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Motivation

= From ICE to ICF, the effect of mean compression or expansion is
important for predicting the state of the turbulence.

= When developing combustion models, we would like to know the mix
state of the reacting species.

= This involves density and concentration fluctuations.

s  To date, research has focused on the effect of compression on the
turbulent kinetic energy.

s  The current work provides constraints to help development and
calibration for models of species mixing effects in compressed

turbulence.
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Overview

m Consider a homogeneous
anisotropic turbulent field
subject to uniform mean

_ Axisymmetric
compression.

s The flow can be decomposed
into a mean flow and turbulent
fluctuations.

e« The mean flow must be treated
compressibly.

e  The turbulent fluctuations may be
amenable to simpler models.

s  For example, the DNS of Wu, et ﬁ |sotropic g

al. (1985), assumes the turbulent
density fluctuations could be

neglected.
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Approach

= Cambon, et al. (1992) demonstrate (based on an observation of Frisch)
that a simple rescaling relates homogeneous isotropic compressed
turbulence and decaying turbulence.

=  Their analysis assumes
e density fluctuations are not important
» the fluctuations are homogeneous and isotropic

m  The current work extends this analysis to cases which
e include multiple species,
* include density, concentration, and temperature fluctuations, and
e are anisotropic.
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Outline

= Give an high-level overview of the rescaling procedure.
e Mathematical details are being prepared for publication.

m Present the scaling results.
m Briefly describe the physical case described by the rescaling.

=  Apply the rescaling to some example turbulence model equations to
illustrate the method for model calibration and development.

=  Show two applications of the theory for model development and
calibrations.
e Constraints for BHR model constants
* Modeling the “rapid” pressure-strain
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Governing equations

dp N dpu; 0
Jdt  Jdx,
dpu, Ipuu, dp . Jo ‘h
dt Jx, Jdx, ox, ’
doc dpuc o dc
P ot _ 2 | ppZE
Jt  dx, dx, ox,
dpc,T dpc,u,T du, du, d |, JdT
=—p—t+0, —+
dt ox, Jdx, “dx;, Jdx;| Jx,
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Decomposition

= Introduce an ensemble average,
f={f+rs
= and a Favre (density-weighted) average
(pf)=(p)S
f=f+f
= and decompose the Navier-Stokes equations using
p=(p)+p' wu=i,+u p=(p)+p

c=¢+c” T=T+T”

» Los Alamos

NATIONAL LABORATORY UNCLASSIFIED

EST.1943

Slide 7

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

T Y}
o \IAv

)



Averaged equations

= Assuming spatially homogeneous turbulence, the mean equation are:

1 d(p)
+S5.=0 = tant
<p> 8[ <p> COH;;.H
: 1 d S.(t)=—"
(Sl.j +Siks,q.)xj =—®%+gi i) x,
. ’ 9¢
C,+C,S,=0 Ci(t)=——
_ .5 ) —(pS. . r_
(Ai+Aiji)xi:< J <ljlz>c<p ll>_B T—Ai(t)xl.+B(t)
= Blaisdell, et al. (1991) give examples of meanflows that satisfy these

constraints.
m The state equation will impose an additional constraint.

= Note that B is an unclosed quantity that would need to be solved for.
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Re-scaling

= Introduce a coordinate transform to remove the mean compression:

where

J! :exp(— tSl.l. t dt’):
Jy i) (p(r=0))
and the following re-scaling:

p(x,t)=J7"(t)p’ (x*,t*) p(x,0)=J7"(t)p (X*t*) T(x,t)=J"" ()T (X*,t*)

u, (x,8) =8, (1) x, + 777 ()u (x"17) e(xt)=c"(x"t")
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Invariance

= Applying the coordinate transform and re-scaling, the resulting
equations are identical to those for homogeneous turbulence with no
mean compression, with the following scalings

. 1
(s Lo

y

gi* =Jg,

v=v o=« D' =D

=  Note the time-dependent body force.

= Note that kinematic viscosity is not rescaled, but the viscosity will
change in time due to mean temperature change caused by the
compression.
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Realizability

m  Of course, pressure, temperature, and concentration gradients cannot
extend infinitely,

e but this is no more non-physical than the assumption of an “infinite box.”

= The pressure gradient must be balanced by the concentration and/or
temperature gradient,

e or the scale-height must be large.

m Either the Atwood number must be small, or, temperature fluctuations
must be negligible.

= In what follows, the internal energy equation will not be used.
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Constraints for RANS

= Homogeneous buoyancy driven turbulence subject to an isotropic
compression corresponds to freely evolving buoyancy driven
turbulence with a time depended body force.

= Since this re-scaling is an exact analytic result, any RANS model
should preserve it.

= Following Cambon, et al., we can neglect the viscosity variation, since
in general, RANS models do not account for time variations in
viscosity.
 However, this indicates that the term (1/v) dv/dt, which is typically neglected in the
derivation of the dissipation equation, must be included for compressed turbulence,
as noted by many researchers (e.g. Coleman & Mansour)
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Setting the BHR coefficients

= The two-equation version of the BHR model (Besnard, et al., 1992) for
homogeneous buoyancy driven turbulence undergoing mean
compression reduces to the following set of ODEs:

ok
E =a,§— RS, — €
e g’ £
E =—C.,R;S; —C,, 7 +C85, —C,y ;%g
da £
3 _
o9 bg—C, Za3 + (CaZ — 1)a3S33
b €
- =—Cp7b
ot k
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Re-scaling the turbulence quantities

= Based on the exact re-scaling for the turbulent fluctuations, we can
write the following re-scalings for the turbulence model quantities:

K= (ul0)ul0)) = 7% (1)
S(t) _ <a;t;( ) a’;;,x(t)> _ JHBg (t*)

i

=il
Ol

m Inserting these into the BHR equatlons and making use of S;=(d/3)J;
and R.=2k we find the following:
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Re-scaled BHR equations (k and ¢)

= Turbulent kinetic energy

ak* *k *
F

m Dissipation Rate

oe’ g’ g .. 4 2
at* :_CEZF_CM fa&g +]2/3(§_§C£1 _C£3j

= So, to preserve the scaling we must require

2
C£3 = g(z_csl)

m This is consistent with the result found by Cambon, et al., for the
simpler case, and assuming C,,=1/, following Reynolds.
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Re-scaled BHR equations (a and b)

= Density-velocity correlation:

5’a* x % 8* * 1 *
0.,; =bg -C, ?a3 +J° E(Ca2 + 3)a3d
m To preserve the scaling:
C,=-3
m Density self-correlation:
ob" g .
—=-C,,—=b
ot s

m Does not impose further constraints
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Modeling the “rapid” pressure-strain

= Applying the transform to the exact Reynolds-stress equation gives:

aR," , al/ll, ’ au;
<P> al‘] - <p>(Riijk +Rijik)+<p>(aigj +ajgi)+p aT_ijaT
j k
113 aR;. 2 s x 5/3 * * -3 x ¥ x %
J P, 9t _EJ pORijSll =J 7P, (Riijk+Rijik)+J Po (aigj"'ajgi)
ou. ou.
e X % ox,

*

J7py a_tlj =J""p, (Rz:ijk + RS, ) +J7"p, (aigj + ajgi)

o W OU. o OUL
+J7/3p ;_J7/3O_kj i
ox. ox

= As expected, the exact equation is invariant.

All terms scale with J75.
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Tensor form of the “rapid” pressure-strain

m The pressure-strain is decomposed into a “slow” and “rapid” part.

= The standard incompressible model for the pressure strain assumes a
linear tensor form: (H’,})U =A) (Rl-j)S,d
* Assume A scale as J2 (~R;).

* Applying the invariance property, this form is not invariant, because it will have a
new term containing the mean compression rate.

s Instead, we should use the form:
r i 1
(HR )ij = Az]; (Skl - gSnnSklj

_ k l 1
—J 2”AU" (S,d — gSmekz)

_ 74/3 A *ki oF

_ 74/3 A *ki * 1 *
=J Alj (Skl_ 3Snn6klj
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Conclusions

= The Cambon, et al., re-scaling has been extended to buoyancy driven
turbulence, including the fluctuating density, concentration, and

temperature equations.

= The new scalings give us helpful constraints for developing and

validating RANS turbulence models.
2
e For BHR, C..= 5(2_ Cgl)

C,=-3
e For “rapid” pressure-strain | 1
(HrR )ij = Az];l (Skl - gsnnskl)
m  Future work
e Further investigation into constraints on tensor forms

e Examining time dependent viscosity effects
* Application to other models (e.g. Grégoire, et al., 2005)
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