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ABSTRACT 

Graph Anomalies in Cyber Communication 

Scott A. Vander Wiel 
Curtis B. Storlie 
Gary Sandine 
Aric Hagberg 
Michael Fisk 

2011 INFORMS Computing Society Conference, 
Monterey, California 

Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for 
known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. 
Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. 
More recently, however, traffic is being viewed more holistically as a dynamic communication graph. 
Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. 
We give an overview of several cyber data streams collected at Los Alamos National Laboratory and 
discuss current work in modeling the graph dynamics of traffic over the network. We consider global 
properties and local properties within the communication graph. A method for monitoring relative 
entropy on mUltiple correlated properties is discussed in detail. 
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January 27, 2010 

ExxonMobil, 
ConocoPhillips and 
Marathon Oil 
executives were 
unwittingly duped by 
unsolicited e-mails 
carrying data­
extracting malware 
.". This new fonm of 
corporate and, quite 
possibly, nation­
sponsored 
espionage utilized 
custom spyware that 
is virtually 
undetectable by 
antivirus software 
applications used by 
the vast majority of 
large companies 
around the globe. 

inleme/news.com 

.. ~~~~.~ 

January 15, 2010 

Juniper Networks and Symantec .. . are 
investigating a widespread cyber·espionage 
.ncident that has hit dozens of technology 
companies, including Google and Adobe. 

Sources familiar with the situation say that 
34 companies, most of them large Fortune 
500 names, were hit by a sophisticated 
cyber attack, first uncovered by Google last 
month. The attackers used a previously 
unknown ·zero-day· attack on Internet 
Explorer, and possibly other techniques, to 
break into company networks and steal 
sensitive infonmation. 

InfoWorld 

2009 
We regularly face 
attempts by others 
to gain unauthorized 
access ' " by 
masquerading as 
authorized users or 
surreptitious 
introduction of 
software. These 
attempts ... are 
sometimes 
successful. ... We 
seek to detect and 
investigate these 
security incidents 
and to prevent their 
recurrence, but in 
some cases we 
might be unaware of 
an incident or its 
magnitude and 
effects. 

Intel report to SEC 

3i 27 

Attack Detection a nd Response 

Cyber Attack: misuse of a networked system such as 
penetration (intrusion, exploitation), 
remote command and control 
exfiltration of data 
denial of availability or integrity 

Goals: use observed sensor data to 
- detect known attack methods and tools 
- detect unexplained patterns that could be attacks 
- prioritize responses based on likelihood of being an attack 

New efforts to detect today's subtle cyber adversaries 
- focus on invariants of attacker objectives rather than artifacts of specific 

attack technologies 
- structural detection rather than simple rate-based detection 
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Scale of Data Collection at Los Alamos 
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Temporal Communication Graphs 

Many cyber data sets can (and should) 
be described as graphs 

vertices are hosts, users, etc. 
directed edges are communications 
events from heterogeneous sensors can 
be combined in one graph 

A graph construction supports traditional 
local analysis while enabling new analysis 

- exploitation is often a temporal path 
through the network 

.A 
·· ~u~~ 

long paths alter structural 
characteristics of the graph 

el e2 

~ 
e
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= (( [t\>t 2]' (l ,b,c , ... )) 
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Attributes: 
• protocol : ll<I2. lliIu.. ... 
• packet count, bytes, 
• type: cha t. web, ~ . 
• probability of edge 
• user type: scientist, admin, . 

~. 
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Properties of Cyber Graphs 

Cyber event graphs are coming into their own 

- much graph work on social networks and dynamic 
topology 
not much on temporal event graphs in cyber 

Need to understand properties of cyber event graphs 

- improve relevance of random graph generative models 
- provide a basis for detecting change 

Anomalies are departures from the normal diurnal 
evolution of 

- local activity on a node or edge 
- distribution of subgraphs 

global properties (components, diameter, density, size) 

Hypothesis: a nosy intruder cannot avoid altering the 

graph structure 
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Subgraph Statistics 

Enumerate a set of subgraphs, 
Some options: 

- connected components 
graphlets 
temporal walks (paths) 

telescoping 
consecutive 
overlapping 

Measure subgraph features 

- order 
- diameter 
- density 

The distribution of features over 

subgraphs is a statistic of the full 

graph and evolves over time. 
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SSH Graph from LANL's Network Netflow-Type Data 

Netflow is one type of data sampled from LANL's internal network by 
the routers. A Netflow record contains the following. 

1. Source IP address 
2. Source port 
3. Destination I P address 
4. Destination port 
5. IP protocol 
6. Ingress interface ID 
7. IP Type of Service 

In this talk we focus on SSH sessions (port=22) and build a graph for 
each ten-minute time interval in the month of November using the 
edges with connection times in the given interval 

.. ~~~ 
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Summaries of SSH Graphs 

Summarize each connected component by 

order: ° = number of nodes 
diameter: D = greatest distance 'between any pair of vertices 

Each ten-minute bin of time provides a set of (O,D) pairs from 
disconnected components 

Future work: summarize using graphlets (arbitrary subsets of nodes and 

all edges between them) 

. ~~~~ 
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Patterns over Time 

Component Counts over Six Months (every four hours) 
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(0,0) Distribution Aggregated to a Full Month 
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Daily and weekly trends in (0,0) 

By hour of day 
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A Dynamic Model for Multivariate Count Data 

x = (O,D) 

X = set of possible (O,D) pairs 

Yt(x) = count of subgraphs with (O ,D) equal x 

Observe {Yt(x) : x E X} over a sequence of times t = 1, 2, . . .. 

Goal : monitor counts over time and alarm if observed counts depart from 
est a bl ished patterns. 

Model the counts at time t as 

{Yt(X) : x E X} IMt '" Multinomial(Mt , {Pt(x) : x E X}) , 

Mt ", Poisson(At} . 

Mt is the total count over the table . 

Predict At and Pt(x) from data up to t - 1. 

A 
'. ~~PJ~ __ 1IGia;. .. 
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Predict At by Kernel Filtering Previous Counts, Ms 

5. - L:~=oL:!:i K>. (t , s, d , h>.)Ms 
tlt-l - ,\,00 '\'t-l ( h ) , 

L.Jd=O L.J5=1 K>. t , 5, d , >. 

The kernel function decomposes as 

K>. (t,5, d, h>.) = Ko(d , h>.,d)KB(t, 5, d, h>., b) 

Ko reaches back to data on previous days 

Ko(d , h>.,d) = (1 - h>.,d)d 

KB reaches back to data on previous time bins 

KB(t , 5, d, h>., b) =(1 - h>. ,b) lt-d*T - 51 

(T = 144 bins/day) 

h>. = (h>.,d, h>', b) are tuning parameters chosen by cross-validation . 
/-J 
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The Kernel for Predicting At from MI ).· . , Mt - I 
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The Kernel for Predicting At from MI l ' .. , Mt- I 
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The Kernel for Predicting At from MI ) ... J Mt- I 
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The Kernel for Predicting At from MI , · .. , Mt - I 
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Adjusting tne Tuning Parameters 

h,.(0.17.013) hA· (0.17.0A) 

9 9 

~'" '0 

1- ,"' I 

•• __ •. _-: I I I _ ••. ---::ijiin1!DlUU:- 'i , . , -"".,00;.. _________ . 1 j 
II 

0 "1 " . , 
10 15 20 

hour 01 day 

h, . (0.5. 0.13) 

9 

10 ' 5 20 

hour of day 

h)..,d adjusts height ; h)..,b adjusts width 

<QAlamos 
~:.::~~ w ............ 

10 15 20 

hour 01 day 

h,. (0.5. 04) 

L 

10 20 

hour of day 

J8/ 27 

Predict Pt(x) by Kernel Filtering 

Filter previous empirical (0.0) distributions 

{Ps(x) == ys(x) / Ms : x E X} (s < t) 

to predict Pt(x) as 

~ () _ L:;O=o L;:~LwEX Kp(t , s , d , x , w , hp)Ps(W) 
Ptlt-l x - 00 '\"t-l '\" ) 

Ld=O L.....s= l L.....W EX Kp( t , s , d, x, w , hp 

Choose tuning parameters hp = [hp ,d, hp,b, hp,l ,"" hp,q, hp,ol by cross 
validation . 

·A • LoS Alamos 
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Predict Pt( x) by Kernel Filtering (cont.) 

The kernel decomposes as 

Kp(t, 5, d, x, w , hp) = Ko(d , hp,d)Ka(t, 5, d, hp,b)Kw(x, W, hp)M;-l 

with day (Ko) and time-bin (Ka) kernels as before and now a within (0,0) 
kernel 

2 

Kw(x, w , hp) = II (1 - hp,jh;j )lxrwjl. 
j=l 

Parameters hp,j reduce kernel weights according to the distance between a 
given (0,0) pair (w) and the target pair (x) 

Parameter hi5 makes the kernel wider for larger Xj, where probabilities are 
likely smaller. 

M;-l weights by inverse variance . 
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Kernel for Estimating pt(lO, 3) 
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Anomaly Detection 

At time t - 1, a predictive distribution for the next set of counts is 

Yt(X) rv Poisson(>-tlt_1Ptlt_l(X)) , 

These are independent over x E X under the multinomial model. 

We use exceedance probabilities to detect unusually large subgraph counts 
relative to predictions: 

Ut(X) == Pr(Poisson ;::: Yt(x)) 

The joint exceedance probability 

Ut = II Ut(x) 
XEX 

has a known distribution (negative log-gammma if randomization is used), 
providing a reference to calculate p-values for joint exceedance. 
h 

• 1..05 Alamos 
~ ... ~,,~~!.O~ L r 22/27 

P-Values for Joint Exceedance 
Three weeks of monitoring SSH graphs every ten-minutes. 
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Distribution of P-Values for Joint Exceedance 
A QQ plot shows we have a reasonable reference model for monitoring. 
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The Anomaly: Compare Pt(X) to Data 

LoglO estimated probabilities 
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One subgraph with (0,0) = (21, 12) is highly unusual at this time of 
day (but not at other times) . 

More broadly distributed anomalies can also be detected . 
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SSH graph from LANL's Network During the Anoma SSH graph from LANL's Network During the Anomaly 



SSH graph from LANL's Network During the Anomal SSH graph from LANL's Network During the Anoma 
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SSH graph from LANL's Network During the Anomaly SSH graph from LANL's Network During the Anomaly 



ph from LANL's Network Duri Conclusions & Further Work 

• Monitoring subgraph properties can signal changes in network behavior. 

• The dynamic kernel filter effectively smooths data from recent times in 
the target day from other recent days. 

• The approach can be extended to incorporate 
- additional subgraph properties (eg., number of edges) 
- time constraints on paths (eg., telescoping times) 
- local communication patterns (eg., busy edges vs. quiet ones) 
- additional services (SSH is only illustrative) 
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