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A General Higher-Order Remap Algorithm for ALE Calculations 

Vincent Chiravalle (XTD-2) 

Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

A numerical technique for solving the equations of fluid dynamics with arbitrary mesh 
motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE) 
methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase. 
The Lagrangian phase follows a well known approach from the HEMP code; in addition 
the strain rate andflow divergence are calculated in a consistent manner according to 
Margolin. A donor cell method from the SALE code forms the basis of the remap step, but 
unlike SALE a higher order correction based on monotone gradients is also added to the 
remap. Four test problems were explored to evaluate the fidelity of these numerical 
techniques, as implemented in a simple test code, written in the C programming language, 
called Cercion. Novel cell-centered data structures are used in Cercion to reduce the 
complexity of the programming and maximize the efficiency of memory usage. The 
locations of the shock and contact discontinuity in the Riemann shock tube problem are 
well captured. Cercion demonstrates a high degree of symmetry when calculating the 
Sedov blast wave solution, with a peak density at the shock front that is similar to the value 
determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give 
virtually the same velocity temporal profile at the target-vacuum interface. When 
calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the 
Cercion results are insensitive to the use of ALE. 

Introduction 

The field of Arbitrary Lagrangian 
Eulerian (ALE) hydrodynamics has 
enjoyed a long and fruitful development. 
ALE is an indispensible tool for 
researchers studying energetic materials, 
plasmas, and turbulence among many 
other applications. There are two parts to 
ALE: the relaxation of the computational 
mesh and the remapping of mass, energy 
and momentum onto the new mesh. 
Various approaches for both mesh 
relaxation and remapping have been 
explored in the literature. An excellent 
summary of the various methods is given 
by Benson'. 

One of the first ALE codes, SALE2
, was 

developed in 1981. SALE solves the 
hydrodynamic equations in three 
sequential phases: a Lagrangian phase, a 
mesh relaxation phase and a remap phase. 
The momentum equations and the internal 
energy equations are updated during the 
Lagrangian phase in a manner similar to 

other purely Lagrangian codes such as 
HEMP3. In HEMP the material strength 
treatment first involves finding the flow 
strains from the velocity field, updating 
the von Mises flow stress using an 
appropriate model such as the PTW 
model 4 or the Steinberg modelS, and then 
finally using the updated flow stress 
together with a yield surface criterion to 
find the stress deviator components. 
Unlike HEMP, SALE does not utilize 
material strength. Subsequent to SALE's 
development, a similar code was 
formulated, SHALE6

, which not only 
incorporated ALE but aJso had an 
improved strength treatment relative to 
HEMP. Both HEMP and SHALE solve 
the fluid equations in a two dimensional 
geometry with cylindrical symmetry and 
there are four components of the stress 
deviator tensor with three of these being 
independent. The stress deviator 
components enter into the momentum 
equation and the stress related work term 
enters into the energy equation. During 
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the Lagrangian phase in SALE the . 
momentum equations are solved on a gnd 
that is staggered spatially with respect to 
the corresponding grid for the cell­
centered quantities such as mass, energy 
and the stress deviator components. This 
staggered grid arrangement is also used in 
HEMP. In addition to spatial staggering, 
the vertex-center velocities are also 
temporally staggered in HEMP. 

Having obtained new values for velocity 
after the Lagrangian phase, SALE then 
updates the positions of the vertices on the 
mesh. At this point mesh relaxation is 
considered and SALE has three options: 
maintain the Lagrangian positions, remap 
to the initial mesh positions (Eulerian 
method) or remap to positions 
corresponding to a user specified weight 
between these two extremes. As research 
in ALE methods continued and as ALE 
codes began to be more widely applied, 
sophisticated techniques were developed 
for mesh relaxation. Contemporary 
methods involve the optimization of a 
global integral relating to smoothness, 
orthogonal nature of the grid lines, and 
other properties of the mesh, as described 
by Brackbill and Saltzman7

. Minimizing 
the integral involves a few iterations on 
the vertex positions each cycle using the . 
conjugate gradient technique. An exact 
solution for the optimum vertex positions 
is not obtained at any given cycle but with 
time the mesh converges to the optimum 
solution. A simpler alternative to a global 
optimization method is the regular use of 
a finite difference vertex relaxer such as 
the one proposed by Winslow8 which 
adjusts the vertex points locally using 
only the positions of neighboring vertices 
to achieve an equipotential mesh in an 
iterative fashion after many cycles. 

The task of remapping the physical 
quantities from the old mesh to the new 
mesh is petformed during the remap 
phase. SALE utilizes a first order donor­
cell method for the mass and energy 

remap. The donor cell method involves 
determining flux volumes for each side of 
the cell associated with the movement of 
material from the old to the new mesh, 
and assigning a material density and 
energy density to these volumes. It is well 
known that first-order methods do not 
preserve sharp gradients as discussed by 
Laney9 and therefore these methods are 
rarely used in ALE codes. Higher-order 
remap methods have been developed and 
two good examples are the second order 
sign-preserving method of Margolin and 
Shaskov lo and the Barth-Jespersen 
method II. These higher order methods add 
corrections to the fluxes computed by the 
donor-cell method. In particular the Barth­
Jespersen method constructs a density 
slope at each cell center, suitably limited 
to preserve monotonicity. For ~ach . 
remapped quantity the appropnate densIty 
slope is used to construct the flux, be it a 
mass or energy . 

Both SALE and SHALE do not allow 
remapping across material interfaces; it is 
assumed that material intetfaces always 
evolve in a Lagrangian fashion. This 
assumption can be problematic in many 
situations where turbulence arises. One 
way to circumvent this difficulty is to use 
an interface reconstruction technique such 

12 as the one developed by Youngs . 
Youngs' volume of fluid (YOF) method 
represents a material interface in a 
piecewise linear fashion. In each cell 
there are three parameters describing the 
local straight line representation of the 
interface. The slope of the line is 
determined by the local volume fraction 
gradient and its position relative to the cell 
center is determined to match the volume 
of material in the cell. Additional 
computational details of the YOF method 
and a description of other alternate 
methods for interface reconstruction are 
. b M 13 gtven y organ. 
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A central issue for any code that solves 
the equations of hydrodynamics, be it 
Lagrangian, Eulerian or ALE, is the type 
of artificial viscosity employed to capture 
non-linear discontinuities such as shock 
waves. Since its introduction in 1950 by 
von Neumann and Richtmyer, the scalar 
artificial viscosity, with a quadratic 
dependence on velocity difference has 
been ubiquitous in the CFD literature. The 
corresponding artificial stress term is 
added to the pressure in the momentum 
equation to suppress numerical 
oscillations in regions with strong shocks . 
Bowers and Wilson l4 describe how to 
implement the scalar artificial viscosity in 
a two dimensional, cylindrically 
symmetric Eulerian code. In this case the 
radial and axial components are treated 
separately but analogously and the two 
components of artificial viscosity each 
have both a quadratic term and a linear 
term. Wilkins 1s gives an excellent 
discussion of a tensor artificial viscosity 
in a two dimensional cylindrical geometry 
and Christiansen 16 describes a higher 
order flux-limited artificial viscosity. 

The aim of this work is to numerically 
implement the ALE method in a new 
research code called Cercion, using the 
proven Lagrangian scheme from HEMP 
together with a simplified variation of the 
Barth-Jespersen remapping technique 
incorporating a VOF approach for 
material interfaces in mixed cells. The 
details of the numerical implementation 
are discussed in Section 2, including the 
novel cell-centered data structures that are 
used in Cercion to reduce the complexity 
of the programming and maximize the 
efficiency of memory usage. In Section 3, 
a series of three test problems are 
considered to validate Cercion; these 
problems include the Riemann shock tube, 
the Sedov blast wave and the aluminum 
flyer plate. Comparisons are made with 
analytic solutions and calculations using 
other fluid dynamics codes. In Section 4, a 
cylindrical implosion of a steel shell is 

studied, both with and without material 
strength, and the results are compared 
with FLAG calculations. I finish with a 
summary and conclusions in Section 5. 

2.0 Numerical Implementation 

Cercion follows a numerical 
implementation of the ALE technique that 
is similar to SALE but there are some key 
differences and additional features. The 
hydrodynamics is solved on a block­
structured mesh where each mesh block 
contains only quadrilateral cells arranged 
in a regular fashion. A given mesh block 
has four faces and four comer points. The 
user specifies in the input deck how each 
of the mesh blocks is connected to the 
other blocks in terms of the boundary 
faces and comers. Velocities are stored at 
the vertices of the cell, whereas density 
and pressure are stored at the cell center. 
The indexing convention for a cell is 
shown in Figure 1. Cercion was written 
using the ANSI standard C programming 
language, with a Fortran style of indexing 
for the array data structures. 

Cell Indexing Scheme 

vertex( i-1 ,j) vertex( i,j) 

cell(i,j) 

vertex( i-1 ,j-1) vertex( i,j-1 ) 

Figure 1. Cell and vertex indexing 
scheme. 

There are three essential elements to the 
numerical implementation in Cercion: the 
cell-centered data structures, the 
Lagrangian phase velocity update, and the 
higher order remap method. 
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The data structures in Cercion are cell­
oriented. Each cell is represented by a 
composite data type, celU, including a 
dynamic material list as well as storage 
for all of the cell-centered quantities, such 
as mass, pressure and specific energy, and 
storage for the top-right vertex positions 
and velocities. With this data type, 
information related to the cell can be 
obtained without searching various 
disparate and unconnected arrays. 

An example of a dynamic linked list of 
materials is given in Figure 2. 

cell t 

'headed ...... , mat t I ...... ' , \ 
r-b-a-s- t-', Ir--st-r -t--' 

tail!jJ 

Figure 2. Linked list for a cell with 1 
material. 

Within the linked list there is a single 
element for each material in the cell; a 
composite data type, mat_t, is used to 
store all the information for a given 
material. The elements in the dynamic 
material list are ordered according to the 
onion skin method. Each element points to 
two other data types, bas_t and str_t. 
Basic material properties including 
volume fraction, mass, energy, density, 
density derivatives, and VOF interface 
parameters are stored in a bas_t data 
structure. For materials that have strength, 
strength properties are stored in a stet 
data structure. Strength properties 
encompass stress deviator components, 
equivalent plastic strain, and the 
derivatives associated with these 
quantities. 

In addition to a dynamic material list, the 
cell_t data structure also contains pointers 

to two other linked lists, one associated 
with the top boundary of the ceJJ and 
another associated with the right 
boundary. These material flux linked lists 
each contain information about the 
materials crossing a cell boundary. An 
example of a material flux linked list with 
one material in the list is given in Figure 
3. 

[ cell t 

• tail fjJ 

Figure 3. Material flux linked list 
with 1 material crossing the cell 
boundary. 

A material flux linked list is comprised of 
a single data structure, flux_t, for each 
material crossing the boundary. The flux_t 
data structure stores the volume, mass and 
energy fluxes for the material. 
Furthermore, for those materials having 
strength, the flux-,:t data structure points to 
a sflux_t data structure holding the stress 
energy fluxes and strain fluxes. With these 
basic data structures the three phase 
solution to the hydrodynamic equations is 
implemented. 

The first part of the hydrodynamic 
solution involves solving for the updated 
velocity components using the Lagrangian 
algorithm from HEMP which constructs a 
control volume around vertex (i,j) that 
resembles a diamond with the faces of the 
diamond passing through the centers of 
cells A, B, C, and D as shown in Figure 4. 
The corners of the diamond are the four 
neighboring vertices. 
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Vertex (iJ) and surrounding 
cells A.B.C. and 0 

3 

"""0 c···. 

4 
(j J' 

2 

' . .A B .' 

Figure 4. HEMP control volume for 
the velocity at vertex (i,j). 

The finite difference equation for the axial 
velocity component, Lt , is given as 
Equation 1 and the radial component, v, as 
Equation 2. The values of the Cauchy 
stress tensor components, stored at the cell 
centers, are used to update the velocity 
components. The Cauchy stress tensor, r , 

includes the pressure, the stress deviators 
and the artificial viscous stress for 
numerical stability . In a cylindrical 
geometry, there are additional 
contributions to the velocity equations 
from the stress deviator tensor 
proportional to 1Ir; these are denoted as ~ 
and ex in Equation 3. An area-weighted 
scheme is used in HEMP for calculating 
these terms as illustrated below. The same 
method is applied in Cercion but the true 
mass of a cell over the complete solid 
angle is used, whereas HEMP does not 
use the true mass, hence the rrJ2 factors in 
Equation 3. The corresponding difference 
equations in HEMP have factors of 114 
instead . 

U;;I == Ui~j - 2:1 . [L~(Y4 - YI)+L~)YI - h)+L~ (Y2 - Y3 )+L~ ( Y3 - Y4)] 
I , } 

V::;I = v;:j + 2~t . [L ~y (X4 -Xl)+L~y (XI - X2)+L~y (X2 -X3 )+L~y (X3 -x4)] 
'f'1,} 

- 2~t . [L~Y (Y4 - YI)+L~Y (YI- h )+L;y (h - Y3)+L~(Y3 - Y4)]+L\tjJi,j (2.) 
'f', , } 

¢Ji ,j = ±[(PA)A + (pA)B + (pA)c + (pA)D] 

a'j ~ ~[ (L;A) A + (L;A )B +(L;A Jc +(L;A)J (3.) 

jJ'j ~ ~[ (L yy ~ LOU A ) A +(Lyy ~LBO A l +(Lyy ~ LOU A l + (L
yy ~LOU A )J 

Prior to solving the velocity equations, the 
stress deviator components are updated 
from the previous cycle using the strain 
rate components. Cercion does not use the 
HEMP methodology for calculating the 
strain rate components but rather the 
method proposed by Margolinl7 is 

adopted, whereby the flow divergence is 
calculated in a manner that is consistent 
with the strain rate. The difference scheme 
for the strain rate components is given in 
Equation 4 and Figure 5 identifies the 
vertices that are used in the calculation of 
the strain rate components. 
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3 2 

cell(i,j) 

4 1 

Figure 5. Vertices used to calculate 
the strain rate for cell (i,j). 

The calculation of the strain rate 
components relies on area and radius 
terms denoted Ai.ik and rijk in Equation 5, 
where the subscripts i,j,k span the four 
vertices surrounding the cell in Figure 5. 
The Margolin approach employs a volume 
averaged approximation to the spatial 
velocity derivatives whereas the HEMP 
approach uses an area averaged 
approximation. Margolin demonstrates 
that in certain situations the area averaged 

method is not a good approximation to the 
true stmin rate and the volume averaged 
technique is required for physical fidelity . 

Besides being more versatile than other 
methods, the volume averaged technique 
of Margolin also has the desirable 
property that the flow divergence can be 
calculated from the strain rate components 
exactly as shown in Equation 6, without 
introducing additional errors into the finite 
difference equations. The flow divergence 
is required to calculate the change in 
internal energy during the Lagrangian 
phase and it is also used to determine the 
artificial viscous stress as given in 
Equation 7. The internal energy update 
performed in Cercion is the two-step 
process borrowed from HEMP, where the 
equation of state is evaluated twice for 
pressure during the update. 

Exx = 1 [(u3r234 -ulr412 )(Y2 - Y4)+(u4r341-u2'i23)(Y3 - YI)] 
6V 

E I'l' = _1_ [(VI r412 - v3r234 )(x2 - x4)+ (V2'i23 - V 4r341 )(X3 - x l )- (VI A412 + V2 A123 + v3A234 + V4A34 I )] .- 6V 

Eee = _1_ [V1A412 + V2A123 + v3A234 + V4A34 I ] 
2V 

Exy = 6~ [(v3r234 - v lr412 )(h - Y4)+ (v4r34J - V2'i23)(Y3 - YI)] (4.) 

1 
V = -[fj23 AI23 + r234A234 + r341A341 + r412A412] 

6 

Aijk = ~ [(Yk - yjXXi -XJ-(Yi - yjXXk -xJ] 

There are two components in Equation 7 
for the artificial viscous stress, one a . 
linear term in flow divergence and the 
other a quadratic term. This form of 

(5.) 

(6.) 

artificial viscous stress is scalar in nature 
in that the artificial viscous stress only 
appears in two Cauchy stress tensor 
components, Lxx and Lyy , as opposed to 
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affecting all components. The two 
component formulation from Equation 7, 
where a is the sound speed, is a 
straightforward way to generalize the von 
Neumann viscous stress intended for one 
dimensional problems into two 

Cercion uses the simple finite difference 
mesh relaxer proposed by Winslow with a 
nine point stencil. The user can specify in 
the input deck whether any particular set 
of vertices are relaxed and the time 
interval for the relaxation. During the 
remap phase material fluxes are used to 
redistribute materials among cells whose 
vertices have been relaxed. Figure 6 
illustrates a cell containing two materials 
where three of the cell vertices have been 
relaxed. 

vertex(iJ) after 
grid relaxation vertex(ij) after 

top flux phase (x,Y) Lagrangian phase 
volume ,. ... '\ ~ (xp,yp) 
Fr(IJ) ~ T ... ... - ... .",." 

.~ '. ~ , 
I '. I '. ,right flux Fr .t . •••• ~ _ w _ ~ _ ,~volume 

.... ......,.- Fz(lj) 

cell(ij) 

'. '. '. , 
I ". 

k '. IMFz,.,j ". 
.. ----... - - - III ..... material k 

• interface 

Figure 6. Flux volumes for cell (i,j). 

The vertex positions after the Lagrangian 
phase (xp,yp) are denoted with squares 
and the relaxed positions (x,y) with 
circles. The t1ux volume through the top 
face, Fr, and the flux volume through the 

dimensions; this linear-quadratic 
formulation was used in later versions of 
HEMP as described by Wilkins l 5

. All the 
calculations in this paper have coefficients 
ofC I=2.0 and C2=O.1 for the quadratic 
and linear terms respectively. 

(7.) 

right face, Fz, both of which are positive, 
are calculated using the vertex positions 
as shown in Figure 6. These flux volumes 
are partitioned to represent the individual 
material t1uxes using the appropriate 
piece-wise linear interface; the mass of 
material k contained in the flux volume Fz 
is denoted MFzk in Figure 6. MFzk is 
determined using the donor cell technique 
as presented in Equation 8. 

(8.) 

The donor cell technique uses the upwind 
density for material k, such that if the 
material flows out of cell (i,j) then the 
density from cell (i,j) is the upwind 
density otherwise the density from 
cell(i+ l,j) is the upwind density. The 
update of material k mass from the 
Lagrangian value, M\ to the value after 
the remap step, Mk

' , is performed as 
shown in Equation 9. Mass fluxes from 
four neighboring cells are used to update 
the material k mass. An analogous 
equation is solved for the material k 
internal energy and other cell-centered 
quantities. This donor cell method was 
used in SALE for the remap phase; 
however, unlike Cercion, SALE did not 
allow for cells with mUltiple materials. 

M k* M k l F k M k MF k k J . . = . . - M Z· . - Fz · I . + r · - MFr. I I,j l,j l,j 1- ,j l,j I , j- (9.) 

In Cercion, a second order correction is 
made to the donor cell method for those 
cells with a single material. The method 

for calculating the higher order correction 
is much simpler than the Barth-Jespersen 
remap method II and is displayed in Figure 
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7 for the material mass flux crossing the 
top boundary of cell (i,j). The volume of 
the cell after the Lagrangian phase is 
colored in red and the volume after mesh 
relaxation in black. The top flux volume is 
shown in blue. The geometric centers of 
the top flux volume and the Lagrangian 
volume of the cell are highlighted in 
Figure 7 as triangles . 

center of top top nux 
nux volume volume 

_\ I Fr(IJ) 

~ ---- .... 
" • T I ~ , 

dx,dy _ I • '1' ' I 
I ' _. , " 

..1 -- ~ , "-

: ' cell(IJ) volume 

.. 
' after Lagrangian 

- - -. phase 
cell(iJ) volumV 

after !J'ld .. ---__ • center of 
Lagrangian cell 

volume 
relaxation phase 

Figure 7. Geometry for the higher 
order flux calculation. 

The distance between the centers (dx,dy) 
is used together with the upwind density 
derivatives in a straightforward way to 

achieve a higher order mass flux given by 
Equation 10. 

Although the remap fluxes themselves are 
simpler, the density derivatives are 
calculated using the Barth-Jespersen 
approach" involving a control volume 
formed from all eight neighboring cells. 
The Barth-Jespersen method also imposes 
a limit on the value of each derivative to 
ensure a monotone flow . The limiting 
function proposed by Barth and Jespersen 
is used in Cercion to the same effect. 

The mass fluxes calculated during the 
remap of the cell-centered quantities are 
retained for use during the momentum 
remap; this was inspired by the approach 
of Bowers and Wilson'4. In addition to the 
cell-center quantities a higher order remap 
of the form of Equation lOis also used for 
momentum but the momentum control 
volume is vertex centered, and the 
momentum flux volumes are entirely 
different, owing to the spatially staggered 
nature of the Lagrangian method used in 
Cercion. 

MF~, j = PupwindF~,j + F~,j[dX op . +dy op ] 
OX upW/f!d oy upwind ( 10.) 

3.0 Test Problems 

Having described the fundamental 
algorithms. in this section Cercion is 
tested with a series of simple problems in 
both one and two dimensions. A Riemann 
shock tube was used to assess the fidelity 
in capturing shocks and contact 
discontinuities. The degree of symmetry 
in the code solution was tested with a 
Sedov blast wave problem and the ability 
to calculate elastic-plastic response in an 
aluminum flyer plate problem was also 
evaluated. 

The Riemann shock tube is common in 
the CFD literature and since there is an 
analytic solution it is a good test of the 
basic conservation properties of any 
numerical fluid dynamics algorithm9

. An 
initial discontinuity between two ideal gas 
regions (y= 1.4) exists at time zero. The 
first region has a density of 1 kg/m3 and a 
pressure of 105 N/m2

. The second region 
has a density of 0.01 kg/m3 and a pressure 
of 103 N/m2

• There is a contact 
discontinuity at the interface between the 
two regions, which moves as the problem 
progresses. An Eulerian mesh consisting 
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of a uniform box 25 m by I m having 500 
axial zones and 2 radial zones was used 
for the Cercion simulation. The numerical 
solution at 0 .0 I s for the density and 
pressure is given in Figure 8, together 
with the analytic solution . The location of 
both the shock at about 9m and the 
contact discontinuity at about 6m are well 
captured by the simulation. An expansion 
fan is also visible in the numerical 
solution for both pressure and density, 
agreeing nicely with the analytic solution . 
Cercion does a reasonable job 

(a) Density 

- AnaljU: • Cecoon 

0.90 -------\----------

n; 0.70 ____ -\-________ _ 

C. 
:>< z: 0.50 - ----T-- - ---- --
u; 
I: 

~ 0.30 ---------~-------

0.10 ---------+-----

~.10 -----~--------

·10.0 ·5.0 00 5.0 10.0 15.0 

Position 1m) 

! 
:J 
OJ .. 
II 

~ 

representing the spatial profiles of 
velocity and sound speed as shown in 
Figure 9. The shock is spread out over 
about 4 zones as indicated in Figure 9 (a). 
In Figure 9 (b) a slight overshoot in the 
sound speed appears at the contact 
discontinuity and the calculated sound 
speed in front of the contact discontinuity 
is a few percent less than the analytic 
value. Overall Cercion does a good job in 
capturing the important details of the 
Riemann shock tube. 

(b) Pressure 

-AnaljU: • Ceccal!1 l 

100000 ... --~r-----------

80000 r..--
~ ----1------- ----

40000 r-----4r-----------

20000 f---------'~-------

·10.0 ·5.0 0.0 5.0 10.0 15.0 

Pos~lon (m) 

Figure 8. Pressure and density for the Riemann shock tube at t=O.01 s. 

(a) Velocity 
1- Analy1ic • Ceccon 

700 i 

SOO 

" E 
~ 300 
u 
0 
U 
> 

100 

·100 1 

·10.0 ·5.0 0.0 5.0 10.0 15.0 

Pos~lon (m) 

600 . 

~500 r 
E 

t "0 
II 

~400 
III 
"0 
I: 

" 0 
III 300 

200 I 
·10.0 -5.0 

(b) Sound Speed 
1- AnaIyOC • ~ 

0.0 5.0 

Position 1m) 

10.0 15.0 

Figure 9. Velocity and sound speed for the Riemann shock tube at t=O.01 s. 
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The Sedov blast wave problem involves 
the propagation of a strong disturbance 
arising from a localized energy source of 
85 kJ at the origin at time zero. As time 
progresses a self-similar solution is 
obtained that is spherically symmetric' s. 
In a two dimensional cylindrical 
geometry, the Sedov blast wave is a good 
way to evaluate the symmetry preserving 
properties of the numerical algorithm. A 
uniform Eulerian mesh was employed 
with 300 axial zones and 150 radial zones; 
the resolution in both directions was 200 
~m. The energy source at the origin 
spanned 4 zones, two radial and two axial. 

At 10 ~s the solution from Cercion is 
compared with the corresponding solution 
from the Eulerian code RAGE in Figure 
10. RAGE'9 has an entirely different 
numerical algorithm than Cercion for 
solving the fluid equations. Cercion (red) 
calculates a pressure behind the blast 
wave of about 2.6 kbar and RAGE 
(numle) calculates a hi2'her nre.<;sure of 1.0 

(a) Pressure 

kbar. The self-similar solution (green) 
gives a pressure of 2.4 kbar which is 
lower than the result from either code . 
Although there is disagreement in 
minimum pressure behind the shock, both 
codes predict a peak density of about 4.6 
glcc behind the shock which is less than 
the value of 6.0 glcc from the self-similar 
solution . The one dimensional profiles of 
density and pressure measured from the 
origin overlap each other at 90 degrees 
and 45 degrees in the Cercion solution, 
indicating that symmetry is well 
preserved . This is generally true for the 
RAGE solution also and the pressure 
profiles overlap well; however the peak 
density behind the shock at 45 degrees is 
noticeably higher than at 90 degrees. 
Although both codes smear the shock over 
several zones, it is clear that the Cercion 
simulation does a good job predicting the 
location of the shock at about 2.5 cm from 
the origin. RAGE predicts a shock 
position that is slightly ahead of the 
Cercion value. 

(b) Density 

- Analytic Solution - Cercion at 45 deg. - Cen:lon at 90 deg. I- Analytic Solution - Cerclon at 45 deg. - Cerclon at 90 deg. 
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Figure 10. Pressure and density for the Sedov blast wave at 10 Ils. 

Part of the reason why neither code 
captures the correct minimum pressure or 
peak density behind the shock is that self­
similar conditions have not been fully 

achieved in the calculations. Even at 10 
Ils, strong velocity perturbations still exist 
owing to the two dimensional nature of 
the cylindrical energy source at the origin. 
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This is clearly evident in Figure 11 which 
shows the one dimensional profile of 
velocity magnitude as a function of 
distance from the origin at 10 Ils. The 
solution from both codes departs 
markedly from the green line representing 
the self-similar solution as one approaches 
the origin . 
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12. A companion calculation was 
performed with another Lagrangian code, 
FLAG. The FLAG method20 is distinct 
from the HEMP technique in that the 
discrete equations are formulated to 
preserve total energy exactly; furthermore 
it has been argued in the literature that the 
FLAG approach better represents the 
partition between kinetic and internal 
energies l6

. Both Cercion and FLAG show 
an elastic precursor wave in the velocity 
profile starting just before 1.5 Ils and 
lasting for 0.2 Ils . There is agreement in 
peak velocity as well with both codes 
giving a value of 0.07cm/lls, which 
conforms to the theoretical value for this 
lUnd of impact. The duration of the 
velocity pulse at the target-vacuum 
interface is the same and in general there 
is good agreement between the two codes 
for the release wave. 

1- FLAG - Cercion 1 
0.10 

0.09 

0.08 Figure 11. Velocity magnitude for 
the Sedov blast wave at 10 Ils. '0 0.07 

::1 
E 0.06 ~\ 

A flyer plate test problem was formulated 
to evaluate the material strength treatment 
in Cercion. In one dimensional geometry, 
an aluminum projectile which is 2mm in 
length (40 cells) and has a velocity of 0.07 
cm/Ils impacts an aluminum target at rest 
that is 1 cm in length (200 cells). There is 
no mesh relaxation in the problem and the 
fluid equations are solved in a 
Langrangian fashion. A Mie-Gruneisen 
EOS is used to represent aluminum with 
the parameters taken from Steinberg5

. A 
simple elastic-plastic material strength 
model is assumed for aluminum with a 
constant shear modulus of 270 kbar and a 
constant yield stress of 0.4 kbar. 

The velocity temporal profile at the target­
vacuum interface is presented in Figure 

u 

~ 0.05 

g 0.04 
Q) 

> 0.03 

0.02 

0.01 

0.00 

0.0 0.5 1.0 2.0 

Time (v-s) 

Figure 12. Cercion and FLAG 
velocity profiles for the flyer plate 
problem. 

The test problems in this section have 
helped establish confidence in the basic 
equations for the Lagrangian velocity 
update, Equations 1 and 2, as well as the 
calculation of the strain rate given by 

NECDC 2010 Proceedings UNCLASSIFIED 11 

\ 
\ 

\ 
\ 
\. , 

2.5 

-

3.0 



UNCLASSIFIED 

Equation 4 and the higher order remap 
algorithm from Equation ] O. 

4.0 Steel Shell Implosion 

An imploding steel shell is a good test of 
energy conservation in converging 
cylindrical geometry. A simple test 
problem involving two steel shells, 
separated by a high pressure gas region 
was constructed in a two dimensional 
cylindrical geometry as shown in Figure 
13 . Each of the two steel shells has ] 0 
radial zones with the outer shell being 
0.25 cm thick and the inner shell being 0.5 
cm thick. There are 180 axial zones in the 
problem and the cylindrical shells are 5 
cm long. A Mie-Gruneisen EOS was used 
for steel with parameters for stainless steel 
304 taken from Steinberg6

. Cercion 
calculations were performed both with 
and without material strength. A simple 
material strength model was adopted with 
constant yield strength of 0 .05 Mbar and 
constant shear modulus of 0.895 Mbar. 

(a) Kinetic Energy 
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The high pressure gas region in Figure 13 
contains 80 radial zones . Within the inner 
steel shell there is a low pressure gas 
region, consisting of 20 radial zones . 

5.0em . ~ 
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P=O.588 Mbar 
p=1.84 glee 
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Z 
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Figure 13. Initial geometry of the 
steel shell cylindrical implosion 
problem. 

(b) Internal Energy 
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Figure 14. fnner steel shell kinetic and internal energies without material 
strength. 
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2.5 

Both gas regions were represented as ideal 
gases in the calculations and initialized 
according to the conditions specified in 
Figure 13. The simulations lasted 5 ).ls and 
comparisons were made with FLAG 
calculations having the same mesh, using 
a purely Lagrangian treatment of the 
hydrodynamics. 

For the case without material strength 
FLAG and Cercion give the same kinetic 
energy of about 2 .5 MJ for the inner steel 
shell at 5 ).ls as shown in Figure 14 (a). In 
general the calculated values of kinetic 
energy are the same for the two codes 
during the implosion interval; maximum 
compression of the shell occurs shortly 
after 5 ).ls . The Cercion calculation is 
presented as the red curve in Figure 14 
with the FLAG result as the blue curve. 
An additional Cercion simulation was 
performed using ALE, such that mesh 
relaxation occurred everywhere at every 
cycle except inside the low pressure gas 
region and at material boundaries . The 
Cercion result with ALE is shown as the 
green curve in Figure 14. It is evident that 
the use of ALE during the implosion has 
virtually no effect on the Cercion solution, 
both for kinetic energy and internal 

(a) Kinetic Energy 
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energy. Although the agreement for the 
two codes is excellent for kinetic energy 
and generally good for internal energy 
there are noticeable differences between 
Cercion and FLAG. The FLAG internal 
energy is consistently higher than Cercion 
between 1 and 4 ).ls. The internal energy 
difference between FLAG and Cercion is 
approximately 10% at 3 ).ls. Both codes 
give nearly the same total energy for the 
inner shell as a function of time, with a 
maximum total energy of about 2.7 MJ at 
5 ).ls. 

FLAG is somewhat unique in its use of 
the temporary triangular sub zonal (TIS) 
method to dissipate unphysical hourglass 
instabilities21

• The TIS method is an 
edge-based technique whereas the 
prevalent approach in the literature for 
controlling hourglass instabilities is a 
volume-based method. In certain 
situations, the TIS method can lead to 
relatively large amounts of mesh 
stiffening. The Cercion calculations were 
performed without any anti-hourglass 
dissipation and perhaps the internal 
energy difference can be explained by the 
use of the TIS method in FLAG. 

(b) Internal Energy 
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Figure 15. Inner steel shell kinetic and internal energies with material strength. 
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When material strength is included in the 
calculations it is also true that FLAG and 
Cercion agree well for the kinetic energy 
of the inner shell as shown in Figure 15 
(a). The peak kinetic energy in this case is 
about 2.4 MJ. As before, the purely 
Lagrange Cercion calculation in red and 
the Cercion calculation with ALE in green 
are indistinguishable. The total energy of 
the inner shell as a function of time 
remains unchanged from the previous set 
of calculations without strength. There is 
excellent agreement to within 3% between 
Cercion and FLAG for total energy of the 
shell. The addition of material strength 
only changes the partition of energy 
between internal and kinetic modes in the 
calculations. With regards to internal 
energy, both codes show the same general 
temporal behavior during the implosion; 
however FLAG gives more internal 
energy than Cerci on during most of the 
implosion time interval, as illustrated in 
Figure 15 (b). The internal energy of the 
inner shell near the end of the implosion 
at 5 IlS is about 0.32 MJ and this is nearly 
the same for both codes . At 3 Ils FLAG 
gives an internal energy that is about 5% 
higher than Cercion. For the case without 
strength, the internal energy at 5 )ls is 
lower at about 0.19 MJ and both codes 
give a similar value. 

5.0 Conclusions 

Cercion uses proven numerical methods 
for the solution of the Langrangian 
equations of motion and the calculation of 
material strength properties. Cell-centered 
data structures simplify the programming 
of the code and allow for efficient 
memory allocation for multi-material 
problems. A second-order accurate remap 
method is used for density, energy and 
momentum, enabling ALE calculations to 
be performed. Results from this paper 
indicate that the remap method is robust 

and has been implemented con'ectly in 
Cercion . 

Cercion shows excellent agreement with 
the analytic solution for the Riemann 
shock tube problem. There is good 
symmetry in the Cercion solution for the 
Sedov blast wave problem but both 
Cercion and RAGE have a peak density 
behind the shock that is lower than the 
self-similar solution. In addition to the 
inherent smearing of the shock due to the 
discrete solution method, the fact that the 
calculations have not fully reached a self­
similar state is also a likely contributor to 
the discrepancy. In pure Langrangian 
mode, both Cercion and FLAG give 
si mi lar velocity profiles at the target­
vacuum interface for the flyer plate test 
problem. This establishes confidence in 
the numerical implementation of the 
Margolin strain rate method . 

For the steel shell cylindrical implosion 
problem Cercion and FLAG calculate 
total energies for the inner steel shell that 
agree to within 3% during the implosion 
time interval. For cases with and without 
material strength, FLAG gives a higher 
internal energy than Cercion, but the 
kinetic energy of the inner shell is in 
agreement between the two codes. The 
Cercion results are insensitive to the use 
of ALE during the calculation. 

Perhaps the internal energy difference 
between Cercion and FLAG is due to the 
TIS anti-hourglass treatment in FLAG. It 
would be informative to perform the 
cylindrical implosion calculation in FLAG 
without the ITS model, if possible, in 
ord~r to test this hypothesis in future 
work. Besides the HEMP based Lagrange 
method in Cercion and the total energy 
preserving method of FLAG there are a 
number of distinct Lagrangian 
hydrodynamic algorithms in the literature. 
A comparison with some of these other 
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numerical methods would help illustrate 
how different techniques partition energy 
between internal and kinetic modes. 
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