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A General Higher-Order Remap Algorithm for ALE Calculations
Vincent Chiravalle (XTD-2)
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

A numerical technique for solving the equations of fluid dynamics with arbitrary mesh
motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE)
methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase.
The Lagrangian phase follows a well known approach from the HEMP code; in addition
the strain rate and flow divergence are calculated in a consistent manner according to
Margolin. A donor cell method from the SALE code forms the basis of the remap step, but
unlike SALE a higher order correction based on monotone gradients is also added to the
remap. Four test problems were explored to evaluate the fidelity of these numerical
techniques, as implemented in a simple test code, written in the C programming language,
called Cercion. Novel cell-centered data structures are used in Cercion to reduce the
complexity of the programming and maximize the efficiency of memory usage. The
locations of the shock and contact discontinuity in the Riemann shock tube problem are
well captured. Cercion demonstrates a high degree of symmetry when calculating the
Sedov blast wave solution, with a peak density at the shock front that is similar to the value
determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give
virtually the same velocity temporal profile at the target-vacuum interface. When
calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the
Cercion results are insensitive to the use of ALE.

Introduction

The field of Arbitrary Lagrangian
Eulerian (ALE) hydrodynamics has
enjoyed a long and fruitful development.
ALE is an indispensible tool for
researchers studying energetic materials,
plasmas, and turbulence among many
other applications. There are two parts to
ALE: the relaxation of the computational
mesh and the remapping of mass, energy
and momentum onto the new mesh.
Various approaches for both mesh
relaxation and remapping have been
explored in the literature. An excellent
summary of the various methods is given
by Benson'.

One of the first ALE codes, SALE?, was
developed in 1981. SALE solves the
hydrodynamic equations in three
sequential phases: a Lagrangian phase, a
mesh relaxation phase and a remap phase.
The momentum equations and the internal
energy equations are updated during the
Lagrangian phase in a manner similar to
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other purely Lagrangian codes such as
HEMP’. In HEMP the material strength
treatment first involves finding the flow
strains from the velocity field, updating
the von Mises flow stress using an
appropriate model such as the PTW
model” or the Steinberg model’, and then
finally using the updated flow stress
together with a yield surface criterion to
find the stress deviator components.
Unlike HEMP, SALE does not utilize
material strength. Subsequent to SALE’s
development, a similar code was
formulated, SHALES, which not only
incorporated ALE but also had an
improved strength treatment relative to
HEMP. Both HEMP and SHALE solve
the fluid equations in a two dimensional
geometry with cylindrical symmetry and
there are four components of the stress
deviator tensor with three of these being
independent. The stress deviator
components enter into the momentum
equation and the stress related work term
enters into the energy equation. During
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the Lagrangian phase in SALE the
momentum equations are solved on a grid
that is staggered spatially with respect to
the corresponding grid for the cell-
centered quantities such as mass, energy
and the stress deviator components. This
staggered grid arrangement is also used in
HEMP. In addition to spatial staggering,
the vertex-center velocities are also
temporally staggered in HEMP.

Having obtained new values for velocity
after the Lagrangian phase, SALE then
updates the positions of the vertices on the
mesh. At this point mesh relaxation is
considered and SALE has three options:
maintain the Lagrangian positions, remap
to the initial mesh positions (Eulerian
method) or remap to positions
corresponding to a user specified weight
between these two extremes. As research
in ALE methods continued and as ALE
codes began to be more widely applied,
sophisticated techniques were developed
for mesh relaxation. Contemporary
methods involve the optimization of a
global integral relating to smoothness,
orthogonal nature of the grid lines, and
other properties of the mesh, as described
by Brackbill and Saltzman’. Minimizing
the integral involves a few iterations on
the vertex positions each cycle using the
conjugate gradient technique. An exact
solution for the optimum vertex positions
is not obtained at any given cycle but with
time the mesh converges to the optimum
solution. A simpler alternative to a global
optimization method is the regular use of
a finite difference vertex relaxer such as
the one proposed by Winslow® which
adjusts the vertex points locally using
only the positions of neighboring vertices
to achieve an equipotential mesh in an
iterative fashion after many cycles.

The task of remapping the physical
quantities from the old mesh to the new
mesh is performed during the remap
phase. SALE utilizes a first order donor-
cell method for the mass and energy
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remap. The donor cell method involves
determining flux volumes for each side of
the cell associated with the movement of
material from the old to the new mesh,
and assigning a material density and
energy density to these volumes. It is well
known that first-order methods do not
preserve sharp gradients as discussed by
Laney’ and therefore these methods are
rarely used in ALE codes. Higher-order
remap methods have been developed and
two good examples are the second order
sign-preserving method of Margolin and
Shaskov'® and the Barth-Jespersen
method''. These higher order methods add
corrections to the fluxes computed by the
donor-cell method. In particular the Barth-
Jespersen method constructs a density
slope at each cell center, suitably limited
to preserve monotonicity. For each
remapped quantity the appropriate density
slope is used to construct the flux, be it a
mass or energy.

Both SALE and SHALE do not allow
remapping across material interfaces; it is
assumed that material interfaces always
evolve in a Lagrangian fashion. This
assumption can be problematic in many
situations where turbulence arises. One
way to circumvent this difficulty is to use
an interface reconstruction technique such
as the one developed by Youngs'z.
Youngs’ volume of fluid (VOF) method
represents a material interface in a
piecewise linear fashion. In each cell
there are three parameters describing the
local straight line representation of the
interface. The slope of the line is
determined by the local volume fraction
gradient and its position relative to the cell
center is determined to match the volume
of material in the cell. Additional
computational details of the VOF method
and a description of other alternate
methods for interface reconstruction are
given by Morgan".
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A central issue for any code that solves
the equations of hydrodynamics, be it
Lagrangian, Eulerian or ALE, is the type
of artificial viscosity employed to capture
non-linear discontinuities such as shock
waves. Since its introduction in 1950 by
von Neumann and Richtmyer, the scalar
artificial viscosity, with a quadratic
dependence on velocity difference has
been ubiquitous in the CFD literature. The
corresponding artificial stress term is
added to the pressure in the momentum
equation to suppress numerical
oscillations in regions with strong shocks.
Bowers and Wilson'* describe how to
implement the scalar artificial viscosity in
a two dimensional, cylindrically
symmetric Eulerian code. In this case the
radial and axial components are treated
separately but analogously and the two
components of artificial viscosity each
have both a quadratic term and a linear
term. Wilkins'® gives an excellent
discussion of a tensor artificial viscosity
in a two dimensional cylindrical geometry
and Christiansen'® describes a higher
order flux-limited artificial viscosity.

The aim of this work is to numerically
implement the ALE method in a new
research code called Cercion, using the
proven Lagrangian scheme from HEMP
together with a simplified variation of the
Barth-Jespersen remapping technique
incorporating a VOF approach for
material interfaces in mixed cells. The
details of the numerical implementation
are discussed in Section 2, including the
novel cell-centered data structures that are
used in Cercion to reduce the complexity
of the programming and maximize the
efficiency of memory usage. In Section 3,
a series of three test problems are
considered to validate Cercion; these
problems include the Riemann shock tube,
the Sedov blast wave and the aluminum
flyer plate. Comparisons are made with
analytic solutions and calculations using
other fluid dynamics codes. In Section 4, a
cylindrical implosion of a steel shell is
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studied, both with and without material
strength, and the results are compared

with FLAG calculations. I finish with a
summary and conclusions in Section 5.

2.0 Numerical Implementation

Cercion follows a numerical
implementation of the ALE technique that
is similar to SALE but there are some key
differences and additional features. The
hydrodynamics is solved on a block-
structured mesh where each mesh block
contains only quadrilateral cells arranged
in a regular fashion. A given mesh block
has four faces and four corner points. The
user specifies in the input deck how each
of the mesh blocks is connected to the
other blocks in terms of the boundary
faces and corners. Velocities are stored at
the vertices of the cell, whereas density
and pressure are stored at the cell center.
The indexing convention for a cell is
shown in Figure 1. Cercion was written
using the ANSI standard C programming
language, with a Fortran style of indexing
for the array data structures.

Cell Indexing Scheme

vertex(i-1,j) vertex(i,j)

cell(ij)

vertex(i-1,j-1) vertex(i,j-1)

Figure 1. Cell and vertex indexing
scheme.

There are three essential elements to the
numerical implementation in Cercion: the
cell-centered data structures, the
Lagrangian phase velocity update, and the
higher order remap method.
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The data structures in Cercion are cell-
oriented. Each cell is represented by a
composite data type, cell_t, including a
dynamic material list as well as storage
for all of the cell-centered quantities, such
as mass, pressure and specific energy, and
storage for the top-right vertex positions
and velocities. With this data type,
information related to the cell can be
obtained without searching various
disparate and unconnected arrays.

An example of a dynamic linked list of
materials is given in Figure 2.

| 7 céll_tJ

}
lheader| == [ mat_t |=—>| tailﬂ-]
Y\
t |

[bas_t| [ strt|

Figure 2. Linked list for a cell with 1
material.

Within the linked list there is a single
element for each material in the cell; a
composite data type, mat_t, is used to
store all the information for a given
material. The elements in the dynamic
material list are ordered according to the
onion skin method. Each element points to
two other data types, bas_t and str_t.
Basic material properties including
volume fraction, mass, energy, density,
density derivatives, and VOF interface
parameters are stored in a bas_t data
structure. For materials that have strength,
strength properties are stored in a str_t
data structure. Strength properties
encompass stress deviator components,
equivalent plastic strain, and the
derivatives associated with these
quantities.

In addition to a dynamic material list, the
cell_t data structure also contains pointers
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to two other linked lists, one associated
with the top boundary of the cell and
another associated with the right
boundary. These material flux linked lists
each contain information about the
materials crossing a cell boundary. An
example of a material flux linked list with
one material in the list is given in Figure
3.

| cell_t ‘

‘ t]
Iheader| = flux_t/—’ J

tail

;

|sflux_t|

Figure 3. Material flux linked list
with 1 material crossing the cell
boundary.

A material flux linked list is comprised of
a single data structure, flux_t, for each
material crossing the boundary. The flux_t
data structure stores the volume, mass and
energy fluxes for the material.
Furthermore, for those materials having
strength, the flux_t data structure points to
a sflux_t data structure holding the stress
energy fluxes and strain fluxes. With these
basic data structures the three phase
solution to the hydrodynamic equations is
implemented.

The first part of the hydrodynamic
solution involves solving for the updated
velocity components using the Lagrangian
algorithm from HEMP which constructs a
control volume around vertex (i,j) that
resembles a diamond with the faces of the
diamond passing through the centers of
cells A, B, C, and D as shown in Figure 4.
The corners of the diamond are the four
neighboring vertices.

NECDC 2010 Proceedings
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Vertex (i,j) and surrounding
cells AB.C,andD

Figure 4. HEMP control volume for
the velocity at vertex (i,j).

The finite difference equation for the axial
velocity component, u, is given as
Equation 1 and the radial component, v, as
Equation 2. The values of the Cauchy
stress tensor components, stored at the cell
centers, are used to update the velocity
components. The Cauchy stress tensor, X,

n+l _ n At A

#2205 (= )+ 22 (36— x,)+ 35, (6, — 2,)+ 28 (1 — x, )+ Aver,

u; = i,j_%
(%)
V=4
L/
3 At
2¢i‘j
1
9= Z[(pA)A +(pA), + (pA). +(pA), ]
(T A T A T A
aij :E s + Xy + xy
172 (m ), M)

includes the pressure, the stress deviators
and the artificial viscous stress for
numerical stability. In a cylindrical
geometry, there are additional
contributions to the velocity equations
from the stress deviator tensor
proportional to 1/r; these are denoted as [3
and o in Equation 3. An area-weighted
scheme is used in HEMP for calculating
these terms as illustrated below. The same
method is applied in Cercion but the true
mass of a cell over the complete solid
angle is used, whereas HEMP does not
use the true mass, hence the /2 factors in
Equation 3. The corresponding difference
equations in HEMP have factors of 1/4
instead.

Zu(h - )ﬁ)"’zfx()’n - Y2)+fo()’2 - Y3)+Zg()’3 - )’4)]

(1)

(24 (g =2 )+ 28 (3, = 2, )+ 55, (x, = )+ 25, (x; - x, )

[Zi‘y(n =)+ 25 (0 =¥ )+ Z5 (0 = y3)+ 20 (3 — vy )|+ A (2)

) e

/Bij =£ MA = Z.V."_Z‘%A + Z,V,V_ZGOA + Z_vy_zeﬂ A
Wy M 4 M 5 M c M 5

Prior to solving the velocity equations, the
stress deviator components are updated
from the previous cycle using the strain
rate components. Cercion does not use the
HEMP methodology for calculating the
strain rate components but rather the
method proposed by Margolin'” is
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adopted, whereby the flow divergence is
calculated in a manner that is consistent
with the strain rate. The difference scheme
for the strain rate components is given in
Equation 4 and Figure 5 identifies the
vertices that are used in the calculation of
the strain rate components.
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cell(i,j)

Figure 5. Vertices used to calculate
the strain rate for cell (i,j).

The calculation of the strain rate
components relies on area and radius
terms denoted Ay and r; in Equation 5,
where the subscripts i,j,k span the four
vertices surrounding the cell in Figure 5.
The Margolin approach employs a volume
averaged approximation to the spatial
velocity derivatives whereas the HEMP
approach uses an area averaged
approximation. Margolin demonstrates
that in certain situations the area averaged

;3
Eu=
6V
; 1
E\'Vz
i

\ 1
809 ZW[VIAL“z + V2A]23 & V3A234 + V4A34l]

1

method is not a good approximation to the
true strain rate and the volume averaged
technique is required for physical fidelity.

Besides being more versatile than other
methods, the volume averaged technique
of Margolin also has the desirable
property that the flow divergence can be
calculated from the strain rate components
exactly as shown in Equation 6, without
introducing additional errors into the finite
difference equations. The flow divergence
is required to calculate the change in
internal energy during the Lagrangian
phase and it is also used to determine the
artificial viscous stress as given in
Equation 7. The internal energy update
performed in Cercion is the two-step
process borrowed from HEMP, where the
equation of state is evaluated twice for
pressure during the update.

[(“3’"234 —u|r4,2)(y2 - }’4>+ (“4r341 —UpNp3 )()’3 - )]

—— [(V1r412 — Vil )(x2 — X )+ (V2r123 —Val344 )(x3 — X )_ (Vl Agjy VoA 105 +V3A054 + V4 Agy )]

&y = (a3 =Vir12 92 = 4)+ (Vatsa) = varins 3 — 3 )] 4.)

"6y

+—[(“1r412 - “3”234)(% - x4)+ (uzrm — Uyl )(X3 — X )- (“1A4|2 Ty Ay + s Ay Uy Ay )]

6V

1
V= g[”l23A123 +haaAoss + g Asgy t+ r412A4|2]

Ay :l[(yk _ijxi_xj)_(yi ")’j)(xk _xj)]

2
Tik =Yit Yt Vi

There are two components in Equation 7
for the artificial viscous stress, one a
linear term in flow divergence and the
other a quadratic term. This form of
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(5

(6.)

artificial viscous stress is scalar in nature
in that the artificial viscous stress only
appears in two Cauchy stress tensor
components, X,, and Z,, as opposed to

NECDC 2010 Proceedings
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affecting all components. The two
component formulation from Equation 7,
where a is the sound speed, is a
straightforward way to generalize the von
Neumann viscous stress intended for one
dimensional problems into two

g=plC AV eUY - CV AV o)

Cercion uses the simple finite difference
mesh relaxer proposed by Winslow with a
nine point stencil. The user can specify in
the input deck whether any particular set
of vertices are relaxed and the time
interval for the relaxation. During the
remap phase material fluxes are used to
redistribute materials among cells whose
vertices have been relaxed. Figure 6
illustrates a cell containing two materials
where three of the cell vertices have been
relaxed.

vertex(i,j) after N
grid relaxation vertex(i,)) after
phase (x,y) Lagrangian phase

o~ )

- k°.... p \ Hg;‘(:i flux
f4 € voiume
_..J_.A,.:.. Lf"‘/ ,U'.{‘
.. 1 Fz(i,))
!. &

. i

cell(i,j)

"%..material k
interface

Figure 6. Flux volumes for cell (i,j).

The vertex positions after the Lagrangian
phase (xp,yp) are denoted with squares
and the relaxed positions (x,y) with
circles. The flux volume through the top
face, Fr, and the flux volume through the

Mzk; =M,—’f,~ —lMFz,-'fj ‘MFZtk—l,j

In Cercion, a second order correction is
made to the donor cell method for those
cells with a single material. The method
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dimensions; this linear-quadratic
formulation was used in later versions of
HEMP as described by Wilkins'®. All the
calculations in this paper have coefficients
of C,=2.0 and C,=0.1 for the quadratic
and linear terms respectively.

(7.)

right face, Fz, both of which are positive,
are calculated using the vertex positions
as shown in Figure 6. These flux volumes
are partitioned to represent the individual
material fluxes using the appropriate
piece-wise linear interface; the mass of
material k contained in the flux volume Fz
is denoted MFZ* in Figure 6. MFZ" is
determined using the donor cell technique
as presented in Equation 8.

k k k
MFZi.j - pupwindFZi,j (8.)

The donor cell technique uses the upwind
density for material k, such that if the
material flows out of cell (i,j) then the
density from cell (i,j) is the upwind
density otherwise the density from
cell(i+1,j) is the upwind density. The
update of material k mass from the
Lagrangian value, M¥, to the value after
the remap step, M", is performed as
shown in Equation 9. Mass fluxes from
four neighboring cells are used to update
the material k mass. An analogous
equation is solved for the material k
internal energy and other cell-centered
quantities. This donor cell method was
used in SALE for the remap phase;
however, unlike Cercion, SALE did not
allow for cells with multiple materials.

k k
+MFr; —MFri,j—lJ .

for calculating the higher order correction
is much simpler than the Barth-Jespersen
remap method'' and is displayed in Figure
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7 for the material mass flux crossing the
top boundary of cell (i,j). The volume of
the cell after the Lagrangian phase is
colored in red and the volume after mesh
relaxation in black. The top flux volume is
shown in blue. The geometric centers of
the top flux volume and the Lagrangian
volume of the cell are highlighted in
Figure 7 as triangles.

center of top top flux
flux volume volume
/ Fr(ij)
AT
4
dxdy. /| 21
\I“\S_ 7/ =

 Yo— 1N
| .
1

W .

cell(),)) volume
I after Lagrangian

phase

achieve a higher order mass flux given by
Equation 10.

Although the remap fluxes themselves are
simpler, the density derivatives are
calculated using the Barth-Jespersen
approach'' involving a control volume
formed from all eight neighboring cells.
The Barth-Jespersen method also imposes
a limit on the value of each derivative to
ensure a monotone flow. The limiting
function proposed by Barth and Jespersen
is used in Cercion to the same effect.

The mass fluxes calculated during the
remap of the cell-centered quantities are
retained for use during the momentum
remap; this was inspired by the approach

of Bowers and Wilson'’. In addition to the
cell-center quantities a higher order remap

cell(i,j) volume//
after grid
relaxation phase

center of
Lagrangian cell

volume

Figure 7. Geometry for the higher
order flux calculation.

The distance between the centers (dx,dy)
is used together with the upwind density
derivatives in a straightforward way to

0
MF,;',j :pupwindFr;',j +Fr}',j dx—p

ax upwind

3.0 Test Problems

Having described the fundamental
algorithms, in this section Cercion is
tested with a series of simple problems in
both one and two dimensions. A Riemann
shock tube was used to assess the fidelity
in capturing shocks and contact
discontinuities. The degree of symmetry
in the code solution was tested with a
Sedov blast wave problem and the ability
to calculate elastic-plastic response in an
aluminum flyer plate problem was also
evaluated.
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of the form of Equation 10 is also used for
momentum but the momentum control
volume is vertex centered, and the
momentum flux volumes are entirely
different, owing to the spatially staggered
nature of the Lagrangian method used in
Cercion.

op

+dy——

Jy (10.)

upwind

The Riemann shock tube is common in
the CFD literature and since there is an
analytic solution it is a good test of the
basic conservation properties of any
numerical fluid dynamics algorithm’. An
initial discontinuity between two ideal gas
regions (y=1.4) exists at time zero. The
first region has a density of 1 kg/m’ and a
pressure of 10° N/m’. The second region
has a density of 0.01 kg/m’ and a pressure
of 10° N/m’. There is a contact
discontinuity at the interface between the
two regions, which moves as the problem
progresses. An Eulerian mesh consisting
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of a uniform box 25 m by 1 m having 500 representing the spatial profiles of
axial zones and 2 radial zones was used velocity and sound speed as shown in
for the Cercion simulation. The numerical Figure 9. The shock is spread out over
solution at 0.01s for the density and about 4 zones as indicated in Figure 9 (a).
pressure is given in Figure 8, together In Figure 9 (b) a slight overshoot in the
with the analytic solution. The location of sound speed appears at the contact
both the shock at about 9m and the discontinuity and the calculated sound
contact discontinuity at about 6m are well speed in front of the contact discontinuity
captured by the simulation. An expansion is a few percent less than the analytic
fan is also visible in the numerical value. Overall Cercion does a good job in
solution for both pressure and density, capturing the important details of the
agreeing nicely with the analytic solution. Riemann shock tube.
Cercion does a reasonable job

(a) Density (b) Pressure

:A;;aly’tzc » Cercon ;Anal';tuc + Cercion|

100000
0.0
. 80000
070 - “
0.50 e
3
a
¢ 40000
0.30 a
0.10 20000 -
0.10 - — 0 -
-10.0 50 00 50 10.0 15.0 100 5.0 0.0 5.0 10.0 15.0
Position {m) Position (m)
Figure 8. Pressure and density for the Riemann shock tube at t=0.01 s.
(a) Velocity (b) Sound Speed
—Analytic + Cercon |—Analytic « Cercion
700 - 800 -
500 7 50 + 1
£
2]
[
300 a0 ——— —— ——+ L
%]
]
c
3
[+]
100 | 9 300 -
100 - - 20 — — —
0.0 5.0 0.0 50 10.0 15,0 -10.0 50 0.0 5.0 100 150
Position {m) Position {m)

Figure 9. Velocity and sound speed for the Riemann shock tube at t=0.01 s.
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The Sedov blast wave problem involves
the propagation of a strong disturbance
arising from a localized energy source of
85 kJ at the origin at time zero. As time
progresses a self-similar solution is
obtained that is spherically symmetric'®.
In a two dimensional cylindrical
geometry, the Sedov blast wave is a good
way to evaluate the symmetry preserving
properties of the numerical algorithm. A
uniform Eulerian mesh was employed
with 300 axial zones and 150 radial zones;
the resolution in both directions was 200
um. The energy source at the origin
spanned 4 zones, two radial and two axial.

At 10 ps the solution from Cercion is
compared with the corresponding solution
from the Eulerian code RAGE in Figure
10. RAGE" has an entirely different
numerical algorithm than Cercion for
solving the fluid equations. Cercion (red)
calculates a pressure behind the blast
wave of about 2.6 kbar and RAGE

(purnle) calculates a higher nressure of 3.0
(a) Pressure

—l‘\nalﬁ: Solution —Cercion at 45 deg. — Cercion at ﬂg
Rage at45deg. —Rage at 90 deg.

0.008
0.008 - =
0.007 - —
0.006 —
0.005 — =
0.004 -
0.003 —
0.002 - =
0.001 +—— =
0.000 ~— — e

1.0 1.5 20 25 3.0

Distance from the Origin (cm)

kbar. The self-similar solution (green)
gives a pressure of 2.4 kbar which is
lower than the result from either code.
Although there is disagreement in
minimum pressure behind the shock, both
codes predict a peak density of about 4.6
g/cc behind the shock which is less than
the value of 6.0 g/cc from the self-similar
solution. The one dimensional profiles of
density and pressure measured from the
origin overlap each other at 90 degrees
and 45 degrees in the Cercion solution,
indicating that symmetry is well
preserved. This is generally true for the
RAGE solution also and the pressure
profiles overlap well; however the peak
density behind the shock at 45 degrees is
noticeably higher than at 90 degrees.
Although both codes smear the shock over
several zones, it is clear that the Cercion
simulation does a good job predicting the
location of the shock at about 2.5 cm from
the origin. RAGE predicts a shock
position that is slightly ahead of the
Cercion value.

(b) Density

— Analytic Solution —Cercion at 45 deg. — Cercion at 90 deg.
Rage at45deg. — Rage at 50 deg.

7.0

Density (g/lem®)

pow & o

o o o o
|

-
o

e

o
-
o

1.5 20 25 3.0
Distance from the Origin (cm)

Figure 10. Pressure and density for the Sedov blast wave at 10 ps.

Part of the reason why neither code
captures the correct minimum pressure or
peak density behind the shock is that self-
similar conditions have not been fully

achieved in the calculations. Even at 10
Us, strong velocity perturbations still exist
owing to the two dimensional nature of
the cylindrical energy source at the origin.
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This is clearly evident in Figure 11 which
shows the one dimensional profile of
velocity magnitude as a function of
distance from the origin at 10 us. The
solution from both codes departs
markedly from the green line representing
the self-similar solution as one approaches
the origin.

FAnalyﬁc Solution — Cercion at 45 deg. — Cerclon at 90 devﬂ

12. A companion calculation was
performed with another Lagrangian code,
FLAG. The FLAG method” is distinct
from the HEMP technique in that the
discrete equations are formulated to
preserve total energy exactly; furthermore
it has been argued in the literature that the
FLAG approach better represents the
partition between kinetic and internal
energies'®. Both Cercion and FLAG show
an elastic precursor wave in the velocity

Rage at 45deg.  —Rage at 90 deg.
profile starting just before 1.5 us and
0.090 W lasting for 0.2 us. There is agreement in
0e80 1 /f ' peak velocity as well with both codes
0.070 giving a value of 0.07cm/us, which
0.060 - conforms to the theoretical value for this
0.050 kind of impact. The duration of the
0.040 velocity pulse at the target-vacuum
0.030 4 interface is the same and in general there
— B is good agreement between the two codes
T for the release wave.
0.010
0.0 0.5 1.0 1.5 20 25 3.0 —
Distance from the Origin (cm) 0.00 ! JT |
Figure 11. Velocity magnitude for 0.08 1 ’
the Sedov blast wave at 10 ps. 7 0 \
E 0.06
s \|
> 0.05
A flyer plate test problem was formulated S 004
to evaluate the material strength treatment C - \
in Cercion. In one dimensional geometry, ’ \
an aluminum projectile which is 2mm in oz ‘ h\
length (40 cells) and has a velocity of 0.07 0.01 llfj k
cm/Us impacts an aluminum target at rest 0.00 ‘ * -
that is 1 cm in length (200 cells). There is 0.0 0.5 1.0 1.5 2.0 25
no mesh relaxation in the problem and the Time (us)
fluid equations are solved in a
Langrangian fashion. A Mie-Gruneisen Figure 12. Cercion and FLAG
EOS is used to represent aluminum with velocity profiles for the flyer plate
the parameters taken from Steinberg’. A problem.
simple elastic-plastic material strength
model is assumed for aluminum with a
constant shear modulus of 270 kbar and a The test problems in this section have
constant yield stress of 0.4 kbar. helped establish confidence in the basic
equations for the Lagrangian velocity
update, Equations 1 and 2, as well as the
The velocity temporal profile at the target- calculation of the strain rate given by
vacuum interface is presented in Figure
NECDC 2010 Proceedings ~ UNCLASSIFIED 11
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Equation 4 and the higher order remap
algorithm from Equation 10.

4.0 Steel Shell Implosion The high pressure gas region in Figure 13
contains 80 radial zones. Within the inner

steel shell there is a low pressure gas

An imploding steel shell is a good test of region, consisting of 20 radial zones.
energy conservation in converging
cylindrical geometry. A simple test - 5.0cm

problem involving two steel shells,
separated by a high pressure gas region
was constructed in a two dimensional
cylindrical geometry as shown in Figure
13. Each of the two steel shells has 10
radial zones with the outer shell being
0.25 cm thick and the inner shell being 0.5
cm thick. There are 180 axial zones in the

8.0cm

P=0.588 Mbar
p=1.84 gicc

2.0cm

problem and the cylindrical shells are 5 P=0.0 Mbar
. . p=0.001 gicc
cm long. A Mie-Gruneisen EOS was used r
for steel with parameters for stainless steel | ...
304 taken from Steinberg®. Cercion 7
calculations were performed both with
and without material strength. A simple Figure 13. Initial geometry of the
material strength model was adopted with steel shell cylindrical implosion
constant yield strength of 0.05 Mbar and problem.
constant shear modulus of 0.895 Mbar.
(a) Kinetic Energy (b) Internal Energy
#-Flag {-Cetcion_N:E - Cercion #Flag -l-Ce?on_EE : 3 CercE
30
|
25 =
g
20 3
e
&
1.8 1 =
£
o
10 +—— £
s
0.5 — — n
|
0.0 + +— -
0.0 1.0 20 30 40 50 6.0

Time (us) Time (us)

Figure 14. Inner steel shell kinetic and internal energies without material
strength.
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Both gas regions were represented as ideal
gases in the calculations and initialized
according to the conditions specified in
Figure 3. The simulations lasted 5 ps and
comparisons were made with FLAG
calculations having the same mesh, using
a purely Lagrangian treatment of the
hydrodynamics.

For the case without material strength
FLAG and Cercion give the same kinetic
energy of about 2.5 MJ for the inner steel
shell at 5 ps as shown in Figure 14 (a). In
general the calculated values of kinetic
energy are the same for the two codes
during the implosion interval; maximum
compression of the shell occurs shortly
after 5 us. The Cercion calculation is
presented as the red curve in Figure 14
with the FLAG result as the blue curve.
An additional Cercion simulation was
performed using ALE, such that mesh
relaxation occurred everywhere at every
cycle except inside the low pressure gas
region and at material boundaries. The
Cercion result with ALE is shown as the
green curve in Figure 14. It is evident that
the use of ALE during the implosion has
virtually no effect on the Cercion solution,
both for kinetic energy and internal

(a) Kinetic Energy

A
— — =58 )|
I‘/'
.. !
1.0 20 3.0 4.0 5.0 6.0
Time (ps)

Shell internal Energy (MJ)

energy. Although the agreement for the
two codes is excellent for kinetic energy
and generally good for internal energy
there are noticeable differences between
Cercion and FLAG. The FLAG internal
energy is consistently higher than Cercion
between | and 4 ps. The internal energy
difference between FLAG and Cercion is
approximately 10% at 3 pus. Both codes
give nearly the same total energy for the
inner shell as a function of time, with a
maximum total energy of about 2.7 MJ at
5 us.

FLAG is somewhat unique in its use of
the temporary triangular subzonal (TTS)
method to dissipate unphysical hourglass
instabilities®'. The TTS method is an
edge-based technique whereas the
prevalent approach in the literature for
controlling hourglass instabilities is a
volume-based method. In certain
situations, the TTS method can lead to
relatively large amounts of mesh
stiffening. The Cercion calculations were
performed without any anti-hourglass
dissipation and perhaps the internal
energy difference can be explained by the
use of the TTS method in FLAG.

(b) Internal Energy

;—Flag . 2 jercoon_f]_j - Cgrg@

0.35
0.30 ¢
0.25 -

0.20 -

0.0 1.0 20 3.0 4.0 5.0
Time (ps)

Figure 15. Inner steel shell kinetic and internal energies with material strength.
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When material strength is included in the
calculations it is also true that FLAG and
Cercion agree well for the kinetic energy
of the inner shell as shown in Figure 15
(a). The peak kinetic energy in this case is
about 2.4 MJ. As before, the purely
Lagrange Cercion calculation in red and
the Cercion calculation with ALE in green
are indistinguishable. The total energy of
the inner shell as a function of time
remains unchanged from the previous set
of calculations without strength. There is
excellent agreement to within 3% between
Cercion and FLAG for total energy of the
shell. The addition of material strength
only changes the partition of energy
between internal and kinetic modes in the
calculations. With regards to internal
energy, both codes show the same general
temporal behavior during the implosion;
however FLAG gives more internal
energy than Cercion during most of the
implosion time interval, as illustrated in
Figure 15 (b). The internal energy of the
inner shell near the end of the implosion
at 5 s is about 0.32 MJ and this is nearly
the same for both codes. At 3 us FLAG
gives an internal energy that is about 5%
higher than Cercion. For the case without
strength, the internal energy at 5 us is
lower at about 0.19 MJ and both codes
give a similar value.

5.0 Conclusions

Cercion uses proven numerical methods
for the solution of the Langrangian
equations of motion and the calculation of
material strength properties. Cell-centered
data structures simplify the programming
of the code and allow for efficient
memory allocation for multi-material
problems. A second-order accurate remap
method is used for density, energy and
momentum, enabling ALE calculations to
be performed. Results from this paper
indicate that the remap method is robust

14 UNCLASSIFIED

and has been implemented correctly in
Cercion.

Cercion shows excellent agreement with
the analytic solution for the Riemann
shock tube problem. There is good
symmetry in the Cercion solution for the
Sedov blast wave problem but both
Cercion and RAGE have a peak density
behind the shock that is lower than the
self-similar solution. In addition to the
inherent smearing of the shock due to the
discrete solution method, the fact that the
calculations have not fully reached a self-
similar state is also a likely contributor to
the discrepancy. In pure Langrangian
mode, both Cercion and FLAG give
similar velocity profiles at the target-
vacuum interface for the flyer plate test
problem. This establishes confidence in
the numerical implementation of the
Margolin strain rate method.

For the steel shell cylindrical implosion
problem Cercion and FLAG calculate
total energies for the inner steel shell that
agree to within 3% during the implosion
time interval. For cases with and without
material strength, FLAG gives a higher
internal energy than Cercion, but the
kinetic energy of the inner shell is in
agreement between the two codes. The
Cercion results are insensitive to the use
of ALE during the calculation.

Perhaps the internal energy difference
between Cercion and FLAG is due to the
TTS anti-hourglass treatment in FLAG. It
would be informative to perform the
cylindrical implosion calculation in FLAG
without the TTS model, if possible, in
order to test this hypothesis in future
work. Besides the HEMP based Lagrange
method in Cercion and the total energy
preserving method of FLAG there are a
number of distinct Lagrangian
hydrodynamic algorithms in the literature.
A comparison with some of these other
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numerical methods would help illustrate
how different techniques partition energy
between internal and kinetic modes.
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