

LA-UR-12-22883

Approved for public release; distribution is unlimited.

Title: Expanding OSRP's Mission in Recovering New Isotopes for WIPP Disposal

Author(s):
Witkowski, Ioana
Whitworth, Julia
Feldman, Alexander
Pearson, Mike

Intended for: INMM Conference, 2012-07-15/2012-07-19 (Orlando, Florida, United States)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Abstract

This presentation to the INMM Conference July 15, 2012, is a discussion on expanding the OSRP's mission by including Cm-244 and Cf-252 sealed sources for disposal as transuranic material to Waste Isolation Pilot Plant.

UNCLASSIFIED

Expanding OSRP's Mission in Recovering New Isotopes for WIPP Disposal

INMM Conference July 2012

by Ioana Witkowski, Julia Whitworth, Alex Feldman, Mike Pearson

UNCLASSIFIED

LA-UR-12-XXXXX

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

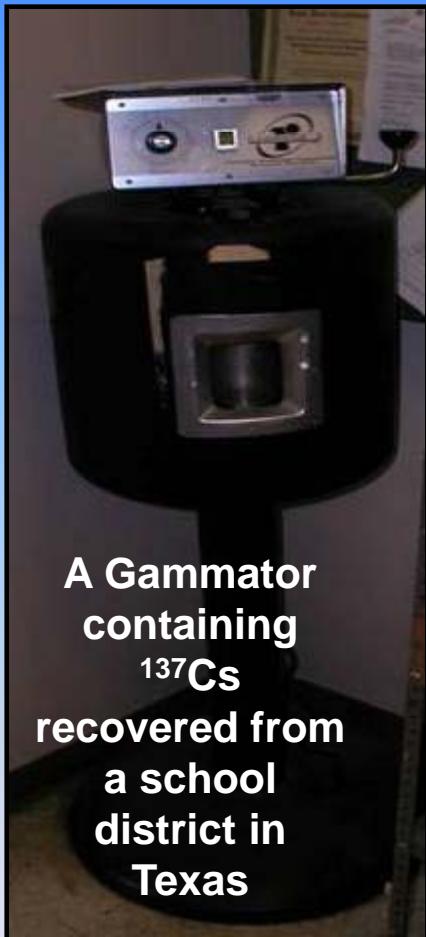

Offsite Source Recovery Project (OSRP)

- OSRP's Mission – Eliminate excess, unwanted, abandoned, or orphan radioactive sealed sources that pose a potential risk to national security, public health, and safety
- OSRP is part of the National Nuclear Security Administration (NNSA) Office of Global Threat Reduction
- OSRP addresses radiological threat reduction for NNSA by aggressively removing radioactive materials (in the form of sealed sources) from the public sector that could pose a terrorist threat if acquired

Project History

- Project started in 1999 at LANL; since then, OSRP has recovered:
 - 25,000 sources located in US at more than 1000 sites
 - 2000 sources internationally
- OSRP started to recover actinides in 1999
- Recovery of beta-gamma sources started in 2004
- WIPP disposition of ^{239}Pu sources started in 2003 after DOE/NNSA Defense Determination approval. Similar Defense Determinations were obtained in 2006 for ^{238}Pu and ^{241}Am
- First NTS disposal of ^{60}Co occurred in 2008
- OSRP's source recovery mission expanded by including additional radionuclides, such as ^{237}Np , ^{244}Cm , ^{252}Cf

Who Uses Radioactive Sealed Sources?



50+ Years of Isotope Distribution in the US

- Oil and Gas Service Companies
- Colleges and Universities
 - Manufacturing
 - Medical Facilities
- Military Installations
- Construction Industry
- DOE and Government Sites

Isotopes Managed

Nuclides Originally Managed

^{241}Am

^{239}Pu

^{238}Pu

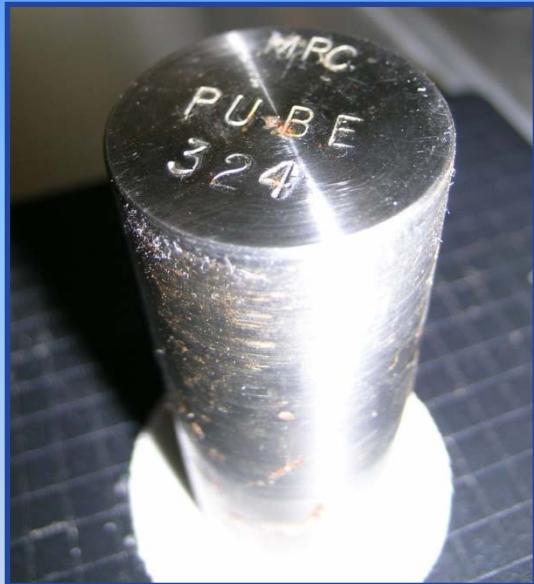
^{252}Cf

Additional Nuclides Currently Managed

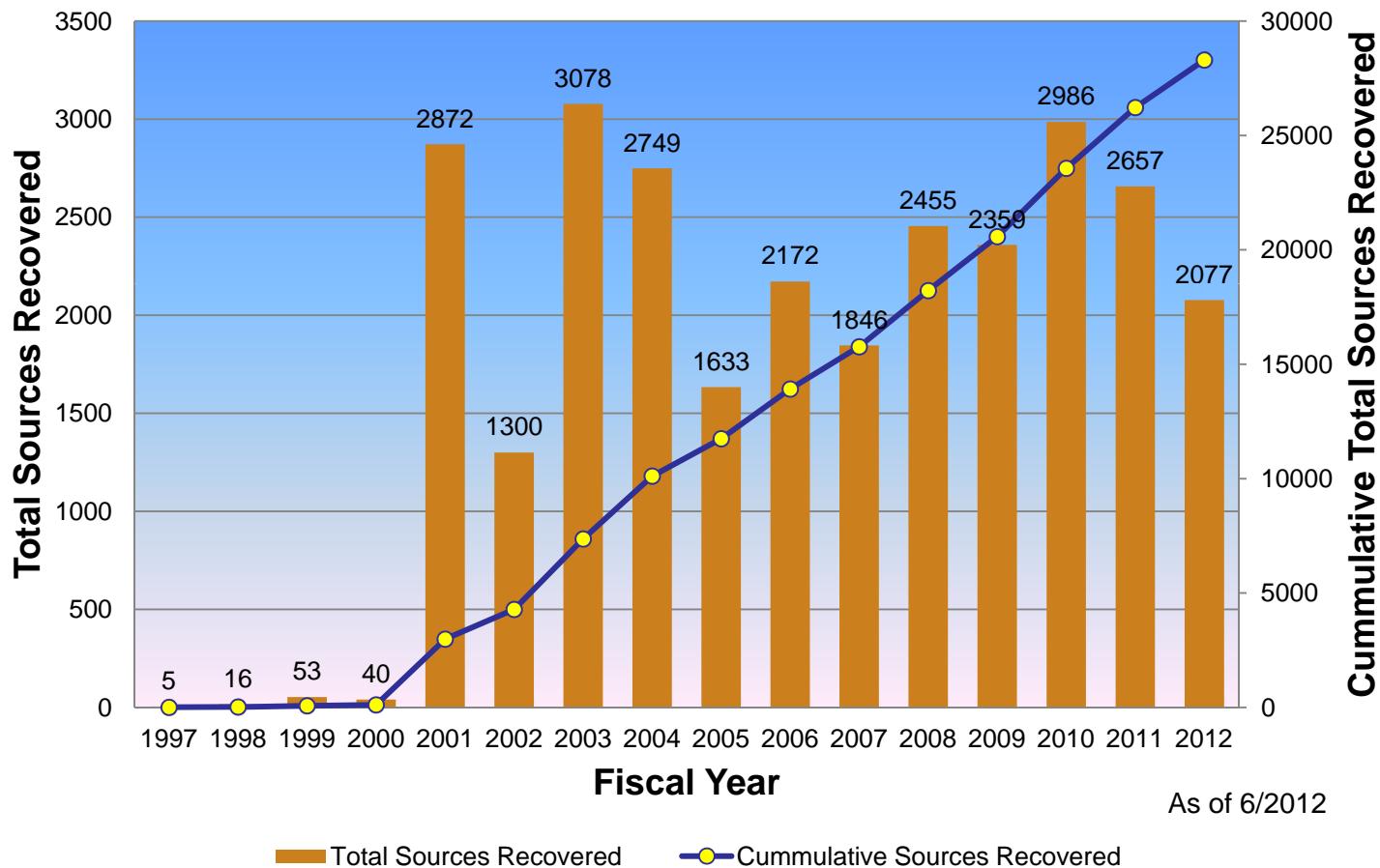
^{244}Cm

^{226}Ra

^{90}Sr

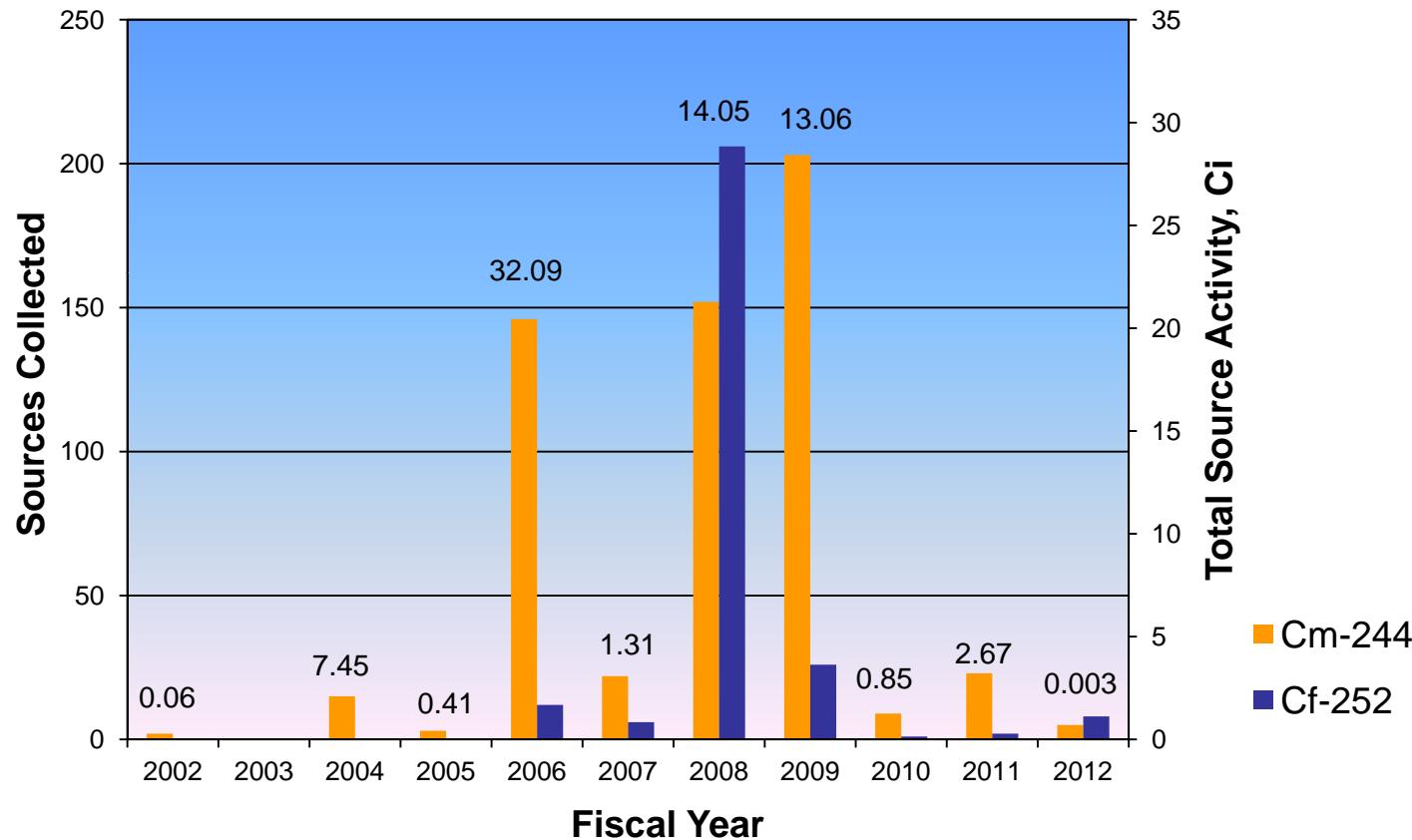

^{60}Co

^{137}Cs

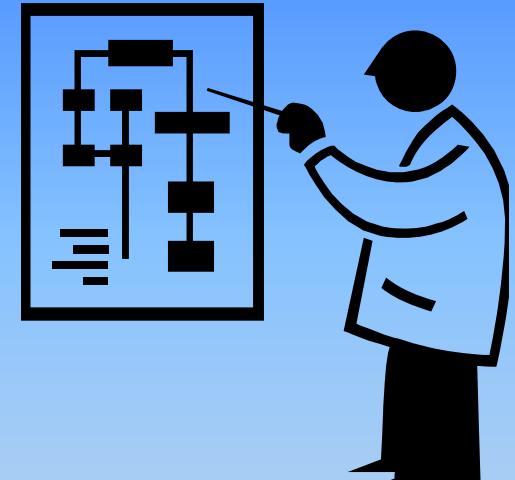

^{192}Ir

All nuclides currently found in IAEA sealed-sources-of-concern list

Identification: Source Self-Identification

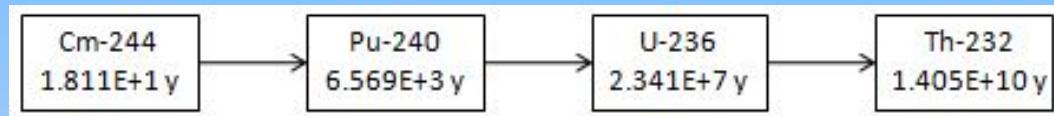


Total Sources Recovered by OSRP per Fiscal Year


As of 6/2012

^{244}Cm and ^{252}Cf Recoveries per Fiscal Year

OSRP's Operation Processing Steps


1. Licensees Register Sources
2. Sources Entered into OSRP Database
3. OSRP Organizes Source Recovery or Self-Ships
4. Sources Consolidated in Interim Storage
5. Sources Shipped to Long-Term Storage
6. Characterization of Sealed Sources for WIPP
7. Final Disposal Approval by CCP
8. Transportation for Disposal to WIPP

LA-UR-12-XXXX

^{244}Cm in Sealed Source Production

- Sources used for γ and x-ray source applications
- ^{244}Cm has $t_{1/2} = 18.11\text{y} < 20\text{y}$ for WIPP TRU isotopes
- Decay chain includes ^{240}Pu with $t_{1/2} = 6.56\text{E}+3\text{y}$ -WIPP eligible

- ORNL producer of ^{244}Cm in US
- ^{244}Cm sealed sources manufactured by Amersham, IPL
- Batches provided to manufacturers were periodically purified to remove ingrowth of radionuclides, such as ^{240}Pu

Batch Data for ^{244}Cm and Associated Isotopic Fractions Used in Sealed Source Productions

Isotope	% Mass Fraction	Half-Life (Y)
Cm-244	86%-88%	18.11
Cm-245*	2%	8.50E+03
Cm-246*	10%-11%	4.75E+03
Cm-247*	0.2%	1.56E+07
Cm-248*	0.1%	3.39E+05

* TRU eligible radionuclides

- All of the “impurity” Cm isotopes listed meet the definition of TRU and contribute to the TRU content of ^{244}Cm source material

Typical Design of ^{244}Cm Sealed Sources

Construction of a sealed source with single encapsulation and tungsten backing.

Sources

Curium-244

γ and Primary X-ray Sources

Curium-244 incorporated in a ceramic enamel, sealed in a welded monolithic capsule with brazed beryllium window; the active component is recessed into a tungsten backing.

Nominal activity*	A mm	B mm	Typical photon output in 17keV Pu LX-rays	Product code
GBq	mCi		photons/s per steradian	
0.37	10	10.8	0.8×10^6	GLC10990
1.11	30	10.8	2.4×10^6	GLC11564
3.7	100	10.8	7.8×10^6	GLC11562
7.4	200	10.8	15.0×10^6	GLC11377

* Tolerance $\pm 10\%$

Nominal activity*	A mm	B mm	Typical photon output in 17keV Pu LX-rays	Product code
GBq	mCi		photons/s per steradian	
0.37	10	8	0.8×10^6	GLC11932
1.11	30	8	2.4×10^6	GLC11284
3.7	100	8	7.8×10^6	GLC11933

* Tolerance $\pm 10\%$

Recommended working life: 10 years

Quality control

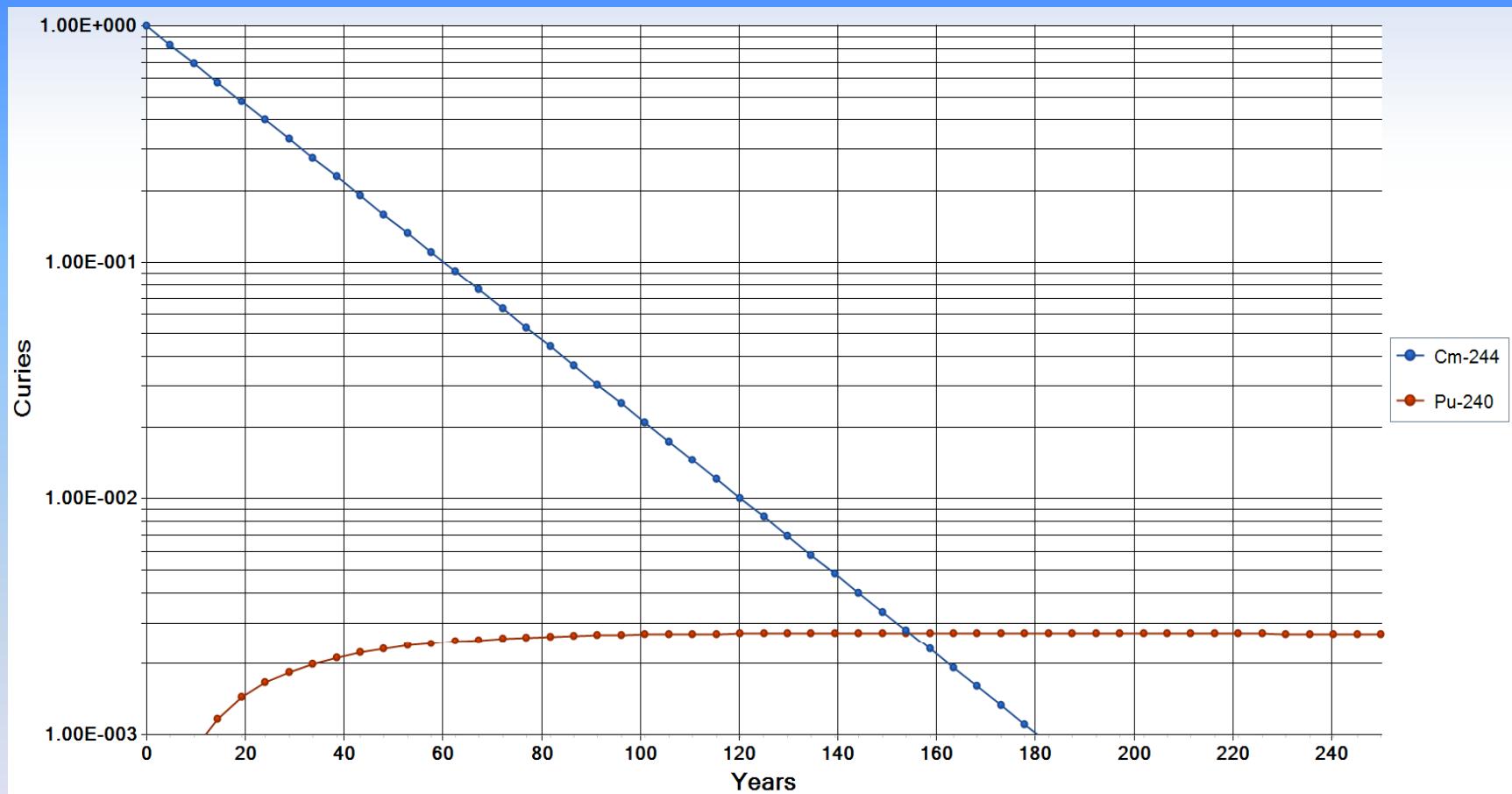
- Wipe Test I
- Immersion Test II
- Bubble Test III

Neutron emission

All Curium-244 sources emit $\sim 3.6 \times 10^3$ n/s per GBq due to spontaneous fission and (α, n) reactions with the low atomic number elements (e.g. Si, Al, O) in the active material.

VZ-3069

Capsule dimensions and safety performance testing


Overall diam. 'A' mm	Active diam. 'B' mm	Window thickness 'C' mm	Safety performance testing	
			ANSI/ISO classification	IAEA special form
8.0	4	1	C64343	YES
10.8	7	1	C64344	YES

USA: QSA Global Inc-40 North Avenue, Burlington MA 01803 - Phone No: +1 781 272-2000
 Hong Kong: QSA Global QSA, Room 3503, 35/F - China Resources Building
 21 Harbour Road, Wanchai - Phone No: +852 2546-7711
 Germany: QSA Global QSA GmbH, Gieselweg 1, 38110 Braunschweig - Phone No: +49 (0)5307 9320
 France: QSA Global QSA, 12 Avenue des Tropiques, Highsec Sud - Bâtiment B,
 F91935 Courtabœuf Cedex - Phone No: +33 164 88 22 21
 Version 13-Jul-07

 QSA GLOBAL

UNCLASSIFIED

Decay Results for ^{244}Cm / Ingrowth of ^{240}Pu with Time

UNCLASSIFIED

LA-UR-12-XXXXX

Decay Results for 1 Ci ^{244}Cm Source after 10 years

Nuclide	Half-Life, Y	Specific Activity, Ci/g	Isotope Final Activity, Ci	Isotope Final Activity, nCi	TRU Isotope Activity, nCi/g capsule*	TRU Isotope Activity, nCi/g source**
Cm-244	1.81E+01	80.97	6.82E-01	6.82E+08	-	-
Cm-245	8.50E+03	0.172	4.87E-05	4.87E+04	6.77	9.75E+02
Cm-246	4.75E+03	0.307	4.70E-04	4.70E+05	65.3	9.41E+03
Pu-240	6.57E+03	0.227	8.76E-04	8.76E+05	121.7	1.75E+04
Am-241	4.32E+02	3.74	1.60E-07	1.60E+02	0.023	0.32E+01
Majority TRU Content					193.8 nCi/g capsule	2.79E+04 nCi/g source

Considerations:

- Minimum age of ^{244}Cm sources collected by OSRP is 10 years
- Decay calculations take into account an average distribution of ^{244}Cm isotopic data from ORNL
- TRU nCi/g calculations were done for the largest special form capsule *7200 g and **50 g per source
- The four main radionuclides contributors were considered

Discussion on ^{244}Cm Eligibility for WIPP Disposal

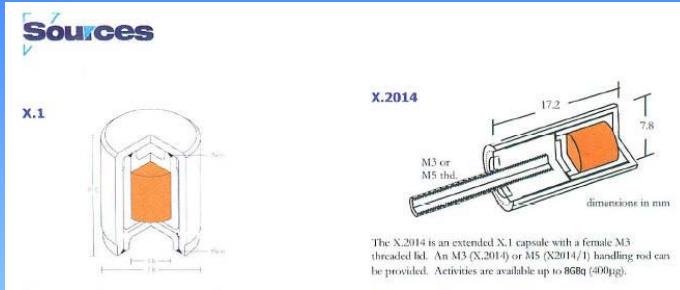
- The minimum decay interval of 10y for 1 Ci ^{244}Cm source produced ingrowth concentrations of ^{240}Pu that exceeded the 100-nCi/g requirement for WIPP disposal.
- Even with the heaviest capsule considered in the calculations for the TRU content and considering all Cm “impurity” isotopes, the TRU content is 193.8 nCi/g /Ci ^{244}Cm .
- If weight of capsule is excluded, TRU content increases to 28,000 nCi/g/Ci ^{244}Cm
 - lower quantities of material can be packaged
 - shorter decay period could be used

^{252}Cf in Sealed Source Production

- Sources used for neutron source applications
- ^{252}Cf has $t_{1/2} = 2.65\text{y} < 20\text{y}$ for WIPP TRU isotopes
- Source material contains ^{249}Cf and ^{251}Cf impurities-WIPP eligible
- ORNL High Flux Isotope Reactor is producer of ^{252}Cf in US
- ^{252}Cf sealed sources are manufactured by Amersham, IPL, Frontier, and DOE
- Used in oil well logging and reactor start-up operations
- Decays by α emission primarily and spontaneous fission
- Batches provided to manufacturers were periodically purified to remove ingrowth of undesired radionuclides

UNCLASSIFIED

Californium Source Material Isotopic Distribution


- Typical batches of ^{252}Cf provided to manufacturers

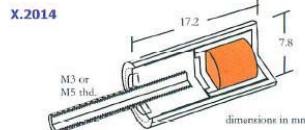
Nuclide	Half-Life, Yrs	Atom % Batch # CXCF- 708 (6/9/03)	Atom % Batch # CAMP68 (7/18/91)	Atom % Batch # CXCF- 579 (9/6/01)	Atom % Batch # COMP69 (6/30/96)	Average Atom %	Average Mass Fraction %	Total TRU Content, nCi/Ci Cf-252
Cf-249*	351 y	3.41	5.76	6.70	6.63	5.63	5.57	6.34E+05
Cf-250	13.20 y	8.70	9.22	9.63	12.66	10.05	9.98	
Cf-251*	898 y	2.60	2.85	2.97	4.06	3.12	3.11	
Cf-252	2.65 y	85.27	81.99	80.63	76.65	81.14	81.26	
Cf-253	17.81 d	0.004	<0.165	0.03	Not reported	0.05	0.05	
Cf-254	61.9 d	0.010	<0.018	0.04	0.00003	0.02	0.02	

- *TRU eligible radionuclides – α emitters and $t_{1/2} > 20$ y
- At time of manufacture, the material meets the definition of WIPP transuranic

UNCLASSIFIED

Typical Design of ^{252}Cf Sealed Sources

Sources up to 500 μg can be manufactured in the X.1 capsule design. Outer capsules are available in stainless steel or zircaloy:

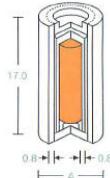

Safety performance testing

ANSI/ISO classification	IAEA special form	US-Model number
C66544	YES	CVN.CY2

Nominal content	Nominal activity*	Emission	Product code with -capsule-
Cf-252	n/a	X1	
1ng	20kBq	0.5 μCi	2.3×10^3 CVN-X1-001ng-S
10ng	200Bq	5.4 μCi	0.23×10^3 CVN-X1-0010ng-S
50ng	1.0mBq	26.4 μCi	0.115×10^3 CVN-X1-0050ng-S
1.0 μg	20mBq	536 μCi	2.3×10^3 CVN-X1-001 μg -S
2.0 μg	40mBq	1.07mCi	4.6×10^3 CVN-X1-002 μg -S
5 μg	100mBq	2.7mCi	1.15×10^4 CVN-X1-005 μg -S
10 μg	200mBq	5.4mCi	2.3×10^4 CVN-X1-010 μg -S
20 μg	400mBq	1.07mCi	4.6×10^4 CVN-X1-020 μg -S
50 μg	1.0Bq	54mCi	1.15×10^5 CVN-X1-050 μg -S
100 μg	2.0Bq	1.07mCi	2.3×10^5 CVN-X1-100 μg -S
200 μg	4.0Bq	107mCi	4.6×10^5 CVN-X1-200 μg -S
400 μg	8.0Bq	214mCi	9.2×10^5 CVN-X1-400 μg -S

* Tolerance -10%, +20% S indicates material S = stainless M = MP35N Z = Zircaloy

* Custom activities can be supplied within 12 weeks.



The X.2014 is an extended X.1 capsule with a female M3 or M5 threaded handle. An M3 (X.2014) or M5 (X2014/I) handling rod can be provided. Activities are available up to 8GBq (500 μg).

Safety performance testing

Capsule	ANSI/ISO classification	IAEA special form	US-Model number
X2014	C66544	YES	CVN.CY12
X2014/I	C66544	YES	CVN.CY12

X.33, 35

Safety performance testing

Capsule	diam. "A" mm	ANSI/ISO classification	IAEA special form
X.33	7.8	C66545	YES
X.35	9.5	C64545	YES

Nominal content	Nominal activity*	Emission	Capsule	Product code
Cf-252	n/a			
500ng	10GBq	268mCi	1.15 $\times 10^3$ X.33	CVN.C39
1mg	20GBq	536mCi	2.3 $\times 10^3$ X.33	CVN.C31
2mg	40GBq	1.07mCi	4.6 $\times 10^3$ X.35	CVN.C52
3mg	60GBq	1.61mCi	6.9 $\times 10^3$ X.35	CVN.C53

* Tolerance -10%, +20%

* Custom activities can be supplied within 12 weeks.

USA: QSA Global Inc, 40 North Avenue, Burlington MA 01803 - Phone No: +1 781 272-2090
 Hong Kong: QSA Global QSA, Room 3501, 35/F - China Resources Building
 21 Harbour Road, Wan Chai - Phone No: +852 2596-7711
 Germany: QSA Global QSA GmbH, Giesebrecht 1, 33100 Braunschweig - Phone No: +49 (0)5307 9320
 France: QSA Global QSA, 12 Avenue des Tropiques, Highsec Sud - Batinat D,
 F91935 Courtabœuf Cedex - Phone No: +33 164 89 22 21

Version 13-Jul-07

QSA GLOBAL

B17

UNCLASSIFIED

EST.1943

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

18

Californium-252

Spontaneous Fission Neutron Sources

Savannah River Capsules

This design is the original Cf-252 capsule design created by the US Department of Energy at their South Carolina facility on the Savannah River. It is popular in many applications.

Savannah River Long (SRL)

Sources up to 1mg can be manufactured in the Savannah River Long capsule design (or the old X.224). Outer capsules are available in stainless steel or zircaloy:

SRL - stainless steel containing X1 or X33 inners
 SRL - zircaloy containing X1 or X33 inners
 X.224 (same dimensions as the SRL) - stainless steel

Safety performance testing

Capsule	ANSI/ISO classification	IAEA special form	US-Model number
SRL/X1 inners	C66544	YES	CVN.CY14
SRL/X33 inners	C64444	YES	CVN.CY15

Nominal content	Nominal activity*	Emission	Product code with -capsule- SRL
1ng	20kBq	0.5 μCi	2.3×10^3 CVN-SRS-001ng-S
10ng	200Bq	5.4 μCi	0.23×10^3 CVN-SRS-100ng-S
50ng	1.0mBq	26.4 μCi	1.15×10^3 CVN-SRS-50ng-S
1.0 μg	20mBq	536 μCi	2.3×10^3 CVN-SRS-001 μg -S
2.0 μg	40mBq	1.07mCi	4.6×10^3 CVN-SRS-002 μg -S
5 μg	100mBq	2.7mCi	1.15×10^4 CVN-SRS-005 μg -S
10 μg	200mBq	5.4mCi	2.3×10^4 CVN-SRS-010 μg -S
20 μg	400mBq	107mCi	4.6×10^4 CVN-SRS-020 μg -S
50 μg	1.0Bq	27mCi	1.15×10^5 CVN-SRS-050 μg -S
100 μg	2.0Bq	54mCi	2.3×10^5 CVN-SRS-100 μg -S
200 μg	4.0Bq	107mCi	4.6×10^5 CVN-SRS-200 μg -S
400 μg	8.0Bq	214mCi	9.2×10^5 CVN-SRS-400 μg -S
1mg	16Bq	512mCi	2.3×10^6 CVN-SRS-001mg-S

* Tolerance -10%, +20% S indicates material S = stainless Z = Zircaloy
 * Custom activities can be supplied within 12 weeks.

USA: QSA Global Inc, 40 North Avenue, Burlington MA 01803 - Phone No: +1 781 272-2090
 Hong Kong: QSA Global QSA, Room 3501, 35/F - China Resources Building
 21 Harbour Road, Wan Chai - Phone No: +852 2596-7711
 Germany: QSA Global QSA GmbH, Giesebrecht 1, 33100 Braunschweig - Phone No: +49 (0)5307 9320
 France: QSA Global QSA, 12 Avenue des Tropiques, Highsec Sud - Batinat D,
 F91935 Courtabœuf Cedex - Phone No: +33 164 89 22 21

QSA GLOBAL

B16

LA-UR-12-XXXXX

Decay Results for 1 Ci ^{252}Cf with Time

Considerations

- Decay of ^{252}Cf produces ingrowth of WIPP qualifying curium daughters
- The first eight transuranic radionuclides contributors were considered
- TRU nCi/g calculations were done for a model III special form capsule 3500 g
- Minimum age of ^{252}Cf sources collected by OSRP is 10 years

TRU Nuclide	Half-Life, yrs	TRU Nuclide Concentration, nCi		
		5 yrs nCi	10 yrs nCi	20 yrs nCi
Cf-249	351	5.20E+05	5.15E+05	5.05E+05
Cf-251	898	1.13E+05	1.12E+05	1.11E+05
Cm-246	4760	1.61E+04	2.84E+04	4.51E+04
Cm-248	3.39E+05	5.51E+03	7.00E+03	7.50E+03
Cm-245	8500	2.13E+02	4.24E+02	8.39E+02
Cm-250	9700	2.45E-01	2.45E-01	2.45E-01
Am-241	433	6.42E-02	4.85E-01	3.45E+00
Pu-242	3.75E+05	7.73E-02	2.85E-01	9.75E-01
Total TRU Content		6.55E+05	6.63E+05	6.70E+05
nCi/3500 g*		1.87E+02 nCi/g capsule	1.89E+02 nCi/g capsule	1.91E+02 nCi/g capsule

Discussion on ^{252}Cf Eligibility for WIPP Disposal

- The TRU content in ^{252}Cf material at 20y was 191 nCi/g, exceeding 100 nCi/g, even when the weight of the special form capsule is considered
- Evaluated from the time of production through 20y the material will increase their concentrations of transuranic nuclides
- If weight of capsule is excluded, TRU content increases to $6.7\text{E}+5$ nCi/g/Ci ^{252}Cf
 - lower quantities of material can be packaged
 - shorter decay period could be used

Conclusions

- Although ^{244}Cm sealed sources are not TRU at the time of manufacture, they rapidly decay, producing ^{240}Pu in quantities that exceed the minimum requirement of 100 nCi/g
- ^{252}Cf source material contains significant amount of TRU impurities, increasing with time the TRU content for WIPP disposal
- Factors influencing the TRU concentration for each container:
 - isotopic distribution of the production batch
 - initial source activity
 - weight of sources and special form capsules
 - dates of source manufacture
 - contribution of other curium and californium isotopes and TRU ingrowth daughters

DO YOU HAVE UNWANTED SOURCES?

Register them at osrp.lanl.gov

- Register unwanted transuranic and selected beta, gamma sources with OSRP for recovery consideration.
- OSRP source recovery operations are generally prioritized on the basis of activity and level of security.
- Where numerous sources of lower activity are present at a single location, consideration is given to the total activity from a security perspective.

 Sealed Sources Recovery Registration

The purpose of this form is to provide a mechanism for users to register radioactive sealed sources with the Off-Site Source Recovery Project (OSRP). Please register your sources even if you want to keep them for now. A place has been provided to indicate whether or not the sources are excess (a.k.a., "not in use" or "unwanted"). When the form is submitted, the information will automatically be entered into the OSRP database. Once your information has been checked, you will receive an e-mail notice of acceptance. Prior to the recovery of source(s), source owners will be notified and provided a listing of documentation required by OSRP. Any questions concerning the use of this form should be submitted to the OSRP by email osrp@lanl.gov or phone (505) 667-6701.

Site Info (Items in blue are required)	
Facility Name	<input type="text"/>
Department	<input type="text"/>
Address 1	<input type="text"/>
Address 2	<input type="text"/>
City, State, Zip	<input type="text"/>
Country (if not USA)	<input type="text"/>
Directions to Site	<input type="text"/>
Radiation Safety Officer	
First Name	<input type="text"/>
Last Name	<input type="text"/>
Phone	<input type="text"/>
Fax	<input type="text"/>
E-Mail	<input type="text"/>
Contact Information	
First Name	<input type="text"/>
Last Name	<input type="text"/>
Phone	<input type="text"/>
Fax	<input type="text"/>
E-Mail	<input type="text"/>
<input type="button" value="Continue"/>	
Enter sources on next page	

