LA-UR- 11-00067

Approved for public release; distribution is unlimited.

Title: 241Am (n,gamma) isomer ratio measurement

Author(s): Evelyn M Bond, David J Vieira, Walter Allen Moody, Alice K Slemmons

Intended for: Nuclear Detonation Detection Forensics Program Review/NA-22

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

²⁴¹Am (n,y) Isomer Ratio Measurement

Evelyn M. Bond, David J. Vieira, W. Allen Moody, Alice K. Slemmons

The objective of this project is to improve the accuracy of the 242 Cm/ 241 Am radiochemistry ratio. We have performed an activation experiment to measure the 241 Am(n, γ) cross section leading to either the ground state of 2429 Am ($t_{1/2}$ =16 hr) which decays to 242 Cm ($t_{1/2}$ =163 d) or the long-lived isomer 242m Am ($t_{1/2}$ =141 yr). This experiment will develop a new set of americium cross section evaluations that can be used with a measured 242 Cm/ 241 Am radiochemical measurement for nuclear forensic purposes. This measurement is necessary to interpret the 242 Cm/ 241 Am ratio because a good measurement of this neutron capture isomer ratio for 241 Am does not exist.

The targets were prepared in 2007 from ²⁴¹Am purified from LANL stocks. Gold was added to the purified ²⁴¹Am as an internal neutron fluence monitor. These targets were placed into a holder, packaged, and shipped to Forschungszentrum Karlsruhe, where they were irradiated at their Van de Graff facility in February 2008. One target was irradiated with ~25 keV quasi-monoenergetic neutrons produced by the ⁷Li(p,n) reaction for 3 days and a second target was also irradiated for 3 days with ~500 keV neutrons.

Because it will be necessary to separate the ²⁴²Cm from the ²⁴¹Am in order to measure the amount of ²⁴²Cm by alpha spectrometry, research into methods for americium/curium separations were conducted concurrently. We found that anion exchange chromatography in methanol/nitric acid solutions produced good separations that could be completed in one day resulting in a sample with no residue.

The samples were returned from Germany in July 2009 and were counted by gamma spectrometry. Chemical separations have commenced on the blank sample. Each sample will be spiked with 244 Cm, dissolved and digested in nitric acid solutions. One third of each sample will be processed at a time. First, the gold will be removed by anion exchange chromatography. Then the 242 Cm will be separated from the 241 Am using the methanol/nitric acid anion exchange method. When a sufficient separation has been achieved, a deposit will be prepared and the 242 Cm will be counted by alpha spectrometry. The purified 241 Am fraction containing the long lived 242m Am will be allowed to decay into 242 Cm for a period of \sim 6 months. After this time, the americium/curium separations will be repeated and the 242 Cm that has grown in will be counted by alpha spectrometry. At the conclusion of the experiment, we will have cross section measurements for 241 Am (n,γ) 242g Am and 241 Am (n,γ) 242m Am at two energies.

²⁴¹Am (n,γ) Isomer Ratio Measurement Evelyn Bond, C-NR, LANL

David J. Vieira, Todd Bredeweg, Walter Allen Moody, Alice Slemmons

FY11 Program Review NA-22 Nuclear Forensics R&D Program Jan 11, 2011

Office of Nonproliferation & Verification R&D (NA-22)

Unclassified

Objective

> The objective of this project is to improve the accuracy of the ²⁴²Cm/²⁴¹Am radiochemistry ratio.

$\begin{array}{c} 242_{\text{Cm}} \\ 163 \text{ d} \end{array}$ $\begin{array}{c} \beta^{-} \\ 4141 \text{ y} \end{array}$ $\begin{array}{c} 242_{\text{Am}} \\ 433 \text{ y} \end{array}$ $\begin{array}{c} 242_{\text{Am}} \\ 16 \text{ h} \end{array}$ $\begin{array}{c} 242_{\text{Am}} \\ 16 \text{ h} \end{array}$

241 Am

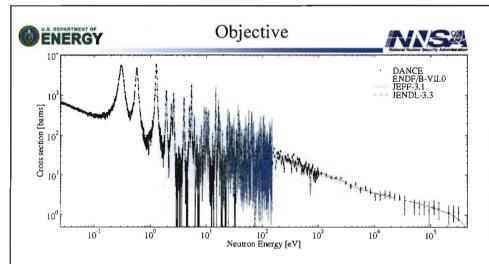
- >Present in Pu due to the β -decay of ²⁴¹Pu (t_{1/2}=14.4 yr)
- >Can be used as an internal tracer
- >Neutron-induced reaction products can provide valuable nuclear forensics information.

Office of Nonproliferation & Verification R&D (NA-22)

Objective

²⁴²Cm/²⁴¹Am

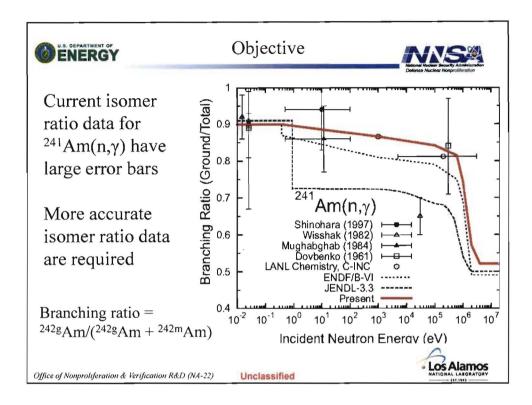
> Produced by (n,γ) neutron capture reaction


➤ Provides information on low-energy neutrons (down-scattered and thermalized fission neutrons)

In order to correctly interpret 242 Cm/ 241 Am, we need to measure the (n, γ) reaction leading to 242 Am and 242m Am

Office of Nonproliferation & Verification R&D (NA-22)

Unclassified



The 241 Am(n γ) cross section has been measured at DANCE up to 300 keV. But, this information is for total cross section, i.e 242g Am + 242m Am.

Jandel, M. et al. Phys. Rev. C, 78 (2008) 034609.

Office of Nonproliferation & Verification R&D (NA-22)

DUAL DEPARTMENT OFOutline of Experimental Method

- Prepare ²⁴¹Am targets
- Ship targets to Karlsruhe, Germany
- Irradiate targets at Karlsruhe
- Develop Am/Cm separation chemistry
- Ship targets back to LANL
- ^{242g}Am determination
 - a) Am/Cm separation
 - b) Plate and count ²⁴²Cm
- 7. ^{242m}Am determination
 - a) Am/Cm separation
 - b) Plate and count ²⁴²Cm
- Summary

Office of Nonproliferation & Verification R&D (NA-22)

1. Prepare ²⁴¹Am targets

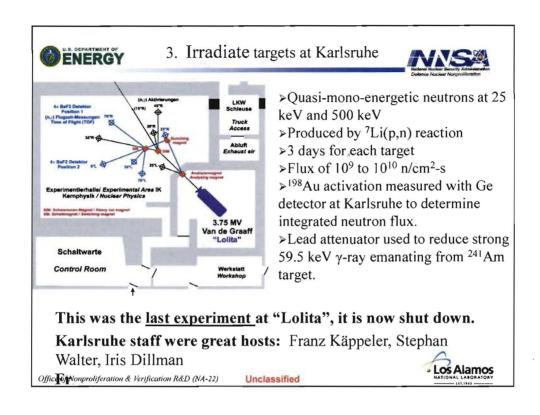
>Purified 100 mg of ²⁴¹Am

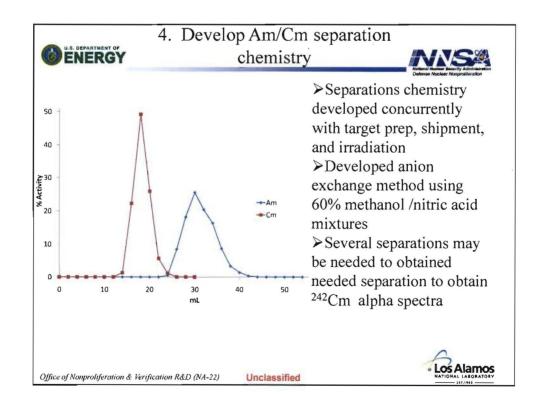
- >Encapsulated three 15 mg ²⁴¹Am targets in Ti.
- >Gold was added to each target to monitor neutron fluence.
- >Blank targets also prepared
- >Glovebox and open front hood work performed at CMR at LANL
- >Work performed in FY2007

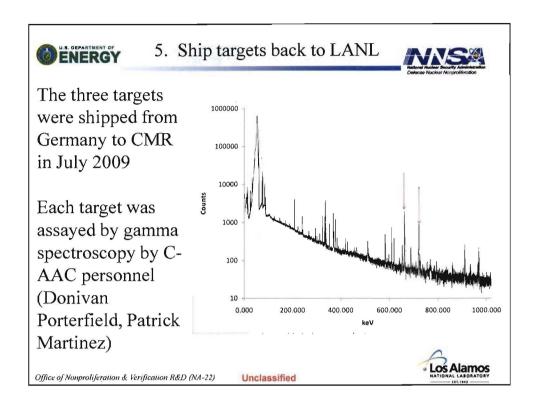
Office of Nonproliferation & Verification R&D (NA-22)

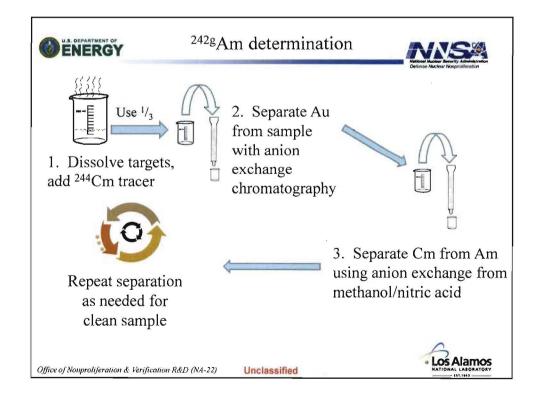
Unclassified

2. Ship targets to Karlsruhe


- The samples were shipped to Karlsruhe, Germany in February 2008
- ➤ Shipment required ~ 2 months to obtain required permissions and packaging
- > We were aided by specially trained shippers at TA-55 at LANL




Croft 2799E Package



Office of Nonproliferation & Verification R&D (NA-22)

^{242g}Am determination

Electroplate and count samples by alpha spectroscopy. This will tell us how much ^{242g}Am was produced by the irradiation.

Branching ratio = $\frac{^{242}gAm}{(^{242}gAm + ^{242}mAm)}$

Office of Nonproliferation & Verification R&D (NA-22)

Unclassified

^{242g}Am determination

Chemistry Status (FY 2009)

Started chemical separations with blank target to determine ²⁴²Cm background (if any)

Chemical dissolution

Epoxy dissolved with acetone Deposit dissolved with nitric acid Sample spiked with ²⁴⁴Cm

Gold contamination removed with anion exchange chromatography.

Office of Nonproliferation & Verification R&D (NA-22)

ENERGY

^{242g}Am determination

Chemistry Status (FY 2009)

First Am/Cm separation

- ➤ Fall 2009
- ➤ Elution was slower than anticipated
 - ■The methanol evaporated
 - Column dried out between samples
 - ■Am/Cm separation
- ➤ Second Am/Cm separation started FY 2010
- Much faster
- Results pending

Office of Nonproliferation & Verification R&D (NA-22)

10.0

5.0

0.0

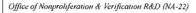
20.0

25.0

U.S. DEPARTMENT OF ENERGY

^{242m}Am determination

Unclassified


- ➤The²⁴²Cm must be removed from the samples with a decontamination factor of 10¹⁴
 - this will require 4-7 separations!
- ➤Wait 6-9 months to allow ²⁴²Cm to grow in
- >Am/Cm separations performed as before
- ➤ Electrodeposition
- ➤ Measurement of ²⁴²Cm by alpha spectrometry

This second measurement will tell us how much ^{242m}Am was produced by the irradiation.

We will then be able to calculate the branching ratio

Branching ratio =

 $^{242g}Am/(^{242g}Am + ^{242m}Am)$

Future Research

Complete Target 3 Separations

January - February 2010

Complete Target 1 &2 Separations

By Fall 2010

Ingrowth of ²⁴²Cm

Fall 2010 to Spring 2011

Complete Second series of Am/Cm separations

Fall 2011

Calculate Branching Ratio

Fall 2011

Office of Nonproliferation & Verification R&D (NA-22)

Unclassified

Summary

- ≥241Am Targets have been prepared, irradiated, and returned
- ➤ Separation of targets for ^{242g}Am determination is proceeding
- ➤ Am/Cm has been developed and can be used for routine separations at LANL
- ➤ Technician training
- Allen Moody hired and trained
- Helped develop chemistry
- Results will be published in open literature

Office of Nonproliferation & Verification R&D (NA-22)

Summary

Talks

"Americium Curium Separations for Nuclear Chemistry Experiments" A. K. Slemmons E. M. Bond, W. A. Moody, D. J. Vieira, J. R. FitzPatrick, R. Sudowe, 235th ACS National Meeting & Exposition, April 6-10, 2008 (Oral Presentation)

"Progress in Americium and Curium Separations for the 241 Am(n, gamma) Measurement", E. M. Bond, W. A. Moody, A. K. Slemmons, D. J. Vieira, ILWOG 42, May 24-27, 2010. (Oral Presentation)

"The Separation of Americium and Curium for Nuclear Chemistry Experiments", E. M. Bond, W. A. Moody, D. J. Vieira, A. K. Slemmons, 239th ACS National Meeting and Exposition, March 21-25, 2010. (Invited Oral Presentation)

"Nuclear Chemistry Experiments with Americium and Curium", E. M. Bond, D. J. Vieira, A. K. Slemmons, W. A. Moody, F. Käppeler, S. Walter, I. Dillman, ILWOG 41, September 8-12, 2008. (Oral Presentation).

Office of Nonproliferation & Verification R&D (NA-22)

Unclassified

Collaborators

Unclassified

Los Alamos National Laboratory

C-NR

Todd Bredeweg Walter Allen Moody Robert Rundberg Dave Vieira

C-AAC

Alice Slemmons Donivan Porterfield Patrick Martinez

CMR Shipping Team

Richard "Bear" Martinez

Therese Moya Nick Salazar

TA-55 Shipping

Keith Lacy

Office of Nonproliferation & Verification R&D (NA-22)

Forschungszentrum Karlsruhe

Franz Käppeler Stephan Walter Iris Dillman

FZK Shipping

Johannes Kauffmann

