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ABSTRACT

Graph Anomalies in Cyber Communication
Scott A. Vander Wiel

Curtis B. Storlie

Gary Sandine

Aric Hagberg

Michael Fisk

2011 INFORMS Computing Society Conference,
Monterey, California

Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for
known signatures of malicious traffic or search for anomalies with respect to a nominal reference model.
Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring.
More recently, however, traffic is being viewed more holistically as a dynamic communication graph.
Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought.
We give an overview of several cyber data streams collected at Los Alamos National Laboratory and
discuss current work in modeling the graph dynamics of traffic over the network. We consider global
properties and local properties within the communication graph. A method for monitoring relative
entropy on multiple correlated properties is discussed in detail.
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January 27, 2010
ExxonMobil,
ConocoPhillips and
Marathon Oil
executives were
unwittingly duped by
unsolicited e-mails
carrying data-
extracting malware
.... This new form of
corporate and, quite
possibly, nation-
sponsored
espionage utilized
custom spyware that
is virtually
undetectable by
antivirus software
applications used by
the vast majority of
large companies
around the globe.

intemetnews.com
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Januvary 15, 2010
Juniper Networks and Symantec ... are
investigating a widespread cyber-espionage
incident that has hit dozens of technology
companies, including Google and Adobe.

Sources familiar with the situation say that
34 companies, most of them large Fortune
500 names, were hit by a sophisticated
cyber attack, first uncovered by Google last
month. The attackers used a previously
unknown "zero-day" attack on Internet
Explorer, and possibly other technigues, to
break into company networks and steal
sensitive information.

InfoWorld

2009
We regularly face
attempts by others
to gain unauthorized
access ... by
masquerading as
autharized users or
surreptitious
introduction of
software. These
attempts ... are
sometimes
successful. ... We
seek to detect and
investigate these
security incidents
and to prevent their
recurrence, but in
some cases we
might be unaware of
an incident or its
magnitude and
effects.

intel report to SEC
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Attack Detection and Response
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Cyber Attack: misuse of a networked system such as

— penetration (intrusion, exploitation),
— remote command and control

— exfiltration of data

— denial of availability or integrity

Goals: use observed sensor data to

— detect known attack methods and tools
— detect unexplained patterns that could be attacks
— prioritize responses based on likelihood of being an attack

New efforts to detect today’s subtle cyber adversaries

— focus on invariants of attacker objectives rather than artifacts of specific

attack technologies

— structural detection rather than simple rate-based detection

4727



Temporal Communication Graphs
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Scale of Data Collection at Los Alamos

Host
Detection Classification

Many cyber data sets can (and should)
be described as graphs
— vertices are hosts, users, etc.
— directed edges are communications
— events from heterogeneous sensors can
be combined in one graph

A graph construction supports traditional
local analysis while enabling new analysis
— exploitation is often a temporal path

through the network
— long paths alter structural
characteristics of the graph

Flow of Analytics Data

e Routers
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Attributes:
= protocol: tgp, udp, ...
» packet count, bytes, ...
« type: chat, web, gsh, ...
« probability of edge

» user type: scientist, admin, ...
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Properties of Cyber Graphs

Cyber event graphs are coming into their own
— much graph work on social networks and dynamic
topology
— not much on temporal event graphs in cyber
Need to understand properties of cyber event graphs
— improve relevance of random graph generative models
— provide a basis for detecting change
Anomalies are departures from the normal diurnal
evolution of
— local activity on a node or edge
— distribution of subgraphs
— global properties (components, diameter, density, size)
Hypothesis: a nosy intruder cannot avoid altering the
graph structure
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* “
1-rnin window of SSH
traffic (LANL)
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Subgraph Statistics
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Enumerate a set of subgraphs.
Some options:
— connected components
— graphlets
- temporal walks (paths)
telescoping
consecutive
overlapping

Measure subgraph features

— order
— diameter
— density

The distribution of features over

subgraphs is a statistic of the full

graph and evolves over time.
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SSH Graph from LANL's Network Netflow-Type Data

Netflow is one type of data sampled from LANL'’s internal network by
the routers. A Netflow record contains the following.

Source IP address
Source port
Destination IP address
Destination port

IP protocol

Ingress interface 1D

IP Type of Service

MR

In this talk we focus on SSH sessions (port=22) and build a graph for
each ten-minute time interval in the month of November using the
edges with connection times in the given interval

N [ 10,27




Summaries of SSH Graphs Patterns over Time

Summarize each connected component by Component Counts over Six Months (every four hours)

order: O = number of nodes
diameter: D = greatest distance between any pair of vertices

3500

number of components
2500

Each ten-minute bin of time provides a set of (O,D) pairs from
disconnected components

1500

0427
05/04
05/11
0518
05/25
06/01
06/08
0615
06/22
06729
07/06
0713
07/20
0727
0803
08/10
o817
08/24
08/31
09/07
09/14
09/21
09/28
10105
10/12
10119
10/28
101

Future work: summarize using graphlets (arbitrary subsets of nodes and

Il edges between th .
all edges between them) Numbers of components follow predictable daily and weekly patterns.
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(O,D) Distribution Aggregated to a Full Month
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Daily and weekly trends in (O,D)

By hour of day
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A Dynamic Model for Multivariate Count Data

x = (0,D)
X = set of possible (O,D) pairs
yt(x) = count of subgraphs with (O,D) equal x

Observe {y:(x) : x € X'} over a sequence of times t = 1,2,....

Goal: monitor counts over time and alarm if observed counts depart from
established patterns.

Model the counts at time t as

{ye(x) : x € X}M; ~ Multinomial(M;, {p:(x) : x € X}),
M, ~ Poisson(A¢).

M, is the total count over the table.
Predict At and p¢(x) from data up to t — 1.

lllllllllllllllll
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Predict A; by Kernel Filtering Previous Counts, M

= 230:0 Z:__—_i Ki(t,s, d,hy) Ms
ch)/o:O Zi;i K/\(t’ S, d: h)\)
The kernel function decomposes as

’\t|t—1

K,\(t,s, d7 h,\) = KD(G', h,\,d)KB(t, s, d, h)\,b)
Kp reaches back to data on previous days
Ko(d, hxg) = (1 — hrg)®

Kg reaches back to data on previous time bins

KB(t,S, d, h/\,b) :(]_ - h/\,b)|t—d*T_s|
(T = 144 bins/day)

hy = (hx,4, ha,p) are tuning parameters chosen by cross-validation.

................. 16/27



The Kernel for Predicting A; from My, ... M, The Kernel for Predlctmg A from My, ...
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day
6

day
6

hour of day hour of day
hy = (0.17,0.13) — equivalent to 11 days x 14 half-hour bins hy = (0.17,0.13) — equivalent to 11 days x 14 half-hour bins
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day

0 5 10 15 20
hour of day
hy = (0.17,0.13) — equivalent to 11 days x 14 half-hour bins
';ﬁﬂamos
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The Kernel for Predicting A; from My, ..., M,
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=(0.17,0.13)

hour of day

— equivalent to 11 days x 14 half-hour bins
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Adjusting the Tuning Parameters Predict p:(x) by Kernel Filtering

h, =(0.17,0.4)

5: Filter previous empirical (O,D) distributions

o ramires {Ps(x) = ys(x)/Ms : x € X} (s<t)

hour of day to predict py(x) as
hy=(05,0.13) .
t— 5
2 f’t]t (x) = 3°=o s=1 ZWGX Ke(t,s, d,x,w, hP)Ps(W)
= - t-1 ’

g : Z?:O Es:l ZweX KP(t7 S, d7 X, W, hp)

B Choose tuning parameters h, = [hp 4. hp ps Fp 1, - - -, hp g, hp 5] by cross

“ validation.

10
hour of day hour of day

hy,q adjusts height; hy , adjusts width
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Predict p;(x) by Kernel Filtering (cont.)

The kernel decomposes as
Kp(t, s,d, x,w, hp) = KD(d, hp,d)KB(t, s,d, hp,b)Kw(x, w, hp)Mt_l

with day (Kp) and time-bin (Kg) kernels as before and now a within (O,D)

kernel
2

Kw(x,w, hp) = TJ(1 = hp jhg)=al,
j=1

Parameters h, ; reduce kernel weights according to the distance between a
given (0,D) pair (w) and the target pair (x)

Parameter h; makes the kernel wider for larger x;, where probabilities are
likely smaller.

Mt'1 weights by inverse variance.

2

Los Alamos
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Kernel for Estimating p;(10, 3)

hour of day

day
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Anomaly Detection

At time t — 1, a predictive distribution for the next set of counts is

yi(x) ~ P°i55°"(3‘t|t—1l3t1t—1(x))-
These are independent over x € A" under the multinomial model.

We use exceedance probabilities to detect unusually large subgraph counts
relative to predictions:

Ur(x) = Pr(Poisson > y;(x))
The joint exceedance probability

Ue =[] Ue(®)

Xex

has a known distribution (negative log-gammma if randomization is used),
providing a reference to calculate p-values for joint exceedance.

s Los Alamos
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P-Values for Joint Exceedance

Three weeks of monitoring SSH graphs every ten-minutes.

exceedance probabiity

TT T T
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Distribution of P-Values for Joint Exceedance The Anomaly: Compare p;(x) to Data

A QQ plot shows we have a reasonable reference model for monitoring. Logyo estimated probabilities
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Histogram for 4 to 8 PM

Counts

component diameter

component order

(21, 12) is highly unusual at this time of

More broadly distributed anomalies can also be detected.
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SSH graph from LANL's Network During the Anomaly SSH graph from LANL's Network During the Anomaly
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SSH graph from LANL's Network During the Anomaly

SSH graph from LANL's Network During the Anomaly
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SSH graph from LANL's Network During the Anomaly Conclusions & Further Work

@ Monitoring subgraph properties can signal changes in network behavior.

@ The dynamic kernel filter effectively smooths data from recent times in
the target day from other recent days.

@ The approach can be extended to incorporate
— additional subgraph properties (eg., number of edges)
— time constraints on paths (eg., telescoping times)
— local communication patterns (eg., busy edges vs. quiet ones)
— additional services (SSH is only illustrative)

an = Alamos
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