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Introduction: Van Allen Radiation Belts 

•  Historic discovery in 1958 
by the Explorer I mission 
under Dr. James Van Allen 

•  Torus of energetic charged 
particles trapped by the 
geomagnetic field around 
the Earth  

•  Two distinct belts: energetic 
electrons forming the outer 
belt and a combination of 
protons and electrons 
creating the inner belt 

•  Relativistic electrons (>~500 
keV) are a serious threat to 
the operation of spacecraft 
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Introduction: Radiation Belt Dynamics 

• Particle pitch angle α: 
p||/p = cos(α)  

• Particles with 
equatorial pitch angles 
αE>αL are trapped due 
to magnetic mirroring  

• Particles with αE<αL encounter the 
atmosphere before 
mirroring, and 
consequently get lost  

• αL defines the size of 
“loss cone”, which 
decreases with 
distance from the 
Earth 

4 



Introduction: Radiation Belt Dynamics 

•  The intensity and the structure of 
the trapped relativistic electron 
belts are controlled by a balance of 
acceleration, transport, and loss 
processes 

•  Relativistic electrons can be 
injected from the plasma sheet by 
geomagnetic storms   

•  Wave particle Interactions can 
scatter electrons into loss cone and 
remove them from radiation belts  

•  Many waves can scatter relativistic 
electrons, e.g., EMIC waves, 
whistler waves, and magnetosonic 
waves 
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•  Schematic illustration of the 
wave distribution in the inner 
magnetosphere [Thorne, 2010] 



Introduction: Overview of Waves 
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Wave EMIC Waves Whistler Waves  Magnetosonic 
Waves 

Free 
Energy 

Ti┴>Ti|| Te┴>Te|| ∂fi(v┴)/∂v┴>0 

 
Properties 

ω<Ωp ,kλi<1, 
nearly parallel 
propagation 

Ωlh<ω<Ωe , kλe<1, 
parallel as well as 
oblique propagation 

ω≈nΩp ,kρi>1, 
nearly perpendicular 
propagation 

Fast 
Electron 
Scattering 

Mainly in pitch 
angle 

Both in pitch angle 
and energy 

Both in pitch angle 
and energy 

Simulation 
Model 

Hybrid Particle-in-cell Particle-in-cell 



Whistlers: Linear Kinetic Theory 

•  Whistler anisotropy instability due to T⊥e/T||e > 1 is a 
likely source of enhanced “chorus” frequently observed 
in outer magnetosphere. 

•  Kinetic linear theory predicts instability grows at: 
+  Ωlh < ω < Ωe. 
+  kc/ωpe < 1. 
+  Maximum growth at propagation parallel to Bo. 

•  For a bi-Maxwellian electron velocity distribution, 
maximum growth rate: 
+  Increases with increasing T⊥e/T||e. 
+  Increases with increasing β||e. 

•  For more realistic electron distributions, instability 
response gets more complicated. 



Whistler Anisotropy Instability:  
Cold Electrons Maximize Growth  

•  In plasmasphere, electron distribution usually consists of at least 
two components: 
+  Hot, anisotropic, tenuous. 
+  Cold, dense. 

•  Increasing cold electron density leads to growth rate  maximum: 

 



Banded Whistlers 

• Whistler observation at L=4.4 on 18 
April 2002 by the Cluster spacecraft 
[Santolίk et al., 2003]  

•  Banded spectra with a gap near 0.5Ωe 
•  Composed of discrete narrowband 

wave elements with rising or falling 
tones (the classical “chorus”) often 
accompanied by banded incoherent 
whistler waves  
•  Excited near the geomagnetic equator  
•  No general agreement on wave 

normal angle observations, but lower-
band waves tend to be field-aligned 
near the equator and upper-band 
waves seem to be highly oblique at all 
latitudes [Haque et al., 2010] 
•  Lower-band waves are stronger on 

average than upper-band waves 
[Meredith et al., 2001] 
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Banded Whistler Excitation 
• We focus on the excitation of the banded incoherent whistler waves, while the 

discrete chorus elements can arise from these waves through nonlinear wave 
growth involving the inhomogeneity of geomagnetic field [Omura et al., 2008] 
•  Lower-band waves are generated by whistler anisotropy instability driven by 

anisotropic electrons between a few and tens of keV [Kennel and Petschek, 
1966] 
•  Upper-band waves and the banded structure?  

+ Landau damping [Tsurutani and Smith, 1974] 
+ Propagation effects [Maeda et al., 1976] 
+ Different modes (whistler + ordinary) when ωe<Ωe [Curtis, 1978] 
+ Upper-band waves are quasi-electrostatic and generated through an instability 

driven by anisotropic electrons of tens eV [Hashimoto and Kimura, 1981, Hayakawa 
et al., 1984] 

+ Lower-band and upper-band waves trapped in ducts of enhanced and depleted 
cold plasma densities, respectively [Bell et al., 2009] 

+ Nonlinear damping of a slightly oblique whistler wave propagating along the 
inhomogeneous geomagnetic field [Omura et al., 2009] 
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•  Driven by anisotropic electrons with Τ⊥/Τ||>1	



•  Lead to whistler fluctuations over Ωlh< ωr< Ωe 
•  Properties of excited waves have a β||e dependence when ωe/Ωe>1: 
   (β||e=neT||e/(B0

2/2µ0) =(2T||e/mec2)(ωe/Ωe)2)  

•  The most unstable mode changes from parallel propagation to oblique 
propagation as β||e decreases 

Whistler Anisotropy Instability: Linear Theory 
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• Two instability regimes: 
+ γm at parallel propagation and the 

excited waves are substantially 
electromagnetic when β||e>~0.025  

+ γm at oblique propagation and the 
excited waves are quasi-
electrostatic when β||e<~0.025  

+ The frequency also shifts from below 
to above 0.5Ωe 

• Banded whistler waves can be 
excited when two bi-Maxwellian 
electron components with T⊥/T|| 
> 1 at different T|| are present 
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Whistler Anisotropy Instability: Linear Theory 



Banded Whistler Excitation: Observations 

• Santolίk et al. [2010] : 
two anisotropic electron 
components at different 
T|| can excite the waves 
in two bands 
simultaneously 
• Li et al. [2010] : a 

statistical survey of the 
equatorial electron 
distributions (THEMIS) 
responsible for chorus 
excitation  
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Banded Whistler Excitation: Linear Theory 

•  Electrons: 90% of warm electrons with T⊥/T||
=5 at T||=160 eV and 10% of hot electrons 
with T⊥/T||=2 at T||=16 keV  

• ωe/Ωe=4 (1<ωe/Ωe<5 in regions associated 
with strong chorus [Li et al., 2010])  

+ β||w=0.01 and β||h=1 if β||j=n0T||j/(B0
2/2µ0)=(2T||j/

mec2)(ωe/Ωe)2 

• Hot electrons drive lower-band waves:   
+ ωm/Ωe=0.29, γm/Ωe=0.016 at kλe=0.63 and θ=0o 
+ Substantially electromagnetic :|δE|||<<|δE⊥⊥|≤ |
δE⊥| and |δB|||<<|δB⊥|≤|δB⊥⊥| 

• Warm electrons excite upper-band waves: 
+ ωm/Ωe=0.69, γm/Ωe=0.030 at kλe=3.8 and θ=48o 
+ Quasi-electrostatic :| δE⊥⊥|<<|δE|||<|δE⊥| and |δB|||

~|δB⊥|<|δB⊥⊥| 

•  Instability growth rate as a 
function of kλe and θ (wave 
normal angle).  The black contour 
lines are the contour of γ/Ωe=0.01 
[Liu et al., 2011] 
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Banded Whistler Excitation: PIC Simulation 

•  2D electromagnetic PIC simulation: 
+ Lx=Ly=51.4λe, Nx=Ny=256, ΔtΩe=0.018  
+ 9600 simulation particles per cell for each of 

the two electron components 
+ B0 is along x: x-||, y-⊥, z-⊥⊥ 

•  The energy increase of δE around 
tΩe=200 corresponds to the instability 
development driven by the warm 
electrons. The enhanced fluctuations 
are in the upper band and quasi-
electrostatic  

•  The slight decrease of energy in δE after 
tΩe=300 is due to Landau damping of 
the quasi-electrostatic fluctuations 
•  The energy increase after tΩe=600 

corresponds to the instability growth 
driven by the hot electrons. The 
enhanced fluctuations are in the lower 
band and predominantly electromagnetic 

•  Time evolution of T⊥/T|| of the warm (a) and 
hot (b) electrons, as well as wave energies 
in different electric (c) and magnetic (d) 
field components (red-||, green-⊥, blue-⊥⊥, 
black-total) [Liu et al., 2011] 
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Banded Whistler Excitation: PIC Simulation 

•  Energy spectral density of δE⊥ at x=y=25.7λe from tΩe=900 to 1800. 
The two vertical dashed lines mark the locations of the most unstable 
modes predicted by linear kinetic theory [Liu et al., 2011] 

•  The four discrete spikes around the lower-band spectral peak are due 
to the limited size of the simulation domain, which allows only waves of 
k=2nπ/L, n=0, 1, 2, … 
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Banded Whistler Excitation: PIC Simulation 

•  The wave component δE⊥ at tΩe=1800: (a) The contour plot ; (b) The wave number power 
spectrum. The black contour lines represent the contour of γ/Ωe=0.01 given by linear kinetic 
dispersion theory [Liu et al., 2011] 

•  The superposition of short-wavelength obliquely-propagating waves on top of long-
wavelength field-aligned waves 

•  The weak enhancement of waves around k||λe=1.5 and k⊥λe=2.5 suggests that the nonlinear 
wave-wave coupling mechanism in Schriver et al. [2010] operates weakly 
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Nonlinear Wave-wave Coupling 

•  The wave component δE⊥ at tΩe=1800 from a two-dimensional PIC simulation with only the 
warm electrons being anisotropic: (a) The contour plot ; (b) The wave number power 
spectrum. The black contour lines represent the contour of γ/Ωe=0.01 given by linear kinetic 
dispersion theory 

•  The weak enhancement of waves around k||λe=1.5 and k⊥λe=2.5 suggests that the nonlinear 
wave-wave coupling mechanism in Schriver et al. [2010] operates: Obliquely-propagating 
lower-band waves are excited through nonlinear wave-wave coupling  
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Nonlinear Wave-wave Coupling 

•  The wave component δE⊥ at tΩe=1800 from a two-dimensional PIC simulation with only the 
hot electrons being anisotropic: (a) The contour plot ; (b) The wave number power 
spectrum. The black contour lines represent the contour of γ/Ωe=0.01 given by linear kinetic 
dispersion theory 

•  The weak enhancement of waves around k||λe=1.3 and k⊥λe=0 reveals another wave-wave 
coupling mechanism: Parallel-propagating upper-band waves are excited through nonlinear 
wave-wave coupling  
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Summary 
•  Banded whistler waves can be generated by the whistler anisotropy instability 

driven by two bi-Maxwellian electron components with T⊥/T|| > 1 at different T|| 

•  For typical magnetospheric condition of 1<ωe/Ωe<5 in regions associated with 
strong chorus, upper-band waves can be excited by anisotropic electrons below ~1 
keV, while lower-band waves are excited by anisotropic electrons above ~ 10 keV  
•  Lower-band waves are generally field-aligned and substantially electromagnetic, 

while upper-band waves propagate obliquely and have quasi-electrostatic 
fluctuating electric fields  
•  The quasi-electrostatic feature of upper-band waves suggests that they may be 

more easily identified in electric field observations than in magnetic field 
observations.  
•  Upper-band waves are liable to Landau damping and the saturation level of upper-

band waves is lower than lower-band waves, consistent with observations that 
lower-band waves are stronger than upper-band waves on average 
•  The oblique propagation, the lower saturation level, and the more severe Landau 

damping together would make upper-band waves more tightly confined to the 
geomagnetic equator (|λm|<~10o) than lower-band waves 
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Future Work: Banded Chorus Simulation 

• The present simulations use Cartesian coordinates and represent 
only  the vicinity of the geomagnetic equator  
• New simulations using curvilinear orthogonal coordinates are 
underway: 
+  The effects of inhomogeneous B0 on wave generation and wave propagation 
will be investigated 
+   Test particle computations would subsequently produce bounce-averaged 
diffusion coefficients 
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Future Work: RBSP Mission 

• Date of launch:  August 15, 2012 
• Two craft make identical 
measurements in the radiation belts 
through both space and time  
• Instruments onboard: 
+  Energetic Particle, Composition, and Thermal Plasma Suite (ECT) 
    PI: H. Spence, University of New Hampshire 
+  Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) 
    PI: C. Kletzing, University of Iowa, Iowa City 
+  Electric Field and Waves Suite (EFW) 
    PI: J. Wygant, University of Minnesota, Minneapolis 
+  Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) 
    PI: L. Lanzerotti, New Jersey Institute of Technology 
+  Relativistic Proton Spectrometer (RPS) 
    PI: National Reconnaissance Office 
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