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The DTRA project

Goals and Tasks

Develop a mathematical framework that will provide the fundamental
understanding of network survivability, algorithms for detecting/inferring
pre-cursors of abnormal network behaviors, and methods for network
adaptability and self-healing from cascading failures

DTRA Nitches (wide area, cascades, hardening & mitigations)
@ Physical Network (Power Grid)

@ Adversarial Motivation & Intent (Distance to Failure)

@ Computational Capability: Discovery and Mitigation

Started Apr 2010. Complements LANL LDRD/DR on “Smart Grids" =-.
@ Misha Chertkov (PI, LANL - stat physics + algorithms)

Feng Pan (co-Pl, LANL - operation research)

Misha Stepanov (subcontract, UA - applied math)

@ + students
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LANL LDRD DR (FY10-12): Optimiza rol Theory for Smart Grids
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What is Smart Grid?

New Hardware
Traditional Power (more options, more

Engineerin - fluctuations)
S 2 + New Politics & Problems
(power flows)

(blackouts,nuclear,
renewables, markets)
Smart Grid = New Solutions
[Networks, New Algorithms]
(optimization, control, economics,
communications)

App. Math &
Cs/IT/ OR Stat. Physics
Complexity, + new/old
Predictability h
phenomena
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Big Picture of Our Efforts

Exogenous Uncertainty
(attack, wind, other Network Consequences  Mitigation
fluctuations)

2010-12 2011-12

Chance Constrained OPF
(generation dispatch)

Instantons
(vs/+ N-1 contingency)

Probabilistic Distance to Failure /

Planning of FACTS Placement
(under uncertainty)

- Line Switching

(to mitigate cascades)

Loss of Synchrony
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Probabilistic Distance to Failures Problem Setting
Extreme Statistics of Failures
Intermittent Failures: Examples

Outline

@ Probabilistic Distance to Failures
@ Problem Setting
@ Extreme Statistics of Failures
@ Intermittent Failures: Examples
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Probabilistic Distance to Failures Problem Setting
Extreme Statistics of Failures
Intermittent Failures: Examples

MC, F. Pan (LANL) and M. Stepanov (UA Tucson)

Load shedding fime

@ Predicting Failures in Power Grids:
The Case of Static Overloads, |IEEE
Transactions on Smart Grids 2, 150
(2010).

MC, FP, MS & R. Baldick (UT Austin)

@ Exact and Efficient Algorithm to
Discover Extreme Stochastic Events in
Wind Generation over Transmission
Power Grids, invited session on Smart
Grid Integration of Renewable Energy
at CDC/ECC 2011.
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Probabilistic Distance to Failures Problem Setting
Extreme Statistics of Failures

Intermittent Failures: Examples

@ How to estimate a probability of a failure?
@ How to predict (anticipate) and then prevent the system from
going towards a failure?

@ Phase space of possibilities is huge (finding the needle in the
haystack)

@ Original Adist < Original Artist
REPTGHGCLOn HaNTS DO O o Reproduction rights obtainable from
CartoonStock.com L CartoonStock com
H Instanton 2

You were right: There's a needle in this haystack...

Ed was unlucky enough 1o find
the needle in the haystackl
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Probabilistic Distance to Failures Problem Setting
Extreme Statistics of Failures
Intermittent Failures: Examples

Why do we care?

f(S)=Joint probability distribution

of forecast errors. \

Instanton directions Security boundary

Stochastic resources
-Wind/PV generation
- Price-based DR

N-1 violations

Control action in C modifies the
Controllable resources security boundary in S reducing the
- Dispatchable generation  fisk of failure below a threshold level.
- DC line/ties, switching

- Direct load control

Towards a GOOD emergency control

@ Gen. loads (e.g. renewables = "negative loads") fluctuates
@ "N-1"-security gives no guarantees under uncertainty

@ The first, modest, task: given statistics of “errors”’, to
describe the instantons = most probable failures

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov/~chertkov/SmarterGrids/



Probabilistic Distance to Failures Problem Setting
Extreme Statistics of Failures
Intermittent Failures: Examples

Transmission System. DC approximation. Static Overload

Probabilistic Forecast of (Gen.) Loads
(given)

DC Power Flows

Constraints = Thermal and Generation

Check if generation can be re-dispatched
(like in OPF) to avoid "load shedding”

SAT= Load shedding is avoidable;
UNSAT=load shedding is unavoidable

Find the most probable UNSAT
configuration of loads

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov/~chertkov/SmarterGrids/



Probabilistic Distance to Failures Problem Setting
Extreme Statistics of Failures
Intermittent Failures: Examples

Extreme Statistics of Failures

@ Statistics of (gen.) loads is assumed given: P(d)
@ d € SAT=No Shedding; d € UNSAT =Shedding

Most Dangerous Configuration of the demand = the Instanton

o arg maxg P(d)|ggsar - most probable instanton

@ SAT is a polytope (finding min-shedding solution is an ) which
is not tractable (generally); — log(P(d)) is (typically) convex

The task: to find the (rated) list of (local) instantons

@ The most probable instanton represents the large deviation
asymptotic of the failure probability

@ Use an to find candidate instantons
(technique was borrowed from our previous “rare events” studies of
a similar problem in error-correction '04-'11)
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Probabilistic Distance to Failures

Example of Guam

Problem Setting
Extreme Statistics of Failures
Intermittent Failures: Examples
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— Common

Gaussian Statistics of demands (input)
leads to Intermittency (output) =
instantons (rare, UNSAT) are distinctly
different from normal (typical, SAT)

The instantons are sparse (difference with
“typical” is localized on troubled nodes)

The troubled nodes are repetitive in
multiple-instantons

Violated constraints (edges) are next to
the troubled nodes

Instanton structure is not sensitive to
small changes in statistics of demands

Michael (Misha) Chertkov — chertkov@lanl.gov
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Probabilistic Distance to Failures Problem Setting
Extreme Statistics of Failures
Intermittent Failures: Examples

Example of IEEE RTS96 system

. 2 2 @ The instantons are well localized (but still
AN &
not sparse)

@ The troubled nodes and structures are
repetitive in multiple-instantons

@ Violated constraints (edges) can be far

e from the troubled nodes: long correlations
~par-R o
=26 oo 0 imsamens @ Instanton structure is not sensitive to

small changes in statistics of demands
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Probabilistic Distance to Failures Problem Setting
Extreme Statistics of Failures
Intermittent Failures: Examples

Instantons for Wind Generation

@ Renewables is the source of fluctuations

@ Loads are fixed (5 min scale)

@ Standard generation is adjusted according to a droop control
(low-parametric, linear)

@ The instanton algorithm discovers most probable UNSAT events

@ The algorithm is EXACT and EFFICIENT (polynomial)

@ lllustrate utility and performance on IEEE RTS-96 example extended
with additions of 10%, 20% and 30% of renewable generation.
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Probabilistic Distance to Failures Problem Setting
Extreme Statistics of Failures
Intermittent Failures: Examples

Simulations: |IEEE RTS-96 + renewables

10% of penetration -
localization, long
correlations

20% of penetration - worst - — .
damage, leading instanton . :
is delocalized

30% of penetration -
spreading and diversifying
decreases the damage,
instantons are localized

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov/~chertkov/SmarterGrids/



Chance Constrained Optimum Power Flow

Risk-Aware Control under Uncertainty What do we achieve?

Outline

© Risk-Aware Control under Uncertainty
@ Chance Constrained Optimum Power Flow
@ What do we achieve?
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Chance Constrained Optimum Power Flow

Risk-Aware Control under Uncertainty What do we achieve?

Chance Constrained Optimum Power Flow:

Risk-Aware Network Control under Uncertainty

D. Bienstock (Columbia), M. Chertkov (LANL)
S. Harnett (Columbia/LANL)

@ Instanton = find the rare
problem

o CC-OPF = discover
(instantons) and mitigate
(simultaneously and
efficiently) at low cost

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov/~chertkov/SmarterGrids/



Chance Constrained Optimum Power Flow
What do we achieve?

Risk-Aware Control under Uncertainty

OPF vs CC-OPF

Power Flow Eqs
min,, c(p) Generation is within Bounds

> . Thermal Capacity Limits are obeyed
cost of generation

v

Chance Constrained OPF

Power Flow for Average (Wind)
@ ming o E[c(p,a)] | Chance Constrains for Thermal Limits
Chance Constraints for Generators

@ Averaging (evaluation of CC) is explicit for given p, «
@ The resulting outer problem is convex (conic) optimization

@ CC-OPF is solved efficiently [sequence of cutting plane LP — 20 s
for Polish Grid (2746 nodes) on laptop]

A

CCfor TL: V(i,j)€ &: Prob(|fy| > ™) <¢j
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Chance Constrained Optimum Power Flow

Risk-Aware Control under Uncertainty What do we achieve?

Experiments with CC-OPF (1)

|
@ CC-OPF succeeds where 14/\
standard OPF fails \/

@ Example of 118bus case. N ST
Four wind farms (green). E
5% penetration.

Standard deviation is </ N\
30% of the mean. Red N

lines exceed their limits \ \
AN

8% or more

@ Cost of Reliability
[CC-OPF saving over
standard OPF] /\5 /\€/
@ 39-bus case under o a
standard OPF. Cost of
5% (standard OPF is ok) é_/ GJ
/

is 5 times of the cost of ]
30% (CC-OPF is ok)
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Chance Constrained Optimum Power Flow

Risk-Aware Control under Uncertainty What do we achieve?

Experiments with CC-OPF (l1)

@ CC-OPF is not a naive

fix. Changes are nonlocal. /\g/
@ 39-bus case. Darker o

shades of blue (for

generators) indicating

greater change from

CC-OPF to standard

OPF. /

@ What is the penetration
that can be tolerated
(without upgrading)? /\6/ T /\g/

@ 39-bus case. Left to right
.1%, 8%, and 30%

average wind penetration. é_/
With 30% CC-OPF i ]

becomes infeasible.
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Chance Constrained Optimum Power Flow

Risk-Aware Control under Uncertainty What do we achieve?

Experiments with CC-OPF (l11)

@ Where to place
wind-farms? (Which sites
to leave insecure if this is

inevitable.) A 7/
@ 30 bus case with three

wind farms. Left vs Right —7 v ] v
- supports 10% vs 55% of
penetration

@ CC-OPF valid
configurations may show
significant (allowed!)
variability, e.g. flow

reversal.
@ 9-bus case, 25% average % LERl
penetration - two i i
significantly different / /
flows.
We also did out-of-sample tests. [Work well!] )
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Summary: Publications +

Results + Plans Summary: Future (3rd and beyond) plans

Big Picture of Our Efforts

Exogenous Uncertainty
(attack, wind, other Network Consequences  Mitigation
fluctuations)

2010-12 2011-12

Chance Constrained OPF
(generation dispatch)

Instantons
(vs/+ N-1 contingency)

Probabilistic Distance to Failure /

Planning of FACTS Placement
(under uncertainty)

- Line Switching

(to mitigate cascades)

Loss of Synchrony
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Summary: Publications +

Results + Plans Summary: Future (3rd and beyond) plans

RA Publications:

@ R. Pfitzner, K. Turitsyn, M. Chertkov , Controlled Tripping of Overheated Lines
Mitigates Power Outages, arxiv:1104.4558.

@ M. Chertkov, M. Stepanov, F. Pan, and R. Baldick , Exact and Efficient
Algorithm to Discover Stochastic Contingencies in Wind Generation over
Transmission Power Grids , invited at CDC/ECC 2011, arxiv:1104.0183.

@ R. Pfitzner, K. Turitsyn, and M. Chertkov , Statistical Classification of
Cascading Failures in Power Grids , arxiv:1012.0815, IEEE PES 2011.

@ M. Chertkov, F. Pan and M. Stepanov, Predicting Failures in Power Grids: The
Case of Static Overloads , IEEE Transactions on Smart Grids 2, 150 (2010),
arXiv:1006.0671.

@ F. Dorfler, M. Chertkov and F. Bullo, Synchronization Assessment in Power
Networks and Coupled Oscillators, invited at CDC12.

@ F. Dorfler, M. Chertkov and F. Bullo, Synchronization in Complex Oscillator
Networks and Smart Grids, submitted.

@ D. Bienstock, M. Chertkov, S. Harnett, Chance Constrained Optimal Power
Flow: Risk-Aware Network Control under Uncertainty, in preparation.

@ V. Frolov, M. Chertkov, S. Backhaus, Optimal Placement of FACTS devices to
mitigate Risk, in preparation.

DTRA Invited Presentations:

Around 20 in two years
Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov/~chertkov/SmarterGrids/



Prot D > to res
Risk-Aware ntrol under Uncertainty
Results + Plans

Summary: Publications +
Summary: Future (3rd and beyond) plans

Path Forward

@ Instanton/theory: extend to dynamics and voltage collapse

@ Instanton/applications: work on applications (e.g. in cyber-physical
attacks)

@ CC-OPF: extend to unit commitment, planning and cyber-security,
develop distributed implementation

@ Cascades: integrate instanton approach, consider broader mitigation
strategies, link to scaling/physics

o Classification and Mitigation of Cascades
o Loss of Synchrony
o Placement of FACTS devices

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov/~chertkov/SmarterGrids/



Classification and Control of Cascades Algorithm of the Cascade
Phase Diagram of Cascades

Controlled Tripping Mitigates Cascades

Rene Pfitzner (ETH), Konstantin Turitsyn (MIT) & MC

@ Statistical Classification of Cascading Failures in Power Grids,
IEEE PES 2011, http://arxiv.org/abs/1012.0815

o Controlled Tripping of Overheated Lines Mitigates Power
Outages, http://arxiv.org/abs/1104.4558

@ Synergy with DTRA project of
G. Zussman and D. Bienstock
(Columbia)

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov/~chertkov/SmarterGrids/
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Control of Cascades Algorithm of the Cascade

@ Have a realistic microscopic model of a cascade [not (!!) a
“disease-spread” like phenomenological model]

@ Resolve discrete events dynamics (lines tripping, overloads,
islanding) explicitly

@ Address (first) the current reality of the transmission grid operation,
e.g. automatic control at the sub-minute scale

@ (first paper) fluctuations in demand and then (second paper)
tripping of few most stressed lines

@ Analyze the results, e.g. in terms of phases observed, on available
power grid models [IEEE test beds]

@ Building on ... |. Dobson, et al, An initial model for complex
dynamics in electric power system blackouts, HICSS-34, 2001

@ Similar recent work (2011) of D. Bienstock with collaborators , and
P. Hines with collaborators

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov/~chertkov/SmarterGrids/



Classification and Control of Cascades Algorithm of the Cascade
Phase Diagram of Cascades
Controlled Tripping Mitigates Cascades

Algorithm of the Cascade

@ Optimum Power Flow finds (cost)
optimal distribution of generation
(decided once for ~ 15 min - in between
state estimations)

Optimal Power Flow: d”. g”

@ Droop Control = equivalent (pre set for
t* = min(1. 1. 1,) 15 min) response of all the generators to
change in loads

@ DC power flow is our (simplest) choice

<1

@ Identify islands with a proper connected
component algorithm(s)

@ Discrete time Evolution of Loads = (a)
generate configuration of demand from

given distribution (our enabling example

no violation and ¢~

| Power Flow | | cut one overloaded line |
= Gaussian, White); (b) assume that the
violation configuration “grow” from the typical one
(center of the distribution) in continuous
10 violation and ¢* = 1 time, t € [0;1]; (c) project next discrete

event (failure of a line or saturation of a
generator) and jump there

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov hertkov/SmarterGrids/



Classification and Control of Cascades Algorithm of the Cascade
Phase Diagram of Cascades
Controlled Tripping Mitigates Cascades

Tests on IEEE systems (30, 39, 118 buses)

@ The base configuration of
demand, d° is a part of the
system description. Contingency
(in demand) is generated
according to
e P(4;) =
—(5:)2 /(20
exp(—(4/) /(2di A))7 d’O + 51_ > d/O

\/mdA /2
1/2, d?+6; =d°

0, d,-o +9; < CI',p
@ A is the governing parameter,
measuring level of fluctuations

@ Collect statistics averaging over
multiple (200) samples for each
A

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov/~chertkov/SmarterGrids/



Classification and Control of Cascades Algorithm of the Cascade
Phase Diagram of Cascades
Controlled Tripping Mitigates Cascades

Tests on IEEE 30 system

<# tripped>

Fprack gkt
P Fopep b gokr K x
******** H Tk

H* 1

~
N

=hE
w
w
o
IS
IS
o

5

@ Average # vs level of
fluctuations.

@ Stress Diagram. Average # of
failures per edge/node.
A =0.1,0.2,09,12,2.0 =
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Classification and Control of Cascades

General Conclusions (3 phases)

Phase #0
Phase 0 | Phase 1 Phase 3 Phase #1
- : Phase #2
.'.' Lines
éo" R (.im'wx.(\l.uh
P

Phase #3

Algorithm of the Cascade
Phase Diagram of Cascades
Controlled Tripping Mitigates Cascades

The grid is resilient against fluctuations
in demand.

shows tripping of demands due to
tripping of overloaded lines. This has a
overall " de-stressing” effect on the grid.

Generator nodes start to become tripped,
mainly due to islanding of individual
generators. With the early tripping of
generators the system becomes stressed
and cascade evolves much faster (with
increase in the level of demand
fluctuations) when compared with a
relatively modest increase observed in
Phase #1.

Significant outages are observed. They
are associated with removal from the grid
of complex islands, containing both
generators and demands.

Michael (Misha) Chertkov — chertkov@lanl.gov
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Classification and Control of Cascades Algorithm of the Cascade
Phase Diagram of Cascades
Controlled Tripping Mitigates Cascades

Study Cascade ... and Mitigate ...

@ For sufficiently large initiation
(failure), many lines becomes
overloaded

@ If let to develop as is, tripping is
“arbitrary” =broad distribution

@ Order of tripping can lead to very
different results (size of resulting
outage)!

’ - @ Use it ... and pre-tripp smartly!
Polish Grid (MATPOWER)

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lanl.gov/~chertkov/SmarterGrids/



Classification and Control of Cascades

Experiments with Trippings

Algorithm of the Cascade
Phase Diagram of Cascades
Controlled Tripping Mitigates Cascades

0.12]

0.1

et et

o
9
2

0.1 0.2 0.3 0.4 0.5
fraction of load not served

fraction of samples
S
o
2

o
°
:

0.02]

0.2 0.3 0.4
fraction of load not served

Histogram of different outage sizes of 12.000
samples, initiated by tripping line 44. This line
is from the top 1% of the most stressed lines
(graded in power flows). Every instance was
initiated i.i.d.

Al

A2

A3

A4

Tripping Strategies

Trip the line, (/,/), with the minimal
current power flow, P;j = min{Po} ...
tree/hierarchical inspired

Trip the line, (/,/), with the maximal
current power flow, P;j = max{Po} ...
anti [Al]

Trip the line, (i,), with the minimal
current relative overload, p; = min{po}
. similar to [A1]

Trip line, (i,), with the maximal current
relative overload, pj = max{pp} ... anti
[A3] also “natural”

pij = (Pj — P)/ Py

Michael (Misha) Chertkov — chertkov@lanl.gov
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Loss of Synchrony

Synchronization Criteria

Phase Stability and Synchronization
« simple (linear and easy to test) and general (!!)
F. Dorfler, MC, F. Bullo (LANL & UCSB) synchronization conditions were formulated
o )

Mifl; — Difl = w; — Z agsin{f; - 6; e{l....m}

jeneigibsl)

Dfi=wi= Y. aysinlti=6;). i€{m=1....1}

j Encighbas(s)

Kuromoto (phase)
dynamics

Future Directions:

« Static Proxy for Stability (e.g. in distance to failure)
« Towards accounting for voltage (collapse) effects

chertkov/Smar

Michael (Misha) Chertkov — chertkov@lanl.gov http://cnls.lz



Placement of FACTS devices

Optimization of Transmission with FACTS devices
[V. Frolov, MC, S. Backhaus 20

@ FACTS=Flexible AC Transmission Systems, in particular (integrated

in a line) allow to change inductance of the line without changing
its capacity

@ Assume that top contingencies, po, - - (vectors of N-k failures, or
instantons) violating some of the thermal (line limits) are known

Can one improve transmission performance by modifying inductances?

@ [ is the bare vector of inductance over the network edges;
TC(SBo; po) are violated

® ming |8 — BollTC(s.p) are ok

@ Difficult (non-convex) Optimization solved efficiently with
Sequential LP

@ Solutions are typically sparse (can use for placement) and non-local

Michael (Misha) Chertkov — chertkov@lanl.gov
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