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Motivation 

  From ICE to ICF, the effect of mean compression or expansion is 
important for predicting the state of the turbulence. 

  When developing combustion models, we would like to know the mix 
state of the reacting species. 

  This involves density and concentration fluctuations. 

  To date, research has focused on the effect of compression on the 
turbulent kinetic energy. 

  The current work provides constraints to help development and 
calibration for models of species mixing effects in compressed 
turbulence. 
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Overview 

  Consider a homogeneous 
anisotropic turbulent field 
subject to uniform mean 
compression. 

  The flow can be decomposed 
into a mean flow and turbulent 
fluctuations. 
•  The mean flow must be treated 

compressibly. 
•  The turbulent fluctuations may be 

amenable to simpler models. 

  For example, the DNS of Wu, et 
al. (1985), assumes the turbulent 
density fluctuations could be 
neglected. 
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Approach 

  Cambon, et al. (1992) demonstrate (based on an observation of Frisch) 
that a simple rescaling relates homogeneous isotropic compressed 
turbulence and decaying turbulence. 

  Their analysis assumes 
•  density fluctuations are not important 
•  the fluctuations are homogeneous and isotropic 

  The current work extends this analysis to cases which 
•  include multiple species, 
•  include density, concentration, and temperature fluctuations, and 
•  are anisotropic. 
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Outline 

  Give an high-level overview of the rescaling procedure. 
•  Mathematical details are being prepared for publication. 

  Present the scaling results. 

  Briefly describe the physical case described by the rescaling. 

  Apply the rescaling to some example turbulence model equations to 
illustrate the method for model calibration and development. 

  Show two applications of the theory for model development and 
calibrations. 
•  Constraints for BHR model constants 
•  Modeling the “rapid” pressure-strain 
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Governing equations 
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Decomposition 

  Introduce an ensemble average, 

  and a Favre (density-weighted) average 

  and decompose the Navier-Stokes equations using 

Slide 7 

f = f + ′f

 

ρ f = ρ %f

f = %f + ′′f

 

ρ = ρ + ρ ' ui = %ui + ′′ui p = p + p '

c = %c + ′′c T = %T + ′′T



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Averaged equations 

  Assuming spatially homogeneous turbulence, the mean equation are: 

  Blaisdell, et al. (1991) give examples of meanflows that satisfy these 
constraints. 

  The state equation will impose an additional constraint. 

  Note that B is an unclosed quantity that would need to be solved for. 
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Re-scaling 

  Introduce a coordinate transform to remove the mean compression: 

where 

and the following re-scaling: 
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Invariance 

  Applying the coordinate transform and re-scaling, the resulting 
equations are identical to those for homogeneous turbulence with no 
mean compression, with the following scalings 

  Note the time-dependent body force. 

  Note that kinematic viscosity is not rescaled, but the viscosity will 
change in time due to mean temperature change caused by the 
compression. 
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Realizability 

  Of course, pressure, temperature, and concentration gradients cannot 
extend infinitely,  
•  but this is no more non-physical than the assumption of an “infinite box.” 

  The pressure gradient must be balanced by the concentration and/or 
temperature gradient,  
•  or the scale-height must be large. 

  Either the Atwood number must be small, or, temperature fluctuations 
must be negligible. 

  In what follows, the internal energy equation will not be used. 
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Constraints for RANS 

  Homogeneous buoyancy driven turbulence subject to an isotropic 
compression corresponds to freely evolving buoyancy driven 
turbulence with a time depended body force. 

  Since this re-scaling is an exact analytic result, any RANS model 
should preserve it. 

  Following Cambon, et al., we can neglect the viscosity variation, since 
in general, RANS models do not account for time variations in 
viscosity. 
•  However, this indicates that the term (1/ν) dν/dt, which is typically neglected in the 

derivation of the dissipation equation, must be included for compressed turbulence, 
as noted by many researchers (e.g. Coleman & Mansour) 
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Setting the BHR coefficients 

  The two-equation version of the BHR model (Besnard, et al., 1992) for 
homogeneous buoyancy driven turbulence undergoing mean 
compression reduces to the following set of ODEs: 
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Re-scaling the turbulence quantities 

  Based on the exact re-scaling for the turbulent fluctuations, we can 
write the following re-scalings for the turbulence model quantities: 

  Inserting these into the BHR equations, and making use of Sij=(d/3)δ ij 
and Rii=2k we find the following: 
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Re-scaled BHR equations (k and ε) 

  Turbulent kinetic energy 

  Dissipation Rate 

  So, to preserve the scaling we must require 

  This is consistent with the result found by Cambon, et al., for the 
simpler case, and assuming Cε1=1, following Reynolds. 
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Re-scaled BHR equations (a and b) 

  Density-velocity correlation: 

  To preserve the scaling: 

  Density self-correlation: 

  Does not impose further constraints 
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Modeling the “rapid” pressure-strain 

  Applying the transform to the exact Reynolds-stress equation gives: 

  As expected, the exact equation is invariant. 

  All terms scale with J-7/3.	
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Tensor form of the “rapid” pressure-strain 

  The pressure-strain is decomposed into a “slow” and “rapid” part. 

  The standard incompressible model for the pressure strain assumes a 
linear tensor form: 
•  Assume A scale as J-2/3 (~Rij).	



•  Applying the invariance property, this form is not invariant, because it will have a 
new term containing the mean compression rate. 

  Instead, we should use the form: 
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Conclusions 

  The Cambon, et al., re-scaling has been extended to buoyancy driven 
turbulence, including the fluctuating density, concentration, and 
temperature equations. 

  The new scalings give us helpful constraints for developing and 
validating RANS turbulence models. 
•  For BHR, 

•  For “rapid” pressure-strain 

  Future work 
•  Further investigation into constraints on tensor forms 
•  Examining time dependent viscosity effects 
•  Application to other models (e.g. Grégoire, et al., 2005)  
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