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THE MIMETIC FINITE DIFFERENCE METHOD AND THE
VIRTUAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS WITH

ARBITRARY REGULARITY

L. BEIRÃO DA VEIGA ∗ AND G. MANZINI †

Abstract. We develop and analyze a new family of virtual element methods on unstructured
polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces
Vh ⊂ Cα, α ∈ N. The degrees of freedom are (a) solution and derivative values of various degree at
suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven
theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite
Difference method is also discussed. Numerical experiments confirm the convergence rate that is
expected from the theory.

Key words. Diffusion problem, virtual element method, polygonal mesh, Galerkin method,
high-order scheme

1. Introduction. In this work, we investigate a very appealing feature of the
Virtual Element Method (VEM) proposed in [6]: the design of numerical schemes that
incorporate a given degree α ∈ N of Cα global regularity into the discrete solution.66
Indeed, the discrete spaces of the conforming Finite Element Method are traditionally
globally continuous, i.e., only C0, and the construction of more regular elements, e.g.,
C1 elements, is a very difficult task. Successful C1 discretizations date back to mid
sixties - early seventies and were obtained by using either a high polynomial degree, as,
e.g., in the Argyris and Bell triangle [2, 15, 29], or a very complex design, as, e.g., the
HCT triangle [30, 29]. Moreover, using such strategies to obtain a finite element space
with C2 or higher regularity becomes totally prohibitive. On the authors knowledge,
the only technology that has succeeded later on in building piecewise polynomial and
highly regular spaces is that of splines [32, 36] and the isogeometric analysis [31],
but at the cost of using tensor product meshes or resorting to much more complex
construction as that of T-splines.

The virtual element approach in [6] offers a strong alternative to such construc-
tions: the finite element spaces that we will consider in this work are virtual is the
sense that we do not need to build the basis functions explicitly to implement these
methods. This feature allows us to design a family of numerical methods that are
associated with discrete spaces with arbitrary Cα regularity and are suitable to very
general unstructured polygonal meshes. To this end, we propose a new VEM that de-
pends on two integer parameters, α for the regularity and m for the polynomial degree
of the approximation, with the minimal condition that m ≥ α+ 1. The parameter α
determines the global smoothness of the underlying discrete space, i.e., Cα regularity
across the edges of the mesh. The parameter m determines the order of convergence
of the method in the energy norm, which is expected to be O(hm) for sufficiently
regular solution. Moreover, the convergence is also attained in higher order Sobolev
norms; thus, the pointwise convergence of derived quantities, for example, e.g., gra-
dients, may be guaranteed depending on the smoothness of the exact solution. Due
to the VEM general approach, the convergence theory of our schemes is very similar
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to that presented in [6], the main difference coming from the more general diffusion
tensor K considered herein.

Although the present paper is complete, in the sense that it fully analyzes the
method, we rather prefer to intend this contribution as a first exploration into a new
direction. Indeed, the possibility to develop highly regular methods can pave the way
to a wide range of applications. At a first glance, the main advantages offered by
the VEM rely in simpler discretization of higher order problems, see, e.g., [19] and in
the straightforward computation of derived quantities such as fluxes, strains, stresses,
etc., which are directly related to the degrees of freedom of the numerical method.
Other possible developments regard the anisotropic error estimation based on the
Hessian of the solution and the construction of finite element spaces that exactly
satisfy given constraints, as, for example, in the stream function formulation of the
Stokes problem, where the velocity is the curl of a C1 scalar field. We can also devise
a VEM for better eigenvalue approximation, as studies in isogeometric analysis have
shown that highly regular discrete spaces may give a better approximation of the high
end of the spectrum. Finally, the present construction can be extended to a general
“hkp approach”, i.e. a method in which the polynomial degree may vary from element
to element and the regularity index α may vary from edge to edge.

These goals may be achieved by keeping at the same time the property of mesh
generality of the Mimetic Finite Difference (MFD) methods, see, e.g., the mixed
and primal formulations given in [20, 17, 12]. The Virtual Element Method can,
indeed, be considered as a Galerkin reformulation of arbitrary order Mimetic Finite
Difference (MFD) method proposed in [12]. This fact is of primary importance since
it establishes a clear and well-defined bridge between the nodal MFD methods and the
finite element framework. However, such reformulations for mixed and nodal MFD
methods would allow to extend the many fields where the mimetic technology has
been successful to the VEM, as, for instance, the numerical solution of mixed and
primal diffusion problems [20, 17, 10, 14, 13], of advection-diffusion problems [24, 8],
of eigenvalue problems [22], of the obstacle problems [1], of the steady Stokes model
[9, 11], of magnetostatic problems [34] and Maxwell equations [18], as well as the
design of residual-based a posteriori estimators [4] using a post-processed solution [23]
and of monotonicity criteria for the mixed-hybrid mimetic formulations [35]. Other
higher-order mimetic schemes were also developed in [3, 27, 28, 25, 26] for the Support
Operator Method (SOM) [37, 38], which is a precursor of the MFD method.

The outline of the paper is as follows. In Section 2 we introduce the mathematical
model. In Section 3 we present the formulation of the new Virtual Element Method
here proposed. In Section 4 we present the convergence analysis of the scheme. In
Section 6 we confirm the theoretical results with numerical experiments. In Section 7
we offer final remarks and conclusions.

2. The mathematical model. Let us consider the steady diffusion problem for
the scalar solution field u given by

div(K∇u) = f in Ω, (2.1)

u = g on Γ, (2.2)

where Ω ⊂ R2 is the computational domain, Γ is the boundary of Ω, K is the diffusion
tensor describing the material properties, f is the forcing term and g are the Dirichlet
data. For simplicity of exposition, we will focus on the case of homogeneous Dirichlet
boundary conditions, i.e., g = 0. The more general case is a straightforward extension
and will be considered for the numerical experiments in Section 6.
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We assume that:
(H1) Ω is a bounded, open, polygonal subset of R2;
(H2) the diffusion tensor K : Ω → R

2×2 is a 2 × 2 bounded, measurable, and sym-
metric tensor. Moreover, we assume that K is strongly elliptic, i.e., there exist
two positive constants κ∗ and κ∗ such that for every x ∈ Ω it holds

κ∗||v||2 ≤ v · K(x)v ≤ κ∗||v||2 ∀v ∈ R2, (2.3)

where ||v|| is the usual Euclidean norm of the vector v.
(H3) the function f belongs to L2(Ω).

Throughout the paper, we will follow the usual notation for Sobolev spaces and
norms (see e.g. [29]). In particular, for an open bounded domain D, we will use
|·|s,D and |·|s,D to denote seminorm and norm, respectively, in the Sobolev space

Hs(D), while (·, ·)0,D will denote the L2(D) inner product. Often the subscript will
be omitted when D is the computational domain Ω. Moreover, we represent the set of
polynomials of degree at most j on P by Pj(P) and the set of polynomials of degree

exactly equal to j by P̂j(P). Finally, πDj will denote the usual L2(D)- projection onto
Pj(D), j ∈ N.

Let us now consider the functional space H1
0 (Ω) = {v ∈ H1(Ω), v|Γ = 0}. Prob-

lem (2.1)-(2.2) can be restated in the variational form:

find u ∈ H1
0 (Ω) such that

A
(
u, v
)

=
(
f, v
)

∀v ∈ H1
0 (Ω), (2.4)

where

A
(
u, v
)

=

∫
Ω

K∇u · ∇v dV and
(
f, v
)

=

∫
Ω

fv dV.

Under assumptions (H1)-(H3), the bilinear form A is continuous and coercive and
the linear functional

(
f, ·
)

is continuous, thus implying the well-posedness of prob-
lem (2.4), i.e., existence and uniqueness of the weak solution [33].

3. The discrete problem. Let {Ωh}h be a sequence of decompositions of Ω into
elements P labeled by the mesh size parameter h. For the moment, we assume that
each decomposition Ωh is made of a finite number of simple polygons, i.e., open simply
connected sets whose boundary is a non intersecting line made of a finite number of
straight line segments.

For every h, we construct a finite dimensional space Vh ⊂ H1
0 (Ω), and a bilinear

form Ah : Vh × Vh → R such that the discrete problem:
Find uh ∈ Vh such that:

Ah
(
uh, vh

)
=
(
fh, vh

)
h
, ∀ vh ∈ Vh (3.1)

has a unique solution uh, and we have “good” approximation properties. If m ≥ 1 is
the target degree of accuracy, and the solution u of (2.4) is smooth enough, we want
to have

||u− uh||1 ≤ C hm|u|m+1, (3.2)

where C, here and in the following, is, as usual, a positive constant independent of h.
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Fig. 3.1. Degrees of freedom for α = 0, 1, 2 and m = α + 1, α + 2. The symbols shown in
the plots represent vertex values (dot), vertex first-order derivatives (one circle), vertex first- and
second-order derivatives (two circles), edge values (square), first-order normal derivatives (arrow),
first- and second-order normal derivatives (double arrow)

3.1. Local discrete spaces. We denote a generic mesh vertex by v and its
coordinate vector by xv, a generic mesh edge by e and its length by |e|, the area of
polygon P by |P|, and its boundary by ∂P. The orientation of each edge e is reflected
by its unit normal vector ne, which is fixed once and for all. For any polygon P and
any edge e of ∂P, we define the unit normal vector nP,e that points out of P. We
denote the set of mesh vertices by V and the set of mesh edges by E .

We refer to the integer number α ≥ 0 as the regularity index and to the integer
number m ≥ α + 1 as the consistency index. For any integer s ≥ 0, we define the
functional space

Bs(∂P) :=
{
v ∈ L2(∂P) : v|e ∈ Ps(e), ∀e ∈ ∂P

}
.

Now, let αj := max{2(α− j) + 1,m− j}, so that, for example, α0 := max{2α+ 1,m}
and α1 := max{2α − 1,m − 1}. We define the operator ∇jv as the collection of the
derivatives of order j of the scalar function v, with the usual convention that the
zero-th order derivative coincides with the function. Thus, for example, it holds that
∇0v = v, while ∇1v is the gradient of v, ∇2v is the hessian, etc. For each polygonal
cell P and any pair of indices (α,m) with α ≥ 0 and m ≥ α+ 1 we consider the local
finite element space:

V α,mP =

{
v ∈ H1+α(P) with ∆1+αv ∈ Pm−2(P) s. t. for j = 0, . . . , α

there holds
∂jv

∂nj

∣∣∣
∂P
∈ Bαj (∂P),∇jv|∂P ∈ C0(∂P)

}
, (3.3)

with the convention that P−1(P) = {0} and where ∆1+α represents the Laplace
operator ∆ applied (1 + α) times.
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Let us illustrate the meaning of this definition through a couple of examples. For
α = 0 and m ≥ 1 we obtain the finite element spaces introduced in [6], which allow for
the formulation of a family of schemes that are equivalent to arbitrary order mimetic
method in [12]. In particular, for m = 1 we have the low-order nodal MFD method [?].
The functions that belong to these spaces are the solutions of the equation ∆v = p
with p ∈ Pm−2(P) inside each polygonal cell P, and their trace on the boundary ∂P
is a continuous piecewise polynomial of degree m. For α = 1 and m = 2, we obtain
the finite element space of functions in H2(P) that satisfy the following conditions:

• the trace on the boundary of P is continuous and is a piecewise polynomial
of degree α0 = 3;

• the normal derivative on each edge is a polynomial of degree α1 = 1;
• the gradient on the boundary is continuous;
• inside P these functions satisfy the bi-harmonic equation ∆2v = p with p ∈ R.

Remark 3.1. The local space V α,mP in (3.3) is virtual in the sense that we will not
need to build it explicitly in order to implement the family of schemes here proposed.

Remark 3.2. Note that ∆1+αv = div(∇(∆αv)), and the integration by parts
yields ∫

P

(
∆1+αu

)
v dV = −

∫
P

∇(∆αu) · ∇v dV +

∫
∂P

nP · ∇(∆αu) v dS.

3.2. Local degrees of freedom. We distinguish three kinds of degrees of free-
dom that are associated with each polygonal cell P:

• Vα,mP : vertex degrees of freedom of P;

• EhP : edge degrees of freedom of P;

• PhP : interior degrees of freedom of P.
In Figure 3.1 we depict some sample choices of degrees of freedom on a pentagonal
element for α = 0, 1, 2 and m = α+ 1, α+ 2.

Vertex degrees of freedom. The vertex degrees of freedom of a function v associ-
ated with the vertex v are the partial derivatives ∇jv(v) for j = 0, 1, . . . , α of degree
up to α evaluated at xv. For instance, for α = 1 we consider the value of v(xv) and
∇v(xv) at each vertex v of ∂P. For each mesh vertex, the total number of such degrees
of freedom is given by (α+ 1)(α+ 2)/2.

Edge degrees of freedom. Let us consider a set ofNα,m
j distinct nodes {xi}i=1,...,Nα,mj

on the open edge e, where

Nα,m
j = max(m− (α+ 1)− (α− j), 0) (3.4)

for α ≥ 0, m ≥ α + 1, and j = 0, . . . , α, These points can be uniformly spaced along
e or chosen as the nodes of suitable integration rules like those provided by Gauss-
Lobatto formulas, cf. [12]. For each j = 0, . . . , α, the edge degrees of freedom of a
function v are given by the Nα,m

j normal derivatives ∂jv(xk)/∂nj evaluated at these
points (as usual, for j = 0 we take the function value). For each edge e of ∂P, the
total number of such degrees of freedom is given by

(m− α+ β)(m− α− 1− β)

2
+ β where β = max {m− (2α+ 1), 0}.

When m = α+ 1 there are no edge degrees of freedom.
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Internal degrees of freedom. Let s = (s1, s2) denote a two-dimensional multi-index
with the usual notation |s| := s1 + s2 and xs = xs11 x

s2
2 when x = (x1, x2). For m > 1

we consider the set of m(m− 1)/2 monomials

Mm−2 =

{(
x− xP

hP

)s

, |s| ≤ m− 2

}
, (3.5)

which is a basis for Pm−2(P). The internal degrees of freedom of the function v are
the moments:

1

|P|

∫
P

q(x) v(x) dV ∀q ∈Mm−2(P).

The total number of internal degrees of freedom is m(m− 1)/2.

The dimension of the local space V α,mP equals the total number of degrees of
freedom of Vα,mP plus EhP plus PhP

Nα,m
P = NEP

( (α+ 1)(α+ 2)

2
+

(m− α)(m− α− 1)

2

)
+
m(m− 1)

2
, (3.6)

where NEP is the number of edges of the polygon P.
Remark 3.3. The degrees of freedom Vα,mP plus EhP uniquely determine a poly-

nomial of degree α0 on each edge e of P representing the function value, and also
polynomials of degree αj, j = 1, 2, .., α, representing the jth normal derivative along
the edge. In other words, Vα,mP plus EhP are equivalent to prescribe ∂jv/∂nj on ∂P, for
j = 0, 1, .., α. On the other hand, the degrees of freedom PhP are equivalent to prescribe
πP
m−2(v) in P. We recall that πP

m−2 is the projection operator, in the L2(P) norm,
onto the space Pm−2(P).

For the space V α,mP and the degrees of freedom Vα,mP plus EhP plus PhP we have
the following unisolvence result.

Proposition 3.1. Let P be a simple polygon with NEP edges, and let the space
V α,mP be defined as in (3.3). The degrees of freedom Vα,mP plus EhP plus PhP are unisol-
vent for V α,mP .

Proof. The present proof is very similar to the analogous one in [6]. We present
it for completeness. According to Remark 3.3, to prove the proposition it is enough
to see that a function v ∈ V α,mP such that

∂jv

∂nj
= 0 on ∂P, ∀P ∈ Ωh, j = 0, 1, .., α, (3.7)

and

πP
m−2(v) = 0 in P, ∀P ∈ Ωh, (3.8)

is actually identically zero in P. In order to prove this, we show that ∆1+αv = 0 in P
(that joined with (3.7) gives v ≡ 0). To this end, we first solve, for every q ∈ Pm−2(P),
the following auxiliary problem:

σ ∆1+αw = q in P,

∂jw

∂nj
= 0 on ∂P, for j ∈ [0, α] (3.9)
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where σ = (−1)1+α. This problem is reformulated in variational form as follows:

find w ∈ H1+α
0 (P) such that : BP

(
w, v

)
= (q, v)0,P ∀v ∈ H1+α

0 (P), (3.10)

with BP denoting the elliptic bilinear form associated to the operator σ∆1+α on P
through an integration by parts, cf. Remark 3.2. Note that (3.9) can be written as
w = σ∆−1−α

0,P (q), the latter symbol representing the inverse operator.
Next, we consider the map R, from Pm−2(P) into itself, defined by

R(q) := πP
m−2

(
σ∆−1−α

0,P (q)
)
≡ πP

m−2(w). (3.11)

We claim that R is an isomorphism. Indeed, from (3.11), the definition of πP
m−2, and

(3.10) we have, for every q ∈ Pm−2(P):

(R(q), q)0,P =
(
πP
m−2

(
σ∆−1−α

0,P (q)
)
, q
)

0,P
=
(
πP
m−2(w), q

)
0,P

= (w, q)0,P = BP
(
w,w

)
.

Since w is in H1+α
0 (P) we have then that

R(q) = 0 ⇔ BP
(
w,w

)
= 0 ⇔ w = 0 ⇔ q = 0. (3.12)

We notice that, if ∂jv/∂nj = 0 on ∂P, j = 0, . . . , α, then

πP
m−2(v) = πm−2(σ∆−1−α

0,P (σ∆1+αv)) = R(σ∆1+αv).

Hence, πP
m−2(v) = 0 =⇒ R(σ∆1+αv) = 0 =⇒ σ∆1+αv = 0, and the proof is con-

cluded.
Remark 3.4. We obtain a better condition number of the stiffness matrix, and

we also simplify its construction (see Section 3.4), by scaling the nodal degrees of
freedom as follows. Let ν be a vertex or an edge node of P ∈ Ωh. We set

hν = max
P:ν∈∂P

hP.

Then, we rescale all the degrees of freedom that are derivatives of order j in ν by hjν .

3.3. Construction of the finite element space Vh. We can now design Vh,
the virtual element space on the whole domain Ω. For every decomposition Ωh of Ω
into simple polygons P and for every integer k ≥ 1 we first define the space without
boundary conditions.

Wh = {v ∈ H1+α(Ω) : v|P ∈ V α,mP ∀P ∈ Ωh}. (3.13)

In agreement with the local choice of the degrees of freedom, in Wh we choose
the following degrees of freedom:

• Vh: the value of ∇jvh, j = 0, . . . , α, at the vertices of V/Γ;

• Eh: the value of ∂jvh/∂n
j for j = 0, . . . , α at the Nα,m

j internal nodes of each
edge of E/Γ, where Nα,m

j is defined in (3.4);

• Ph: the value of the moments

1

|P|

∫
P

q(x)vh(x) dV ∀q ∈Mm−2(P), m ≥ 2

in each polygonal cell P, where the set Mm−2(P) is defined in (3.5).
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Finally, the discrete space Vh is given by

Vh =
{
v ∈ H1+α

0 (Ω) : v|P ∈ V α,mP ∀P ∈ Ωh

}
. (3.14)

Note that the condition vh ∈ Vh implies vh = 0 on the vertices and the edges of the
boundary Γ. Therefore, the degrees of freedom of Vh are simply the ones introduced
above, excluding the nodal degrees of freedom associated with function values (not
the derivatives) of the boundary vertices and edges. The dimension of Vh equals the
total number of degrees of freedom for vertices, edges and elements. Proposition 3.1
implies that the global degrees of freedom are unisolvent for the global space Vh.

3.4. Construction of Ah. We build the discrete bilinear form Ah through the
assembly of the local bilinear forms Ah,P in accordance with

Ah
(
wh, vh

)
=
∑
P∈Ωh

Ah,P
(
wh, vh

)
∀wh, vh ∈ Vh. (3.15)

The local bilinear forms Ah,P are all symmetric and satisfy the following fundamental
properties of consistency and stability.

• Consistency: for all h, for all P in Ωh, and m ≥ 1 it holds

Ah,P
(
p, vh

)
=

∫
Ω

(
πP
m−1(K∇p)

)
· ∇vh dV ∀p ∈ Pm(P), ∀vh ∈ V α,mP .

(3.16)

• Stability: there exist two positive constants α∗ and α∗, independent of h
and P, such that

α∗AP

(
vh, vh

)
≤ Ah,P

(
vh, vh

)
≤ α∗AP

(
vh, vh

)
∀vh ∈ V α,mP . (3.17)

Note that in the present paper we consider a more general diffusion tensor K with
respect to [6], that is the reason for the modified consistency condition (3.16). Nev-
ertheless, in the case that K|P is constant, the projection operator πP

m−1 in (3.16) can
be neglected, thus giving

Ah,P
(
p, vh

)
= AP

(
p, vh

)
∀p ∈ Pm(P), ∀vh ∈ V α,mP .

First of all, let us observe that the local degrees of freedom allow us to compute
exactly Ah,P

(
p, vh

)
for any p ∈ Pm(P) and for any vh ∈ V α,mP . Indeed, let us assume

(3.16) and integrate by parts

Ah,P
(
p, vh

)
=

∫
Ω

(
πP
m−1(K∇p)

)
· ∇v dV

= −
∫
P

div
(
πP
m−1(K∇p)

)
vh dV +

∫
∂P

nP ·
(
πP
m−1(K∇p)

)
vh dS.

(3.18)

Since div
(
πP
m−1(K∇p)

)
∈ Pm−2(P), the first integral in the right-hand side of (3.18)

can be expressed through the polynomial moments of vh, and can, thus, be computed
exactly by using its internal degrees of freedom. On the other hand, it holds that
nP ·

(
πP
m−1(K∇p)

)
∈ Pm−1(e) and vh|e ∈ Pα0(e) for all e ⊂ ∂P, and the second inte-

gral in the right-hand side of (3.18) can be computed exactly. Therefore, the bilinear
form Ah can be computed exactly without knowing vh in the interior of P.
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At this point, we are left to show how to construct a (computable!) Ah that
satisfies (3.16) and (3.17). For any P ∈ Ωh and for any sufficiently regular function ϕ
we set

ϕ :=
1

NVP

NV
P∑

i=1

ϕ(xvi) (3.19)

where xvi is the position vector of vi, the i-th vertex of ∂P in a local numbering system
for i running from 1 to NVP .

Next, we define the operator ΠP
m : V α,mP −→ Pm(P) ⊂ V α,mP as the solution of

AP

(
ΠP
m(vh), q

)
=

∫
Ω

(
πP
m−1(K∇q)

)
· ∇vh dV ∀q ∈ Pm(P) (3.20)

ΠP
m(vh) = vh, (3.21)

for all vh ∈ V α,mP . Equations (3.20)-(3.21) imply that:

ΠP
m(p) = p, ∀p ∈ Pm(P), (3.22)

since the first equation will tell us that p and ΠP
m(p) have the same gradient, and the

second equation takes care of the constant part.
At this point, choosing Ah,P

(
u, v
)

= AP

(
ΠP
m(u),ΠP

m(v)
)

for any couple of func-
tions u and v would ensure property (3.16), but (3.17) in general would not be verified.
We need to add a term able to ensure (3.17). Let then SP(u, v) be any symmetric
positive definite bilinear form to be chosen to verify

c0AP

(
v, v
)
≤ SP(v, v) ≤ c1AP

(
v, v
)
∀v ∈ V α,mP with ΠP

m(v) = 0 (3.23)

for some positive constants c0, c1 independent of P and hP. Then, set

Ah,P
(
u, v
)

= AP

(
ΠP
m(u),ΠP

m(v)
)

+SP(u−ΠP
m(u), v−ΠP

m(v)) ∀u, v ∈ V α,mP . (3.24)

Then, the following lemma is immediate to check.
Lemma 3.2. The bilinear form (3.24) satisfies the consistency property (3.16)

and the stability property (3.17).
In general, the choice of the bilinear form SP would depend on the problem and

on the degrees of freedom. From (3.23) it is clear that SP must scale like AP on
the kernel of ΠP

m. For each element P ∈ Ωh, we denote by χi, i = 1, . . . ,Nα,m
P the

operator that to each smooth enough function ϕ associates the i-th local degree of
freedom χi(ϕ) (we recall that Nα,m

P is defined in (3.6)). Then, choosing the canonical
basis ϕ1, . . . , ϕNα,mP

as

χi(ϕj) = δij , i, j = 1, . . . ,Nα,m
P , (3.25)

the local stiffness matrix is given by

Ah,P
(
ϕi, ϕj

)
= AP

(
ΠP
m(ϕi),Π

P
m(ϕj)

)
+ SP(ϕi −ΠP

m(ϕi), ϕj −ΠP
m(ϕj)). (3.26)

In our case it is easy to check that there must hold AP

(
ϕi, ϕi

)
' |ϕi|21,P ' 1 for each

“reasonable polygon”, i.e. any polygon satisfying the mesh assumptions discussed in
Section 4. This property is true for all i = 1, 2, . . . ,NP since we properly scaled the
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local degrees of freedom, see (3.5) and Remark 3.4. Therefore, a simple choice for SP

that satisfies (3.23) is given by

SP
(
ϕi −ΠP

m(ϕi), ϕj −ΠP
m(ϕj)

)
=

Nα,mP∑
r=1

χr
(
ϕi −ΠP

m(ϕi)
)
χr
(
ϕj −ΠP

m(ϕj)
)
.

Remark 3.5. For all p, q ∈ Pm(P), from the definition of πP
m−1 and since

∇q ∈ Pm−1(P), it follows

Ah,P
(
p, q
)

=

∫
Ω

(
πP
m−1(K∇q)

)
· ∇q dV =

∫
Ω

(K∇p) · ∇q dV = AP

(
p, q
)
.

Therefore the bilinear form turns out to be exact when both entries are polynomials,
even if K is not constant on the element P. Note that the above identity also implies
that the consistency condition is compatible with the symmetry of AP

h, since it gives
Ah,P

(
p, q
)

= Ah,P
(
q, p
)

for all p, q ∈ Pm(P).

3.5. Construction of the loading term. We consider first the case m ≥ 2,
and define fh on each element P as the L2(P)-projection of f onto the space Pm−2,
that is,

fh = πP
m−2(f) on each P ∈ Ωh.

Consequently, the associated right-hand side(
fh, vh

)
h

=
∑
P∈Ωh

∫
P

fh vh dV ≡
∑
P∈Ωh

∫
P

πP
m−2(f) vh dV =

∑
P∈Ωh

∫
P

f πP
m−2(vh) dV

can be exactly computed using the degrees of freedom for Vh that represent the internal
moments. For m = 1 we approximate f by a piecewise constant, and define(

fh, vh
)

=
∑
P∈Ωh

∫
P

πP
0 (f) vh dV =

∑
P∈Ωh

|P|πP
0 (f) vh, (3.27)

with vh defined as in (3.19).

4. Convergence analysis. In this section we derive the convergence analysis
of the method. We will make use of the following regularity assumption on the mesh.

Mesh assumption. We assume that there exists a real number γ > 0 such that, for
all h, each element P in Ωh is star-shaped with respect to a ball of radius ≥ γhP,
where hP is the diameter of P. Moreover we assume that there exists a real number
γ′ > 0 such that, for all h and for each element P in Ωh, the distance between any
two vertices of P is ≥ γ′hP.

Remark 4.1. The above mesh conditions can be relaxed. We refer the interested
reader to [6] for a thourough discussion concerning this issue.

We now consider the following discrete approximations of the solution u. For each
element P ∈ Ωh, we denote by χi, i = 1, . . . ,Nα,m

P the operator that associates the
i-th local degree of freedom χi(ϕ) to each smooth enough function ϕ. It follows that
for every smooth enough function w there exists a unique element wI of V α,mP such
that

χi(w − wI) = 0, i = 1, . . . ,Nα,m
P . (4.1)

10



In the following we will make use of the interpolated field uI ∈ Vh. Finally, let uπ
be the L2 projection of u on the space of (discontinuous) functions that are piecewise
polynomials of degree m on the mesh Ωh.

The following convergence theorem holds.
Theorem 4.1. Let the consistency and stability assumptions (3.16)-(3.17) on the

method and the conditions above on the mesh hold. Then, the discrete problem:
Find uh ∈ Vh such that

Ah
(
uh, vh

)
=
(
fh, vh

)
h

∀ vh ∈ Vh, (4.2)

has a unique solution uh.
Let moreover the tensor field K|P ∈ W s,∞(P) for all P ∈ Ωh. Then, if the solution
u ∈ H1+α(Ω), it holds

|u− uh|1 ≤ Ch
s |u|s+1 (4.3)

for all 1 + α ≤ s ≤ m, where C is a constant independent of h.
Proof. Existence and uniqueness of the solution of (4.2) is a consequence of (3.17)

and of the coercivity of A. To ease the notation, will use the symbol . to indicate
bounds up to a constant that is independent of h. Setting δh := uh − uI, using (4.2),
(3.15), and adding and subtracting uπ it follows

k?α∗ |δh|21 ≤ α∗A
(
δh, δh

)
≤ Ah

(
δh, δh

)
= Ah

(
uh, δh

)
−Ah

(
uI, δh

)
=
(
fh, δh

)
h
−
∑
P∈Ωh

Ah,P
(
uI, δh

)
=
(
fh, δh

)
h
−
∑
P∈Ωh

(
Ah,P

(
uI − uπ, δh

)
+Ah,P

(
uπ, δh

) )
.

(4.4)

From the above equation, first using (3.16) and then by some simple manipulation,
we get

|δh|21 . |fh| δh −
∑
P∈Ωh

(
Ah,P

(
uI − uπ, δh

)
+AP

(
uπ, δh

)
+ TP

1

)
=
(
fh, δh

)
h
−
∑
P∈Ωh

(
Ah,P

(
uI − uπ, δh

)
+AP

(
uπ − u, δh

)
+ TP

1

)
−A

(
u, δh

)
,

(4.5)
where we introduced the term

TP
1 =

∫
P

(πP
m−1 − I)(K∇uπ) · ∇δh. (4.6)

Now, recalling (2.4), the above bound yields

|δh|21 .
(
fh, δh

)
h
−
∑
P∈Ωh

(
Ah,P

(
uI − uπ, δh

)
+AP

(
uπ − u, δh

)
+ TP

1

)
−
(
f, δh

)
= Tf −

∑
P∈Ωh

(
TP

1 + TP
2 + TP

3

)
.

(4.7)

where the terms

Tf =
(
fh, δh

)
h
−
(
f, δh

)
(4.8)

TP
2 = Ah,P

(
uI − uπ, δh

)
(4.9)

TP
3 = AP

(
uπ − u, δh

)
. (4.10)
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We need to bound the four terms above. By assuming that f is sufficiently regular
and using the same argument in [6, 7] we obtain the following approximation estimate:∣∣(fh, vh)h − (f, vh)∣∣ . hs

( ∑
P∈Ωh

|f |2s−1,P

)1/2

. (4.11)

We thus obtain the inequality

|Tf | .
(
hs
∑
P∈Ωh

|f |s−1,P

)
|δh|1 . hs |u|s+1 |δh|1 . (4.12)

By a triangle inequality and using the continuity of each AP and (3.17) we get∣∣TP
2

∣∣+
∣∣TP

3

∣∣ . ( |u− uπ|1,P +
∣∣u− uI∣∣

1,P

)
|δh|1,P . (4.13)

Given our mesh assumption, it is easy to check (following for instance the Scott-
Dupont theory, see e.g. [16]) that the following approximation result holds

|u− uπ|1,P +
∣∣u− uI∣∣

1,P
. hsP |u|s+1,P . (4.14)

Combining (4.13) with (4.14) gives the estimate∣∣TP
2

∣∣+
∣∣TP

3

∣∣ . hsP |u|s+1,P |δh|1,P . (4.15)

We finally bound the terms TP
1 . We first note that by the Cauchy-Schwarz inequality∣∣TP

1

∣∣ ≤ ||(πP
m−1 − I)(K∇uπ)||0,P |δh|1,P . (4.16)

By the triangle inequality and recalling the definition of πP
m−1 we get

||(πP
m−1 − I)(K∇uπ)||0,P ≤ ||(πP

m−1 − I)(K∇u)||0,P + ||(πP
m−1 − I)(K∇u− K∇uπ)||0,P

≤ ||(πP
m−1 − I)(K∇u)||0,P + ||K∇(u− uπ)||0,P.

(4.17)
Again by standard approximation estimates on polygons, applied to the two terms
above, and recalling the regularity hypotheses on K, from (4.17) it is easy to derive

||(πP
m−1 − I)(K∇uπ)||0,P .

(
hs |u|s+1,P + |u− uπ|1,P

)
. hs |u|s+1,P . (4.18)

The bounds (4.16) and (4.18) yield∣∣TP
1

∣∣ . hs |u|s+1,P |δh|1,P . (4.19)

A bound for |δh|1 follows easily by combining (4.7) with (4.12), (4.15) and (4.19). Fi-
nally the result is obtained by a triangle inequality and again standard approximation
results for u− uI.

The following Corollary of Theorem 4.1 shows the convergence of uh to u in terms
of scaled higher order norms.

Corollary 4.2. Under the same hypotheses of Theorem 4.1, for all 0 ≤ r ≤ α
it holds ∑

P∈Ωh

hrP |u− uh|r+1,P ≤ Ch
s |u|s+1 (4.20)
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for all 1 + α ≤ s ≤ m, where C is a constant independent of h.

Proof. We will only sketch the main ideas of the proof. Under the mesh as-
sumptions above, it is easy to check that there is a uniform bound on the number
of edges for all elements in the mesh family. Therefore, one can build a bounded
number of reference polygons and, due to the shape regularity condition, uniformly
regular mappings from each element of Ωh to one of such reference polygons. This
observation, together with the fact that the spaces V α,mP are finite dimensional, allows
us to make use of inverse estimates. Therefore, using also approximation estimates
as in the previous proof, we get for all P ∈ Ωh

hrP |u− uh|r+1,P ≤ h
r
P

∣∣uI − uh∣∣r+1,P
+ hrP

∣∣u− uI∣∣
r+1,P

.
∣∣uI − uh∣∣1,P + hsP |u|s+1,P .

(4.21)

Taking the square, summing over all the elements and using the bound for |uI − uh|1
derived in the proof of Theorem 4.1, yields from (4.21)∑

P∈Ωh

|u− uh|2r+1,P . hs |u|s+1 .

The result now follows by a triangle inequality.

Remark 4.2. We note that the interpolated field uI, which we introduced at the
beginning of this section, can also be defined in a different way, e.g., by using local
integrals in accordance with the classical Clément approximation. In such a case,
the element-wise locality of the approximation estimates is lost, but the regularity
requirement for the solution u is relaxed to u ∈ Hα(Ω).

Note that the regularity requirement on u appearing in (4.3) is not realistic when
K is discontinuous across the edges of the mesh Ωh. Indeed, it is well known from
the approximation theory that in such a case a discrete space Vh with C1 or higher
regularity is not the best choice. Nevertheless, the schemes considered herein can be
easily adapted in order to make use of a less regular space Vh across selected vertices
and edges of the mesh. To this purpose, we consider the same degrees of freedom
for each element P, but those associated with first- or higher-order derivatives at the
nodes of the chosen edges or at the selected vertices are no longer single-valued and
may take different values when referred to different elements. This strategy requires
to modify only the assembly of the global stiffness matrix while the construction of
the local element matrices remains unchanged. The resulting discrete space Vh will
show a C0-regularity only across the selected edges.

5. Connection with the MFD method. In this section, we show that the
virtual element method considered in this work can be re-interpreted as a mimetic
discretization that extends the high-order MFD method proposed in [12] to the case
of arbitrary regular solutions. To this end, we present an alternative derivation of the
bilinear form Ah,P that considers only the degrees of freedom as is usual in the mimetic
setting. Obviously, the degrees of freedom are the same of Section 3 and we use the
same notation for the vertex and the edge ones. Instead, we relabel the local degrees
of freedom that are related to the polynomial moments as follows. Let v be a smooth
function and P a given cell of Ωh. The function ϕk,i is the monomial of Mα−2(P)
that corresponds to the multi-index s = (s1, s2) after setting that k = |s| = s1 + s2

and i = s1. The internal degree of freedom associated with this monomial is denoted
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by vP,k,i, and, formally, it holds that

vP,k,i =
1

|P|

∫
P

vϕk,i dV, k = 0, . . . ,m− 2, i = 0, 1, . . . , k. (5.1)

To ease notation, throughout the section, we will denote the grid function col-
lecting the vertex, edge and internal degrees of freedom of a function vh of Vh by
the same symbol vh, the grid functions collecting the degrees of freedom of a regular
function v by vI, the local bilinear forms acting on such grid functions by Ah,P and
the global bilinear form that is given by the assembly of the local ones by Ah. We
emphasize the fact that in this section vh and vI are vectors (with real valued com-
ponents representing the value of the degrees of freedom) instead of functions and
that Ah,P and Ah are matrices that multiply these vectors (they are, indeed, a matrix
representation of the homonymous bilinear forms of subsection 3.4). The collection
of all the grid functions defined on P with the obvious definition of sum of two grid
functions and multiplication of a grid function by a scalar number is a linear space
and will be denoted by Vα,mP .

5.1. The mimetic bilinear form Ah,P. In some respects, the mimetic deriva-
tion is very similar to the derivation of subsection 3.4. Our goal here is to emphasize
the role of the degrees of freedom by noting that this alternative derivation does not
make use of concepts like basis functions. Let us first assume, for simplicity of expo-
sition, that K is a piecewise constant tensor with respect to the mesh partition of Ω,
i.e., that the restriction of K to each cell P is a constant tensor; the general case of
a non-constant tensor will be discussed at the end of the subsection. In accordance
with (3.15), the bilinear form Ah is provided by assembling the local symmetric bilin-
ear forms Ah,P : Vα,mP × Vα,mP → R that are defined for each polygonal cell P. Each
bilinear form Ah,P is an approximation of the local bilinear form

AP

(
p, v
)

=

∫
P

∇p · K∇v dV p, v ∈ H1(P), (5.2)

in the sense that

Ah,P
(
pI, vI

)
= AP

(
p, v
)

(5.3)

when p is a polynomial of degree m and the function v belongs to V α,mP . The exact-
ness relation expressed by (5.3), which is the mimetic counterpart of the consistency
condition expressed by (3.16) in the VEM context, is the crucial requirement whose
satisfaction makes it possible to build the bilinear form Ah,P directly on the degrees of
freedom. To this purpose, we first reformulate (5.3) through an integration by parts
that yields

AP

(
p, v
)

= −
∫
P

div(K∇p) v dV +
∑
e∈∂P

∫
e

(nP,e · K∇p)v dS. (5.4)

As p is a polynomial of degree m and K is a constant tensor field on P, the divergence
term, i.e., div(K∇p) is also a polynomial of degree (m−2). We express the divergence
term div(K∇p) as a linear combination of the monomials ϕk,i inMm−2(P) that form
a basis of Pm−2(P) as

div(K∇p) =

m−2∑
k=0

k∑
i=0

αk,i ϕk,i, (5.5)
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where the coefficients αk,i of the decomposition may depend on P. We substitute (5.5)
into the first term in the right hand side of (5.4), and use the definition of the internal
degrees of freedom for vI given in (5.1). The left hand side of (5.6) can be expressed
in terms of the internal degrees of freedom of vI according to the development

−
∫
P

div(K∇p) v dV = −
m−2∑
k=0

k∑
i=0

αk,i

∫
P

ϕk,i v dV

= −
m−2∑
k=0

k∑
i=0

|P|αk,i vP,k,i =: IP
(
vI, p

)
, (5.6)

which also defines the cell quadrature rule IP
(
vI, p

)
.

Moreover, the trace of v on each edge e ∈ ∂P is a univariate polynomial of degree
m, cf. definition (3.3), and is uniquely determined by the nodal and edges degrees
of e by solving a polynomial interpolation problem. For every vh ∈ Vα,mP , we denote
the interpolation polynomial defined on the edge e of ∂P by vIe (s), s ∈ [0, |e|], and we
note the, formally, it holds that v|e = vIe . Hence, the second term in the right hand
side of (5.4) can be written as∑

e∈∂P

∫
e

(nP,e · K∇p)v dS =
∑
e∈∂P

∫
e

(nP,e · K∇p)(vI)e dS =: Ie
(
vI, p

)
, (5.7)

which also defines the edge quadrature rule Ie
(
vI, p

)
. It is worth noting that IP

(
vI, p

)
only involves the internal degrees of freedom of v related to P and that Ie

(
vI, p

)
only

involves the nodal (vertex plus edge) degrees of freedom of edge e.
By combining (5.4) with (5.6) and (5.7), we prove the remarkable property that

condition (5.3) is equivalent to

Ah,P
(
pI, vI

)
= IP

(
vI, p

)
+
∑
e∈∂P

Ie
(
vI, p

)
. for all p, v as above. (5.8)

In other words, the value AP

(
p, v
)

only depends on the polynomial p and the degrees
of freedom vI, and is independent of the specific functional form that v takes inside
P.

The consistency condition (S1) that we state below for each local bilinear form
Ah,P is a direct consequence of (5.8) as it extends such property to every mimetic field
vh. This condition is the mimetic counterpart of the virtual element condition (3.16)
formulated for the case in which K is a constant tensor on P, see also the develop-
ment (3.18). In addition, we need the stability condition (S2) to guarantee the correct
scaling and kernel for these discrete forms. This second condition correspond of the
mimetic setting corresponds to the stability condition (3.17) of the virtual element
setting. Each local bilinear form must be symmetric and is required to satisfy the
following two conditions:

(S1) local consistency : for every vh,P ∈ Vα,mP and for every p ∈ Pm(P) there holds:

Ah,P
(
vh,P, p

I
P

)
= IP

(
vh,P, p

)
+
∑
e∈∂P

Ie
(
vh,P, p

)
. (5.9)

(S2) spectral stability : there exists two positive constants σ∗ and σ∗ such that for
every vh,P ∈ Vα,mP there holds:

σ∗||vh,P||21,h,P ≤ Ah,P
(
vh,P, vh,P

)
≤ σ∗||vh,P||21,h,P;
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α = 0
m dofs conditions interp. space

1 2vv P1(e)

2 2vv + ve P2(e)

3 2vv + 2ve P3(e)

4 2vv + 3ve P4(e)
Table 5.1

Degrees of freedom (dofs) for α = 0 and m = 1, 2, 3, 4. Column dofs shows the number and kind
of dofs for the pair (α,m) available for face e; the symbols are the same used in Figure 3.1. Column
conditions shows the type and number of conditions available to build such polynomial interpolation;
the symbol vv denotes the solution value at a vertex, the symbol ve denotes the solution value at an
internal node on the edge e. Column interp. space show the interpolation space that can be built
using the information available in the previous column.

Conditions (S1) and (S2) are the mimetic counterpart to the assumptions of consis-
tency and stability of subsection 3.4. Moreover, both conditions play a crucial role in
the practical implementation of the method as we will see in the next subsections.

The previous derivation can be easily adapted to the case of a non-constant tensor
field K on P by using the L2(P)-orthogonal projector πP

m. For p ∈ H1(P) and K ∈
L∞(P) it holds that div(πP

m−1(K∇p)) belongs to Pm−2(P). Therefore, we can express
this divergence as the unique linear combination of the polynomial basis functions
ϕk,i that form a basis of the polynomial space Pm−2(P):

div(πP
m−1(K∇p)) =

m−2∑
k=0

k∑
i=0

αk,i ϕk,i, (5.10)

where again the coefficients αk,i of such decomposition may depend on P. Then,
we redefine the quadrature rule IP by using the coefficients αk,i provided by (5.10)
instead of those provided by formula (5.5). It is, thus, natural to modify the previous
condition (S1) as follows:
(S1’) modified local consistency : for every vh,P ∈ Vα,mP and for every p ∈ Pm(P)

there holds:

Ah,P
(
vh,P, p

I
P

)
= −IP

(
vh,P, p

)
+
∑
e∈∂P

∫
e

ve(s)π
P
m−1(K∇p) · nP,e dS, (5.11)

where ve(s) is the (unique) polynomial of degreem associated with the degrees
of freedom in vh,P associated with edge e.

Remark 5.1. We point it out that condition (S1’) is the mimetic formulation of
the consistency condition (3.16) of the virtual element setting.

Remark 5.2. Optionally, we could modify the definition of the edge quadrature
rule Ie

(
vI, p

)
by introducing πP

m−1 in (5.7) and maintain the formulation of (S1).

5.2. Polynomial reconstructions along the edges. Let s ∈ [0, |e|] be a local
coordinate defined on the edge e = v′v′′ and such that s = 0 corresponds to v′ and
s = |e| to v′′. The mimetic formulation of the method requires the reconstruction
of the polynomial ve(s) and its normal derivatives of order up to α, here denoted
for convenience as ∂nve(s) when j = 1 and as ∂jnve(s) when j = 2, . . . , α. Such
polynomials are obtained through suitable interpolation problems, which are designed
for each edge to return the polynomials of maximum degree that can be determined
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α = 1
m dofs conditions interp. space

2
2vv + 2v′v P3(e)

2∂nvv P1(e)

3
2vv + 2v′v P3(e)

2∂nvv + ∂nve P2(e)

4
2vv + 2v′v + ve P4(e)

2∂nvv + 2∂nve P3(e)

5
2vv + 2v′v + 2∂nve P5(e)

2∂nvv + 3∂nve P4(e)

Table 5.2
Degrees of freedom for α = 1 and m = 2, 3, 4, 5. Column dofs shows the number and kind of

dofs for the pair (α,m) available for face e; the symbols are the same used in Figure 3.1. Column
degree shows the degree of v|e, the trace of a polynomial v ∈ Pm(P). Column conditions shows
the type and number of conditions available to build such polynomial interpolation; the symbol vv
denotes the solution values at a vertex, ve denotes the solution value at an internal node on the edge
e; v′v denotes the tangential derivative at a vertex; ∂nvv and ∂nve denotes the normal derivative
at a vertex and at an internal node on the edge e, respectively. Column interp. space show the
interpolation space that can be built using the information available in the previous column.

using the “nodal + edge” degrees of freedom available for that edge. A degree of
freedom associated with a given vertex v is labeled by the subscript v, e.g., vv and
∇jvv for j > 0. We will distinguish two cases: the minimal case, which corresponds
to m = α+ 1, and the more general case, which corresponds to m > α+ 1.

The minimal case m = α + 1. Let us be given the couple of indices (α,m) with
m = α+ 1. This is the simplest situation because of the absence of the edge degrees
of freedom and corresponds to the first row of Tables 5.1, 5.2, and 5.3. In such a case,

• ve(s) depends on all the degrees of freedom associated with the vertices v′ and v′′

of e, i.e., the values of v and on all the partial derivatives of order up to α
(when α > 0);

• ∂jnve(s) for j ≥ 1 depends on the values of the partial derivatives of v of order from
j to α in v′ and v′′.

Interpolation of the polynomial ve(s). To determine ve, we impose that the inter-
polated polynomial reproduces the value of v and of the tangential derivatives of ve
of order up to α (when α > 0) at v′ and v′′. Hence, we have (α+ 1) conditions to be
imposed for each vertex, i.e., 2(α + 1) conditions available for both vertices, and the
degree of the polynomial is (2α+ 1). For example,

• for α = 0 (and m = 1), we consider only the two function values v(v) for v ∈ {v′, v′′}
and we impose the two conditions:

ve(0) = v(v′) and ve(|e|) = v(v′′),

which lead to a linear polynomial;
• for α = 1 (and m = 2), we consider the function values and the first derivatives at

each vertex, i.e., the six degrees of freedom
(
v(v),∇v(v)

)
for v ∈ {v′, v′′}. We
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α = 2
m dofs conditions interp. space

3
2vv + 2v′v + 2v′′v P5(e)

2∂nvv + 2(∂nvv)
′

P3(e)

2∂nvv P1(e)

4
2vv + 2v′v + 2v′′v P5(e)

2∂nvv + 2(∂nvv)
′

P3(e)

2∂2
nvv + ∂2

nve P2(e)

5
2vv + 2v′v + 2v′′v P5(e)

2∂nvv + 2(∂nvv)
′ + ∂nve P4(e)

2∂2
nvv + 2∂2

nve P3(e)

6
2vv + 2v′v + 2v′′v + ve P6(e)

2∂nvv + 2(∂nvv)
′ + 2∂nve P5(e)

2∂2
nvv + 3∂2

nve P4(e)

Table 5.3
Degrees of freedom for α = 2 and m = 3, 4, 5, 6. Column dofs shows the number and kind of

dofs for the pair (α,m) available for face e; the symbols are the same used in Figure 3.1. Column
degree shows the degree of v|e, the trace of a polynomial v ∈ Pm(P). Column conditions shows
the type and number of conditions available to build such polynomial interpolation; the symbol vv
denotes the solution value at a vertex, ve denotes the solution value at an internal node on the edge
e; v′v and v′′v denote the first and second tangential derivative at a vertex; ∂nvv and ∂nve denote the
normal derivative at a vertex and at an internal node on the edge e, while (∂nvv)′ is the tangential
derivative of ∂nvv(s) along e; ∂2nvv and ∂2nve denote the second normal derivative at a vertex and at
an internal node on the edge e. Column interp. space show the interpolation space that can be built
using the information available in the previous column.

impose the four conditions:

ve(0) = v(v′), ve(|e|) = v(v′′),

v′e(0) = te · ∇v(v′), v′e(|e|) = te · ∇v(v′′),

and we build a cubic polynomial;
• for α = 2 (and m = 3), we consider the function values and the first and second

derivatives at each vertex, i.e., the twelve degrees of freedom
(
v(v),∇v(v),∇2v(v)

)
for v ∈ {v′, v′′}. We impose the six conditions:

ve(0) = v(v′), ve(|e|) = v(v′′),

v′e(0) = te · ∇v(v′), v′e(|e|) = te · ∇v(v′′),

v′′e (0) = te · ∇2v(v′)te, v′′e (|e|) = te · ∇2v(v′′)te,

where we recall that ∇2v(v) stands for the hessian matrix of the function v
at the vertex v, while te is the tangent vector to e oriented from v′ to v′′. In
this case, we build an interpolation polynomial of degree 5.

Interpolation of the polynomials ∂jnve(s) for j = 1, . . . , α. An analogous construc-
tion is made for the normal derivatives of order up to α, i.e., for the polynomials ∂jnve
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on e with 1 ≤ j ≤ α. These polynomials are determined uniquely by imposing that
they reproduce all the partial derivatives at v′ and v′′ that can be constructed using
all the available data at these vertices. For j = α, i.e., the normal derivative with
maximum order, we have only two conditions and the interpolation is always linear.
For example,
• for j = α = 1 (and m = 2), we construct ∂nve(s) by imposing that

∂nve(0) = ne · ∇v(v′) and ∂nve(|e|) = ne · ∇v(v′′);

• for j = α = 2 (and m = 3), we construct ∂2
nve(s) by imposing that

∂2
nve(0) = ne · ∇2v(v′)ne and ∂2

nve(|e|) = ne · ∇2v(v′′)ne.

Instead, for 1 < j < α (when α > 1), we can impose additional conditions by using
the tangential derivatives of ∂jnve(s) along e at the vertices v′ and v′′ to determine
a unique interpolation polynomial. The degree of the resulting polynomial is always
greater than one. We illustrate the case by the following examples:
• for j = 0, α = 1 (and m = 2), we can set the four conditions

ve(0) = v(v′), ve(|e|) = v(v′′),
v′e(0) = te · ∇v(v′), v′e(|e|) = te · ∇v(v′′),

• for j = 1, α = 2 (and m = 3), we can set the four conditions

∂nve(0) = ne · ∇v(v′), ∂nve(|e|) = ne · ∇v(v′′),(
∂nve

)′
(0) = ne · ∇2v(v′)te,

(
∂nve

)′
(|e|) = n · ∇2v(v′′)te,

that uniquely determine the interpolation polynomial ∂nve(s) with degree 3. In gen-
eral, in the minimal case the interpolation polynomials ∂jnve(s), j = 0, 1, .., α are of
degree 2(α− j) + 1.

The general case for m > α+1. . The situation is more complex when m > α+1
as the edge degrees of freedom come into play in addition to the vertex conditions at
v′ and v′′ to build the polynomial trace reconstructions. More precisely,
• for α = 0, we construct ve(s) using m − 1 additional degrees of freedom that

represent function evaluations at distinct points in the interior of e, as shown
in Table 5.1, and degree of the interpolating polynomial equals m;

• for α > 0, we consider Nα,m
j additional degrees of freedom (see (3.4)) that represent

function evaluations for j = 0 and evaluations of the normal derivatives of
order j for j > 0 at distinct points in the interior of e. This interior edge
evaluations are in addition to the vertex ones already described. Tables 5.2
and 5.3 illustrates the cases for α = 1, 2 and α+ 1 < j ≤ α+ 4.

It turns out, that for the reconstructed polynomials ∂jnve(s) for j = 0, 1, .., α we can
impose a total of 2(α− j) + 2 +Nα,m

j = m− j+ 1 conditions. Therefore, as a general
rule, for any pair (α,m) and a discrete field vh|P ∈ Vα,mP we can uniquely determine
on each edge e ∈ ∂P the polynomials

∂jnve(s) of degree m− j , j = 0, 1, .., α

that represent the reconstructed discrete function and its normal derivatives associ-
ated with vh. We illustrate our reconstruction strategy with the following examples.
• For α = 1, m = 3,
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• j = 0, we consider the function values and the first derivatives at each
vertex and we impose the four conditions

ve(0) = v(v′), ve(|e|) = v(v′′),

v′e(0) = te · ∇v(v′), v′e(|e|) = te · ∇v(v′′),

which allows us to build a cubic polynomial;

• j = 1, we consider the normal derivatives at each vertex and at the midpoint
of the edge and we impose the three conditions:

∂nv(0) = te · ∇v(v′), ∂nv(|e|) = te · ∇v(v′′), and

∂nv (|e| /2) =
∂v(xe)

∂n
,

which allows us to build a quadratic polynomial.

• For α = 2, m = 4,
• j = 0, we consider the function values, the first and the second derivatives

at each vertex and we impose the six conditions

ve(0) = v(v′), ve(|e|) = v(v′′),

v′e(0) = te · ∇v(v′), v′e(|e|) = te · ∇v(v′′),

v′′e (0) = te · ∇2v(v′)te, v′′e (|e|) = te · ∇2v(v′′)te,

which allows us to build a fifth-order polynomial;

• j = 1, we consider the normal derivatives and their tangential derivatives
at each vertex of the edge and we impose the four conditions:

∂nv(0) = ne · ∇v(v′), ∂nv(|e|) = ne · ∇v(v′′),
(∂nv)′(0) = ne · ∇2v(v′)te, (∂nv)′(|e|) = ne · ∇2v(v′′)te,

which allows us to build a cubic polynomial.

• j = 2, we consider the second normal derivatives at each vertex and we
impose the two conditions:

∂2
nv(0) = ne · ∇2v(v′)ne, ∂2

nv(|e|) = ne · ∇2v(v′′)ne,

which allows us to build a linear polynomial.

Remark 5.3. Let vh ∈ Vh. The trace reconstructions of vh and its normal
derivatives on a edge e only depends on the degrees of freedom of vh associated with
that edge, which are the same for vh|P1

and vh|P2
where e ⊆ ∂P1 ∩ ∂P2. In other

words, the polynomials ∂jnve, j = 0, 1, .., α, built considering e ∈ ∂P1 coincide with the
corresponding polynomials built considering e ∈ ∂P2.

5.3. Practical implementation of the stiffness matrix. The construction
of the stiffness matrix that corresponds to the bilinear form Ah,P extends the alge-
braic construction of the low-order case presented in [17] to the higher order case
in accordance with the more general framework of [34, Proposition 3.1]. A similar
construction was originally proposed in [21] for the mixed formulation of the Poisson

20



problem and for other mimetic schemes in [9, 10, 5], see also [39]. Given P ∈ Ωh, we
build an elemental stiffness matrix MP such that

Ah,P
(
wh,P, vh,P

)
= wTh,P MP vh,P ∀wh,P, vh,P ∈ Vα,mP .

The global stiffness matrix is obtained by a finite element-like assembly procedure.
To this purpose, we first construct two matrices NP and RP that satisfies an

algebraic form of the consistency condition (S1), i.e., that are such that MPNP = RP

and NTPRP is a symmetric and nonnegative definite matrix. Let pi be the i-th element
of the basisMm(P) for the polynomial space Pm(P). The index i runs through 1 and
(m+ 1)(m+ 2)/2 and suitably renumbers the monomials forming Mm(P), e.g.,

p1(x, y) = 1,

p2(x, y) = (x− xP)/hP, p3(x, y) = (y − yP)/hP, etc.

The center of the coordinate system has been conveniently set in the barycenter of
the element P. Let (pj)

I be the interpolant of pj that returns the degrees of freedom
in accordance with (4.1). Taking Nα,m

P degrees of freedom of Vα,mP induced by (4.1),

we define matrix NP in R
mVα,m

P
×n

by(
NP

)
ij

= value of the ith degree of freedom of (pj)
I.

On its turn, the columns of matrix RP, which belongs toR
mVα,m

P
×n

, represents the
right-hand side of consistency condition (S1) applied to the polynomials

{
p1, p2, ...pn

}
.

Let εih,P indicate the unique vector in Vα,mP whose i-th component is equal to one and
the other ones are zero. Matrix RP takes the form:(

RP

)
ij

= −IP
(
εjh,P, pj

)
+
∑
e∈∂P

∫
e

εjh,e(s)π
P
m−1(K∇pj) · nP,e(s) dS

for i = 1, . . . ,mVα,mP
and j = 1, . . . , n, and where as usual the functions εih,e(s) on the

edges are the unique polynomials that interpolate the degrees of freedom as described
in subsection 5.2.

Both matrices NP and RP are computable, and from the definitions above it is
easy to prove that MPNP = RP, which is the matrix form of the consistency condition
(S2). Furthermore, a straightforward calculation shows that

(
NTPRP

)
ij

=

∫
P

K∇pi · ∇pj dV, (5.12)

i.e. NTPRP is symmetric and semi-positive definite. Let K be the square symmetric ma-
trix that represents the bilinear form Ah

(
·, ·
)

restricted to the space Pm(P). Clearly,
it holds that

K = NTPMPNP = NTPRP, (5.13)

where matrix K has the block-diagonal form

K =

(
0 0

0 K̂

)
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Fig. 6.1. Poisson problem on the square domain [0, 1] × [0, 1]; from left to right: the mainly-
hexagonal mesh (M2), the mesh of randomized quadrilaterals (M1), and the non-convex mesh
corresponding to second refinement level (M3).

l NP Ne Nv #dofs h
1 36 125 90 251 3.405 10−1

2 121 400 280 801 2.008 10−1

3 441 1400 960 2801 1.071 10−1

4 1681 5200 3520 10401 5.422 10−2

5 6561 20000 13440 40001 2.719 10−2

6 25921 78400 52480 156801 1.361 10−2

Table 6.1
Mesh data for the sequenceM1 of meshes with mainly hexagonal cells; l is the refinement level,

NP is the number of cells, Ne is the number of edges, Nv is the number of vertices, #dofs is the
number of degrees of freedom, h is the mesh size.

and K̂ ∈ R(n−1)×(n−1) is a strictly positive definite matrix. More precisely, matrix K̂
is the strictly positive definite matrix that is given by (5.12) if we exclude i = 1 and
j = 1, i.e., the constant polynomial p1(x, y) = 1. Let K† ∈ Rn×n be the pseudo-inverse
of matrix K, which we define as

K† =

(
0 0

0 K̂−1

)
.

Eventually, we define the local stiffness matrix

MP = RPK
†RTP + αPP, (5.14)

where the positive scalar α is equal to the trace of RPK
†RTP , and

PP = I − NP

(
NTPNP

)−1
NTP ,

where I is the (properly sized) identity matrix. Note that matrix PP is the projector
on the space orthogonal to the space spanned by the columns of matrix NP and that
the product PPNP is zero.

6. Numerical Experiments. The numerical experiments presented in this sec-
tion are designed to confirm the a priori analysis developed in the previous section in a
general setting. In particular, when we use a method corresponding to the pair (α,m)
the numerical solution is expected to behave like an m-order accurate approximation
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l NP Ne Nv #dofs h
1 25 60 36 121 3.311 10−1

2 100 220 121 441 1.865 10−1

3 400 840 441 1681 9.412 10−2

4 1600 3280 1681 6561 4.693 10−2

5 6400 12960 6561 25921 2.389 10−2

6 25600 51520 25921 103041 1.221 10−2

Table 6.2
Mesh data for the sequence M2 of randomized quadrilateral meshes; l is the refinement level,

NP is the number of cells, Ne is the number of edges, Nv is the number of vertices, #dofs is the
number of degrees of freedom, h is the mesh size.

l NP Ne Nv #dofs h
1 25 120 96 241 2.915 10−1

2 100 440 341 881 1.458 10−1

3 400 1680 1281 3361 7.289 10−2

4 1600 6560 4961 13121 3.644 10−2

5 6400 25920 19521 51841 1.822 10−2

6 25600 103040 77441 206081 9.111 10−3

Table 6.3
Mesh data for the sequence M3 of meshes with non-convex cells; l is the refinement level, NP

is the number of cells, Ne is the number of edges, Nv is the number of vertices, #dofs is the number
of degrees of freedom, h is the mesh size.

of the exact solution, assuming that this latter one is at least H1+α-regular. There-
fore, the convergence rate is expected to be of order O(hm) if the error is measured
in the following mesh-dependent norm

||vh||21,h =
∑
P∈Ωh

||vh||21,h,P, (6.1)

where each term ||vh||21,h,P is a local approximation of the square of the energy semi-
norm of vh. For m ≥ 2, this local contribution reads as:

||vh||21,h,P =
∑
e∈∂P

hP |vh|2H1(e) +

α∑
j=1

∑
e∈∂P

h2j−1
P ||∂jnve||2L2(e)

+
( 1

|P|

∫
P

vh dV − vh,P
)2

+

m−2∑
j=1

∑
q∈Mj(P)

( 1

|P|

∫
P

vhq dV
)2

, (6.2)

where vh,P is the arithmetic mean of the values that vh takes at the NVP vertices of
the element P (here denoted by vv), i.e.,

vh,P =
1

NVP

∑
v∈∂P

vv. (6.3)

For m = 1, the last two summation terms in (6.2) must be neglected. Recalling
Theorem 4.1 and Corollary 4.2 it is easy to check that, under the same hypotheses,
the rate of convergence in the (6.1) norm will satisfy

||uh − u||21,h,P ≤ Chm |u|m+1 ,
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as it holds for the H1-norm. Moreover, we expect this error bound to be sharp.

We solve the diffusion problem (2.1)-(2.2) on the domain Ω =]0, 1[×]0, 1[ and
Dirichlet conditions assigned on all the domain boundary Γ. The right-hand side f
and the boundary function g are determined in accordance with the exact solution

u(x, y) = x sin(2πx) sin(2πy) + x3y2, (6.4)

and the diffusion tensor:

K(x, y) =

(
+1 + y2 −xy
−xy 1 + x2

)
. (6.5)

The performance of the nodal MFD method is investigated by evaluating the rate
of convergence on four families of two-dimensional refined meshes. The second mesh
in each family is shown in Fig. 6.1 and the data of the refined meshes are given in
Tables 6.1, 6.2 and 6.3. In these tables, the columns labeled by NP, Ne and Nv report
the numbers of mesh cells, edges and vertices, respectively, #dofs is the number of
degrees of freedom and h is the mesh size parameter.

Let us briefly describe the construction of these mesh families. The meshes in
M1 are built by dualization of a regular triangular mesh after a smooth coordinate
transformation. This kind of meshes is rather common in the mimetic literature, see
for example [10]. To this purpose, we remap the position (x̂, ŷ) of the nodes of a
uniform partition by the smooth coordinate transformation:

x = x̂+ (1/10) sin(2πx̂) sin(2πŷ),

y = ŷ + (1/10) sin(2πx̂) sin(2πŷ). (6.6)

The meshes inM1 are built from the “primal” mesh at level l by splitting each quadri-
lateral cell into two triangles and connecting the barycenters of adjacent triangular
cells by a straight segment. The mesh construction is completed at the boundary Γ
by connecting the barycenters of the triangular cells close to Γ to the midpoints of
the boundary edges and these latters to the boundary vertices of the “primal” mesh.
The left-most plot of Figure 6.1 shows the second refinement mesh of M1, which is
built from an initial 10× 10 regular partition.

The meshes in M2 are built by randomly perturbing an underlying uniform par-
tition of the domain Ω formed by square-shaped elements. Since the randomization
is carried out independently at every mesh refinement, there is no mesh regulariza-
tion effect in the process as occurs for example when a quadrilateral is split into four
subcells by joining the midpoints of opposited edges. The middle plot of Figure 6.1
shows the second refinement mesh ofM2, which is built from an initial 10×10 regular
partition.

As shown in the right-most plot of Figure 6.1, a non-convex mesh ofM3 is made
of a regular pattern of octagonal cells, which are built by adding a mesh vertex at
each edge midpoint of an underlying square mesh. This additional vertex is then
translated by a fixed displacement vector when the original position lies inside the
computational domain. The right-most plot of Figure 6.1 shows the second refinement
mesh of M3, which is built from an initial 10× 10 regular partition. The simulation
data of the meshes used in these numerical calculation are summarized in Tables 6.1,
6.2 and 6.3.

The numerical results are shown in Figures 6.2, 6.3, and 6.4 for, respectively,
mesh families M1, M2, and M3. In each figures, we show the error curves for the
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Fig. 6.2. Poisson problem on the square domain [0, 1]×[0, 1] with variable permeability using the
mesh family M1 (mainly hexagonal meshes); the error curves corresponds to the schemes labeled
by (α,m) with α = 0 (circles), α = 1 (squares), α = 2 (diamonds) and m = α + 1 (left plot),
m = α + 2 (right plot); expected rates are of order O(N−ν) with ν = m/2 (since N ≈ h−2); exact
slopes corresponding to ν are shown in each plot for comparison.

numerical approximation that are obtained by the applying virtual element schemes
corresponding to the pair of indices (α,m) with α = 0, 1, 2 and m = α+ 1 (left plots)
and m = α + 2 (right plots), see the captions for more details. The relative errors,
which are measured by using the norm defined in (6.1), are plotted against N , the
total number of degrees of freedom. The convergence rate on each mesh sequence
is reflected by the slope of the corresponding error curve, and is expected to be of
order O(Nm/2) asymptotically, since N ≈ h2. In each we show, for comparison, the
theoretical slope and we also indicate the exponent. All these plots essentially confirm
the good behavior of the schemes that we propose in this paper.

7. Conclusions. In this work, we proposed and analyzed a virtual element
method that is suitable to the numerical approximation of second-order diffusion prob-
lems with variable coefficients and provides arbitrary regular discrete solutions. The
numerical approximation can be of arbitrary order, the optimality being dependent
on the regularity of the exact solution. Numerical results confirm the effectiveness of
the approach.

As pointed out in the introduction and remarked throughout the paper, the pos-
sibility to build such methods quite easily is one of the major properties of the virtual
element method and, with respect to this issue, this work is to be intended as a first
contribution to the virtual finite element literature. We emphasize that the virtual
element method opens a wide range of exciting applications, as, for example, easier
discretizations of higher order problems, direct calculation of derived quantities such
as fluxes, strains, stresses, etc., that may exactly correspond to some of the degrees of
freedom of the numerical solution, anisotropic error estimation based on the Hessian
of the solution, better eigenvalue approximation, numerical treatment of the stream
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Fig. 6.3. Poisson problem on the square domain [0, 1]× [0, 1] with variable permeability using
the mesh familyM2 (randomized quadrilateral meshes); the error curves corresponds to the schemes
labeled by (α,m) with α = 0 (circles), α = 1 (squares), α = 2 (diamonds) and m = α+ 1 (left plot),
m = α + 2 (right plot); expected rates are of order O(N−ν) with ν = m/2 (since N ≈ h−2); exact
slopes corresponding to ν are shown in each plot for comparison.

function formulation of the Stokes problem, where velocities are described as curls
of C1 scalar fields, etc. Finally, the present construction makes it possible a general
“hkp approach”, i.e. a method in which the polynomial degree may vary from element
to element and the regularity index α may vary from edge to edge.
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