medium. Our more challenging extensions will include dynamical failures of
the network at different temporal and spatial scales. Connecting to current electrical-grid operating
practices, the instanton methodology fundamentaly extends the commonly accepted N-1 contingency
(robustness) analysis [96]. Like N-1, it warns of potentia future operational trouble, but it does so in a
much broader and more ambitious setting by accounting for fluctuations in resources and dynamics. We
will use the results of our approach to formulate objectives for the failure-avoiding schemes of the control
theory pillar and risk-sensitive formulations of the optimization theory pillar.

Complex Systems—Fast Networ k Dynamics; Data-driven Models

Problem: Large, complex engineered networks that span thousands of kilometers may support transient
wave propagation initiated by a disturbance at one of thousands of nodes, e.g., fast-propagating electro-
mechanical dynamical transients launched by the loss of a large electrical generator. Direct time
simulation of these waves may not be feasible because the network parameters cannot be updated at arate
sufficient for near real-time simulation. Methods are needed to estimate dynamical response with large
parameter uncertainty.

Challenge: System identification via purposeful probing of the network can provide estimates of the
dynamical responses, but most complex engineered networks are critical infrastructure and such probing
interferes with network reliability. The applied mathematical challenge is to develop real-time, model-
independent descriptions of the network dynamics using ambient network noise collected during normal
operations, e.g., using Phasor Measurement Unit data from the electrica grid [100].

Approach: System identification methods [101] are typically used to extract dynamical model parameters
via purposeful probing or by leveraging noise in dynamical systems. If all the parameters are identified,
the resulting model is used to predict dynamics or for system control. However, large electrical grids can
have over 100,000 dynamical parameters. Even if all the parameters could be identified, the speed of the
disturbance propagation and the stochastic nature of future electrical grid are unlikely to allow enough
time for computations to predict the impact of al possible disturbances. In previous work [40], we
demonstrated how online analysis of electrical grid noise data from modern grid sensors can be used to
estimate the dynamical directed sensitivity between pairs of network nodes. These pair-wise responses, or
pair-wise Green functions [40], are used to forecast network-wide impacts of an initialy localized
disturbance. These data-driven methods are fast because they bypass the model construction and
simulation stages of dynamical prediction.

The AMPS Center will extend these techniques by developing new mathematical methods aimed at
solving systems of inhomogeneous linear ODESs to deconstruct the Green functions and resolve the
problem of learning the hidden network parameters from available data. We will utilize these new
representations of network dynamics in an automatic or semi-automatic form for new models of control.
We will apply similar techniques to extract the dynamical models of aggregate, reduced-order models of
distribution networks (see below). The lack of such models is a magjor uncertainty in assessing the
dynamical stability of electrical grids. We will leverage our expertise in analysis of uncertain ODE
models [86-89], modd reduction [102, 103], and compressive sensing [104, 105] to quantify the
uncertainty, thereby enabling the control theory and optimization theory pillar activities that require these
reduced model representations.

Complex Systems—Continuum/Flow Dynamics: ODE/PDE M odelsfor Emer gent Behavior

Problem: Anaysis of the eectrical grid generaly focuses on detailed models of generation and
transmission, with connections to the distribution network commonly represented by deterministic,
aggregate load models. Such representations are notoriously inaccurate [106] and lead to large
uncertainties in dynamical models of transmission networks. In addition, these models are completely
inadequate as distributed generation grows and loads become actively controlled. More sophisticated

122



Applied Mathematics to Power Systems LANL

models are needed to combine higher fidelity models with the reality that the composition of distribution-
level devicesis continually changing, and thus can only ever be known approximately.

Challenge: The high density and large number of devices in distribution networks preclude the detailed
component-level modeling used in transmission network models. A fundamentally different approach to
distribution-level models is required to capture the interactions within the distribution network and the
single-point interaction with the transmission network while avoiding parametric details that are
impossible to ascertain. Figure 5 gives an
example of how complex the single-point
interaction can become.

Approach: In previous work [6], we
derived abstract models of distribution
networks using ODEs that resolved many
individua components (e.g., loads) in an
aggregated, spatialy continuous fashion.
We have also derived PDE versions of
these models that capture both the
continuous spatial and tempora behavior
of these systems. Rigorous and consistent
derivation of ODE/PDE models from the
spatialy discrete models is a challenging
task. It involves homogenization in space

Gen2 MW (pu)

to account for disorder in characteristics of

lines, loads, and generation with a minimal
number of key parameters while not losing
the mathematical description of important
constraints on device operation [15]. In
addition, stochastic representations are
needed to account for temporal uncertainty.
The initial ODE/PDE models we
developed in [6] are superior to discrete-

Gent MW (pu)

Gen2 MVAr (pu)
Figure 5. Power injection region for a simple three--bus
network demonstrating the high degree of complexity, even
for such a simple system. The projection to the left shows an

elliptical shape, which is the space of all possible
combinations of real power injections for two of the system
buses. The projection to the rear shows a donut shape; it is
the space of all possible combinations of real and reactive
power injections at one of the buses.[ 3]

element models for capturing dynamic

interactions and emergent behavior. Examples include Fault-Induced Delayed Voltage Recovery
(FIDVR) that manifests as two distinct, overlapping, stable solutions to an ODE model of a distribution
network [107] and limit cycle behavior attributed to time-dependent interactions between the distribution
grid and the power electronic controlsin network with even relatively small amounts of solar PV [57].

The AMPS Center will extend our previous work by creating comprehensive ODE/PDE models that
incorporate the different devices and controls that are making inroads into electrical distribution networks,
e.g., PV systems, eectric vehicle charging, and frequency responsive loads. The interaction of new
components and sophisticated controls will generate a richer set of emergent behaviors in future
distribution grids; these collective behaviors will impact the higher-level transmission grid. This was
illustrated in [7], where emergence of multiple competing and dynamically stable low voltage solutions in
a feeder with distributed generation was discovered. We will use spectral analysis technigques to isolate
and analyze these behaviors, creating formulations that can be used by the control theory pillar to manage
them. Our ODE/PDESs approach will be computationally tractable and easy to adjust, making it the only
reasonable approach to model such emergent phenomena.

Solution M ethods |—Control Theory and Its Challenges

The future controls of complex engineered networks are fundamentally different from today in several
ways. Firgt, to gain the flexibility needed to integrate stochastic network injections, future controls will
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reach deep into fine network scales and control many millions of small injections, instead of the few
thousand, high-level large injections controlled today. Second, future complex engineered networks will
be subject to far greater local and globa fluctuations, and fast emergency control actions intended to
protect locally may lead to an unintended cascade of additional control events that disable the network
globally. Sgnificant advances in control theory that enable scalable, coordinated control of millions of
distributed assets and incorporate global situational awarenessinto local protective control decisions are
the key missions of the AMPS control theory pillar. Problems of interest include developing new methods
that provide performance guarantees in aggregated or autonomous distributed control frameworks where
control isrequired over different time scales with different levels of information, e.g., slow control modes
where centrally communicated information is available to fast emergency control with loca information
and some inferred global information. Developing adaptive controls is also important because failures,
corrective actions, or network expansion can cause network structural changes. To address these
problems, we propose novel control schemes that control large numbers of devices with a small number
of signals, PDE formulations of control that provide robust guarantees on performance, and incorporation
of rapid smulation of global network behavior into local protective control decisions.

The control theory pillar is strongly connected to the complex systems and optimization pillars. The
complex systems pillar partitions complex network models into irreducible spatiotemporal couplings that
yield reduced-order models. Control theory is the mechanism by which controls are designed and
analyzed to extract the desired behavior from these models. Advances in control theory enable the
analysis of more difficult models, thereby driving the complex systems pillar to address more difficult
problems. Models that are too large or involve difficult nonlinearities are formulated in control theory, but
are solved in the optimization pillar.

Control Theory—Network Cascades. Modeling and Controlling Undesired Propagations

Problem: Emergency control of complex X
networks is traditionally performed at the ?
local level to provide fast response to

initially local problems, eg., a loca

network overload. These automated

control actions are designed to protect the

network in the immediate area, but lack

of globa information and situationa
awareness can lead to poor globa
outcomes, such as the initiation of achain

of cascading local actions that disable the

network globaly [108, 109] (Fig. 6).

There are a small number of specialy '-

designed protective schemes at critical Figure 6. Smulation of the 2011 San Diego cascading black
locations in the electrical grid that out. The green lines are operating normally. The blue lines
incorporate global information via werethelinesthat tripped. Red, orange, yellow, white are
“hardwired connections.” Nevertheless, linesthat were progressively more overloaded. Details of the
the increasing level of fluctuations from approach are found in reference[2]

stochastic generation will cause a

proliferation of an unsustainable number of such schemes. Instead, global information must be
incorporated into local decisions in a principled manner; simulation of possible cascades is a promising
route.

Challenge: From an applied mathematics standpoint, cascading behavior on complex engineered
networks epitomizes a multi-scale stochastic process, both in time and space, giving rise to two
complementary technical challenges: the accurate simulation of a cascade based on initial conditions and

124



Applied Mathematics to Power Systems LANL

the rapid computation of mitigating actions. Current techniques [110-112] can simulate complex
networked systems with tens of thousands of edges and nodes in practicable computational time, albeit at
the cost of simplification in the modeling of some dynamics important during cascading processes and not
fully accounting for wide stochastic variance. New methods and models are required that faithfully
represent these dynamics while enabling fast computation.

Approach: Cascade simulations generaly include random behavior of the initia timing of the event.
Moreover, as shown in [85], different sequences of the cascading events result in undesirable final
network states (such as outages) of greatly varying size. For cascades in the electrical grid, these results
suggest that controlled tripping (topology modifications) of lines at the early stages of the cascade
development is extremely advantageous, but algorithms are needed to identify the optimal control actions.
Our ongoing research [37] suggests that real-time algorithms based on massive and parallel simulations of
the cascade using noisy and partial observations of a cascade's progress yield optimal controls to arrest
the cascade. The algorithms for computing optimal control are akin to learning (or “boosting”) methods,
sifting in rea time through a large amount of synthetic data to deduce the control. Developing these
computational learning algorithms is a natural extension of our ongoing work [37]. To improve the
simulation component, we envision a parallel approach designed to capture the complexities of cascades
in a methodologicaly valid manner, while yielding effective agorithms to mitigate cascades. First, we
will develop reduced-order stochastic models of the short-term dynamics that exert great influence at
pivotal pointsin a cascade. Second, we will develop new approximate statistical methods based on deep
understanding of the underlying interactions and scale separations and importance sampling of entire
sequences of steps to reduce the inherent combinatorial complexity of cascades.

Control Theory—Fine-Scale Network Control: New Principles and Challenges of Distributed
Control of Millions of Grid-Interactive Devices

Problem: Integrating significant levels of stochastic generation (e.g., wind and photovoltaic) into the
future electrical grid requires reaching deep into fine distribution network scales to tap into the latent
control flexibility of the millions of small injections (loads, generation, and storage) in these networks.
Exploiting this latent resource, however, presents problems [32]. Foremost is the extreme computational
burden of coordinating the control of the millions of injections required to create a significant impact on
the grid as a whole. Controlling the loads individualy is not feasible so new methods are required. In
addition, when these injections are controlled, the electric power flows in these fine-scale (distribution)
networks are modified from their nominal design values, resulting in networks that are significantly more
fragile. Therefore, the algorithms that implement the control over the injections must be locally aware to
avoid violations of flow and nodal constraintsin these distribution networks.

Challenge: A crucia chalenge is overcoming the computational burden of controlling alarge number of
injections. The true challenge is not just developing algorithms that are computationally feasible for large
problems, but developing agorithms whose performance improves as the number of devices increases.
Communication limitations suggest a need for agorithms that are fully distributed or centrally
implemented with a small number of control signal/information channels. In addition, mathematical
methods are required to provide guarantees of algorithm performance under widely variable disturbance
and network conditions. Analysis of such guarantees must be extended to include the violation of nodal
and flow constraints.

Approach: In previous work, we developed a range of different algorithms for control of electric vehicle
(EV) charging. These range from stochastic direct load control using a single number disseminated via
broadcast communication [16, 33, 66, 69, 71, 72, 113], broadcast of a single dynamic pricing signal
combined with hysteretic local controllers [57, 74, 114-116], and game-theoretic methods involving bi-
directional, individually addressed communication [26, 113, 115]. The first two methods demonstrate
excellent scaling properties where the variance in the controlled EV charging load decreases relative to
mean load as the number of EV under control increases. All of these methods, however, are capacity
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based; they do not consider the effects of the controlled power flows on the internal constraints in the
distribution network. Within the AMPS Center, we will extend these methods to include models of
network flow constraints.

The integration of distributed photovoltaic (PV) generation into low-level eectrical distribution networks
is a good example of how low-level network internal constraints are violated when the network is forced
into configurations for which it was not designed. The spatiotemporal correlations of solar irradiance
fluctuations can create sudden and large reversals of electrical power flow causing nodal voltage to drift
outside the bounds of normal operations, and resulting in damage to consumer devices. One
straightforward control solution limits PV generation by acting directly on the fluctuating injections, but
this very suboptimal solution severely constrains the ability of the low-level networks to supply
generation to the higher-level network. Alternative formulations by AMPS team members [15, 17, 117]
leverage control of reactive power generated by the PV inverters to mitigate this effect. Both control
algorithms rely on distributed control because it is robust to communications failure and the temporal
scales of the irradiance fluctuations are fast enough to preclude centralized control. The performance of
these distributed control algorithms [15] was validated using Monte Carlo sampling of irradiance
conditions, network load, and network configuration. Within the AMPS Center, we will develop more
principled probabilistic measures of control performance using stochastic and uncertainty quantification
methods. These new probabilistic measures will enable design of novel distributed and robust control
schemes that provide coordinated and guaranteed operations for the grid consisting of millions of
integrated devices.

Control Theory—Fine-Scale Network Control: Limited Control Flexibility and Coupling across
Time Scales

Problem: The operation of some electrical loads (e.g., thermal processes) is deferrable without significant
impact on the end-use function. Nevertheless, there are constraints—based on the physical characteristics
of the loads and user preferences—on how much load shifting is possible. These constraints, which are
directly analogous to those incurred by energy storage [118], create new couplings over time where
control decisions made at one moment affect the flexibility of the control at future times. These future
effects must be included in the immediate decision-making. Further complications arise because these
loads are typically discrete, i.e,, on/off loads that are not continuously adjustable. New control
formulations are needed that address the unigue nature of these loads.

Challenge: The couplings created by limited deferability of loads over time create a need for models of
time evolution, but the discrete, on/off nature of these loads presents a mathematical challenge because
the time-dynamics involve discontinuous state transitions that are not easily addressed via continuous-
time control formulations. In addition, individually modeling and controlling millions of these discrete
loads is not computationally feasible.

Approach: In previous work [41, 114], we explored first-principles methods for modeling and
controlling large homogeneous collections of these unique loads. We developed [41] a first-principles
approach, based on two Fokker-Planck PDEs, that describes the continuous-time evolution of probability
distributions of temperature for the on and off states. Coupled boundary conditions on these PDEs at the
extremes of the temperature range create a flow of probability between the on and off states, representing
the discontinuous state transitions of individual loads. Analysis of these PDEs allows extraction of
response functions that guide design of controls for the aggregate load and the probability distributions.
We aso explored feed-forward methods [41] that leverage the unigue dynamics of these loads to preplan
controlled responses. The AMPS Center will extend this work to descriptions of heterogeneous
collections of loads. We propose a completely new perspective on the Chapman-Kolmogorov equations
through arigorous treatment of randomness. We will develop new mathematical tools to represent system
energy and thermal states with dynamic nonparametric probability distributions, where state transitions
evolve according to Markov chains. This discrete state model formulation is represented in standard linear
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time invariant-state space formulation and facilitates the large-scale state estimation methods for which
thisformulation is especially well suited.

Solution Methods | |—Optimization Theory and Its Challenges

Complex engineered networks can be very large, spanning a wide range of spatiotemporal scales.
Optimization is required for coordinating large numbers of network resources to manage uncertainty in
demands, availability, and capacity. The resulting optimization problems are often nonlinear, non-convex,
mixed integer, and stochastic, making them computationally intractable (NP-Hard), and placing them far
beyond the reach of commercia software. The key mission of AMPS in the optimization pillar is to
develop significant advances in optimization theory to address currently intractable problems. Problems
of interest include multi-level models, where the lower-level optimization problems are themselves NP-
Hard. The lower levels may also include non-standard constraints that encapsulate results from complex
network analysis, e.qg., new dynamical stability criteria [99], models of nodal responses to exogenous
information [39], and functional evaluation through simulations [1, 14]. To solve these problems, we
propose novel relaxation methods and approximation techniques that produce effective bounds in
practicable CPU time and new methods for multi-level, robust, and stochastic optimization with
constraints accounting for risk—all of these together with careful leveraging of massive distributed
computing resources.

The optimization pillar is strongly connected with the control theory and complex systems pillars. The
complex systems pillar provides information about temporal and spatial couplings required to build the
optimization models. Optimization is then a mechanism by which complicated sub-models of control
theory can be solved. Advances in optimization inform complex systems about the problem structures and
details that are tractable, which may change the spatial and temporal couplings that are model ed.

Optimization Theory—Fine-Scale Networks. Decentralized (M essage Passing) Optimization

Problem: Increasingly, optimization is faced with models that are so large that the problem cannot be
constructed in one place because the communications bandwidths are insufficient. This is especialy true
for optimization of networks of physical devices, where network-state information can be quite large.
Decentralized optimization techniques are required that utilize more limited communication between
individual devices, with components exchanging messages about their state and planned actions (decision
variable assignments) and negotiating to minimize network-wide cost.

Challenge: The challenge in this area is to develop distributed decentralized algorithms for complex
networks that not only converge to a feasible solution, but also provide guarantees on optimality or
approximations to optimality. Distributed optimization with optimality guarantees is required for
coordinating the large numbers of devices that manage uncertainty in demand, availability, and capacity
in future complex engineered networks, including the future electrica grids, where vast numbers of
devices are employed to control power flows, consumption, and generation locally. This distributed
optimization represents a fundamental break from current practices that optimize a comparatively smaller
number of aggregated devicesin a centralized fashion.

Approach: We have recently demonstrated the basic concept of completely decentralized optimization
[48] by developing a method for coordinating time-dependent flows on a network. We have shown that
guaranteed optimality can be achieved in decentralized optimization while only passing simple messages
and maintaining the privacy of the devices. Much like internet protocols, decentralized peer-to-peer
exchange of information is a very resilient, secure, and reliable system that automatically coordinates
individual devices, and optimizes an overal network objective. Such a sructure for distributed
optimization reacts to changes in real-time (as a feedback system does) and aso provides a feed-forward
ability to anticipate known or predicted upcoming events. Our approach can solve a problem involving
around 30 million optimization variables, e.g., a future electrical grid with 100,000 devices exchanging
energy for one day in 15-minute intervals over 250,000 capacity-limited, lossy lines-in minutes on a basic

127



Applied Mathematics to Power Systems LANL

desktop 8-core machine. This fundamental advance demonstrates the potential of decentralized
optimization in the domain of complex engineered networks. Within the AMPS Center, we will develop
the fundamentals of distributed optimization science including the generalization of a message-passing
methodology to account for loops in power flows and integer constraints and controls (non-convex NP-
Hard problems). We will produce new convex relaxations of complex nonlinear optimization problems
that may be implemented on a distributed platform [119].

Optimization Theory—Operations-based Planning: Multi-L evel Optimization

Problem: Traditionally, the design of complex networked systems has been optimized using simplified
models of network operations. These simplified models reduced the computational complexity and
yielded results that were considered good enough, e.g., the outer optimization of grid expansion planning
has historicaly approximated the inner optimization of the bi-level problem with linear power flow
models [1, 4, 14, 42, 120-135]. Situations are arising, however, where using overly reduced models has
led to network designs with adverse operational characterigtics, e.g., loop flows [128] and negative energy
prices [136] in power systems, pointing to the need for fundamentally new network expansion planning
agorithms that integrate high fidelity models of operations. These examples provide motivation for new
results in one of the emerging challenges in optimization—nbi-level or multi-level optimization of
nonlinear and discrete models, where one or more lower-level optimization problems are embedded in

another optimization problem [1, 4, 14, 42, 120-135, 137, 138]

Challenge: Purely linear multi-level optimization
problems are NP-Hard but there are well known
solution concepts for such problems [138]. In
contrast, addressing multi-level problems important
for complex engineered networks requires
considerable advances. These problems have
nonlinear or discrete aspects [139], such as optimal
electrical grid design coupled to models of power
flows, operations, and security.

Clapham

Bravo Dome (Amoxo) |

Approach: We adopt three strategies for solving
multi-level problems: 1) improving the quality of the
lower bounds, 2) creating decomposition algorithms
to improve the quality of the upper bounds, and 3)
generdizing the cutting plane algorithms. The lower
bound strategy builds on our team’s recent efforts in
developing convex relaxations of complex nonlinear iy
optimization problems, such as AC optima power AT T
flows [13] and iterated improvements of linear Figure 7. Thework of [1] was applied to aid
approximations to nonlinear problems [140]. The the state of New Mexico in itstransmission
decomposition strategy considers methodologies that planning studies[4, 5]

split complex problems across their natural temporal,

spatial, and level boundaries, while at the same time providing mechanisms to pass information between
the different decompositions to improve global solution quality (upper bounds). In previous work, we
pioneered efforts to improve the bi-level couplings through decomposition for planning utilizing
nonlinear (AC) power flow models [1, 4, 14, 17-19, 42, 117, 128-130, 141] (concurrently with a handful
of other researchers in the field [131-133]). This work has demonstrated how our basic applied
mathematics has transitioned to impact DOE-related missions, as shown in Fig. 7. The cutting plane
approach is based on our success in screening power system vulnerabilities via worst-case interdiction
analysis [36, 44-47] and bringing those models into problems like unit commitment and transmission
planning [134, 135, 142]. In order to bring N-k security operations into planning, we propose to extend
linear bi-level and multilevel optimization methods in security-constrained power system optimization to
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consider discrete components (in the lower-levels). Efficient flow-cover algorithms will be used to find
small sets of contingency elements that fail a power system. This approach relies on solving a bi-level
integer program using inequalities derived from the generalized flow-cover inequalities [143, 144] and
digunctive cutting planes [145, 146].

Optimization Theory—Operations Based Planning: Stochastic/Robust Optimization with
Probabilistic Risk Constraints

Problem: The control of complex engineering networks takes place on several levels and time scales. The
lowest level is often preprogrammed as continuous-time automatic feedback control that responds to fast
changes in network conditions without any externa intervention. Often, the next highest level is an
optimization problem that deploys network assets for optimal steady-state performance. This step
effectively designs or plans the resources available for automatic control in future time periods. When
fluctuations in the network conditions between optimizations are relatively minor, utilization of mean
conditions is sufficient. However, complex engineered networks, especialy the electrica grid, are
expected to survive large fluctuations in network injections and network flows in the future. Deploying
networks assets by “optimizing for the mean” or through traditional scenario-based stochastic programs
with recourse is no longer sufficient. Instead, methods of stochastic and/or robust optimization that
incorporate models of automatic control system response are needed to balance optima network
performance with resilience to rare but damaging fluctuations.

Challenge: Robust and stochastic optimizations are two methods of accounting for uncertainty.
Formulating and incorporating new constraints expressing the uncertainty in a combined fashion presents
significant mathematical and computational challenges because of the mathematical structure of the
models of network flows and automated control responses. The main challenge is the probabilistic nature
of the so-called “chance constraints’ and their intricate dependence on the optimization parameters. An
example is a chance constraint that expresses that the probability of overloading a line being less than a
pre-defined small number, which follows from solving the power flow equations. The challenge is to
model these constraints so that the problem is computationally tractable.

Approach: In previous work [84], we usedreal-time control and optimal dispatch of traditiona
generators in electrical networks to pioneer the development of stochastic and robust optimization
formulations with chance constraints. Instead of optimizing the output levels of renewable generators with
mean forecasts, we developed a stochastic optimal power flow model that minimizes the expected
generation cost under chance-constraints and ensure that the likelihood of transmission line overloads is
below a small but non-zero probability. In this approach, we leveraged properties of the wind forecast
errors and a simplified model of power flow (DC approximation) to derive a computationally tractable
conic optimization problem. Within AMPS, we will continue this research direction. First, we seek to
utilize more realistic models of electric power flows, even though these models introduce additional
nonlinear complications in expressing implicit dependence on optimization parameters for robust and
stochastic optimization. Second, we extend this approach to additional control schemes at other
spatiotemporal scales, including the operation of electrical distribution networks, e.g., control of real and
reactive power dispatch from storage in these networks. In both situations, we will develop novel,
computationally tractable, conic derivations.

Challenges of Reconstruction

Figure 3 shows how our deconstruction/reconstruction DC/RC approach reduces complex engineered
networks into classes of computationally feasible sub-problems based on analysis of the spatiotemporal
scales and the primary applied mathematics pillars. This complexity reduction identifies the crucial
couplings between these sub-problems and across spatiotemporal scales. Figure 3 also shows how our
multifaceted, integrated approach describes a path for discovering relevant new models of increasing
complexity that are addressed with the broad expertise available across the center. The structure in Fig. 3
is informed by our DC/RC approach as we integrate and develop control and optimization algorithms by
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reconstructing the Level 1 problems that are most closely coupled across spatiotemporal scales. Members
of the AMPS team are already developing the six primary focus areas at Level 1 in the pyramid. These
include coarse-scale network control [84], operations-based planning [42, 43], fine-scale network control
[15, 16, 26, 57, 113-115], continuum/flow dynamics [6, 107], network cascades [37, 85], and fast network
dynamics [99, 147]. Developing these individual areas is crucia for attacking design, control, and risk
assessment for complex engineered networks. However, it is the integration of these areas into a logical
framework that creates a set of applied mathematics toolboxes that are more powerful than the constituent
pieces. Next, we describe how AMPS will pursue thisintegration.

Level 2—Integrated Control and Design of Complex Stochastic Networks

Problem: The need for operations-based planning motivates the discovery of new applied mathematics
for solving nonlinear, discrete, multi-level optimization problems—a challenge that is amplified when
control is embedded as a decision variable in a design problem. It is easy to envision that a distributed
control strategy would find a particular network design to be optimal, whereas a centralized control
strategy would find an entirely different design is required. Thus, it is important to co-design the control
and network configuration to discover the optimal combined control and network design. Critically, this
regquires anovel integration of control algorithms and optimization a gorithms.

Challenge: In independent optimization problems, it is reasonable to expect that a single optimization
strategy yields good results (mixed-integer optimization with Bender's decomposition, column
generation, etc.). In contrast, combined control and optimization problems are multi-level problems that
may have very different and challenging structures requiring advances in the applied mathematics to find
high quality solutions, e.g., advances in the relatively new field of hybrid optimization [148]. The
challenge is to discover structural properties of classes of problems that lend themselves to being solved
efficiently by different optimization strategies, e.g., constraint programming for feasibility problems,
mixed-integer program for discrete optimization with tight linear relaxations, and semi-definite
programming for problems with tight convex relaxations. Novel combinations of these strategies are
required to solve classes of problems that exhibit two or more such structures.

Approach: The AMPS Center will advance to Level 2 in this area by developing a new hybrid control-
optimization paradigm for problems that are currently intractable using existing approaches, e.g., co-
design of network control and topology. Our initial approach involves modeling control strategies
(policies) as 0-1 variables and embedding them directly into multi-level optimization problems. A second
approach relaxes this set of variables to allow the selection of multiple control strategies across
spatiotemporal scales or operating modes, where the modes are selected through column generation. A
third approach combines constraint programming with convex optimization [119] to produce a powerful
new paradigm for solving optimization with difficult feasibility constraints such as chance constraints.
There are compelling reasons to believe that combining approaches will prove to be effective, including
recent work demonstrating that previously unsolvable scheduling (pure optimization) problems [149] can
be solved by combining mixed integer programming with constraint programming and our own work in
combining constraint programming with local search to solve network restoration scheduling [150-155].

Level 2—Reduced-Order Models of Fine-Scale Network Dynamics and Control

Problem: The ODE/PDE models from continuum/flow dynamics are powerful techniques for describing
fine-scale networks where the large numbers of nodes are homogenized to create a continuous
representation. However, significant mathematical difficulties arise when these models are combined with
control schemes to create composite models for designing and analyzing fine-scale network controls, e.g.
infinite dimensionality of the control, model parameter uncertainty, and dynamics which may have been
ignored at the homogenization step.

Challenge: New applied mathematics techniques are required to discover distributed, decentralized, and
low-order control schemes and to analyze these schemes for control performance and stability guarantees.
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Challenges in this process arise from model uncertainty from homogenization of PDEs and the need to
include the myriad of new distributed devices of the fine-scale networks.

Approach: The analysis of the PDE models provides significant insight into the dynamics of fine-scale
networks. It is expected that the continuum dynamics have a set of fast modes that are stable and decay
rapidly and a smaller set of ow modes that are potentially unstable and need to be controlled. We will
segregate the fast and slow modes using spectral analysis to verify the damping of the fast modes and
isolate the critical slow modes. Examples of slow modes include oscillatory and wave-like disturbances
such as voltage oscillations caused by power flows interacting with the collective behavior of power
electronics [57] and power flow-voltage waves caused by coupling to induction motor dynamics [107].
Other slow modes are hysteretic in nature, e.g., collective behaviors associated with FIDVR [147]. By
isolating the slow modes, we enable coarse-grained formulations in a frequency-wave vector space
suitable for the design of low-order controls. Our approach incorporates model uncertainty and stochastic
information by utilizing concepts from stochastic and robust control [156] in our new formulations

Level 2—Emergency Monitoring and Control of Networks

Problem: Fast dynamics can generate short-term, locally large deviations from the predictions of static
network models. The deviations trigger local protective actions that are often not detected by network
cascade simulations based on static network models. These interactions elucidate the need for combining
two very challenging subjects in applied mathematics—fast network dynamics and network cascades [157,
158]. Efficient combination of these models will contribute a comprehensive computational, adjustable,
and much needed toolbox for emergency control that currently does not exist [159].

Challenge: The disparity in time scales between models of fast dynamics and the quasi-static network
models used in cascade simulations creates a significant challenge. The computational expense of the
dynamical simulations and stochastic nature of the cascades makes the direct integration of the dynamical
simulations and cascade models computationally intractable. However, fast dynamics must be included
to yield an accurate and predictive model of cascading failures in complex engineered networks. New
applied mathematics methods are required to merge these two disparate models.

Approach: We will address this challenge by bypassing the direct time simulations and instead integrate
fast dynamics with cascade simulations using the data-driven methods of the Complex Systems pillar. By
monitoring ambient electrical grid frequency and voltage noise, we will create a large-scale, multi-
scenario database of pair-wise electromechanical-wave Green's function responses that will be used to
estimate the fast dynamics between all pairs of network nodes. Our approach enables the rapid estimation
of the fast dynamics at each node in the network following discrete cascading events such as the sudden
remova of a transmission line or the emergency disconnect of a large generator. Estimates of the
dynamic excursion at each node allow the cascade simulation to efficiently scan for dynamically triggered
failures that propagate the cascade farther.

Levels3 and 4—Higher Levelsof Integration

The Level 2 models discussed in the prior section are beyond the reach of current network analysis tools.
Resolving these models requires coherent efforts from all the participants of AMPS. Nevertheless, the
applied mathematics challenges of complex engineered networks are evolving and new challenges will
arise. Levels 3 and 4 in Fig. 3 exist to ensure flexibility to meet such challenges and reduce risk. The
solutions at Level 1 and Level 2 provide the fundamental tools to address emergent questions. The
combinations at higher levels aso provide a mechanism for transitioning the applied mathematics to tools
that support DOE mission. For example, when the science of new instabilities matures and the science of
EM wave diagnostics becomes computationally efficient, afull-scale stability analysisis feasible. Such a
combination alows the extraction of qualitative understanding of how collective distribution effects, such
as FIDVR voltage collapse and collective transmission systems failures (e.g., of the loss of synchrony
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type), affect and interact with each other. Ultimately, the research outlined in this proposal provides
foundational applied mathematics to bring the grand challenge of real-time simulation and monitoring of
complex engineered networks, including the power grid, to fruition.

Management Plan

This large, multi-institutional project requires a strong management structure to maintain project cohesion
and to build and maintain momentum. Here we outline our plans for managing the overall effort.

[ )

Management Structure & Budget

Management of the AMPS
project will be shared among

Director
Chertkov (LANL)

the team, including the
Director, the Science Team
_ Ead ~ ~ g ™~ g
co .L .S’ Laboratory . and Complex Systems Control Optimization
Unlvers ty LeadS, SCI DAC Hiskens (Michigan, co-lead) Low (Caltech, co-lead) Bienstock (Columbia, co-lead)
Institute Liaisons, and Senior | Chertkov (LANL, co-lead) Backhaus (LANL, co-lead) Bent (LANL, co-lead)
. ’ Backhaus (LANL) Callaway (LBNL) Pan (LANL)
Personnel (Fig. 8 and Table 1). ST LA, Varaiya {Berksiey) PRy
. . agoer 'oolla (Berkeley) tanfor
The Director, Michael Caﬁawzﬂr (LBNL) ¥ Doyle {CalTech?r Y Blanchet (Columbia)
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ChertkOV IS reﬂ)ons bl e1 along DE{:II:; (CalTech) Bzgd (Stanford) Ba:khaét‘lsTCLANL)
i ] Turitsyn (MIT) Bienstock (Columbia) Chen (SNL
with Sdence Tean ad |GELDa. EmeT (gt
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project coordination, including J h k )
organization of meetings and “~——— —
conference  calls, traCkl ng Grand Challenge — Design, Optimization and Risk Assessment
progress, and reporting to for Complex Engineered Networks

DOE Program Managers.

Chertkov has demonstrated

both strong scientific and F_igure 8. Breakdown of the team and |eader ship between the three
organizational |eadership. He Pillarsof AMPS

has set the scientific direction of two LDRD projects (totaling $11 million over 6 years), including
directing research by many students, postdocs, other LANL staff, and collaborating researchers. During
these projects, he went well beyond stated requirements by organizing unique project reviews that
brought together a diverse set of researchers into mini-conferences. These conferences helped to establish
additional collaborative connections and stimulate discussions that resulted in concurrent DITRA/DOD
and NSF funding. The most recent project on smart grids results in more than 30 publications in peer-
reviewed journals and conferences (over three years), and more than 10 invited talks, including a super-
session presentation at |IEEE/PES and a plenary talk at SIAM/DS. The AMPS Center team is stronger
because of connections made in this manner. Chertkov has organized 15 high visibility conferences, the
most recent of which was atechnical conference on mathematical advances for power grids, held May 21-
25, 2012. This conference was the culmination of the LDRD project on Smart Grids [160]. In consultation
with the AMPS Center’s pillar leads, Chertkov will take on a similar role for this work, setting the broad
scientific direction in the three pillars. He will take responsibility for overall project coordination,
including managing the budget, reporting requirements, and tracking the scientific progress against
project milestones via quarterly project meetings. Further, Chertkov will build a robust applied math and
scientific community around complex engineered networks by continuing his outreach. He will
disseminate the results of the AMPS Center and maintain and create new collaborative relationships by
organizing seminars and conferences. These seminars and conferences will provide an opportunity for
applied mathematicians and other scientists to interact with the AMPS Center
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Table 1. AMPS's Center annual budget breakdown by institution and applied mathematics pillar.

Institution Lead Director Complex Control ~ Optimization Total
($K) Systems Theory Theory ($K)
($K) ($K)
LANL Chertkov 250 525 125 450 1,350
SNL Pinar 200 250 450
LBNL Callaway 100 100 200
Cal Tech | Low 100 200 100 400
Columbia | Bienstock 100 200 300
Berkeley | Poolla 275 275
Stanford | Boyd 200 200
Michigan | Hiskens 100 100 200
MIT Turitsyn 125 125

The Science Team leads are
responsible for tracking progress
on relevant tasks for each applied
mathematics pillar. They also RN Turitsyn & Callaway
form a committee that will help

with decisions on scientific
direction and will communicate
with each other on shared tasks.
In the complex system npillar,
Chertkov and Hiskens form the Ean

leadership; for the control theory . ‘Sm“m ==y
pillar, Low and Backhaus form Hagberg

the leadership, and Bent and
Bienstock lead the optimization
pillar. Laboratory and University
leads are responsible for tracking Dablisschere
budget and deliverables for all _ Chen
work performed by their s v
S , )

ingtitutions and will ensure

timely reporting. The Science Figure 9. Pre-existing collaborations between AMPS team members.
Team leads are also responsible A |ine represents collaboration in the form of a paper, a student, or a

for organizing annual workshops postdoctoral researcher
and meetings to reach out to the

greater scientific community. Senior personnel will not only perform work, they will also advise students
and postdocs on the project. The team’ s focus on student and postdoc education ensures that the impact of
the AMPS Center extends beyond its duration, as the center will train the scientists needed to contribute
in this area over the next 20-30 years. Table 1 demonstrates how the annual funding is allocated between
applied math pillars and institutions. Annual funding for individual science topics is listed with the
Science Team leads, and annual funding for each institution is listed with the Lab and University leads.
Annual funding for Senior Personnel is specified in the budget documents.

Blanchet

Chertkov
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Project Coordination

Success of AMPS depends critically on the strength of the partnerships formed between participating
complex systems, control, and optimization scientists. This partnership is natural, as many of the team
members have worked together previously and are working together on other projects (Fig. 9). We
present here additional mechanisms for maintaining project cohesion in a distributed multi-institution
project. Project managers and science team leads will coordinate regular conference calls for sharing their
latest results and planning of upcoming collaborations and visits. When new expertise is required,
relevant researchers outside of the team will be invited to share their work at one of our seminar series (at
LANL, Caltech, and Berkeley). These seminars will occur on a monthly basis. On a quarterly basis, DOE
program managers will be invited to join the cals as an informal form of project reporting. Physical
meetings will take place periodically, taking advantage of existing conferences or meetings when
possible. Dedicated project meetings for all project participants will occur at least annually in the form of
workshops and more frequent if significant fractions of people are present at a large meeting (e.g.,
SIAM/DS, CDC, |IEEE PES, INFORMS). Other meetings will be scheduled as needed to address specific
issues.

Our primary means Y
. . earl Year3 Year 4 Year 5
of oollabortion 1o | Yeari | Yearz | Year3 | Yeard | Years

Fine Scale Networks ¢

through the team’'s pecentralized Optimization
students and Reduced Order Models

postdocs. Students  Continuum Flow Dynamics! r - !
funded under )
AMPS will spend Limited Control

summers at CNLS, Coarse Scale Networks *
interacting with one Distance to Failure S —

h d LANL Distributed Control
another an Integrated Control and Design

scientists. Many of  gperations Based Planning ¢
the  post-doctoral Multi-Level Optimization

positions will be Robust Optimization o —
jOi nt appoi ntments, Network Cascades |
which will ensure Controlling L =T
inter-ingtitutional Cascades e s i

llaborati Fast Network Dynamics * B )
collaporation. , Data Driven Model
'”‘_jeed’ this team S Level 3 and 4 Models
existence IS a C 3}
product of our Annual Conference ° ° ° ® ¢
recent success Annual Report ° ° ° ° *
using this structure Demonstration of results on non-power grids *
to promote

collaboration  and Figure 10. AMPS Center Project timeline.
group cohesiveness.

We highlight two examples of this collaboration. First, Sean Harnett a graduate student at Columbia
under direction of Bienstock, spent summer 2011 at LANL working on incorporating the concept of
robustness in optimization of power flows. This developed into collaboration of Chertkov with Bienstock
and Harnett on stochastic and robust OPF with probabilistic (chance) constraints. Harnett will spend
summer 2012 at LANL, extending the subject that now forms the basis for his Ph.D. thesis. Second, in
September 2011, Bent (LANL) hired Annarita Giani, formerly a postdoc at Berkeley under the direction
of Poolla, as a postdoctoral researcher. In just six months, this collaboration has led to a conference paper
on power grid security [61] and two (nearly completed) journa submissions.

Metric for Success (Deliverables)
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There are several key measurements for project success. First, for any science project, peer-reviewed
publications are a critically important metric; publications in applied math, network science, statistics,
control theory, operations research, and optimization theory are expected from this project. As one of the
projects goals is creating and building a set of analysis and mathematical tools, as well as novel control
and optimization algorithms for complex engineered networks, we set aggressive publication targets of
five per year for each mathematics areas. Second, we will issue annual reports at the end of each fiscal
year. The reports will be delivered and presented to ASCR and DOE program offices, such as OE, to
ensure the results of this project have impact on DOE mission. Third, at the conclusion of the fourth year
of the project, the annual report will include results of impact outside of the power grid application
domain, demonstrating that the new applied mathematics of AMPS has far-reaching impacts. Fourth, as
the power grid is evolving rapidly and there are numerous opportunities for “game changing’
technol ogies to be introduced, we emphasize flexibility in our metrics, as noted in the previous discussion
of Levels 3 and 4. A section of the annual reports will survey emerging mathematical challenges, discuss
how the existing program plan will address those challenges, and suggest modifications to the research
agenda of AMPS to handle those challenges. Our fifth metric of success is a demonstration of
collaboration outside the confines of the AMPS Center. We have the unique opportunity to exchange
ideas with the SciDAC institutes and other ASCR projects at LANL, SNL, and LBNL, as well as
Columbia. These include Bienstock’s Reconfiguring Power Systems to Minimize Cascading Failures:
Models and Algorithms project (ASCR); Germann’s Exascale Co-Design Center for Materialsin Extreme
Environments (ExMatEx) and Algorithms (ASCR); Najm's QUEST—Quantification of Uncertainty in
Extreme Scale Computations; Hagberg’'s Dynamics through randomness. New mathematical approaches
for complex networks (ASCR); Pinar’s Scalable methods for representing, characterizing and generating
large graphs (ASCR), and Debuscherre (PECASE Early Career). Success here is measured through joint
papers and reports. Finally, in the last year of the project we will provide atransition plan for the program
offices of DOE (such as OE) to adopt and use the science developed under the project.

Project Timeline

The primary tasks of the AMPS Center are described in Figs. 2 and 3. We will work on all three major
project pillars for the duration of the project, following the time line sketched in Fig. 10, but also we will
adjust as needed after receiving reviews, organizing workshops, and receiving ASCR/DOE guidance.
Work will begin on different tasks, shown in Fig. 2, at different stages of the project, moving from the
Complex System pillar to the Control Theory pillar and Optimization Theory pillar (in this order), and
then returning back and extending formulations when the next level of understanding and sophistication is
achieved. As our project continues (beyond year 2), we will work on progressively more complex/multi-
faceted problems, advancing up the levels shown in Fig. 3.  Our progression up the pyramid of Fig 3 is
adaptable to an environment of changing resources.

Conclusion

This proposal describes our vision for developing novel applied mathematics for impact in complex
engineered networks, such as power grids. This proposal has identified three pillars of applied
mathematics: complex systems, control theory, and optimization, which require basic mathematical
advances to meet the future needs of engineered networks. The advances include crosscutting
technologies in the fields of fast network dynamics, continuum and flow dynamics, network cascades,
coarse-scale network control, fine-scale network control, and operations-based planning. The key
contributions of this AMPS Center are the development of general applied mathematical solution
concepts in each of these areas, and mathematically sound methods for decomposing and reconstructing
problems that cross-temporal and spatia boundaries. AMPS will provide the foundational applied
mathematics to bring the grand challenge of real-time simulation and monitoring of the complex
engineered networks, including the electric power grid, to fruition
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